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Abstract

The transformative impact of foundation mod-
els has yet to be fully realized for Relational
Databases (RDBs), largely due to their complex
structures and diverse task requirements. We
introduce Griffin, an initial attempt at a graph-
centric foundation model for RDBs, which unifies
data encoding and task decoding to handle hetero-
geneous data and a wide array of tasks. Grif-
fin employs pretrained text and float encoders
for categorical, numerical, and metadata fea-
tures. Its novel architecture incorporates a cross-
attention module for intra-row feature interaction
and an enhanced message-passing neural network
(MPNN) to capture inter-table relational complex-
ities. Pretrained on extensive single-table and
RDB datasets (over 150 million nodes), Griffin
demonstrates superior or comparable performance
to task-specific models. Importantly, it shows
strong transferability to new datasets and tasks,
particularly in low-data scenarios when pretrain-
ing data exhibits similarity or diversity to the tar-
get, underscoring its potential as a universally
applicable foundation model for RDBs.

1. Introduction
Foundation models have achieved remarkable success in
domains like NLP (Brown, 2020; Touvron et al., 2023) and
vision (Wang et al., 2023; Yuan et al., 2021). However, their
application to Relational Databases (RDBs)—characterized
by interconnected tables and complex schemas—remains
underexplored despite RDBs’ ubiquity. An RDB foundation
model should generalize across diverse RDBs, varying in
size, schema, and domain. Key challenges include handling
structural complexity, diverse data types (categorical, nu-
merical, textual), and RDB-specific computational patterns.
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However, a large proportion of prior tabular models focus on
single-table situations, while existing graph-based methods
for RDBs, such as those benchmarked in (Wang et al., 2024;
Robinson et al., 2024), are typically task-specific rather than
universal foundation models. To address this, we propose
Griffin, a Graph-centric RelatIonal database FoundatIoN
model. Griffin’s core contributions include:

• Unified Data Encoders and Task Decoders: Employs
pretrained text and float encoders for all input features
(including metadata) and unified decoders for varied clas-
sification/regression tasks, promoting generalization.

• Advanced GNN Architecture: Features a cross-
attention module and a hierarchical MPNN to effectively
model inter-table relationships.

• Multi-Stage Pretraining: Leverages large-scale single-
table (self-supervised completion) and RDB datasets (su-
pervised fine-tuning on over 150M nodes).

Our evaluations on benchmarks like 4DBInfer (Wang et al.,
2024) and RelBench (Robinson et al., 2024) show Griffin’s
architecture significantly improves performance. Single-
table pretraining offers universal benefits, and RDB-specific
supervised fine-tuning enhances transferability, especially in
low-data settings, driven by domain similarity and diversity.

2. Griffin Model Architecture
2.1. Data Modeling

Griffin models Relational Databases as temporal hetero-
geneous graphs: table rows are nodes, and Primary Key-
Foreign Key (PK-FK) relationships become typed edges.
Node features are derived from the row’s cell values.

Due to huge data in RDB, Griffin uses a local temporal sub-
graph for prediction. The subgraph is sampled around the
target node and, to ensure causality, includes only entities
(nodes and edges) with timestamps strictly earlier than the
target’s. This graph transformation and temporal sampling
align with established methods (see 4DBInfer (Wang et al.,
2024) for details), providing a feature-enriched subgraph to
subsequent model components.

2.2. Unified Data Encoder

Griffin unifies diverse RDB inputs into a consistent d-
dimensional embedding space:
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Figure 1: Overview of the Griffin Model Framework. RDBs are transformed into graphs, processed by unified encoders,
an RDB-tailored MPNN, and unified decoders.

• Categorical/Textual Features: Categorical features (first
textualized) and native textual data are processed by a
pretrained text encoder (e.g., Nussbaum et al. (2024)).

• Numerical Features: Values are quantile normal-
ized (Bolstad et al., 2003), then embedded by a pretrained
float MLP encoder (ENC). ENC and a corresponding
decoder (DEC) are jointly pretrained by reconstructing
x ∼ N (0, 1) from its embedding w = ENC(x) ∈ Rd

using y = DEC(w) ∈ R, minimizing L1 loss |y − x|.
LayerNorm (no affine weights) is applied to w. Both
ENC and DEC are fixed post-pretraining.

• Metadata Encoding: Metadata such as table names,
column names, and edge types are also embedded using
the text encoder.

• Task Representation: A task embedding t ∈ Rd, from
encoding the target column’s name (via text encoder),
differentiates prediction tasks.

This stage outputs an subgraph where nodes (rows) possess
cell feature embeddings (xi ∈ RLi×d) and column name
embeddings (mi ∈ RLi×d), edges have type embeddings
(er ∈ Rd), and the overall task is represented by t ∈ Rd.

2.3. MPNN Architecture

The MPNN processes the encoded subgraph, updating node
embeddings ui over multiple layers. Each layer features:

Cross-Attention Module This module selectively aggre-
gates cell information within each row (node), handling
variable cell counts (Li) and focusing on task-relevant fea-
tures more effectively than simple averaging. For node i at
layer l, its representation vli is:

vli = Attentionl (QMLPl(ui, t),mi, xi) (1)

The query is from an MLP (QMLPl) using current node
embedding ui and task t; keys are cell metadatas mi; values
are cell feature embeddings xi. The resulting vli updates ui.

Hierarchical Aggregation To model inter-table links while
preserving relational context, Griffin uses hierarchical ag-
gregation. For node i at layer l, the aggregated message hl

i

from neighbors uj is computed as:

hl
i = Maxl

((
Meanj∈N r

i
(AMLPl(uj))

)
⊙ er | r ∈ R

)
(2)

where N r
i = {j | (j, i) ∈ Er} are neighbors of node i

under relation r, AMLPl is an MLP transforming neigh-
bor embeddings, and er is the embedding for relation type
r. This process first computes mean aggregates of trans-
formed neighbor embeddings within each relation type r,
then applies a max operation across these relation-specific
messages (after element-wise product with er). This max
aggregation offers stability against varying neighbor counts.
The resulting hl

i also updates ui.

After MPNN layers, the target node’s final representation is
a vector z ∈ Rd.

2.4. Unified Task Decoder

Classification: The text embeddings of candidate labels
(z1, . . . , zc) serve as a dynamic classification head. Prob-
abilities are softmax([⟨z, zj⟩]cj=1), where z is the MPNN
output vector and logits are inner products.

