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ABSTRACT

Saliency maps are commonly employed as a post-hoc method to explain the
decision-making processes of Deep Learning models. Despite their widespread
use, ensuring the fidelity of saliency maps is challenging due to the absence of
ground truth. Researchers, therefore, have developed fidelity metrics to evalu-
ate the fidelity of saliency maps. However, prior investigations have uncovered
statistical inconsistencies in existing fidelity metrics using multiple perturbation
techniques without delving into the underlying causes. Our study aims to explore
the origins of these observed inconsistencies by examining the existing fidelity
metrics and demonstrating why they are inconsistent. We use different types of
perturbations and study multiple models across different datasets. We propose
two conformity measures to examine the validity of the assumptions made by the
existing fidelity metrics. Our findings reveal that the assumptions made by the
existing fidelity metrics do not always hold, making them inconsistent and unre-
liable. Thus, we recommend a cautious interpretation of fidelity metrics and the
choice of perturbation technique when evaluating the fidelity of saliency maps in
eXplainable Artificial Intelligence (XAI) applications.

1 INTRODUCTION

Deep learning (DL) models, while providing high performance and accuracy for various applica-
tions, come at the cost of decreased transparency. In many critical domains such as health care,
insurance, and law enforcement, concerns about the transparency, fairness, privacy, and trustwor-
thiness of AI applications arise due to the black-box nature of deep learning models (Rudin, 2019;
Jacovi et al., 2021; Arrieta et al., 2020). These concerns have led to discussions about adopting the
latest Artificial Intelligence (AI) models in various sectors (Cubric, 2020; Cam et al., 2019; Güngör,
2020). Therefore, a great deal of research has been dedicated to explaining the decisions of AI sys-
tems under the umbrella of XAI (Arrieta et al., 2020; Selvaraju et al., 2017; Chattopadhay et al.,
2018; Zhou et al., 2016; Ramaswamy et al., 2020; Ribeiro et al., 2016; Broniatowski et al., 2021;
Lundberg & Lee, 2017).

Saliency maps (e.g., Class Activation Maps (CAM)) are widely used as a mode to explain the de-
cision of DL models (Selvaraju et al., 2017; Chattopadhay et al., 2018). Disagreements can be
observed among saliency maps generated using different methods for the same model and the same
image, making a user choice difficult. One can choose the best saliency map with the highest fidelity
when compared to ground truth. However, the absence of actual ground-truth1. Fidelity metrics such
as ”Area Over the Perturbation Curve” (AOPC) (Samek et al., 2016), Average Drop (AD%), In-
crease in Confidence (IC%) and Win (W%) (Chattopadhay et al., 2018; Wang et al., 2020) and
”faithfulness” metric (Alvarez Melis & Jaakkola, 2018) have been used to measure the fidelity of
saliency maps (Samek et al., 2016; Bach et al., 2015; Alvarez Melis & Jaakkola, 2018).

These fidelity metrics, however, suffer from inconsistencies and thus make them unreliable (Tomsett
et al., 2020). Fidelity metrics such asAOPC (Samek et al., 2016), AD%, IC% and W% (Chattopad-
hay et al., 2018; Wang et al., 2020) and faithfulness (Alvarez Melis & Jaakkola, 2018) rely on

1Human annotation typically focuses on features that make sense from a human perspective (e.g., edges in
images), while DL models rely on patterns that are not easily interpretable. Human-annotated saliency maps
may misrepresent the model’s true decision-making process, making them unreliable for evaluating the fidelity
of the maps.
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computing pixel importance rank (PIR) for measuring the fidelity of saliency maps. PIR is cal-
culated by perturbing the pixels (one by one or cumulatively) and noting the change in the output
probability. A greater change in output probability denotes greater importance for a perturbed pixel.
The computed PIR from an image serves as a proxy for ground truth, enabling the estimation of
the fidelity score for saliency maps (Alvarez Melis & Jaakkola, 2018). This approach is based on
the assumption that the change in output probability follows a consistent pattern across different
perturbations, with the output probability varying in proportion to the importance of the perturbed
pixel. If this assumption is not fulfilled, the fidelity metrics’ scores would vary for different per-
turbations, leading to inconsistency as reported by Tomsett et al.(Tomsett et al., 2020). Further,
Tomsett et al.(Tomsett et al., 2020) observed this inconsistency by analyzing the prediction proba-
bilities by perturbing pixels with 0 and a random value. While demonstrating the inconsistency in
fidelity metrics, Tomsett et al.(Tomsett et al., 2020) further recommend:

”Metric developers should encourage users of their metric to investigate and un-
derstand the sources of variance in the metric scores, and how this affects their
decisions about what saliency methods to choose for their particular model.”

