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Abstract
Causal discovery from observational data holds great promise, but existing methods rely on strong
assumptions about the underlying causal structure, often requiring full observability of all relevant
variables. We tackle these challenges by leveraging the score function ∇ log p(X) of observed
variables for causal discovery and propose the following contributions. First, we fine-tune the ex-
isting identifiability results with the score on additive noise models, showing that their assumption
of nonlinearity of the causal mechanisms is not necessary. Second, we establish conditions for
inferring causal relations from the score even in the presence of hidden variables; this result is
two-faced: we demonstrate the score’s potential to infer the equivalence class of causal graphs with
hidden variables (while previous results are restricted to the fully observable setting), and we pro-
vide sufficient conditions for identifying direct causes in latent variable models. Building on these
insights, we propose a flexible algorithm suited for causal discovery on linear, nonlinear, and latent
variable models, which we empirically validate.
Keywords: Causal Discovery, Causality, Score-matching

1. Introduction

The inference of causal effects from observations holds the potential for great impact arguably in
any domain of science, where it is crucial to be able to answer interventional and counterfactual
queries from observational data (Peters et al., 2017; Pearl, 2009; Spirtes, 2010). Existing causal
discovery methods can be categorized based on the information they can extract from the data and
the assumptions they rely on (Glymour et al., 2019). Traditional causal discovery methods (e.g.
PC, GES (Spirtes et al., 2000; Chickering, 2003)) are general in their applicability but limited to the
inference of an equivalence class. Additional assumptions on the structural equations generating
effects from the cause are, in fact, imposed to ensure the identifiability of a causal order (Shimizu
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et al., 2006; Hoyer et al., 2008; Peters et al., 2014; Zhang and Hyvärinen, 2009). As a conse-
quence, existing methods for causal discovery require specialized and often untestable assumptions,
preventing their application to real-world scenarios.

Further, the majority of existing approaches are hindered by the assumption that all relevant
causes of the measured data are observed, which facilitates the interpretation of associations in the
data as causal relationships. Despite the convenience of this hypothesis, it is often not met in prac-
tice, and the solutions relaxing this requirement face substantial limitations. The FCI algorithm
(Spirtes, 2001) can only return an equivalence class from the data. Appealing to additional restric-
tions ensures the identifiability of some direct causal effects in the presence of latent variables: RCD
(Maeda and Shimizu, 2020) relies on the linear non-Gaussian additive noise model, whereas CAM-
UV (Maeda and Shimizu, 2021) requires nonlinear additive mechanisms. Nevertheless, the strict
conditions on the structural equations hold back their applicability to more general settings.

Our paper tackles these challenges and can be put in the context of a recent line of academic
research that derives a connection between the score function ∇ log p(X) and the causal graph un-
derlying the data-generating process (Ghoshal and Honorio, 2018; Rolland et al., 2022; Montagna
et al., 2023b,c,d; Sanchez et al., 2023). The use of the score for causal discovery is practically ap-
pealing, as it yields advantages in terms of scalability to high dimensional graphs (Montagna et al.,
2023c) and guarantees of finite sample complexity bounds (Zhu et al., 2024). Instead of impos-
ing assumptions that ensure strong, though often impractical, theoretical guarantees, we organically
demonstrate different levels of identifiability based on the strength of the modeling hypotheses, al-
ways relying on the score function to encode all the causal information in the data. Starting from
results of Spantini et al. (2018) and Lin (1997), we show how constraints on the Jacobian of the
score ∇2 log p(X) can be used to characterize the Markov equivalence class of causal models with
hidden variables. Previous works exploit this connection in case of fully observable causal models
(Montagna et al., 2023c; Liu et al., 2024). Further, we prove that the score function identifies the
causal direction of additive noise models, with minimal assumptions on the causal mechanisms.
This extends the previous findings of Montagna et al. (2023d), limited by the assumption of nonlin-
earity of the causal effects. On these results, we build the main contributions of our work, enabling
the identification of direct causal effects in hidden variable models.

Our main contributions are as follows: (i) We present conditions for the identifiability of di-
rect causal effects with the score in the case of latent variables models. (ii) We propose AdaScore
(Adaptive Score-matching-based causal discovery), a flexible algorithm for causal discovery based
on score matching estimation of ∇ log p(X) (Hyvärinen, 2005). Based on the user’s belief about
the plausibility of several modeling assumptions on the data, AdaScore can output a Markov equiv-
alence class, a directed acyclic graph, or a mixed graph, accounting for the presence of unobserved
variables. To the best of our knowledge, the broad class of causal models handled by our method
is unmatched by other approaches in the literature. Our main contributions are presented in Sec-
tions 4.2, 4.3 and 5. The preliminary Sections 3 and 4.1 summarise and generalize the existing
theory connecting causal discovery and the score function, and Section 2 introduces the formalism
of structural causal models, with and without latent variables.

2. Model definition

In this section, we introduce the formalism of structural causal models (SCMs), for the cases with
and without hidden variables.
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2.1. Causal model with observed variables

Let X be a set of random variables in R defined according to the set of structural equations

Xi := fi(XPAG
i
, Ni), ∀i = 1, . . . , k. (1)

Ni ∈ R are mutually independent random variables with strictly positive density, known as noise
or error terms. The function fi is the causal mechanism mapping the set of direct causes XPAG

i

of Xi and the noise term Ni, to Xi’s value. A structural causal model (SCM) is defined as the
tuple (X, N,F ,PN ), where F = (fi)k

i=1 is the set of causal mechanisms, and PN is the joint
distribution with the density pN over the noise terms N ∈ Rk. We define the causal graph G as
a directed acyclic graph (DAG) with nodes X = {X1, . . . , Xk}, and the set of edges defined as
{Xj → Xi : Xj ∈ XPAG

i
}, such that PAG

i are the indices of the parent nodes of Xi in the graph
G. (In the remainder of the paper, we adopt the following notation: given a set of random variables
Y = {Y1, . . . , Yn} and a set of indices Z ⊂ N, then YZ = {Yi|i ∈ Z, Yi ∈ Y }.)

Under this model, the probability density of X satisfies the Markov factorization (e.g. Peters
et al. (2017) Proposition 6.31):

p(x) =
k∏

i=1
p(xi|xPAG

i
), (2)

where we adopt the convention of lowercase letters referring to realized random variables, and
use p to denote the density of different random objects, when the distinction is clear from the
argument. In the remainder of the paper, we assume that faithfulness is satisfied (Pearl, 2009; Uhler
et al., 2012) (Definition 12 in the appendix). Together with the global Markov condition (implied
by Equation (2), see e.g. Peters et al. (2017) Proposition 6.22), this means that probabilistic and
graphical statements of conditional independence are equivalent, such that for {Xi, Xj} ⊆ X and
XZ ⊆ X \ {Xi, Xj}

Xi |= Xj |XZ ⇐⇒ Xi |= d
GXj |XZ , (3)

where (· |= · |·) denotes probabilistic conditional independence of Xi, Xj given XZ , and (· |= d
G · |·)

is the notation for d-separation, a criterion of conditional independence defined on the graph G
(Definition 8 of the appendix).

The above model assumes that there aren’t any unobserved causes of variables in X , other than
the noise terms in N . As we are interested in distributions with potential hidden variables, we will
now generalize our model to represent data-generating processes that may involve latent causes.

2.2. Causal model with unobserved variables

Under the model (1), we consider the case where the set of variables X is partitioned into the
disjoint subsets of observed random variables V = {V1, . . . , Vd} and unobserved (or latent) random
variables U = {Ud+1, . . . , Up}. We assume that the following set of structural equations is satisfied:

Vi := fi(VPAG
i
, U i, Ni), ∀i = 1, . . . , d, (4)

Ui := fi(XPAG
i
, Ni), ∀i = d + 1, . . . , p, (5)

where U i stands for the set of unobserved parents of Vi, and VPAG
i

= {Vk|k ∈ PAG
i , Vk ∈ V } are

the observed parents of Vi. Some of the causal relations and the conditional independencies implied
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MONTAGNA FALLER BLÖBAUM KIRSCHBAUM LOCATELLO

by the set of equations (4) can be summarized in a graph obtained as a marginalization of the DAG
G onto the observable nodes V . For the next definition, we advise the reader to be comfortable with
the notions of ancestors (Definition 5) and inducing paths (Definition 6) in DAGs.

Definition 1 (Marginal graph, Zhang (2008a)) Let X = V ∪ U , V and U disjoint, and G be a
DAG over X . The following construction gives the marginal graphMG

V , with nodes V and edges
found as follows:

• pair of nodes Vi, Vj are adjacent in the graph MG
V if and only if there is an inducing path

between them relative to U in G;

• for each pair of adjacent nodes Vi, Vj inMG
V , orient the edge as Vi → Vj if Vi is an ancestor

of Vj in G, else orient it as Vi ↔ Vj .

We define the map G 7→ MG
V as the marginalization of the DAG G onto V , the observable nodes.

The graph resulting from the above construction is a maximal ancestral graph (MAG, Definition 7),
hence we will often refer to it as the marginal MAG of G. Intuitively, edges denote dependencies
that cannot be removed by conditioning on any of the observed variables; in particular, if the edge
is directed it denotes an ancestorship relation.