Regression: The output vector z is passed through the
pretrained float decoder (DEC) introduced earlier (during
numerical feature encoding). Denormalization can be ap-
plied as needed. This unified design supports diverse tasks
with varying categories or regression ranges.
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Figure 2: Performance comparison of Griffin against GNN and DFS-enhanced baselines on downstream RDB tasks. Results,
such as average rank (leftmost) and grouped metrics, show Griffin’s architectural superiority and the universal benefit of
single-table pretraining. Higher values are better for ROC-AUC/Accuracy; lower for others.

3. Training Pipeline
Griffin’s training comprises pretraining and downstream
fine-tuning stages. Pretraining includes completion pre-
training and joint supervised fine-tuning. Both are de-
signed to remain independent of the downstream tasks. The
final stage involves task-specific fine-tuning, where Griffin
is adapted to individual downstream tasks.

Completion Pretraining Griffin is first pretrained on di-
verse single-table datasets. This self-supervised stage in-
volves a masked cell completion task: given a row T k

i,: with
a randomly masked target column j′, the model Modelθ pre-
dicts the embedding of the masked cell T k

i,j′ based on the
remaining cells T k

i,:\j′ . The objective minimizes the cosine
distance between the predicted embedding and the true cell
embedding (obtained via Encoder(T k

i,j′)):

loss = 1− cos
(

Modelθ(T k
i,:\j′),Encoder(T k

i,j′)
)
. (3)

Joint Supervised Fine-Tuning (SFT) Following comple-
tion pretraining, Griffin is jointly fine-tuned on a selection
of realistic tasks from both labeled single-table datasets and
RDB datasets. This stage aligns the model with downstream
task characteristics while ensuring no data leakage into final
evaluations. It employs cross-entropy loss for classification
tasks and L2 loss for regression tasks with unified decoders.

Downstream Task Fine-Tuning Finally, the pretrained and
SFT-enhanced Griffin is fine-tuned on each individual down-
stream RDB benchmark task. This step adapts the model to

specific task requirements and adheres to benchmark evalu-
ation protocols for fair comparison.

Model Variants Evaluated To assess architectural benefits
and the impact of pretraining, we evaluate three variants:

• Griffin-unpretrained: No pretraining. This isolates the
performance contribution of Griffin’s novel architecture.

• Griffin-pretrained: Pretrained using only single-table
datasets. This tests pretraining’s universal enhancement.

• Griffin-RDB-SFT: Undergoes single-table completion
pretraining and SFT on a mix of single-table and RDB
datasets (disjoint from downstream evaluation tasks). It
evaluates transferability from relevant RDB data.

4. Related Work
Griffin situates itself within the broader context of founda-
tion models, particularly extending concepts from Graph
Foundation Models (GFMs) and Tabular Foundation Models
(TFMs) to the relational database domain.

Graph Foundation Models (GFMs) seek to pretrain
large models for general applicability across diverse graph
datasets and tasks (Liu et al., 2023; He et al., 2023). Many
GFMs integrate Large Language Models (LLMs) for feature
enhancement or leverage novel GNN architectures (Zhao
et al., 2024). While Griffin adopts the GFM principle of
pretraining for generalization, it specializes in RDBs by
employing relational-aware data encoders, RDB-specific
architectural components, and a pretraining strategy encom-
passing both single-table and multi-table relational data.
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Figure 3: Evaluating transferability of Griffin-RDB-SFT across different SFT domains to downstream tasks with limited
samples. Each subplot compare performance against a no-pretrain baseline and 3 RDB-SFT baselines on other domains.

Tabular Foundation Models (TFMs) aim to generalize
across various single-table datasets, often using transformer-
based architectures (Yin et al., 2020; Hegselmann et al.,
2023; Hollmann et al., 2022). Some TFMs explore trans-
fer learning across tables with differing schemas (Wang &
Sun, 2022) or use specialized encoders (Yang et al., 2024).
However, TFMs predominantly address single-table scenar-
ios and typically lack mechanisms to capture the explicit,
complex inter-table relationships inherent in RDBs. Griffin
extends beyond this by directly modeling these relational
structures through its graph-centric approach.

A more comprehensive discussion of related work, including
single-table models, RDB-specific models, more foundation
models and table QA Tasks, is provided in Appendix D.

5. Experiments
5.1. Experimental Setup

Datasets: Pretraining utilizes over 200 single-table datasets
from TPBerta (Yan et al., 2024) and CARTE (Kim et al.,
2024). Downstream tasks and SFT leverage large-scale tem-
poral RDBs from benchmarks including 4DBInfer (Wang
et al., 2024) and RelBench (Robinson et al., 2024).

Baselines: We compare Griffin against four GNN base-
lines (SAGE, GAT, PNA, HGT) and four traditional single-
table models (MLP, DeepFM, FT-Transformer, XGBoost)
augmented with Deep Feature Synthesis (DFS) (Kanter &
Veeramachaneni, 2015) to include structural information.

Configurations: Griffin was trained with fixed hyperparam-
eters across all experiments to ensure robustness. During
pretraining, all single-table datasets were used for com-
pletion pretraining, while subsets of single-table and RDB
datasets were selected for joint SFT based on specific exper-
imental objectives. Further details about datasets, baselines
and experiment settings are provided in Appendix A B C.

5.2. Experimental Results
Architecture Efficacy. Fine-tuning models directly on
downstream tasks shows Griffin-unpretrained consistently

outperforming GNN and DFS baselines in average rank
and various metrics (Figure 2). This highlights the efficacy
of Griffin’s architecture. Ablation studies confirmed these
components’ importance (Appendix E).

Single-Table Pretraining Benefits. Figure 2 also demon-
strates that Griffin-pretrained significantly improves upon
Griffin-unpretrained. This confirms the universal benefit of
transferring knowledge learned from diverse single-table
completion pretraining to complex RDB tasks.

RDB SFT Transferability. SFT with specific RDB datasets
further boosts performance in low-data settings, driven by
data similarity and diversity. We evaluated this by catego-
rizing RDBs into 4 groups (similar Commerce-1/2, diverse
Others-1/2) and analyzing transfer via SFT on one group
and testing on another group. Results (Figure 3) show:

• Similarity: Pretraining on RDBs similar to the down-
stream task’s domain (e.g., Commerce-to-Commerce)
yielded strong gains.

• Diversity: Pretraining on diverse RDBs (e.g., ’Others’
domain) also effectively transferred to different domains
like ’Commerce’ .