Thus, complementing the previous work by Tomsett et al. (Tomsett et al., 2020), we investigate the
construction of fidelity metrics by studying the variances.

1.1 OUR CONTRIBUTIONS

We first theoretically establish the scenarios under which such assumptions are violated. We then
provide two conformity measures that quantify the extent of variances affecting the fidelity metrics.
Both the conformity measures are used to demonstrate the inconsistency of fidelity metrics by using
several perturbations, models and datasets in both normal and adversarial setting. Going beyond the
works of Tomsett et al.(Tomsett et al., 2020) and to generalize our findings, we study the variances
in a comprehensive manner using nine different perturbations that include two inpainting-based
perturbations (Telea (Telea, 2004) and Navier Strokes (Bertalmio et al., 2001)), Gaussian Blur (three
different widths of the Gaussian Kernel) and setting a random value, min, max and mean of the image
pixel values as perturbation values. Further, we show empirically that our conformity measures can
be used in pixel-wise and segment-wise perturbation schemes before using fidelity metrics.

Our main contributions to this paper are:

• We present an approach to examine the inconsistency of fidelity metrics. We show that
before using fidelity metrics, the varaiances of DL models w.r.t. to the perturbation type
must be studied.

• Complementing previous works that have observed inconsistencies in fidelity metrics, we
propose two new conformity measures.

• The conformity measures proposed in this work are further used to empirically analyse
three widely used DL models and two adversarially trained DL models on three datasets
using nine perturbation types, and two perturbation schemes (pixel-wise and segment-wise)
for all models.

2 PROPOSED APPROACH

The fidelity metrics are based on the PIR which assume the drop in output prediction probability
of a DL model to be proportional to the relevance of the perturbed pixel (i.e., more important the
pixel, larger the drop in output probability). The pattern of change (i.e. the proportionate change in
output probability as per the relevance of the perturbed pixel) should ideally hold true for all types
of perturbations as long as the image semantics is preserved under the notion of local neighborhood.
This is based on two aspects:

[P1] There is a drop in the output probability when a pixel is perturbed;

[P2] The amount of drop in output probability is proportional to the relevance of the pixel.
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Dissecting these two aspects, we first present the theoretical background on the violation such as-
pects in fidelity metrics and then present the proposed conformity measures in Section 2.2 and
Section 2.3 to aid in examining the inconsistencies.

2.1 THEORETICAL FRAMEWORK

Let R be the ranks of pixel as per importance obtained from a saliency map on an unperuturbed
image. R can be expressed as follows:

R = {a1, a2, a3, a4, . . . ai} (1)

where, R is the ranked list of pixel importance by any saliency method. a1 → ai are pixels sorted
in the order of their importance i.e. a greater i denotes greater importance.

The assumption on the expected change in output probability by perturbing a pixel can be summa-
rized as:

p0 > pϕi ∀ i, ϕ (2)

where, p is the prediction probability of a classification model which takes an image I as input and
returns the probability of the top class. p0 is the probability of the top class as predicted for the
original i.e. unperturbed image. pϕi is the prediction probability on an image obtained by perturbing
only the ith pixel of an image I with a perturbation type ϕ.