In the case of DAGs, d-separation encodes the probabilistic conditional independence relations
between the variables of X in the graph G, as explicit by Equation (3). Such notion of graphical
separation has a natural generalization to maximal ancestral graphs, known as m-separation (Def-
inition 8 of the appendix). Zhang (2008a) shows that m-separation and d-separation are in fact
equivalent (see Lemma 11 of the appendix), such that given {Vi, Vj} ⊂ V and VZ ⊂ V \ {Vi, Vj} ,
the following holds:

Vi |= d
GVj |VZ ⇐⇒ Vi |= m

MG
V

Vj |VZ , (6)

where (· |= m
MG

V

· | ·) denotes m-separation relative to the graphMG
V . Just like with DAGs, MAGs

that imply the same set of conditional independencies define an equivalence class. Usually, the
common structure of these graphs is represented by partial ancestral graphs (PAGs, Definition 10 of
the appendix). We use PMG

V
to denote the PAG relative toMG

V .

Problem definition. In this work, our goal is to provide theoretical guarantees for the iden-
tifiability of the Markov equivalence class of the marginal graphMG

V and its direct causes
with the score, where variables Vi are defined according to Equation (4).

Without further assumptions on the data-generating process, we can identify the graph MG
V

only up to its partial ancestral graph. This information is encoded in the Jacobian of the score, as
discussed in the next section.

3. A score-matching-based criterion for m-separation

In this section, we show that for V ⊆ X generated according to Equation (4) the Hessian matrix of
log p(V ) identifies the equivalence class of the marginal MAGMG

V . It has already been proven that
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cross-partial derivatives of the log-likelihood are informative about a set of conditional indepen-
dence relationships between random variables: Spantini et al. (2018) (Lemma 4.1) and previously
Lin (1997) show that, given VZ ⊆ X such that {Vi, Vj} ⊆ VZ , then

∂2

∂Vi∂Vj
log p(VZ) = 0 ⇐⇒ Vi |= Vj |VZ \ {Vi, Vj}. (7)

Equation (3) resulting from faithfulness and the directed global Markov property implies that this
expression can be used as a test of graphical separation to identify the Markov equivalence class
of the graphMG

V , as commonly done in constraint-based causal discovery (for reference, see e.g.
Section 3 in Glymour et al. (2019)). This result generalizes Lemma 1 of Montagna et al. (2023c),
where it is used to define constraints to infer edges in the causal structure without latent variables,
under the assumption of nonlinear models with additive Gaussian noise.

Proposition 2 (Corollary of Spantini et al. (2018)) 1 Let V be a set of random variables with strictly
positive density generated according to the structural equations (4). For each set VZ ⊆ V of nodes
inMG

V such that {Vi, Vj} ⊆ VZ , then the following holds:

∂2

∂Vi∂Vj
log p(VZ) = 0 ⇐⇒ Vi |= m

MG
V

Vj |VZ \ {Vi, Vj}.

The result of Proposition 2 presents an alternative way to assess graphical separation in constraint-
based approaches to causal discovery: the equivalence class of the graph MG

V can be identified
using the cross-partial derivatives of the log-likelihood to characterize conditional independencies
between variables, much in the spirit of the Fast Causal Inference (FCI) algorithm (Spirtes, 2001).
Identifying the Markov equivalence class is the most we can hope to achieve without further restric-
tions on the hypothesis class. As we will see in the next section, the score function can also help
leverage additional restrictive assumptions on the causal mechanisms of Equation (4) to identify
direct causal effects.

4. A theory of identifiability from the score

In this section, we show that, under additional assumptions on the data-generating process, we can
identify some direct causal relations with the score even in the case of latent variable models.

As a preliminary step before diving into causal discovery with hidden nodes, we show how the
properties of the score function identify edges in directed acyclic graphs, that is in the absence of
unmeasured variables (when U = ∅ and G = MG

V ). The goal of the next section is two-sided:
first, it introduces the fundamental ideas connecting the score function to causal discovery that also
apply to hidden variable models, second, it extends the existing theory of causal discovery with
score matching to additive noise models with both linear and nonlinear mechanisms.

1. In their Lemma 4.1 Spantini et al. (2018) provides the connection between vanishing cross-partial derivatives of
the log-likelihood and conditional independence of random variables. Note that this result does not depend on the
assumption of a generative model, thus holding beyond the set of structural equations (4) and (5). Our result exploits
their finding to the case when observations are generated according to a causal model with potentially latent variables.
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4.1. Warm up: identifiability without latent confounders

In this section, we summarise and extend the theoretical findings presented in Montagna et al.
(2023d), where the authors show how to derive constraints on the score function that identify the
causal order of the DAG G where all the variables in the set X are observed. Define the structural
relations of (1) as:

Xi := hi(XPAG
i
) + Ni, i = 1, . . . , k, (8)

with three times continuously differentiable mechanisms hi, noise terms centered at zero, and
strictly positive density pX . Further, we assume that the SCM on X is a restricted additive noise
model (Definition 16), which is necessary to ensure identifiability. Given the Markov factoriza-
tion of Equation (2), and the change of variable formula for densities, the components of the score
function∇ log p(x) are:

∂Xi log p(x) = ∂Ni log p(ni)−
∑

j∈CHG
i

∂Xihj(xPAG
j
)∂Nj log p(nj), (9)

where CHG
i denotes the set of children of node Xi. We observe that if a node Xs is a sink, i.e. a

node satisfying CHG
s = ∅, then the summation over the children vanishes, implying ∂Xs log p(x) =

∂Ns log p(ns). The key point is that the score component of a sink node is a function of its structural
equation noise term, such that one could learn a consistent estimator of ∂Xs log pX from a set of
observations of the noise term Ns. Given that, in general, one has access to X samples rather than
observations of the noise random variables, authors in Montagna et al. (2023d) show that Ns of a
sink node can be consistently estimated from i.i.d. realizations of X . For each node X1, . . . , Xk,
we define the quantity:

Ri := Xi − E[Xi|X\Xi
], (10)

where X\Xi
are the random variables in the set X \ {Xi}. E[Xi|X\Xi

] is the optimal least squares
predictor of Xi from all the remaining nodes in the graph, and Ri is the regression residual. For a
sink node Xs, the residual satisfies:

Rs = Ns, (11)

which can be seen by rewriting E[Xs|X\Xs
] = hs(XPAG

s
) + E[Ns|XDEG

s
, XNDG

s
] = hs(XPAG

s
) +

E[Ns], where XDEG
s

and XNDG
s

denotes the descendants and non-descendants of Xs, respectively.
Equations (9) and (11) together imply that the score ∂Ns log p(Ns) is a function of Rs, such that it
is possible to find a consistent approximator of the score of a sink from observations of Rs.

Proposition 3 (Generalization of Lemma 1 in Montagna et al. (2023d)) Let X be a set of ran-
dom variables, generated by a restricted additive noise model (Definition 16) with structural equa-
tions (8), and let Xj ∈ X . Then:

Xj is a sink⇐⇒ E
[(

E
[
∂Xj log p(X) | Rj

]
− ∂Xj log p(X)

)2
]

= 0. (12)

Our result generalizes Lemma 1 in Montagna et al. (2023d), as they assume X generated by an
identifiable additive noise model with nonlinear mechanisms, which we can replace by the weaker
hypothesis of restricted additive noise model. These findings are not surprising, in light of previous
literature connecting the precision matrix and the causal structure of linear SCMs (Ghoshal and
Honorio, 2018), as we discuss in Appendix D.1. Inspired by these results, in the next section we
demonstrate the identifiability via the score of direct causal effects between a pair of variables in
the marginal MAGMG

V when U ̸= ∅.
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4.2. Identifiability in the presence of latent confounders

We now introduce our main theoretical result, that is: given a pair of nodes Vi, Vj that are adjacent
in the graph MG

V with U ̸= ∅, we can use the score function to identify the presence of a direct
causal effect between Vi and Vj which can not be detected when inference is limited to the PAG
PMG

V
(representing the Markov equivalence class). Given that the causal model of Equation (4)

ensures identifiability only up to the equivalence class, we need additional restrictive assumptions.
In particular, we enforce an additive noise model with respect to both the observed and unobserved
noise variables. This corresponds to an additive noise model on the observed variables with the
noise terms recentered by the latent causal effects.

Assumption 1 (SCM assumptions) The set of structural equations of the observable variables
specified in (4) is now defined as:

Vi := fi(VPAG
i
) + gi(U i) + Ni, ∀i = 1, . . . , d, (13)

assuming the mechanisms fi to be of class C3(R
|VPAG

i

|
), and mutually independent noise terms with

strictly positive density function. The Ni’s are assumed to be non-Gaussian when fi is linear in
some of its arguments.

Crucially, our hypothesis is weaker than those required by two state-of-the-art approaches,
CAM-UV (Maeda and Shimizu, 2021) and RCD (Maeda and Shimizu, 2020): CAM-UV assumes
a Causal Additive Model (CAM) with structural equations with nonlinear mechanisms in the form
Vi :=

∑
k∈PAG

i
fik(Vk) +

∑
U i

k
gik(U i

k) + Ni, and RCD requires an additive noise model with linear
effects of both the latent and observed causes. Thus, our model encompasses and extends the non-
linear and linear settings of CAM-UV and RCD, such that the theory developed in the remainder of
the section is valid for a broader class of causal models.