We also explored variations in SFT strategies (e.g., using
limited samples or mixing with single-table tasks). Re-
sults show that full SFT yielded optimal results, and the
transferability analysis driven by similarity and diversity re-
mained consistent across different SFT approaches, confirm-
ing the robustness of these principles (details in Appendix F).
Griffin is also competitive in few-shot scenarios against
TabPFNv2+DFS (Hollmann et al., 2025) (Appendix G)

6. Conclusion
Griffin represents a significant step towards a graph-centric
foundation model for RDBs. Its architectural innovations
for handling diverse relational data and its multi-stage pre-
training strategy demonstrate strong performance and gen-
eralization capabilities across various tasks and domains,
particularly highlighting the roles of dataset similarity and
diversity in transfer learning for RDBs.
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Contextgnn: Beyond two-tower recommendation systems.
arXiv preprint arXiv:2411.19513, 2024.

Zhang, H., Gan, Q., Wipf, D., and Zhang, W. Gfs: Graph-
based feature synthesis for prediction over relational
database. Proceedings of the VLDB Endowment. ISSN,
2150:8097, 2023.

Zhao, J., Zhuo, L., Shen, Y., Qu, M., Liu, K., Bronstein, M.,
Zhu, Z., and Tang, J. Graphtext: Graph reasoning in text
space. arXiv preprint arXiv:2310.01089, 2023.

Zhao, J., Mostafa, H., Galkin, M., Bronstein, M., Zhu, Z.,
and Tang, J. Graphany: A foundation model for node clas-
sification on any graph. arXiv preprint arXiv:2405.20445,
2024.

Zhu, B., Shi, X., Erickson, N., Li, M., Karypis, G., and
Shoaran, M. Xtab: Cross-table pretraining for tabular
transformers. arXiv preprint arXiv:2305.06090, 2023.

7



Exploring Relational Database Foundation Models from a Graph Perspective

A. Datasets
This section details the information of single tabular datasets and RDBs that we use in Griffin.

A.1. Single Tabular Datasets

We use approximately 200 single tabular datasets from the pretraining datasets of TPBerta (Yan et al., 2024) and datasets
of CARTE (Kim et al., 2024) from Hugging Face. The row count distribution of these datasets is shown in Figure 5 and
Figure 6, while the column count distribution is shown in Figure 7 and Figure 8. These single tabular datasets cover a wide
range of domains, including healthcare, finance and business, social sciences, science and technology, entertainment, media,
marketing and so on.
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Figure 4: Histogram of row counts of TPBerta
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Figure 5: Histogram of row counts of CARTE

A.2. RDBs

The RDBs that we use are from two benchmarks, 4DBInfer (Wang et al., 2024) and RelBench (Robinson et al., 2024),
covering a wide range of domains, scales, and tasks. The detailed information is shown in Table 1.
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Figure 6: Histogram of column counts of TPBerta
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Figure 7: Histogram of column counts of CARTE

Dataset Tables Columns Rows
Seznam 4 14 2681983
Airbnb 4 34 10800000
Amazon 3 15 24291489
Diginetica 5 28 3672396
Outbrain 8 31 4778954
Retailrocket 3 11 23033676
Stackexchange 7 49 5399818
Virus 3 38 145000
Telstra 5 12 136000
Talkingdata 3 20 36600000
Rel-avito 8 43 20679117
Rel-f1 9 77 97606
Rel-hm 3 37 33265846
Rel-trial 15 140 5852157

Table 1: Statistics of relational database datasets.
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B. Baseline Settings
This section details the experimental settings of the baselines used in 4DBInfer, RelBench, and Griffin. While these
benchmarks share similarities in graph construction and sampling strategies, they differ in data processing methods and
hyperparameter selection, which can impact comparability, particularly for regression tasks.

B.1. Comparison of 4DBInfer, RelBench, and Griffin Experiment Settings

Table 2 summarizes the key differences among the three baselines.

Table 2: Comparison of Baseline Settings in 4DBInfer, RelBench, and Griffin

Setting 4DBInfer RelBench Griffin

Graph Construction R2N / R2NE R2N R2N
Numerical Processing Quantile normalization No normalization Quantile normalization
Time Processing Categorized and scaled per column Cyclic encoding Text description and scaling
Text Processing GloVe embeddings GloVe embeddings Sentence model embedding
Category Processing One-hot encoding One-hot encoding Text description encoding
Sampling Strategy Fanout is total neighbors across all node types Fanout per node type Fanout per node type
Hyperparameter Selection Individually searched per task Shared across tasks Shared across tasks

Graph Construction and Sampling All three methods adopt the row-to-node (R2N) approach, with 4DBInfer also
extending it to row-to-node-or-edge (R2NE). RelBench and Griffin define fanout per node type, whereas 4DBInfer treats
fanout as the total number of neighbors across different node types.

Data Preprocessing The benchmarks differ in how they process numerical, temporal, textual, and categorical data:

• Numerical Data: 4DBInfer and Griffin use quantile normalization, while RelBench does not apply specific normaliza-
tion.

• Temporal Data: 4DBInfer scales time values at the column level, while Griffin incorporates text descriptions alongside
scaling. RelBench applies a cyclical encoding method.

• Text Features: 4DBInfer and RelBench use GloVe embeddings (Pennington et al., 2014), while Griffin employs
sentence model embeddings for richer representations. Specifically, the model used is Nomic (Nussbaum et al., 2024).

• Categorical Data: 4DBInfer and RelBench use one-hot encoding, whereas Griffin encodes text descriptions instead of
static categories.

Hyperparameter Selection 4DBInfer performs independent hyperparameter searches per task, while RelBench and
Griffin use a shared hyperparameter configuration for consistency across tasks.

B.2. Metric Adjustments for Regression Tasks

While most differences in preprocessing and sampling strategies reflect model-specific preferences, they generally do not
affect comparability across benchmarks. However, for regression tasks, differences in numerical processing can lead to
significant variations in results.

4DBInfer applies quantile normalization to all numerical data and predicts normalized values instead of raw targets. To
ensure consistency, we adopt a similar approach by implementing a unified number decoder that operates on normalized
outputs. In contrast, RelBench’s original regression tasks predict raw numerical values, which can range from 0.01 to 100.
While our model can make predictions in this format through an additional denormalization step, we follow 4DBInfer’s
normalization strategy for better robustness and stability in target value distributions. The updated Relbench results are
shown at Table 3

This decision ensures a more reliable evaluation of model performance while maintaining consistency across tasks and
datasets.
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Table 3: Comparison of RelBench Original Results and Aligned Griffin Results

Model rel-avito/ad-ctr rel-f1/position rel-hm/item-sales rel-trial/site-success rel-trial/study-adverse

RelBench Original Results 0.041 4.022 0.056 0.400 44.473
Aligned to Griffin Results 0.7686 0.5945 4.440 0.853 2.199

C. Experiment and Model Details
This section provides a comprehensive overview of the experimental setup, including model updates and hyperparameter
configurations. To ensure consistency and robustness, all experiments were conducted using a fixed set of model design
choices and hyperparameters.