Further, the change in output probabilities of perturbing two pixels i and j, where j is more important
than i, can be summarized given as:

δpϕi < δpϕj ∀ i < j (3)

Where, δpϕi = p0 − pϕi
Utilizing Equation (1) and Equation (3) we can generate the ranked list of probability differences,
denoted as R(ϕ), for an image perturbed by each pixel and for all i pixels with increasing order of
ranks:

R(ϕ) = {δpϕ1 , δp
ϕ
2 . . . δp

ϕ
i } (4)

pixels = {1, 2, . . . i} and for a given perturbation ϕ

The probability changes obtained from Equation (4) can be sorted to get an ordered list of pixels.
This set of ordered pixels, denoted by Rσ , represents the importance ranks of the pixels correspond-
ing to σ. For a perturbation based technique to be applicable in fidelity metrics, the pixel importance
ranks should ideally be invariant to different sets of hyper-parameters. This invariance to different
sets of hyper-parameters is defined as below:

rbo(R(ϕ),R(ψ)) ≈ 1 ∀ for two perturbations ϕ, ψ (5)

Where, rbo is Rank Biased Overlap (Webber et al., 2010) in our experiments, but it can be any
function that calculates the similarity between two rank lists. Further, without the loss of generality
we can say that Equation (5) should hold true for any set of pixels obtained from a saliency map.

Any perturbation based fidelity metric should conform to Point [P1] according to Equation (2) and
should conform to Point [P2] according to Equation (5). To quantify the conformance, we introduce
two new conformity scores which we refer to as DROP (corresponds to Point [P1]) and PSim
(corresponds to Point [P2]) as discussed further.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DROP IN PREDICTION PROBABILITY (DROP)

The Drop in Prediction Probability (DROP ) measures the average number of drops in the output
probability when a pixel is perturbed for an image and a given model M . Thus, if p0 represents
prediction probability from a modelM on unperturbed image and pϕs represents the prediction prob-
ability on a perturbed image for a perturbation type ϕ on a chosen pixel s in a set of all pixels S or
a chosen segment of all available segments, DROPM for a given model can be computed as:

DROPM =

∑
s∈S

[
(p0 − pϕs ) >= 0

]
|S|

(6)

Where, [] denotes an indicator function with binary decision. For a complete dataset of K images
and a given model M , Equation (6) can be represented as Equation (7) providing average across all
images in a dataset D.

DROP =
1

|K|

K∑
k=1

DROP kM (7)

DROP should have an ideal value of 1 but higher values i.e. closer to 1 are better under the
assumption that there is a drop in the output probability when a pixel is perturbed.

2.3 PIXEL RANK SIMILARITY (PSIM)

For any two given set of perturbations (say ϕ and ψ) on an image, and corresponding ranked list
obtained R(ϕ),R(ψ) respectively for a given image, it is expected to have same ranks for a given
model M if a model M is consistent. Thus, the similarity between the ranks can be computed as:

PSimM =

∑
ϕ

∑
ψ,ϕ̸=ψ rbo(R(ϕ),R(ψ))

|N | × (|N | − 1)
(8)

Extending the same over the datasetD with a set ofK images, PSim can be computed as an average
as Equation (9):

PSim =
1

|K|

K∑
k=1

PSim (9)

Thus, for any perturbation based fidelity metric to be consistent, PSim should have an ideal value
of 1. However, higher values i.e., closer to 1 suggest the conformance of fidelity.

3 IMPLEMENTATION DETAILS

3.1 APPROACH OVERVIEW

Figure 1 shows our implementation where we obtain the prediction probabilities for a given model
on unperturbed and a set of perturbed images. The prediction probabilities are used to evaluate
the conformance using Drop in Prediction Probability (DROP) for Point Item [P1] and Pixel Rank
Similarity (PSim) for Point Item [P2]. The approach for measuring the conformity scores is further
described in Algorithm 1. While Algorithm 1 computes the conformity scores for the pixel-wise
perturbation scheme, the same can be applied to the segment-wise perturbation scheme without the
loss of generality.

We first determine the prediction probability of a given model M on an unperturbed image (i.e., p0)
and then perturb the selected pixels one by one for a given perturbation ϕ1 to obtain p1, p2, p3 . . .
to determine the δp1, δp2, δp3 . . . for the perturbation ϕ1. The same perturbation scheme can be
extended to segments without any change. DROP and PSim are then calculated for each image
and for the whole dataset as described in Equation (7) and Equation (6) respectively.
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Figure 1: Proposed approach for estimating conformity scores of the deep learning models using the
prediction probabilities on perturbed images.