Our first step is rewriting the structural relations in (13) as:

Vi := fi(VPAG
i
) + Ñi,

Ñi := gi(U i) + Ni,∀i = 1, . . . , d,
(14)

which provides an additive noise model in the form of (8). Next, we define the following regression
residuals for any node Vk in the graphMG

V :

Rk(VZ) := Vk − E[Vk | VZ\{k}], (15)

where VZ\{k} denotes the set of random variables VZ \ {Vk}.
Given these definitions, we are ready to show that the score can identify the presence of direct

causal effects between pairs of observed variables in V which can not be detected by conditional in-
dependence testing (e.g., as in FCI). In particular, if the mechanisms are nonlinear, direct parents in
the DAG can be identified, while in the linear case identifiability is limited to ancestorship relations.

4.2.1. IDENTIFIABILITY OF DIRECTED EDGES

Let Vi, Vj be adjacent nodes in the PAG PMG
V

: we want to investigate when a direct causal effect
Vi ∈ VPAG

j
can be identified from the score. Consider the set of variables VZ = VPAG

j
∪ {Vj} and

7
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the graphMG
VZ

resulting from the marginalization of G on VZ . By Equation (14), we have that:

Vj := fj(VPAG
j
) + Ñj , Ñj := gj(U j) + Nj .

The key observation is that for VPAG
j

|= G
d U j , then VPAG

j

|= Ñj (e.g. K. Blitzstein and Hwang (2019),

Theorem 3.8.5): this allows considering Ñj as an exogenous noise term independent of other vari-
ables in the structural equation of Vj . By Equation (15) this implies that

Rj(VZ) = Ñj − E[Ñj ], (16)

where we use VPAG
j

|= Ñj to write E[Ñj |VPAG
j
] = E[Ñj ]. Moreover, VPAG

j

|= Ñj implies that

p(Vj |VPAG
j
) = p(Ñj), and from simple manipulations we can show that ∂Vj log p(VZ) = ∂Nj log p(Ñj).

We conclude that in analogy to the case without latent variables the score ∂Vj log p(VZ) is a function
of Ñj , the error term in the additive noise model of Equation (14). Then the score of Vj can be con-
sistently predicted from observations of the residual Rj(VZ), which is the sufficient and necessary
condition to discover the direct causes (parents and ancestors) of Vj with the score.

Proposition 4 Let X = V ∪ U , V and U disjoint, be generated by a restricted additive noise
model with causal graph G. Let V satisfying the set of structural equations (13), and fi nonlinear
for each i = 1, . . . , d. Consider Vi, Vj adjacent in PMG

V
, the PAG relative to marginalizationMG

V .
Further, assume that for each subset VZ ⊆ V the score component ∂Vj log p(VZ) is non-constant
for uncountable values of VZ . Then,

∃VZ ⊆ V, {Vi, Vj} ∈ VZ , s.t. E
[(

∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]
)2

]
= 0

⇐⇒ VPAG
j

|= d
GU j ∧ Vi ∈ VPAG

j
.

(17)

If fi linear for each i = 1, . . . , d we have

∃VZ ⊆ V, {Vi, Vj} ∈ VZ , s.t. E
[(

∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]
)2

]
= 0

⇐⇒ VPAG
j

|= d
GU j ∧ Vi ∈ VANG

j
.

(18)

The proof is found in Appendix C.3. Here, we present the intuition about the content of the
proposition. Given two adjacent nodes Vi, Vj in the PAG, they must be graphically connected by
one edge between ◦→, ◦−◦,↔ or→, the latter denoting ancestral relation in the DAG (which may
not be a direct parent). Equation (17) provides the condition under which a parent-child relation
can be identified in place of the less informative PAG edges: in particular, for nonlinear additive
noise models, that is when the independence VPAG

j

|= Ñj implied by VPAG
j

|= d
GU j allows to inter-

pret Ñj as an exogenous noise term independent of other variables in the structural Equation (14)
of Vj . This condition is necessary: given an active path such that VPAG

j
̸ |= d

GU j , the score could
not identify a direct causal effect Vi ∈ VPAG

j
. We remark on the novelty of our theory compared

to Maeda and Shimizu (2021), the nearest neighbor to our work in the literature: they demonstrate
identifiability of direct parents under the assumptions of additive and nonlinear mechanisms (i.e.

8
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Vi :=
∑

k∈PAG
i

fik(Vk) +
∑

U i
k

gik(U i
k) + Ni), which is more restrictive than our modeling hy-

pothesis. In the case of linear mechanisms, we can only identify Vi ∈ VANG
j

, which subsumes the
findings of Maeda and Shimizu (2020), as they do not consider the case of unobserved mediators.
See Appendix D.3 for more details on the relation of these results.

Connections to FCI. In Appendix D.2 we present a thorough analysis of the relation between
the identifiability guarantees of Proposition 4 and those provided by the FCI algorithm. Intuitively,
under standard assumptions, FCI discovers all aspects of the causal structure that are uniquely de-
termined by facts of probabilistic dependence and independence (Zhang, 2008c). Adding the as-
sumption of an additive noise model, as in our case, allows further identifying causal directions that
are not distinguishable purely by probabilistic (in)dependence facts.

Connections to local causal discovery. We note that the result of Proposition 4 has an important
application in the domain of local causal discovery, which is based on the idea that the identification
of causal effects of the covariates on the response under interventions only requires knowledge of the
local causal structure around the treatment (Maathuis et al., 2008). Then, the discovery of parental
relations between a targeted subset of nodes, rather than on the entire set of observed variables,
may be sufficient for some downstream tasks in causal inference. The benefits of this approach are
clear in terms of computational efficiency. Proposition 4 shows that for any pair of nodes, the score
function can discover a parent-child (or ancestral) relationship while being agnostic of the structure
of the other nodes in the graph. This is in contrast with existing approaches to causal discovery with
score matching that are concerned with the inference of the global topological order, which might
be unnecessarily computationally expensive. While we do not elaborate on this connection in the
following algorithmic section, we believe this to be an important potential application building on
our results.

We have established theoretical guarantees of identifiability for additive noise models, even in
the presence of hidden variables: we find that, for nonlinear models, the score function is a means
for the identifiability of all direct parental relations that are not influenced by unobserved variables;
all the remaining arrowheads of the edges in the graph MG

V are identified no better than in the
equivalence class. For linear models, identifiability is guaranteed for ancestral relations. Based on
these insights, we propose AdaScore, a score matching-based algorithm for the inference of Markov
equivalence classes and direct causal effects, in the presence of latent variables.

4.3. A score-matching-based algorithm for causal discovery

Building on our theory, we propose AdaScore, a generalization of NoGAM to linear and nonlinear
additive noise models with latent variables. The main strength of our approach is the adaptivity
of its theoretical guarantees for this broad class of structural assumptions, as illustrated in Table 1.
In practice, we design our method to be flexible in its output: based on the user’s belief about the
plausibility of several modeling assumptions on the data, AdaScore can output an equivalence class
(using the condition of Proposition 2 to infer conditional independence in an FCI-like algorithm), a
directed acyclic graph (as in NoGAM), or a mixed graph, accounting for the presence of unobserved
variables. We now describe the version of our algorithm whose output is a mixed graph, where we
rely on score matching estimation of the score and its Jacobian (Appendix E.3).

9
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At an intuitive level, we find unoriented edges using Proposition 2, i.e. checking for dependen-
cies in the form of non-zero entries in the Jacobian of the score via hypothesis testing on the mean,
and find the edges’ directions via the condition of Proposition 4, i.e. by estimating residuals of
each node Xi (via kernel ridge-regression, as we motivate in Appendix D.4) and checking whether
they can correctly predict the i-th score entry (the vanishing mean squared errors are verified by
hypothesis test of independent residuals, see Appendix E.3). It would be tempting to simply find
the skeleton (i.e. the graphical representation of the constraints of an equivalence class) first via the
well-known adjacency search of the FCI algorithm and then iterate through all neighborhoods of all
nodes to orient edges using Proposition 4. This would be prohibitively expensive.

Instead, we propose an alternative solution: exploiting the fact that some nodes may not be
influenced by latent variables, we first use Proposition 3 to find sink nodes that are not affected by
latents (using hypothesis testing to find vanishing mean squared error in the score predictions from
the residuals), in the spirit of the NoGAM algorithm. If there is such a sink, we search all its adjacent
nodes via Proposition 2 (plus an optional pruning step for better accuracy, Appendix E.3), and orient
the inferred edges towards the sink. Else, if no sink can be found, we pick a node in the graph and
find its neighbors by Proposition 2, orienting its edges using the condition in Proposition 4 (score
estimation by residuals under latent effects). This way, we get an algorithm that is polynomial in the
best case (Appendix E.4). Details on AdaScore are provided in Appendix E, while a pseudo-code
summary is provided in the Algorithm 1 box.