C.1. Model Updates: Improved Cross-Attention for RDBs

In our initial model design, we applied cross-attention between task embeddings, column names, and column values to
aggregate information. However, for relational databases (RDBs), we observed that in the first layer, this approach might
not provide sufficient information for retrieving task-relevant columns. For example, in an RDB containing user, product,
and purchase tables, predicting user-related information may be difficult without first aggregating data from the user’s
purchase history. This limitation was particularly evident in retrieval-related tasks, where the first-layer cross-attention often
degraded to mean aggregation, as shown in Figure 8.

Figure 8: Cross-attention weight visualization across four layers. The heatmap shows that in the first layer, query and
value activations are near zero, resulting in nearly uniform attention weights. This indicates that first-layer cross-attention
effectively reduces to mean aggregation.

To address this issue, we modified the first-layer cross-attention to a self-attention mechanism over column names and column
values. This adjustment allows the model to capture column dependencies before applying task-conditioned aggregation in
later layers, improving its ability to identify relevant features. Based on experimental results, this modified approach led to
better retrieval performance and overall stability, and it was set as the default configuration for all experiments.
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C.2. Hyperparameters

To ensure reproducibility, we used a fixed set of hyperparameters across all experiments. These configurations span
optimization settings, model architecture, graph sampling strategies, and pretraining procedures.

For optimization and training, we employed the AdamW optimizer with a learning rate of 3e-4 and an L2-norm
regularization of 2e-4. A batch size of 256 was used for all training runs. Early stopping was applied with a patience of 10
epochs to prevent overfitting, ensuring stable convergence. No additional learning rate scheduler or gradient clipping was
used.

The model architecture was designed with a hidden dimension of 512, maintaining consistency between different
components. The sentence embedding model was based on Nomic embeddings, truncated to 512 dimensions. The
cross-attention module included 8 attention heads and a dropout rate of 0.1, allowing for effective feature extraction while
preventing overfitting. SiLU was chosen as the activation function across all layers.

For graph construction and sampling, we adopted a 4-layer message-passing neural network (MPNN) with 2-layer uniform
sampling on temporal neighbors. The fanout was set to 20 per layer to ensure a balanced trade-off between computational
efficiency and capturing structural information. Additionally, reversed edges were incorporated into the sampled subgraph
to improve relational modeling.

Regarding pretraining and fine-tuning, the completion pretraining phase used single-tabular datasets with early stopping
signals derived from specific task performance. The same early stopping strategy was applied to supervised fine-tuning
(SFT) using a combination of single-table and RDB tasks. The loss functions were cross-entropy loss for classification tasks
and L2 loss for regression tasks.

The experiments were conducted on an AWS g6.48x instance, ensuring sufficient computational resources for large-scale
graph-based training. Mixed precision (FP16) was not used, and gradient checkpointing was not applied.

These hyperparameter settings were selected to ensure a stable and scalable training process while maintaining compatibility
across different relational database tasks.

D. Related Work
D.1. Tabular Predictive Tasks

Tabular predictive tasks involve learning to estimate missing or target values in structured tables. These tasks typically
include classification and regression, using available features from the same table or from related tables. Models are trained
to capture statistical patterns within rows, across columns, and across multiple tables when relational data is present. Our
model focuses specifically on this type of task.

Single Table Models Research on single table data has evolved through various approaches. Traditional methods, such as
XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018), have been
widely adopted due to their scalability and strong performance on structured data. More recently, transformer-based methods
like TabTransformer (Huang et al., 2020), TabNet (Arik & Pfister, 2021), FT-Transformer (Gorishniy et al., 2021), and
SAINT (Somepalli et al., 2021) have leveraged attention mechanisms to capture complex relationships within rows and
columns. Additionally, graph-based methods such as GRAPE (You et al., 2020), TabularNet (Du et al., 2021), TabGNN (Guo
et al., 2021), and CARTE (Kim et al., 2024) represent tabular data as graphs, incorporating multiplex and hypergraph
structures to model interactions between rows and columns more effectively. Other works have explored improved encoding
strategies for numerical features (Gorishniy et al., 2022; Yarullin & Isaev, 2023), while some have highlighted the benefits of
incorporating nearest-neighbor information (Gorishniy et al., 2023; Ye et al., 2025). Although these models enhance feature
interaction modeling, they primarily focus on single-table datasets and typically fail to model relational dependencies across
multiple tables.

RDB Models RDBs extend the concept of single-table models by incorporating multiple interrelated tables, requiring
models to capture both intra- and inter-table relationships. Early approaches, such as DFS (Kanter & Veeramachaneni, 2015)
and RDBTOGRAPH(Cvitkovic, 2020), attempt to flatten RDBs into a single table or apply GNNs to model relationships
between tables. Other works, like ATJ-Net (Bai et al., 2021) and KEN (Cvetkov-Iliev et al., 2023), use hypergraphs and
knowledge graphs to model inter-table dependencies, while GFS (Zhang et al., 2023) integrates differentiable single-table
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models as embedding functions to preserve table structures. Some methods that convert structured data into unstructured
embeddings can still retain structural information (Grover & Leskovec, 2016), such as EmbDi (Cappuzzo et al., 2020)
and RDF2Vec (Ristoski & Paulheim, 2016). As RDB tasks have attracted increasing attention (Fey et al., 2024), more
comprehensive benchmarks and toolboxes have emerged. For example, 4DBInfer (Wang et al., 2024), RelBench (Robinson
et al., 2024; Fey et al., 2023), and PytorchFrame (Hu et al., 2024) propose complete pipelines for converting RDBs into
graph structures that can be used for GNN-based models. More recent efforts (Yuan et al., 2024; Chen et al., 2025) aim to
design more expressive GNN architectures for relational data. These models perform well on individual RDB tasks, whereas
Griffin is designed towards a foundation model that aims to generalize across a wide range of relational tasks.