Algorithm 1 Algorithm for calculating DROP and PSim
p0 ← model.predict(I) ▷ Unperturbed image I
{i} ← S ▷ i pixel in S pixels
ϕ← {Φ} ▷ set of all perturbation types
L ← []
L ▷ List of pixel importance ranks from all perturbation types
δP ← [] ▷ δP is the DROP score
for all ϕ do

δP ← []
for all i in {S} do

Iϕi ← perturb image(Ii, ϕ) ▷ for ith pixel in image I
pϕi ← model.predict(Iϕi )

δpϕi = p0 − pϕi
δP .append(δpϕi )

end for
δP.append(|{δP ≥ 0}|) ▷ Append count of δP ≥ 0
l← argsort(δP )
L.append(l)

end for
rbo score← pairwise rbo(L)
return µ(δP), µ(rbo score) ▷ DROP (Equation (7)) and PSim (Equation (6)) scores

4 EXPERIMENTAL SETUP

We use three pre-trained, and two adversarially trained image classification models, and three well-
known datasets in our experiments. We conduct our analysis on InceptionV3 (Szegedy et al., 2016),
Xception (Chollet, 2017), and ResNet50 (He et al., 2016) initialized with ImageNet weights. For,
adversarial models we used the weights of adversarially trained ResNet50 architecture viz., Ima-
geNet L2-norm (ResNet50) with ϵ = 3 and ImageNet Linf-norm (ResNet50) with ϵ = 8/255 (
refer Engstrom et al. (2019) for details). Imagenette from tensorflow.org (et.al.), Oxford-IIIT Pet
Dataset (Parkhi et al., 2012) and PASCAL VOC 2007 (Everingham et al.) are used to conduct our
experiments. The Imagenette dataset is a subset of the Imagenet (et.al.) dataset with ten easily
classified classes. We used the validation part of this dataset for our experiments, which has around
3925 images. The Oxford-IIIT Pet Dataset (Parkhi et al., 2012) and PASCAL VOC 2007 (Ever-
ingham et al.) datasets did not have train and test splits. Hence, we considered all the images for

5
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these two datasets, i.e., 7390 of the Oxford-IIIT Pet dataset and 4952 of the PASCAL VOC 2007
dataset. For each model, predict was called for (3925 + 7930 + 4952) images × 50 pixels ×
9 perturbatiotypes × 2 perturbationschemes values, approximately, 15 million times, and in
total, predict was called approximately 75 million times. Further, our goal was not to be exhaus-
tive with different datasets and models but to understand the impact of perturbations to evaluate the
fidelity of saliency maps from the perspective of PIR. Our code was written in Python 3.10 and
Tensorflow 2.9 and for computing we leveraged A100 GPUs.

4.1 PERTURBATION DETAILS

We considered nine different perturbation types i.e., two inpainting based perturbations for all our
experiments. Specifically, we used Telea (Telea, 2004) and Navier Strokes (Bertalmio et al., 2001)),
Gaussian Blur (three different widths of the Gaussian Kernel) and setting a random value, min,
max and mean of the image pixel values as pixel values. The perturbations are represented as
’IT’ (Telea inpainting),’IN’ (Navier Strokes inpainting), ’FR’ (setting pixel value randomly), ’U0’
(image min), ’U1’ (image max), ’U0.5’ (image mean), ’G3’ (Gaussian blur with kernel widths of
0.3), ’G9’ (Gaussian blur with kernel widths of 0.9) and ’G1.5’ (Gaussian blur with kernel widths
of 1.5). Further, we perturb the pixels/segments using two perturbation schemes viz., pixel-wise and
segment-wise. We use the property that a subset of a ranked order list maintains ranking and select
50 random pixels (refer to proof in Appendix S2). The same argument can be extended to segments
as shown in our analysis.