Algorithm 1: Simplified pseudo-code of AdaScore
while nodes remain do

Find sink candidate using Proposition 4
if Proposition 4 finds a sink and output is mixed graph
or output is DAG then

Add edges from adjacent nodes to sink
else

Pick some remaining node Vi ∈ V
Prune neighbourhood of Vi using Proposition 2
if output is not PAG then

Orient edges adjacent to Vi using Proposition 4

end
if Vi has outgoing directed edge to some Vj ∈ V then

continue with Vj

else
Remove Vi from remaining nodes

end
end

end
Prune remaining potential edges using Proposition 2
if output is PAG then

Do PAG orientations using Proposition 2
end
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5. Experiments

The code for all experiments is available under https://github.com/amazon-science/
causal-score-matching. We use the causally2 Python library Montagna et al. (2023a) to
generate synthetic data with known ground truths, created as Erdös-Rényi sparse and dense graphs,
respectively with probability of edge between pair of nodes equals 0.3 and 0.5. We sample the data
according to linear and nonlinear mechanisms with additive noise, where the nonlinear functions
are parametrized by a neural network with random weights, a common approach in the literature
(Montagna et al., 2023b,a; Lippe et al., 2022; Ke et al., 2023; Brouillard et al., 2020). Noise terms
are sampled from a uniform distribution in the [−2, 2] range. We introduce hidden variables by
randomly picking two nodes and dropping the corresponding column from the data matrix (datasets
with no confounding effect are discarded and re-sampled to ensure that experiments are meaning-
ful). See Appendix F.1 for further details on the data generation. As metric, we consider the struc-
tural Hamming distance (SHD) (Tsamardinos et al., 2006; Triantafillou and Tsamardinos, 2016), a
simple count of the number of incorrect edges, where missing and wrongly directed edges count
as one error. We fix the level of the hypothesis tests of AdaScore to 0.05, which is a common
choice in the absence of prior knowledge. We compare AdaScore to NoGAM, CAM-UV, RCD,
and DirectLiNGAM, whose assumptions are detailed in Table 1. We also adopt a random base-
line, described in Appendix F.3. In the main manuscript, we consider inference of sparse graphs,
where each dataset contains 1000 observations (boxplots are obtained sampling datasets with 20
different random seeds). Additional experiments including those on dense networks are presented
in Appendix G. Our synthetic data are standardized by their empirical variance to remove shortcuts
in the data (Montagna et al., 2023b; Reisach et al., 2021). We limit our synthetic experiments to
graphs with 9 nodes, as we empirically observed that AdaScore and CAM-UV struggle to scale
with the number of variables. A thorough analysis of the elapsed computational time is provided in
Appendix G.6.

Further, we show results for three real and pseudo-real benchmark datasets. Namely, a biological
dataset on cell signaling (Sachs et al., 2005), the AutoMPG dataset3 concerning fuel consumption
in cars (Bache and Lichman, 2013), where we use the causal ground truth given by (Wang and
Mueller, 2017), and the synthetic FMRI dataset Sim2 (Smith et al., 2011). For each dataset, we
randomly pick two variables and drop them to introduce hidden variables. For Sachs and Sim2
we also randomly4 select 1000 samples. The experiments are repeated 20 times.

Discussion. Our experimental results on models without latent variables of Figure 1(a) show that
when causal relations are linear, AdaScore can recover the causal graph with accuracy that is com-
parable with all the other benchmarks, with the exception of DirectLiNGAM. On nonlinear data,
AdaScore outperforms RCD accuracy, while being slightly worse than CAM-UV and NoGAM.
When inferring under latent causal effects, Figure 1(b), our method is comparable to CAM-UV and
NoGAM, and appears to be preferrable to RCD, which degrade its performance with scale and is no
better than random with 9 nodes. Finally, on the real benchmarks of Figure 2, AdaScore presents
promising results compared to the other methods. On cell signaling data, our algorithm emerges
as the best option, while it retains competitive performance on fuel consumption and FMRI data.
Overall, we observe that our method is robust to a variety of structural assumptions, with accuracy

2. https://causally.readthedocs.io/en/latest/
3. Some of the features in this dataset are not continuous. For simplicity, we still treat them as if they were.
4. Sim2 is subdivided into samples from different (synthetic) subjects. We picked our subsample across all subjects.
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(a) Fully observable model
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(b) Latent variables model

Figure 1: Empirical results on sparse graphs with different numbers of nodes, on fully observable
(no hidden variables) and latent variable models. We report the SHD accuracy (lower is
better). We note that Adascore is comparable to the other methods in all settings (except
for DirectLiNGAM on linear data), and always significantly better than random.
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Figure 2: Empirical results on real and pseudo-real datasets from Sachs et al. (2005), Bache and
Lichman (2013) , and Smith et al. (2011). We report the SHD accuracy (lower is better).
AdaScore has the lowest SHD among all tested methods on the gene dataset and appears
to be competitive compared to other methods on the fuel consumption and FMRI data.
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Table 1: Algorithms of our experiments. Each cell denotes denotes whether the method has (✓) or
has not (✗) guarantees of identifiability under the condition specified in the related row.

CAM-UV RCD NoGAM DirectLiNGAM AdaScore

Linear additive noise model ✗ ✓ ✗ ✓ ✓

Nonlinear additive noise model ✗ ✗ ✓ ✗ ✓

Nonlinear CAM ✓ ✗ ✓ ✗ ✓

Latent variables effects ✓ ✓ ✗ ✗ ✓

Output Mixed Mixed DAG DAG Mixed

that is comparable and sometimes better than competitors. We remark that although AdaScore does
not clearly outperform the other baselines, its broad theoretical guarantees of identifiability are not
matched by any available method in the literature; this makes it an appealing option for inference in
realistic scenarios that are hard to investigate with synthetic data, where the structural assumptions
of the causal model underlying the observations are unknown.

6. Conclusion

The existing literature on causal discovery shows a connection between score matching and struc-
ture learning in the context of nonlinear ANMs: in this paper, (i) we formalize and extend these
results to linear SCMs, and (ii) we show that the score retains information on the causal structure
even in the presence of unobserved variables. While previous works posit the accent on finding
the causal order through the score, we study its potential to identify the Markov equivalence class
with a constraint-based strategy, as well as to identify direct causal effects. Our theoretical insights
result in AdaScore: unlike existing approaches for the estimation of causal directions, our algorithm
provides theoretical guarantees for a broad class of identifiable models, namely linear and nonlin-
ear, with additive noise, in the presence of latent variables. Even though AdaScore does not clearly
outperform the existing baselines on our synthetic benchmark, it appears promising on realistic
datasets, and its adaptivity to different structural hypotheses is a step towards causal discovery that
is less reliant on prior assumptions, which are often untestable and thus hindering reliable inference
in real-world problems. A promising research direction in relation to our work involves extending
and applying our theory to algorithms for local causal discovery.
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Appendix A. Related works

In this section we discuss works closely related to ours, in the context of observational causal dis-
covery with and without latent variables.

Causal discovery with score-matching. Several methods for the causal discovery of fully observ-
able models using the score have been recently proposed. Ghoshal and Honorio (2018) demonstrates
the identifiability of the linear non-Gaussian model from the score, and it is complemented by Rol-
land et al. (2022), which shows the connection between score matching estimation of ∇ log p(X)
and the inference of causal graphs underlying nonlinear additive noise models with Gaussian noise
terms, also allowing for sample complexity bounds (Zhu et al., 2024). Montagna et al. (2023d) pro-
vides identifiability results in the nonlinear setting, without posing any restriction on the distribution
of the noise terms. Montagna et al. (2023c) is the first to show that the Jacobian of the score provides
information equivalent to conditional independence in the context of causal discovery, limited to the
case of additive noise models. All of these studies make specialized assumptions to find theoretical
guarantees of identifiability, whereas our paper provides a unifying view of causal discovery with
the score function, which generalizes and expands the existing results.

Causal discovery with latent variables. Causal discovery with latent variables has been studied
first in the context of constraint-based approaches with the FCI algorithm (Spirtes, 2001), which
shows the identifiability of the equivalence class of a marginalized graph via conditional indepen-
dence testing. There are several methods that have been proposed for specific structural or func-
tional assumptions. E.g. assuming linearity and restrictions on possible graphs Silva et al. (2006)
present a method based on Tetrad-constraints, while Chandrasekaran et al. (2010) use a maximum-
likelihood-based approach for linear models and sparse graphs. A wide class of approaches builds
on the assumption of non-Gaussian additive noise, going back to the work of Shimizu et al. (2006)
and Hoyer et al. (2008) on cases without latent variables. Some examples include Janzing et al.
(2009), who show how confounders can be identified in a bivariate setting with non-linear causal
relationship, Adams et al. (2021), who use conditions on the structural coefficients, Wang and Dr-
ton (2023), who recover the causal structure from statistical moments or Dong et al. (2024), who
impose constraints on the rank of cross-covariance matrices. The RCD and CAM-UV (Maeda and
Shimizu, 2020, 2021) approaches demonstrate the inferrability of causal edges via testing for inde-
pendent regression residuals. Like the aforementioned methods, both rely on strong assumptions on
the causal mechanisms: their theoretical guarantees apply to models where the effects are generated
by a linear (RCD) or nonlinear (CAM-UV) additive contribution of each cause.

Our work demonstrates that using the score function for causal discovery, one can unify and
generalize several of these results, while being agnostic about the class of causal mechanisms of the
observed variables, under the weaker requirement of additivity of the noise terms. Further, we show
how the score can be utilized for causal discovery with latent variables in a non-parametric setting.

Appendix B. Useful results

In this section, we provide a collection of results and definitions relevant to the theory of this paper.
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B.1. Definitions over graphs

Let X = X1, . . . , Xd a set of random variables. A graph G = (X, E) consists of finitely many
nodes or vertices X and edges E. We now provide additional definitions, separately for directed
acyclic and mixed graphs.