D.2. Table QA Tasks

Table question answering (QA) tasks focus on answering natural language queries by reasoning over tabular data. Given
a question and a table (or a set of tables), the model must interpret the query, identify relevant cells, and either extract or
compute the correct answer, or generate an executable SQL query. These tasks require both natural language understanding
and structured data reasoning. TaPas (Herzig et al., 2020) enhances BERT with a table-aware encoder. Tapex (Liu et al.,
2021) explores learning a neural SQL executor. OmniTab (Jiang et al., 2022) introduces pretraining using both synthetic
and natural datasets. TableGPT2 (Su et al., 2024) treats tabular data as a distinct modality for building general-purpose
models. Numerous benchmarks have been proposed for comprehensive evaluation (Yu et al., 2018; Lei et al., 2024; Chen
et al., 2019; Wu et al., 2024; Li et al., 2023; Qiu et al., 2024).

D.3. Foundation Models for Predictive Tasks

Graph Foundation Models (GFMs) aim to pretrain large models that generalize across multiple graph datasets and
tasks. Many GFMs, such as OFA (Liu et al., 2023) and Tape (He et al., 2023), integrate Large Language Models (LLMs)
to enhance feature spaces or assist in training GNNs. Other methods, like UniGraph (He & Hooi, 2024), adapt graph
data for better LLM integration. While some GFMs, such as GraphText (Zhao et al., 2023), convert graph structures into
language-like representations for processing by LLMs, others focus on novel GNN architectures, such as GraphAny (Zhao
et al., 2024). Griffin builds on the GFM paradigm but adapts it to RDBs by pretraining on both single-table and multi-table
data, incorporating advanced tabular-specific data encoders and graph-based components such as cross-attention to model
table meta-information, making Griffin more suitable for RDBs compared to GFMs.

Tabular Foundation Models (TFMs) aim to generalize across tabular data, often leveraging transformer-based archi-
tectures. Models such as TaBERT (Yin et al., 2020) and TabLLM (Hegselmann et al., 2023) integrate text and tabular
data to enhance table structure understanding, while TransTab (Wang & Sun, 2022) and XTab (Zhu et al., 2023) explore
transfer learning across tables with varying column structures. UniTabE (Yang et al., 2024) and TPBerta (Yan et al., 2024)
employ specialized tabular encoders to better align transformers with tabular formats. TabPFN (Hollmann et al., 2022;
2025) takes a different approach by avoiding the use of text models and instead pretraining on a large number of synthetic
datasets. It achieves strong performance in few-shot settings. However, these models primarily focus on single-table data
and lack mechanisms to capture inter-table relationships in RDBs. While Griffin incorporates transformer-based and tabular
techniques, it extends beyond existing TFMs by explicitly modeling relational structures across multiple tables, addressing
the complexities in RDBs.

E. Ablation Study on Model Design
To analyze the impact of key design choices, we conducted an ablation study on the cross-attention module and aggregation
functions in MPNN, with results presented in Figure 9. Replacing these components with a plain average of column features
and a mean-only aggregator for both intra-type and inter-type nodes results in a significant performance drop.

F. Extended Experiments on Joint SFT Strategies
In this section, we provide additional experiments to analyze the impact of different SFT strategies on transferability.
Specifically, we investigate two key aspects: (1) The performance of different SFT strategies in transfer learning. (2)
Whether domain-driven transferability conclusions remain valid across different SFT strategies.
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Figure 9: Ablation Study on Different Model Design Choices. This figure compares the performance of Griffin-
unpretrained and two ablated variants, with cross-attention and max-aggregation removed, respectively. The leftmost
subfigure presents the average rank across all tasks. The remaining subfigures group tasks by evaluation metric, with results
averaged accordingly. All values are positive; higher values indicate better performance for ROC-AUC, while lower values
are better for left ones.

F.1. Experiment 1: Performance of Different SFT Strategies

To evaluate the impact of different SFT strategies, we compare five baselines:

• A no-pretrain baseline, trained directly on downstream tasks.

• A single-table-only pretrained baseline, without any RDB pretraining.

• Three joint SFT baselines, all using the same SFT domain but differing in their SFT strategies:

– Full SFT: Standard supervised fine-tuning using all available samples.
– Limited-Sample SFT: Fine-tuning with a restricted subset of 4096 samples.
– Mixed SFT: Joint fine-tuning with both single-tabular datasets and RDB datasets.

These baselines were evaluated on three verified transferable settings:

• Commerce-2 to Commerce-1

• Commerce-1 to Commerce-2

• Others-1 to Others-2

The results are presented in Figure 10.

Observing the results, we find that full SFT consistently achieves the best performance across all settings, demonstrating its
superiority in transfer learning. Other baselines occasionally perform worse than the no-pretrain model, indicating their
limitations in effective knowledge transfer. This further underscores the importance of sufficient training for successful
adaptation.
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Figure 10: Performance comparison of different SFT strategies. The figure presents the results for five baselines, including
no-pretraining, single-table-only pretraining, and three joint SFT strategies with varying settings. Full SFT consistently
achieves the best performance across different domains, emphasizing the benefits of sufficient training.

F.2. Experiment 2: Evaluating Domain Impact Across SFT Strategies

To determine whether domain-driven transferability conclusions remain consistent, we evaluate each SFT strategy across
different SFT domains. The goal is to analyze whether transfer performance is significantly influenced by the pretraining
domain. The results are presented in Figure 11 and Figure 12.

Figure 11: Impact of domain transferability under limited-sample SFT. The figure compares transfer performance across
different SFT domains when fine-tuning is restricted to 4096 samples.

The results indicate that domain transfer effects are notably weakened under the SFT-limited strategy, suggesting that a
restricted sample size hinders adaptation. In contrast, for the SFT-mixed strategy, domain transfer differences remain clearly
visible, potentially indicating that SFT-mixed enables a more comprehensive adaptation compared to SFT-limited.

To further quantify the effect of domain transferability, we compute a critical difference ranking (Terpilowski, 2019) to
measure average rank improvement across different settings. This serves as a straightforward yet effective method to analyze
domain impact on transferability. The results are shown in Figure 13.

In general, we observe that similarity and diversity play a crucial role in transferability to “commerce” domains, reinforcing
our original hypothesis. For the “others” domain, the trend remains similar but with a weakened effect. We hypothesize that
incomplete SFT adaptation prevents full alignment with the pretraining domain, leading to a weaker yet general transfer
effect.
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Figure 12: Impact of domain transferability under mixed SFT with single-tabular datasets. The figure evaluates whether
incorporating single-tabular tasks during SFT affects transferability trends.

SFT-full SFT-mixed SFT-limited

Figure 13: Critical difference ranking of domain transferability across different SFT strategies. The three subfigures
represent heatmaps for Full SFT, Mixed SFT, and Limited-Sample SFT. Each cell denotes the relative gain in transfer
performance from the row’s domain to the column’s domain, compared to the no-pretrain baseline. The diagonal cells do
not represent SFT on the target domain but rather pretraining using only single-tabular datasets.