5 RESULTS AND DISCUSSION

5.1 DROP AND PSIM SCORES FOR ALL PERTURBATIONS

Table 1 shows the DROP and PSim values for different models over different datasets for pixel-
wise perturbation scheme. The chosen models, i.e., Inception V3, Xception, and ResNet50 pre-
trained with Imagenet weights. As seen in Table 1, it can be observed that the DROP values are
around 0.5 to 0.6 for all models across datasets. This indicates that only for 50 % to 60% of the
pixels, the probability dropped on perturbation. This invalidates Point [P1] of the assumption in
Section 2. Further, Table 1 shows the PSim values for all the models over all datasets. As seen
from the table, the PSim values are small, but as per Equation (9), they should have been≈ 1. This
invalidates Point [P2] of the assumption in Section 2. Further, this observation is consistent for all
three models and across all datasets for segment-wise perturbation scheme as seen in Table 1. Thus,
for different perturbations, the mentioned models will not conform to the assumptions made by the
perturbation based fidelity metrics.

Further, we show the DROP and PSim scores for the adversarially trained ResNet50 models
for both perturbation schemes in Table 2. Both DROP and PSim scores are much lower than
1 in all cases, and hence, adversarial training does not necessarily result in consistency of fidelity
metrics. Due to the unavailability of adversarially trained models for Inception V3 and Xception
architectures, we had to limit our experiments to ResNet50 architecture. Hence, we refrain from
making conclusive remarks regarding the consistency of fidelity metrics with respect to adversarially
trained models.

5.2 DROP FOR INDIVIDUAL PERTURBATIONS

We present the distribution of DROP scores for Inception V3, Resnet50, and Xception models in
the Imagenette dataset in Figure 2. For all perturbations, except the variants of Gaussian Blur, the
DROP scores have the highest density at around 0.5. However, the variations of the Gaussian Blur
for the ResNet50 model seem to be closer to 1. This pattern is similar for other datasets (Figure S2
and Figure S3 in supplementary). Further, we estimated the probability of the DROP scores to be
closer to 1 (i.e., above the cut-offs of 0.80, 0.85, 0.90, and 0.95) by using Kernel Density Estimation
(KDE), with Scott’s rule Scott (2015) for bandwidth calculation, owing to its non-parametric nature.
In Figure 3, we show the estimated probabilities for DROP and PSim scores across all datasets,
models, and perturbation types for segment-wise perturbation to be ≥ 0.8. The first two letters
of model name and dataset name are used along the axis for ”Dataset - Model” to represent their
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Table 1: DROP and PSim scores across all datasets, models, perturbations for pixel-wise per-
turbation scheme and segment-wise perturbation scheme. The segments were computed using the
Quickshift (Vedaldi & Soatto, 2008) segmentation algorithm. The results are shown as Mean ±
Standard Deviation. Ideal value DROP and PSim should be 1 and higher the better.

Dataset Inception Xception ResNet
Pixel-wise perturbation

Imagenette DROP 0.504±0.131 0.514±0.134 0.643±0.153
PSim 0.432±0.181 0.431±0.185 0.570±0.298

Oxford Pets DROP 0.507±0.130 0.504±0.138 0.636±0.132
PSim 0.428±0.183 0.430±0.186 0.582±0.289

VOC2007 DROP 0.511±0.115 0.550±0.180 0.512±0.132
PSim 0.643±0.130 0.433±0.189 0.573±0.301

Segment-wise perturbation
Imagenette DROP 0.515±0.135 0.518±0.126 0.553±0.111

PSim 0.310±0.181 0.269±0.142 0.329±0.179
Oxford Pets DROP 0.507±0.120 0.516±0.095 0.546±0.107

PSim 0.255±0.129 0.307±0.179 0.309±0.181
VOC2007 DROP 0.542±0.102 0.517±0.091 0.529±0.100

PSim 0.267±0.166 0.294±0.179 0.299±0.182

Table 2: DROP and PSim scores for adversarially trained ResNet50 models (Linf-norm and L2-
norm) for pixel-wise and segment-wise perturbation schemes. (*Higher scores are better)

Pixel-wise Perturbation Scheme
Dataset L2-norm Linf-norm L2-norm Linf-norm
Imagenette 0.555±0.374 0.555±0.357 0.237±0.140 0.209±0.097
Oxford Pets 0.580±0.369 0.567±0.369 0.217±0.133 0.186±0.116
VOC2007 0.528±0.383 0.546±0.371 0.243±0.124 0.181±0.106