Directed acyclic graph. In a directed graph, nodes can be connected by a directed edge (→),
and between each pair of nodes there is at most one directed edge. We say that X1 is a parent
of Xj if Xi → Xj ∈ E, in which case we also say that Xj is a child of Xi. Two nodes are
adjacent if they are connected by an edge. A path in G is a sequence of at least two distinct vertices
π = Xi1 , . . . , Xim such that there is an edge between Xik

and Xik+1 for each k = 1, . . . , m. If
Xik
→ Xik+1 for every node in the path, we speak of a directed path, and call Xi1 an ancestor of

Xim , Xim a descendant of Xi1 . Given the set DEG
i of descendants of a node Xi, we define the set

of non-descendants of Xi as NDG
i = X \ (DEG

i ∪{Xi}). Given the path π = Xi1 , . . . , Xim , we say
that Xik

, k = 2, . . . , m− 1, is a collider on π if Xik−1 , Xik+1 are both parents of Xik
, and we call

the triplet Xik−1 → Xik
← Xik+1 a v-structure. A node without parents is called a source node.

A node without children is called a sink node. A directed acyclic graph is a directed graph with no
cycles.

Mixed graph. In a mixed graph nodes can be connected by a directed edge (→) or a bidirected
edge (↔), and between each pair of nodes there is at most one directed edge. Two vertices are
said to be adjacent in a graph if there is an edge (of any kind) between them. The definitions of
parent, child, ancestor, descendant, path provided for directed acyclic graph also apply in the case
of mixed graphs. Additionally, Xi is a spouse of Xj (and vice-versa) if Xi ↔ Xj ∈ E. An almost
directed cycle occurs when Xi ↔ Xj ∈ E and Xi is an ancestor of Xj in G. In the context of mixed
graphs, given the path π = Xi1 , . . . , Xim , we say that Xik

, k = 2, . . . , m − 1, is a collider on π
if the edges between Xik−1 , Xik

and Xik
, Xik+1 both have an arrowhead towards Xik

. The triplet
Xik−1 , Xik

, Xik+1 is a v-structure
For ease of reference from the main text, we separately define inducing paths and ancestors in

directed acyclic graphs.

Definition 5 (Ancestor) Consider a DAG G with set of nodes X , and Xi, Xj elements of X . We
say that Xi is an ancestor of Xj if there is a directed path from Xi to Xj in the graph, as in
Xi → . . .→ Xj .

Definition 6 (Inducing path) Consider a DAG G with set of nodes X = V ∪ U , V, U disjoint
subsets. We say that a path π with endpoints Vi, Vj is an inducing path relative to U if every non-
endpoint Vk in the path and not in U is both a collider on π (i.e. Vi . . . → Vk ← . . . Vj appears)
and an ancestor of Vi or Vj .

Intuitively, an inducing path relative to U is a path between two variables in V and that cannot
be separated by conditioning on any other node in V . This makes them natural candidates to encode
dependencies between observable random variables V that can not be eliminated by conditioning
on subsets of V , as they are due to the presence of inducing paths relative to U , with U unobserved
random variables.

Example 1 (Examples of inducing paths) Trivially, a single edge path is an inducing path relative
to any set of vertices (as there are no colliders). As another example, let U = {U1}, and V =
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{V1, V2, V3, V4}. Let there be a direct path V1 → V2 → V3 → V4, and the path π = V1 → V2 ←
U1 → V4. The path π is an inducing path relative to U (as V2 is a collider on π and also an ancestor
of V4). As final example, let U = {U1}, V = {V1, V2}: V1 → U1 → V2 is an inducing path relative
to U .

One natural way to encode inducing paths and ancestral relationships between variables is rep-
resented by maximal ancestral graphs.

Definition 7 (MAG) A maximal ancestral graph (MAG) is a mixed graph such that:

1. there are no directed cycles and no almost directed cycles;

2. there are no inducing paths between two non-adjacent nodes.

Next, we define conditional independence in the context of graphs.

Definition 8 (active paths and m-separation) LetM be a mixed graph with nodes X . A path π
inM between Xi, Xj elements of X is active w.r.t. Z ⊆ X \ {Xi, Xj} if:

1. every non-collider on π is not in Z

2. every collider on π is an ancestors of a node in Z.

Xi and Xj are said to be m-separated by Z if there is no active path between Xi and Xj relative
to Z. Two disjoint sets of variables W and Y are m-separated by Z if every variable in W is
m-separated from every variable in Y by Z.

If m-separation is applied to DAGs, it is called d-separation. An active path w.r.t. the empty set
is simply called active.

The set of directed acyclic graphs that satisfy the same set of conditional independencies form an
equivalence class, known as the Markov equivalence class.

Definition 9 (Markov equivalence class of a DAG) Let G be a DAG with nodes X . We denote
with [G] the Markov equivalence class of G. A DAG G̃ with nodes X is in [G] if the following
conditions are satisfied for each pair Xi, Xj of distinct nodes in X:

• there is an edge between Xi, Xj in G if and only if there is an edge between Xi, Xj in G̃;

• let Z ⊆ X \ {Xi, Xj}. Then Xi |= d
GXj |Z ⇐⇒ Xi |= d

G̃Xj |Z;

• let π be a path between Xi and Xj . Xk is a collider on π in G if and only if it is a collider on
π in G̃.

In summary, graphs in the same equivalence class share the edges up to direction, the set of d-
separations, and the set of colliders.

Just as for DAGs, there may be several MAGs that imply the same conditional independence
statements. Denote the Markov-equivalence class of a MAGM with [M]: this is represented by a
partial mixed graph, the class of graphs that can contain four kinds of edges: →,↔, ◦−−◦ and ◦→,
and hence three kinds of end marks for edges: arrowhead (>), tail (−) and circle (◦).
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Definition 10 (PAG, Definition 3 of Zhang (2008a)) Let [M] be the Markov equivalence class of
an arbitrary MAGM . The partial ancestral graph (PAG) for [M], PM , is a partial mixed graph
such that:

• PM has the same adjacencies asM (and any member of [M]) does;

• A mark of arrowhead is in PM if and only if it is shared by all MAGs in [M]; and

• A mark of tail is in PM if and only if it is shared by all MAGs in [M].

Intuitively, a PAG represents an equivalence class of MAGs by displaying all common edge marks
shared by all members of the class and displaying circles for those marks that are not in common.

B.2. Equivalence between m-separation and d-separation

In this section, we provide a proof for Equation (6), stating the equivalence between m-separation
and d-separation in a formal sense.

Lemma 11 (Adapted from Zhang (2008a)) Let G be a DAG with nodes X = V ∪ U , with V
and U disjoint sets, andMG

V the marginalization of G onto V . For any {Vi, Vj} ⊆ V and VZ ⊆
V \ {Vi, Vj}, the following equivalence holds:

Vi |= d
GVj |VZ ⇐⇒ Vi |= m

MG
V

Vj |VZ .

Proof The implication Vi |= d
GVj |VZ =⇒ Vi |= m

MG
V

Vj |VZ is a direct consequence of Lemma

18 from Spirtes and Richardson (1996), where we set S = ∅, since we do not consider selection
bias. The implication Vi |= d

GVj |VZ ⇐= Vi |= m
MG

V

Vj |VZ follows from Lemma 17 by Spirtes and

Richardson (1996), again with S = ∅. Note, that in their terminology “d-separation in MAGs” is
what we call m-separation.

Next, we define the faithfulness assumption, a bridge between d-separation and probabilistic
conditional independence.

Definition 12 (Faithfulness) Let X be generated according to the structural causal model (1),
with causal graph G. We say that the density p of X entailed by the generative SCM is faithful to
the graph G if Xi |= Xj |XZ =⇒ Xi |= d

GXj |XZ for all i, j and XZ ⊆ X .

B.3. Additive noise model identifiability

We study the identifiability of the additive noise model, reporting results from Peters et al. (2014).
We start with a formal definition of identifiability in the context of causal discovery.

Definition 13 (Identifiable causal model) Let (X, N,F , pN ) be an SCM with underlying graph
G and pX joint density function of the variables of X . We say that the model is identifiable from
observational data if the distribution pX can not be generated by a structural causal model with
graph G̃ ̸= G.
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First, we consider the case of models of two random variables

X2 := f(X1) + N, X1 |= N. (19)

Condition 1 (Condition 19 of Peters et al. (2014)) Consider an additive noise model with struc-
tural equations (19). The triple (f, pX1 , pN ) does not solve the following differential equation for
all pairs x1, x2 with f ′(x2)ν ′′(x2 − f(x1)) ̸= 0:

ξ′′′ = ξ′′
(

f ′′

f ′ −
ν ′′′f ′

ν ′′

)
+ ν ′′′ν ′f ′′f ′

ν ′′ − ν ′(f ′′)2

f ′ − 2ν ′′f ′′f ′ + ν ′f ′′′, (20)

Here, ξ := log pX1 , ν := log pN , the logarithms of the strictly positive densities. The arguments
x2 − f(x1), x1, and x1 of ν, ξ and f respectively, have been removed to improve readability.

Next, we show that a structural causal model satisfying Condition 1 is identifiable, as in Defini-
tion 13

Theorem 14 (Theorem 20 of Peters et al. (2014)) Let pX1,X2 the joint distribution of a pair of
random variables generated according to the model of Equation (19) that satisfies Condition 1,
with graph G. Then, G is identifiable from the joint distribution.

Finally, we show an important fact, holding for identifiable bivariate models, which is that the
score ∂

∂X1
log p(x1, x2) is non-constant in x1.