These results confirm that while different SFT strategies can influence absolute transfer performance, the underlying
domain-driven transferability trends remain robust.

G. Comparison with TabPFNv2 + DFS
This section presents a comparison between TabPFN v2 with DFS and Griffin, as shown in Figure 14. Although DFS can
require several hours of preprocessing, as reported in 4DBInfer, we include it for comparison because TabPFN v2 is a strong
single-table foundation model, particularly effective in few-shot settings. The results suggest that Griffin performs better on
the Commerce-2 and Others-2 tasks, while TabPFN v2 shows superior results on Commerce-1 and Others-1 tasks.

H. Raw Results
This section presents the raw experimental results for figures.

Table 4 correspond to the Figure ??. Table 5 corresponds to Figure 9. Table 6 7 8 9 correspond to Figure 3. Table 10 11 12 13
correspond to Figure 11. Table 14 15 16 17 correspond to Figure 12. Table 18 19 20 21 correspond to Figure 14.
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Figure 14: Evaluating Few-shot Performance: Comparison Between Griffin and TabPFNv2. This figure compares the
transferability of different supervised fine-tuning strategies and TabPFNv2 in few-shot settings. Each subfigure shows the
performance of five models: a no-pretraining baseline, three Griffin variants pretrained on single-table data with SFT applied
to different domains, and TabPFNv2. For datasets with more than 10 classes, TabPFNv2 is not applicable; therefore, such
tasks are excluded from the comparison.

Table 4: Raw Results of Griffin and All the Baselines

Dataset/Task Overall Score Seznam/charge Seznam/prepay Airbnb/destination Amazon/churn Diginetica/ctr Outbrain/ctr Rel-avito/user-clicks Rel-avito/user-visits
Metric Rank ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑
Sage 4.792 0.7917 0.8768 0.8424 0.7358 0.7273 0.6239 0.6590 0.6620
Gat 5.208 0.8053 0.8954 0.8428 0.7410 0.6741 0.6146 0.6638 0.6417
Pna 5.333 0.8000 0.8924 0.8464 0.7645 0.7011 0.6249 0.6378 0.6267
Hgt 5.333 0.7965 0.8805 0.8252 0.7551 0.6733 0.6260 0.5556 0.6214
DFS+MLP 6.833 0.7554 0.8248 0.7643 0.6815 0.6944 0.5456 0.5839 0.6521
DFS+Deepfm 7.625 0.7016 0.8092 0.8007 0.6667 0.7341 0.5289 0.5912 0.5844
DFS+Fttransformer 5.917 0.7473 0.8162 0.7863 0.6765 0.7412 0.5360 0.6247 0.6576
DFS+XGB 7.083 0.7600 0.8453 0.7561 0.6922 0.7219 0.5421 0.6028 0.6568
Griffin-unpretrained 3.708 0.7998 0.8941 0.8615 0.7307 0.7157 0.6246 0.6639 0.6261
Griffin-pretrained 3.042 0.8133 0.9058 0.8681 0.7417 0.7181 0.6253 0.6330 0.6468

Model Rel-f1/DNF Rel-f1/top3 Rel-hm/user-churn Rel-trial/study-outcome Retailrocket/cvr Stackexchange/churn Stackexchange/upvote Virus/wnv Amazon/rating
Metric ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ RMSE ↓
Sage 0.7262 0.7554 0.6988 0.6860 0.8470 0.8558 0.8861 0.6610 0.9639
Gat 0.7299 0.7945 0.6788 0.6526 0.8284 0.8645 0.8853 0.6498 0.9563
Pna 0.7258 0.7213 0.5898 0.6558 0.8366 0.8664 0.8896 0.6684 0.9615
Hgt 0.7307 0.7226 0.5538 0.6619 0.8495 0.8670 0.8817 0.7119 0.9636
DFS+MLP 0.7134 0.7796 0.6802 0.6518 0.8181 0.8326 0.8783 0.6772 0.9847
DFS+Deepfm 0.6705 0.8133 0.6801 0.6210 0.8182 0.8212 0.8821 0.6315 0.9946
DFS+Fttransformer 0.7302 0.8250 0.6800 0.6578 0.8034 0.8376 0.8749 0.6660 0.9888
DFS+XGB 0.7158 0.8022 0.6786 0.6521 0.7906 0.8251 0.8675 0.7142 0.9972
Griffin-unpretrained 0.7052 0.7855 0.6847 0.6722 0.9512 0.8457 0.8956 0.6680 0.6117
Griffin-pretrained 0.7091 0.7795 0.6804 0.6908 0.9643 0.8435 0.8962 0.6978 0.5994

Model Rel-avito/ad-ctr Rel-f1/position Rel-hm/item-sales Rel-trial/site-success Rel-trial/study-adverse Tel/severity Talk/demo-pred
Metric MAE ↓ MAE ↓ MAE ↓ MAE ↓ MAE ↓ Logloss ↓ Logloss ↓
Sage 1.3565 0.6276 1.1466 0.9191 1.5251 0.6151 2.3820
Gat 1.3695 0.6417 1.1086 0.8931 1.4098 0.6191 2.3880
Pna 0.8944 0.6084 1.4788 0.9572 1.4736 0.7015 2.3840
Hgt 0.6686 0.6212 1.5845 0.9180 1.5000 0.6126 2.3830
DFS+MLP 0.6610 0.6146 1.2518 0.9462 2.1104 0.6185 2.3840
DFS+Deepfm 1.1784 2.5796 1.3540 0.9753 2.0998 0.6118 2.3810
DFS+Fttransformer 0.6339 0.5934 0.9256 0.9793 1.6947 0.6460 2.3830
DFS+XGB 0.6743 0.6130 1.2957 0.9514 2.1859 0.6663 2.3890
Griffin-unpretrained 0.6593 0.5586 0.8879 0.7926 1.1700 0.5684 2.3930
Griffin-pretrained 0.6586 0.5694 0.8962 0.7945 1.2148 0.5518 2.3890

Table 5: Raw Results of Figure 9 on Ablation Study

Model Avg. Rank Diginetica/ctr Outbrain/ctr Rel-f1/DNF Rel-f1/Top3 Rel-trial/study-outcome Virus/wnv Rel-avito/ad-ctr Rel-f1/Position

Griffin 1.4 0.7157 0.6246 0.7052 0.7855 0.6722 0.6680 -0.6593 -0.5586
Griffin-avg-attention 2.7 0.6917 0.6225 0.6936 0.7255 0.6797 0.5844 -0.7600 -0.6677
Griffin-mean-GNN 1.9 0.7077 0.6269 0.6950 0.7521 0.6857 0.6648 -0.6701 -0.5645