Segment-wise Perturbation Scheme
Imagenette 0.574±0.238 0.526±0.220 0.321±0.173 0.301±0.146
Oxford Pets 0.541±0.218 0.567±0.213 0.318±0.165 0.326±0.182
VOC2007 0.557±0.186 0.517±0.181 0.292±0.148 0.289±0.155

combinations. In most scenarios, the estimated probabilities for DROP are low, but the variants of
Gaussian Blur show relatively higher probabilities than other perturbations. We see a similar trend
for the segment-wise perturbation scheme (refer Figure S14 in supplementary) and for the different
cut-offs of estimate probabilities in Figure S12, Figure S13 of supplementary. This demonstrates
empirically that fidelity metrics have low conformity to Point [P1].

5.3 PSIM FOR INDIVIDUAL PAIRS OF PERTURBATIONS

The pairwise PSim scores for all perturbation pairs corresponding to the Inception V3 model on
the Imagenette dataset are shown for the pixel-wise perturbation scheme in Figure 4. Most of the
perturbation pairs have low PSim scores, but for the three pairs of Gaussian Blur (i.e., G3 G9,
G3 G15, and G9 G15) and the pair for inpainting (IT vs. IN), the PSim scores are relatively
higher. We show the PSim scores for all perturbation pairs on all dataset:model combinations in
supplementary (Figure S4 - Figure S11). Further, the same trend is visible when we estimate the
probability of PSim scores to be≥ 0.8 (like Section 5.2). We show the surface plot of the estimated
probabilities of PSim scores to be ≥ 0.8 for all perturbation pairs in Figure 5. The first two letters
of model name and dataset name are used along the axis for ”Dataset - Model” to represent their
combinations. The results in Figure 5 are similar to the observations of Figure 4. However, it
has to be noted that in none of the scenarios, PSim score is ≈ 1, indicating low conformity to
Point [P1]. We see a similar trend for the segment-wise perturbation scheme (refer Figure S15 in
supplementary). Hence, the ranks of the pixels/segments (as mentioned in Section 2.1) would vary
for different perturbation types and lead to inconsistency in fidelity metrics.

From the low probabilities observed in Section 5.2, and Section 5.3, it can be established that fidelity
metrics have low conformity to Point [P1] and hence are not consistent across a wide variety of
perturbations. As such, it is imperative to specify the perturbation type to be used when reporting the
fidelity scores from these fidelity metrics. The perturbation type can be determined using domain-
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related theoretical reasoning and/or empirically (as discussed in (Bora et al., 2024)). Further, we
also observed that, out of the perturbation types considered, Gaussian Blur was relatively consistent
compared to other perturbation types as it had higher scores for both conformity measures.

Figure 2: Distribution of DROP scores across all models, perturbation types using pixel-wise per-
turbation scheme for Imagenette Dataset

Figure 3: Surface Plot of DROP scores’ probabilities to be above 0.8 for all datasets, models, and
perturbation types using pixel-wise perturbation scheme

8
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Figure 4: Distribution of pairwise PSim scores for all perturbation types for Inception V3 model
using pixel-wise perturbation scheme on Imagenette Dataset

6 CONCLUSION AND FUTURE WORK

The prediction probability of DL models varied significantly for the same image and the same model
for the considered perturbations. This variation in the output probabilities led to a high variance in
the PIR. Thus, the metrics that implicitly rely on the invariance of PIR for measuring fidelity would
be rendered unreliable and fail the sanity checks. While previous studies have limited the analysis
of unreliability to the metric level, we demonstrated that unreliability arises as a property of the
DL models with respect to perturbations. Thus, we recommend using the proposed metrics as a
preconditional check before analyzing the fidelity of saliency maps. Further, we advocate specifying
the perturbation type while reporting fidelity scores from these fidelity metrics. However, out of the
considered perturbation, Gaussian Blur was relatively consistent compared to other perturbation
types. Future works should consider the high variance in PIR and the lack of robustness around
the predicted instance to devise reliable fidelity metrics. In the future, we plan to extend our study
to analyze the behavior of adversarially trained DL models concerning perturbations for different
architectures using the proposed conformity measures.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Surface Plot of PSim scores’ probabilities to be above 0.8 for all datasets, models, and
perturbation types using pixel-wise perturbation scheme
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