Lemma 15 (Sufficient variability of the score) Let pX1,X2 the joint distribution of a pair of ran-
dom variables generated according to a structural causal model that satisfies Condition 1, with
graph G. Then:

∂

∂X1
(ξ′(x1)− f ′(x1)ν ′(x2 − f(x1))) ̸= 0,

for all pairs (x1, x2).

Proof By contradiction, assume that there exists (x1, x2) such that ∂
∂X1

(ξ′(x1) − f ′(x1)ν ′(x2 −
f(x1))) = 0. Then:

∂

∂X1

 ∂2

∂X2
1
π(x1, x2)

∂2

∂X1∂X2
π(x1, x2)

 = 0,

where π(x1, x2) = log p(x1, x2). By explicitly computing all the partial derivatives of the above
equation, we obtain that equation 20 is satisfied, which violates Condition 1.

These results guaranteeing the identifiability of the bivariate additive noise model can be gener-
alized to the multivariable case, with a set of random variables X = {X1, . . . , Xk} that satisfy:

Xi := fi(XPAG
i
) + Ni, i = 1, . . . , k, (21)

where G is the resulting causal graph directed and acyclic. The intuition is that, rather than studying
the multivariate model as a whole, we need to ensure that Condition 1 is satisfied for each pair of
nodes, adding restrictions on their marginal conditional distribution.
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Definition 16 (Definition 27 of Peters et al. (2014)) Consider an additive noise model with struc-
tural equations (21). We call this SCM a restricted additive noise model if for all Xj ∈ X ,
Xi ∈ XPAG

j
, and all sets XS ⊆ X , S ⊂ N, with XPAG

j
\ {Xi} ⊆ XS ⊆ XG

NDj
\ {Xi, Xj},

there is a value xS with p(xS) > 0, such that the triplet

(fj(xPAG
j \{i}, ·), pXi|XS=xS

, pNj )

satisfies Condition 1. Here, fj(xPAG
j \{i}, ·) denotes the mechanism function xi 7→ fj(xPAG

j
). Addi-

tionally, we require the noise variables to have positive densities and the functions fj to be contin-
uous and three times continuously differentiable.

Then, for a restricted additive noise model, we can identify the graph from the distribution.

Theorem 17 (Theorem 28 of Peters et al. (2014)) Let X be generated by a restricted additive noise
model with graph G, and assume that the causal mechanisms fj are not constant in any of the input
arguments, i.e. for Xi ∈ XPAG

j
, there exist xi ̸= x′

i such that fj(xPAG
j \{i}, xi) ̸= fj(xPAG

j \{i}, x′
i).

Then, G is identifiable.

B.4. Other auxiliary results

We state one crucial result that we require for the proof of Proposition 4.

Lemma 18 Let Vj ∈ V , and Z ⊂ N such that VZ = VPAG
j
∪ {Vj}. Assume that VPAG

j

|= Ñj , Ñj

as defined in Equation (14). Then, the score of Vj with respect to density p(VZ) satisfies:

∂Vj log p(VZ) = ∂Ñj
log p(Ñj).

Proof By Bayes’ rule, we have that p(VZ) = p(Vj |VPAG
j
)p(VPAG

j
), such that the log-likelihood can

be written as:
log p(VZ) = log p(Vj |VPAG

j
) + log p(VPAG

j
).

Taking the partial derivative w.r.t Vj , Equation (14) implies

∂Vj log p(VZ) = ∂Vj log p(Vj |VPAG
j
).

Note that given Vj := fj(VPAG
j
) + Ñj and the independence VPAG

j

|= Ñj , using the change of vari-

able formula for invertible transforms on the density p(Vj |VPAG
j
), we find that p(Vj |VPAG

j
) = p(Ñj).

Moreover, the chain rule of derivatives and ∂Vj Ñj = 1 imply ∂Vj log p(Ñj) = ∂Ñj
log p(Ñj), such

that the claim follows.

Appendix C. Proofs of theoretical results

C.1. Proof of Proposition 2

Proof (Proof of Proposition 2) Observe that

∂2

∂Vi∂Vj
log p(vZ) = 0 ⇐⇒ Vi |= d

GVj |VZ \ {Vi, Vj} ⇐⇒ Vi |= m
MG

V
Vj |VZ \ {Vi, Vj},
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where the first equivalence holds by a combination of the faithfulness assumption with the global
Markov property, as explicit in Equation (3), and the second due to Lemma 11. Then, the claim is
proven.

C.2. Proof of Proposition 3

Proof (Proof of Proposition 3) The forward direction is immediate from Equation (9) and Rj = Nj ,
when Xj is a sink (Equation (11)). Thus, we focus on the backward direction. Given

E
[(

E
[
∂Xj log p(X) | Rj

]
− ∂Xj log p(X)

)2
]

= 0,

we want to show that Xj has no children, which we prove by contradiction.
Let us introduce a function q : R→ R such that:

E
[
∂Xj log p(X) | Rj = rj

]
= q(rj),

and sj : R|X| → R,
sj(x) = ∂Xj log p(x).

The mean squared error equal to zero implies that sj(X) is a constant, once Rj is observed.
Formally, under the assumption of p(x) > 0 for each x ∈ Rk, this implies that

p(sj(x) ̸= q(Rj)|Rj = rj) = 0, ∀x ∈ Rk.

By contradiction, we assume that Xj is not a sink, and want to show that sj(X) is not constant in X ,
given Rj fixed. Let Xi such that Xj ∈ XPAG

i
. Being the structural causal model identifiable, there

is no model with distribution pX whose graph has a backward edge Xi → Xj : thus, the Markov
factorization of Equation (2) is unique and implies:

∂Xj log p(X) = ∂Nj log p(Nj)−
∑

k∈CHG
j

∂Xj hk(XPAk
)∂Nk log p(Nk).

We note that, by definition of residual in Equation (10), Rj = rj fixes the following distance:

Rj = Nj − E[Nj |X\Xj
].

Hence, conditioning on Rj doesn’t restrict the support of X: given Rj = rj , for any x\Xj
(value

of the vector of elements in X \ {Xj}), ∃nj with p(nj > 0) (by the hypothesis of strictly positive
densities of the noise terms) that satisfies

rj = nj − E[Nj |x\Xj
].

Next, we condition on all the parents of Xi, except for Xj , to reduce our problem to the simpler
bivariate case. Let S ⊂ N and XS ⊆ X such that XPAG

i
\ {Xj} ⊆ XS ⊆ XNDG

i
\ {Xi, Xj},

and consider xS such that p(xS > 0). Let XPAG
i

= xPAG
i

hold under XS = xS . We define
Xj|xs

:= Xj |(XS = xS), and similarly X|xs
:= X|(XS = xS). Being the SCM a restricted
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additive noise model, by Definition 16, the triplet (gi, pXj|xs

, pNi) satisfies Condition 1, where

gi(xj) = hi(xPAG
i \{Xj}, xj). Consider Xi = xi, and the pair of values (xj , x∗

j ) such that xj ̸= x∗
j

and

ν ′′
Ni

(xi − gi(xj))g′
i(xj) ̸= 0,

ν ′′
Ni

(xi − gi(x∗
j ))g′

i(x∗
j ) ̸= 0,

where we resort to the usual notation νNi
:= log pNi . By Lemma 15, (xi, xj) and (xi, x∗

j ) satisfy:

∂Xj (ξ′(xj)− ν ′
Ni

(xi − gi(xj))g′
i(xj)) ̸= 0,

∂Xj (ξ′(x∗
j )− ν ′

Ni
(xi − gi(x∗

j ))g′
i(x∗

j )) ̸= 0,

where ξ := log pXj|xs

. Thus, we can fix xj and x∗
j (which are arbitrarily chosen) such that

∂Xj (ξ′(xj)− ν ′
Ni

(xi − gi(xj))g′
i(xj))− ∂Xj (ξ′(x∗

j )− ν ′
Ni

(xi − gi(x∗
j ))g′

i(x∗
j )) ̸= 0. (22)

Fixing X|xS,xj
= x and X|xS,x∗

j

= x∗, where the two values differ only in their j-th component, we

find the following difference:

sj(x)− sj(x∗) = ∂Xj (ξ′(xj)− ν ′
Ni

(xi − gi(xj))g′
i(xj))− ∂Xj (ξ′(x∗

j )− ν ′
Ni

(xi − gi(x∗
j ))g′

i(x∗
j )),

which is different from 0 by Equation (22). This contradicts the fact that the score sj is constant
once Rj is fixed, which proves our claim.

C.3. Proof of Proposition 4

We concentrate on the statement of Equation (17), given that the proof of Equation (18) follows
a similar template. We separately analyze their backward and forward directions. The following
proofs use several ideas from the demonstration of Proposition 3.
Proof [Proof of Equation (17), backward direction] Given VPAG

j

|= d
GU j ∧ Vi ∈ VPAG

j
, we want to

show that there exists VZ ⊆ V , {Vi, Vj} ⊆ VZ , such that:

E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2 = 0.

Let VZ = VPAG
j
∪{Vi, Vj}. We will show that this is indeed the right choice for VZ . By Lemma 18,

the score of Vj is:
∂Vj log p(VZ) = ∂Ñj

log p(Ñj).

Further, by Equation (16) we know that

Rj(VZ) = Ñj + c,

where c = −E[Ñj ] is a constant. It follows that the least square estimator of the score of Vj from
Rj(VZ) satisfies the following equation:

E[∂Vj log p(VZ)|Rj(VZ)] = E[∂Vj log p(Ñj)|Ñj ] = ∂Vj log p(Ñj),
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where the first equality holds because E[·|Ñj ] = E[·|Ñj + c]. Then, we find

E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2 = E[∂Vj log p(Ñj)− ∂Vj log p(Ñj)]2 = 0,

which is exactly our claim.