Model Rel-trial/study-adverse Tel/severity

Griffin -1.1700 -0.5684
Griffin-avg-attention -1.3380 -0.5449
Griffin-mean-GNN -1.2322 -0.5694
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Table 6: Raw Results of Figure 3 on Commerce-1 Transfer

Task diginetica-downsample-ctr rel-hm-item-sales rel-hm-user-churn retailrocket-cvr seznam-charge seznam-prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.5213 0.5904 -1.6385 -1.4594 0.5677 0.6039 0.8452 0.9576 0.5662 0.7070 0.6456 0.7816
Others-1 SFT 0.5294 0.5662 -1.8025 -1.5055 0.5552 0.5885 0.8231 0.9446 0.6284 0.7197 0.7025 0.8030
Others-2 SFT 0.5503 0.5480 -1.6472 -1.6349 0.5340 0.5693 0.8006 0.9618 0.5902 0.7098 0.7060 0.7969

Table 7: Raw Results of Figure 3 on Commerce-2 Transfer

Task amazon-churn amazon-rating outbrain-small-ctr rel-avito-ad-ctr rel-avito-user-clicks rel-avito-user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.6396 0.6859 -0.7740 -0.6809 0.5102 0.5892 -0.7267 -0.6938 0.5512 0.5919 0.5779 0.6111
Others-1 SFT 0.5723 0.6675 -0.7428 -0.6754 0.5208 0.5096 -0.7134 -0.6550 0.6078 0.6056 0.6129 0.6198
Others-2 SFT 0.6231 0.6645 -0.7513 -0.6797 0.5245 0.6163 -0.7098 -0.6518 0.5481 0.5951 0.5944 0.6275

Table 8: Raw Results of Figure 3 on Others-1 Transfer

Task rel-f1-driver-dnf rel-f1-driver-position rel-f1-driver-top3 stackexchange-churn stackexchange-upvote virus-wnv-pred

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.7043 0.7248 -0.7056 -0.5921 0.7900 N/A 0.7188 0.7928 0.8571 0.8731 0.5706 0.6567
Commerce-1 SFT 0.6823 0.7233 -0.6221 -0.6043 0.6831 N/A 0.6602 0.7501 0.8107 0.8597 0.6101 0.6461
Commerce-2 SFT 0.6073 0.7347 -0.6255 -0.5931 0.7679 N/A 0.7600 0.8164 0.8544 0.8745 0.5946 0.6591

Table 9: Raw Results of Figure 3 on Others-2 Transfer

Task airbnb-destination rel-trial-site-success rel-trial-study-adverse rel-trial-study-outcome talkingdata-demo-pred telstra-severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8470 0.8561 -0.9142 -0.8952 -1.5832 -1.3246 0.6436 0.6781 -2.4407 -2.4177 -0.7716 -0.6052
Commerce-1 SFT 0.8457 0.8543 -0.9231 -0.9345 -1.9609 -1.5188 0.5583 0.6493 -2.4377 -2.4177 -0.7965 -0.6523
Commerce-2 SFT 0.8007 0.8516 -0.9363 -0.9496 -1.6756 -1.3703 0.6001 0.6567 -2.4394 -2.4164 -0.7721 -0.6266

Table 10: Raw Results of Figure 11 on Commerce-1 Transfer

Task diginetica-downsample-ctr rel-hm-item-sales rel-hm-user-churn retailrocket-cvr seznam-charge seznam-prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.4655 0.4969 -1.6560 -1.4736 0.5376 0.5728 0.8368 0.9577 0.5119 0.7214 0.6478 0.8091
Others-1 SFT 0.5266 0.5744 -1.7979 -1.4878 0.5465 0.5704 0.8512 0.9601 0.5499 0.7237 0.5557 0.8075
Others-2 SFT 0.5425 0.5465 -1.5732 -1.6291 0.5583 0.5719 0.8848 0.9215 0.5641 0.7195 0.5563 0.6780

Table 11: Raw Results of Figure 11 on Commerce-2 Tasks

Task amazon-churn amazon-rating outbrain-small-ctr rel-avito-ad-ctr rel-avito-user-clicks rel-avito-user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.5970 0.6382 -0.7480 -0.6941 0.5126 0.5080 -0.7115 -0.6503 0.5028 0.5741 0.5275 0.6050
Others-1 SFT 0.6118 0.6673 -0.7541 -0.6857 0.4930 0.5008 -0.7097 -0.6522 0.6047 0.6009 0.6090 0.6099
Others-2 SFT 0.6147 0.6624 -0.7540 -0.6783 0.5085 0.5873 -0.7260 -0.6579 0.5568 0.6062 0.6112 0.6081
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Table 12: Raw Results of Figure 11 on Others-1 Tasks

Task rel-f1-driver-dnf rel-f1-driver-position rel-f1-driver-top3 stackexchange-churn stackexchange-upvote virus-wnv-pred

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.7098 0.7275 -0.6680 -0.5739 0.7710 N/A 0.6592 0.7898 0.8530 0.8761 0.6148 0.6737
Commerce-1 SFT 0.6752 0.7226 -0.6089 -0.5813 0.7375 N/A 0.6477 0.7337 0.8406 0.8770 0.6397 0.6603
Commerce-2 SFT 0.5808 0.7137 -0.6433 -0.5752 0.7536 N/A 0.6526 0.7839 0.8605 0.8779 0.6265 0.6676

Table 13: Raw Results of Figure 11 on Others-2 Tasks

Task airbnb-destination rel-trial-site-success rel-trial-study-adverse rel-trial-study-outcome talkingdata-demo-pred telstra-severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8489 0.8550 -0.9156 -0.9135 -1.6351 -1.3448 0.6163 0.6730 -2.4309 -2.4160 -0.8007 -0.6114
Commerce-1 SFT 0.8480 0.8546 -0.9220 -0.8820 -1.5550 -1.3571 0.6020 0.6639 -2.4318 -2.4142 -0.7800 -0.6001
Commerce-2 SFT 0.8427 0.8534 -0.9332 -0.8927 -1.5329 -1.3321 0.6338 0.6834 -2.4432 -2.4222 -0.7875 -0.6208