Proof [Proof of Equation (17), forward direction] Given that there is VZ ⊆ V , {Vi, Vj} ⊆ VZ , such
that E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2 = 0, we want to show that VPAG

j

|= d
GU j ∧ Vi ∈

VPAG
j

. We prove the contrapositive statement, hence, assuming that Vi is connected to Vj in the

marginal MAG and that VPAG
j
̸ |= d

GU j ∨ Vi ̸∈ VPAG
j

, we want to show that for each VZ ⊆ V with

{Vi, Vj} ⊆ VZ , the following holds:

E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2 ̸= 0. (23)

Let us introduce q : R→ R such that:

E[∂Vj log p(VZ)|Rj(VZ) = rj ] = q(rj),

and further define:
sj(VZ) = ∂Vj log p(VZ).

Having the mean squared error in Equation (23) equals zero implies that sj(VZ) is a constant,
once Rj(VZ) is observed, meaning that p(sj(VZ) ̸= q(Rj(VZ))|Rj(VZ)) = 0. Thus, the goal
of the proof is to show that there are uncountable values of VZ such that the score is not a con-
stant once Rj(VZ) is fixed. To do that, we assume that conditioning on Rj(VZ) doesn’t restrict
the support of VZ , meaning that the support of VZ and the support of VZ |Rj(vz) are the same.
We derive the consequences of this assumption (and later prove that it holds): consider vZ , v∗

Z ∈
supp(VZ |Rj(VZ) = rj) (support of VZ |Rj(VZ) = rj), taken from the set of uncountable values
such that the score sj function is not a constant, meaning that sj(vZ) ̸= sj(v∗

Z). Given that different
vZ and v∗

Z are selected from an uncountable subset of the support, we conclude that the conditional
score sj |(Rj(VZ) = rj) := ∂Vj log p(VZ |Rj(VZ) = rj) is not a constant for at least an uncountable
set of points, such that the claim follows.

To conclude the proof, we need to show that for each rj , supp(VZ |Rj(VZ) = rj) = supp(VZ).
First, we consider the case where VPAG

j
̸⊂ VZ . By Equation (15), Rj(VZ) = rj fixes the distance

rj = Ñj +
(

fj(VPAG
j
)− E[f(VPAG

j
) + Ñj |VZ\{j}]

)
=: Ñj + h(VZ\{j}, VPAG

j
), (24)

h newly defined function. By assumption of positive density of the noise Nj on the support R, for
each vZ ∈ supp(VZ), there is ñj ∈ R such that pÑj

(n) > 0 and

rj = ñj +
(

fj(VPAG
j
)− E[VPAG

j
+ Ñj |vZ\{j}]

)
is true (in fact, note that by fixing rj we have a system of one equation and two unknowns, which
has a solution for each value taken by h(VZ , VPAG

j
)). Then, the claim is proven for VPAG

j
̸⊂ VZ .
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We now consider VPAG
j
⊂ VZ , and further separate the proof in subcases. Note that Equation (24)

becomes:
rj = Ñj − E[Ñj |VZ\{j}] (25)

To finalize our proof, it sufficient to show that E[Ñj |VZ\{j}] ̸= E[Ñj ]: in fact, if this is the case, we
have that for each vZ ∈ supp(VZ) there is ñj such that p(ñj > 0) and Equation (25) is satisfied -
which in turns implies our claim that conditioning on Rj(VZ) does not limit the support of VZ .

Case 1. Consider U j ̸ |= d
GVPAG

j
. Together with VPAG

j
∈ VZ , it implies that E[Ñj |VZ\{j}] ̸= E[Ñj ].

proving our claim.

Case 2. Consider Vi ̸∈ VPAG
j

. We know that Vi adjacent to Vj in the MAG MG
VZ

, meaning
there is an inducing path through U between the two variables. As we shall see, this implies that
Vi ̸ |= d

GU j |VZ\{i,j}, which gives E[Ñj |VZ\{j}] ̸= E[Ñj ].
(i) For Vi ∈ VANG

j
, there must be a direct path π = Vi → . . . → Xj−1 → Vj where either

Xj−1 ∈ U j , or Xj−1 = Vk ∈ V and is descendant of some Ũ ∈ U j , i.e. there is a path
Vi → . . . → Vk ← Ũ : if this was not the case, then Vi |= d

GVj |Vk, but this contradicts the
definition of inducing path.

(ii) For Vi ∈ VDEG
j

, given Vi ̸ |= d
GVj |VZ\{i,j}, clearly Vi, U j not d-separated.

(iii) For Vi ↔ Vj , there is at least one latent common cause Ũ such that there exists π = Vi ←
. . .← Ũ → . . .→ Vj . Given that no observable variable can block every active path between
Vi, Vj , then no observed variables can block all paths of the form of π (i.e. with a latent
common cause), hence, there is one such path where all variables are hidden, meaning that
Vi ̸ |= d

GU j |VZ\{i,j}.

The proof of Equation (18) follows from minor adjustments of the above demonstration, hence we
omit it.

Appendix D. Miscellanea

D.1. The connection between NoGAM on linear models and existing literature

In this section, we elaborate on our comment that the findings of Proposition 3, relative to the
identifiability of the causal order with the score even with linear mechanisms, are not surprising, in
light of previous literature. While Montagna et al. (2023d) limits themselves to nonlinear additive
noise models, previously Ghoshal and Honorio (2018) showed that the causal order can be identified
by the precision matrix of the data, namely the inverse of the covariance matrix. In case of X
generated by a linear additive noise model, the score of X = x satisfies ∇ log p(x) = Θx, where
Θ denotes the precision matrix. Despite Montagna et al. (2023d) and Ghoshal and Honorio (2018)
differ in how they exploit the score for estimation of the causal order, the novelty of our result
in Proposition 3 is showing that findings in Montagna et al. (2023d) are less restrictive than they
prove in their original paper, limiting their theoretical guarantees with the assumption of nonlinear
mechanisms. Instead, an immediate generalization of the estimation of the causal order from the
precision matrix in the setting of nonlinear ANMs is beyond the scope of this paper.
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X Y Z
(a) Edges that FCI cannot orient

X Y Z
(b) Edges that FCI can only orient partially

Figure 3: Examples where the orientations of Proposition 4 is more informative than FCI.

D.2. On the difference of identifiability guarantees between Proposition 4 and FCI

As we have discussed before, the semantics of the edges that Proposition 4 can orient is different
from edges in a MAG or PAG. The condition VPAG

j

|= d
GU j ∧Vi ∈ VPAG

j
in Proposition 4 means that

the node Vi is a direct parent of Vj in the original underlying DAG G. On the other hand, in a MAG
or PAG, a directed egde Vi → Vj indicates an ancestral relationship, meaning that in the underlying
DAG there is a directed path from Vi to Vj . So in this sense, the information conveyed by a directed
edge differs. But further, since Proposition 4 and FCI rely on different assumptions, also the kinds
of structure that can be identified differ. We will illustrate this in the following examples.

First, it is important to note that all orientation rules given by Zhang (2008b) boil down to the
presence of colliders in the resulting PAG. Therefore, in the absence of these, FCI cannot orient any
edges in contrast to the orientation rule presented in Proposition 4.

Example 2 (Direct edges that FCI cannot detect) Suppose the underlying distribution is gener-
ated by the DAG in Figure 3(a). Since there is no unshielded triplet and thus, no collider structure
that could be detected by FCI, the PAG that FCI will output reads X ◦−◦ Y ◦−◦ Z. Since X is a
direct parent of Y and Y has no unobserved parents, Proposition 4 can orient this edge and thus,
Proposition 4 will indicate the directed edge. Similarly, for Y → Z.

Example 3 (Partially directed edges) Now suppose the underlying distribution is generated by
the DAG in Figure 3(b) and no variable is unobserved. In this case there is a collider that can be
detected by FCI. Still, the edges can only be oriented partially, i.e. the output reads X◦→ Y ←◦Z.
Particularly, this means there could still be arrowheads towards X and Z indicating, that they are
connected by a confounder and X (or Z) is not an ancestor of Y . Again, Proposition 4 can orient
these edges. This entails the assertion that X and Z are indeed direct parents of Y .

On the other hand, the following examples show how the orientation rules of FCI can still be applied
in the presence of hidden confounders and mediators, which is not the case for Proposition 4.

Example 4 (Unoriented edges) Suppose the underlying distribution is generated by the DAG in
Figure 4(a) and the variable U1 and U2 are unobserved. Like in Example 2, FCI outputs

X ◦−◦ Y ◦−◦ Z.

But here Proposition 4 cannot orient the given edges either, due to the unobserved mediators.

Example 5 (Collider with unobserved nodes) Suppose the underlying distribution is generated
by the DAG in Figure 4(b) and the variable U1 and U2 are unobserved. Similarly to Example 3,
FCI outputs the partialy oriented collider X◦→ Y ←◦Z. But here Proposition 4 cannot orient the
given edges, due to the unobserved mediators.
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X U1 Y U2 Z

(a) Edges that cannot be oriented by FCI or Proposition 4.

X U1 Y

U2

Z

(b) Edges that Proposition 4 cannot orient but FCI partially.