Table 14: Raw Results of Figure 12 on Commerce-1 Tasks

Task diginetica-downsample-ctr rel-hm-item-sales rel-hm-user-churn retailrocket-cvr seznam-charge seznam-prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.4786 0.5145 -1.6061 -1.5209 0.5492 0.5835 0.8302 0.9675 0.5689 0.7089 0.6101 0.7952
Others-1 SFT 0.4808 0.5316 -1.5613 -1.4722 0.5525 0.5834 0.8130 0.9612 0.6408 0.7231 0.6749 0.7958
Others-2 SFT 0.4500 0.5539 -1.4179 -1.5491 0.5528 0.5938 0.8009 0.9630 0.6092 0.7026 0.6139 0.7776

Table 15: Raw Results of Figure 12 on Commerce-2 Tasks

Task amazon-churn amazon-rating outbrain-small-ctr rel-avito-ad-ctr rel-avito-user-clicks rel-avito-user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.6220 0.6730 -0.7678 -0.6861 0.4966 0.5659 -0.7428 -0.6630 0.5812 0.5794 0.6000 0.6162
Others-1 SFT 0.6241 0.6634 -0.7583 -0.6824 0.5208 0.6134 -0.7418 -0.6723 0.5858 0.6229 0.6046 0.6130
Others-2 SFT 0.6278 0.6592 -0.7864 -0.7019 0.5553 0.6206 -0.7070 -0.6614 0.5724 0.6262 0.6212 0.6238

Table 16: Raw Results of Figure 12 on Others-1 Tasks

Task rel-f1-driver-dnf rel-f1-driver-position rel-f1-driver-top3 stackexchange-churn stackexchange-upvote virus-wnv-pred

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.6820 0.7123 -0.6000 -0.5955 0.7521 N/A 0.6448 0.7691 0.8414 0.8670 0.6041 0.6335
Commerce-1 SFT 0.6492 0.7131 -0.7286 -0.6978 0.6441 N/A 0.7188 0.7552 0.8384 0.8599 0.5259 0.6075
Commerce-2 SFT 0.7123 0.7229 -0.6226 -0.5982 0.7698 N/A 0.7429 0.8111 0.8491 0.8726 0.6315 0.6564

Table 17: Raw Results of Figure 12 on Others-2 Tasks

Task airbnb-destination rel-trial-site-success rel-trial-study-adverse rel-trial-study-outcome talkingdata-demo-pred telstra-severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8512 0.8548 -0.9245 -0.9246 -1.6203 -1.3474 0.5977 0.6637 -2.4396 -2.4225 -0.7844 -0.6151
Commerce-1 SFT 0.8388 0.8541 -0.9272 -0.9362 -1.8690 -1.4631 0.5729 0.6460 -2.4710 -2.4219 -0.7749 -0.6815
Commerce-2 SFT 0.8477 0.8518 -0.9357 -0.9177 -1.6238 -1.3327 0.6143 0.6599 -2.4373 -2.4139 -0.7896 -0.6112
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Table 18: Raw Results of Figure 14 on Comparison with TabPFN on Commerce-1 Transfer

Task diginetica-downsample-ctr rel-hm-item-sales rel-hm-user-churn retailrocket-cvr seznam-charge seznam-prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.5213 0.5904 -1.6385 -1.4594 0.5677 0.6039 0.8452 0.9576 0.5662 0.7070 0.6456 0.7816
Others-1 SFT 0.5294 0.5662 -1.8025 -1.5055 0.5552 0.5885 0.8231 0.9446 0.6284 0.7197 0.7025 0.8030
Others-2 SFT 0.5503 0.5480 -1.6472 -1.6349 0.5340 0.5693 0.8006 0.9618 0.5902 0.7098 0.7060 0.7969
TabPFN+DFS 0.6696 0.7588 -1.5817 -1.3855 0.6647 0.6746 0.7769 0.7928 0.7098 0.7289 0.7639 0.7817

Table 19: Raw Results of Figure 14 on Comparison with TabPFN on Commerce-2 Transfer

Task amazon-churn amazon-rating outbrain-small-ctr rel-avito-ad-ctr rel-avito-user-clicks rel-avito-user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.6396 0.6859 -0.7740 -0.6809 0.5102 0.5892 -0.7267 -0.6938 0.5512 0.5919 0.5779 0.6111
Others-1 SFT 0.5723 0.6675 -0.7428 -0.6754 0.5208 0.5096 -0.7134 -0.6550 0.6078 0.6056 0.6129 0.6198
Others-2 SFT 0.6231 0.6645 -0.7513 -0.6797 0.5245 0.6163 -0.7098 -0.6518 0.5481 0.5951 0.5944 0.6275
TabPFN+DFS 0.6283 0.6351 -1.0317 -1.0032 0.5211 0.5382 -0.7034 -0.6913 0.6125 0.6395 0.6380 0.6576

Table 20: Raw Results of Figure 14 on Comparison with TabPFN on Others-1 Transfer

Task rel-f1-driver-dnf rel-f1-driver-position rel-f1-driver-top3 stackexchange-churn stackexchange-upvote virus-wnv-pred

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.7043 0.7248 -0.7056 -0.5921 0.7900 N/A 0.7188 0.7928 0.8571 0.8731 0.5706 0.6567
Commerce-1 SFT 0.6823 0.7233 -0.6221 -0.6043 0.6831 N/A 0.6602 0.7501 0.8107 0.8597 0.6101 0.6461
Commerce-2 SFT 0.6073 0.7347 -0.6255 -0.5931 0.7679 N/A 0.7600 0.8164 0.8544 0.8745 0.5946 0.6591
TabPFN+DFS 0.7120 0.7346 -0.6587 -0.5962 0.8003 N/A 0.7886 0.8212 0.8562 0.8649 0.7666 0.7905

Table 21: Raw Results of Figure 14 on Comparison with TabPFN on Others-2 Transfer

Task airbnb-destination rel-trial-site-success rel-trial-study-adverse rel-trial-study-outcome talkingdata-demo-pred telstra-severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8470 0.8561 -0.9142 -0.8952 -1.5832 -1.3246 0.6436 0.6781 -2.4407 -2.4177 -0.7716 -0.6052
Commerce-1 SFT 0.8457 0.8543 -0.9231 -0.9345 -1.9609 -1.5188 0.5583 0.6493 -2.4377 -2.4177 -0.7965 -0.6523
Commerce-2 SFT 0.8007 0.8516 -0.9363 -0.9496 -1.6756 -1.3703 0.6001 0.6567 -2.4394 -2.4164 -0.7721 -0.6266
TabPFN+DFS N/A N/A -0.9687 -0.9873 -1.9763 -1.6555 0.5861 0.6602 N/A N/A -0.8865 -0.8505
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