Figure 4: Examples where the output of FCI is more informative than Proposition 4 due to hidden
variables.

The relevance of hidden confounders for our orientation criterion begs the question how the
edges detected by Proposition 4 are related to visible edges (Zhang, 2008a). Intuitively, a visible
edge is an edge that cannot be confounded. But again, the rules of FCI and our new rule are in no
strict hierarchy. First note, that e.g. Example 2 already shows that not every edge that is orientable
by Proposition 4 is visible. But there is also no inclusion the other way around, as the following
examples show.

Example 6 (Collider with unobserved nodes) Assume the underlying distribution is generated
by the DAG in Figure 5(a). The edges X1◦→ Y and X2◦→ Y and Y → Z can be oriented by
FCI. Further, Y → Z is visible, due to the missing link between e.g. X1 and Z together with the
arrowhead into Y on the edge between X1 and Y . And again, Proposition 4 can orient Y → Z as
it is a direct, unconfounded link.

Example 7 (Collider with unobserved nodes) Assume the underlying distribution is generated
by the DAG in Figure 5(b) with unobserved node U . Like in Example 6, Y → Z is orientable
by FCI and is visible. But due to the unobserved mediator, the link is not direct anymore and
Proposition 4 cannot orient Y → Z.

Summing up these examples, there is no strict inclusion or hierarchy between edges identified by
FCI and by Proposition 4.

D.3. On the difference of identifiability guarantees between Proposition 4 and CAM-UV

As we have noted before, the CAM-UV relies on stronger structural assumptions than our proposed
criterion in Proposition 4. In this section we want to elaborate on the subtle differences in the
graphical structures that can be recovered via these criteria. In Section E.2 we highlight further
differences that are not due to Proposition 4. First note, that Proposition 4 cannot orient an edge
whenever CAM-UV also cannot. To this end, recall that Maeda and Shimizu (2021) define an
unobserved backdoor path between nodes Vi ∈ V and Vj ∈ V as a path Vi ← Uk ← · · · ←
Xl → · · · ,→ Um → Vj , where Ui, Um ∈ U and all other nodes in X . Similarly, they define
an unobserved causal path (UCP) between Vi and Vj to be a path Vi → · · · → Uk → Vj , where
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X1

Y

X2

Z

(a) Y → Z is visible and orientable
by Proposition 4.

X1

Y

X2

U Z

(b) The edge Y → Z in the respective PAG is vis-
ible and cannot be oriented by Proposition 4.

Figure 5: Visible edges are different from the edges that can be oriented via Proposition 4.

X Y

Z U

Figure 6: In this graph we have U ̸ |= d
GX and Proposition 4 cannot orient the edge X → Y . But

CAM-UV can orient this edge, as there is no unobserved confounding path or unobserved
backdoor path between X and Y .

Uk ∈ U and all other nodes are in X . In their work, they can orient an edge iff there is no UCP or
UBP between Vi and Vj .

Lemma 19 Let Vi, Vj ∈ V such that there is an edge between them inMG
V and there is a UBP or

UCP between them. Then we have E
[(

∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]
)2

]
̸= 0 for all

VZ ⊆ V with {Vi, Vj} ∈ VZ .

Proof Suppose Vi ∈ PAG
j and there is a UBP between Vi and Vj . Then there is an unobserved

parent Um of Vj that is connected to Vi via this backdoor path, so we get VPAG
j
̸ |= d

GU j . Now

suppose there is an UCP from Vi to Vj . If Vi ∈ PAG
j , we have again VPAG

j
̸ |= d

GU j , since there is an
unobserved parent Uk of Vj that is a descedant of Vi. The rest follows from Proposition 4.

On the other hand, there can be cases where CAM-UV recovers a direct edge, while Proposition 4
does not indicate one.

Example 8 Suppose the underlying distribution is generated by the DAG in Figure 6 with U being
unobserved. There is no UCPs, as the path from X to Y contains no unobserved nodes and no UBP,
since X has an observed parent on the only backdoor path between X and Y , namely Z. Therefore,
CAM-UV can orient this edge. Yet, Proposition 4 cannot, as we have U ̸ |= d

GX .
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D.4. Kernel ridge regression estimation of the residuals in AdaScore

In AdaScore, the residuals of Equation (15), which we recall to be defined as

Rk(VZ) := Vk − E[Vk | VZ\{k}]

for VZ ⊆ V and Vk ∈ V , are estimated via kernel-ridge regression (KRR). In particular, notice that
for any pair of random variables X, Y , the least squares estimator is E[Y |X]. It is thus immediate to
see that, for VZ = VPAG

j
∪{Vj}, VPAG

j

|= d
GU j (the unobserved parents of Vj), given V̂k := E[Vk|VZ ]

(the unregularized least squares estimator), Rj(VZ) = Ñj − E[Ñj ] = Vk − V̂k. The least squares
algorithm is thus the right choice to estimate the required residuals. The use of feature maps (as
in KRR) is justified by the potential nonlinear mechanisms in structural equations, while the use of
regularization is necessary to avoid overfitting and vanishing residuals.

Appendix E. Algorithm

E.1. Detailed description of our algorithm

In Proposition 2 we have seen that score-matching can detect m-separations and therefore the skele-
ton of the PAG describing the data. If one is willing to make the assumptions required for Propo-
sition 4 it could be desirable to use this to orient edges, as Proposition 4 offers additional causal
insights that we have discussed in Appendix D.2. Therefore, one could simply find the skeleton of
the PAG using the fast adjacency search (Spirtes et al., 2000) and then orient the edges by applying
Proposition 4 on every subset of the neighbourhood of every node. This would yield a very costly
algorithm. But if we make the assumptions required to orient edges with Proposition 4 we can do
a bit better. In Algorithm 2 we present an algorithm that still has the same worst case runtime but
runs polynomially in the best case. The main intuition is that we iteratively remove irrelevant nodes
in the spirit of the original SCORE algorithm (Rolland et al., 2022). To this end, we first check
if there is any unconfounded sink (i.e. a sink that is not connected to any edge which cannot be
oriented using Proposition 4) if we consider the set of all remaining variables. If there is one, we
can orient its parents and ignore it afterwards. If there is no such node, we need to fall back to the
procedure proposed above, i.e. we need to check the condition of Proposition 4 on all subsets of the
neighbourhood of a node, until we find no node with a direct outgoing edge. In Proposition 20 we
show that this way we do not fail to orient an edge or fail to remove any adjacency. In the following
discussion, we will use the notation

δi(VZ) := E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2,

for the second residual from Proposition 4 and also

δi,j(VZ) := ∂2

∂Vi∂Vj
log p(VZ)

for the cross-partial derivative, where Vi, Vj ∈ V and Z ⊆ V .

Proposition 20 (Correctness of algorithm) Let X = V ∪ U with V ∩ U = ∅ be generated by a
restricted additive noise model of the form from Equation (4). Let G be the causal DAG of X and
MG

V be the marginal MAG of G. Then Algorithm 2 outputs a directed edge from Vi ∈ V to Vj ∈ V
iff there is a direct edge in GX between them and PAG

j |= d
GU j . Further, the output of Algorithm 2

has the same skeleton asMG
V .
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Algorithm 2: AdaScore Algorithm
Procedure AdaScore(p, V1, . . . , Vd):

S ← {V1, . . . , Vd}, E ← {} ; ▷ Init remaining nodes and edges
for Vi ∈ S do

Bi ← {V1, . . . , Vd} ; ▷ Neighbourhoods
end
while S ̸= ∅ do ▷ While nodes remain

if ∃Vi ∈ S : δi(VS) = 0 then ▷ Unconfounded sink
S ← S \ {Vi} E ← E ∪ {Vj → Vi : δi,j(VS) ̸= 0} ; ▷ Add edges like DAS

end
else

Vi ← minVj∈S δj(VS)
for Vj ∈ {Vk ∈ Bi : minS′⊆Bi

δi,k(VS′∪{Vi,Vk}) = 0} do
Bi ← Bi \ {Vj} ▷ Prune neighbourhoods
Bj ← Bj \ {Vi}

end
for Vj ∈ Bi do ▷ Orient edges in Bi

mi = minS′⊆Bi
δi(VS′∪{Vi,Vj})

mj = minS′⊆Bj
δj(VS′∪{Vi,Vj})

if mi = 0 ∧mj ̸= 0 then
E ← E ∪ {Vj → Vi}

end
else if mi ̸= 0 ∧mj = 0 then

E ← E ∪ {Vi → Vj}
end
else

E ← E ∪ {Vi − Vj}
end

end
if ∃Vj ∈ Bi : (Vi → Vj) ∈ E then

continue with Vj

end
else

S ← S \ {Vi} ; ▷ Remove Vi

break
end

end
end
for Vi − Vj ∈ E do ▷ Prune undirected edges

if minS′⊆Bi
δi,j(VS′∪{Vi,Vj}) = 0 ∨minS′⊆Bj

δi,j(VS′∪{Vi,Vj}) = 0 then
E ← E \ {Vi − Vj}

end
end
return E
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Proof Note, that in this proof we will refer to edges that can be oriented w.r.t. a set S ⊆ V , where
we mean applying Proposition 4 to the observed and unobserved nodes implied by the partitioning
X = S∪ (X \S), instead of X = V ∪U . We also implicitly change the definitions of observed and
unobserved parents PAi and U i for a node Vi w.r.t. S. We define that a node is an unconfounded
sink w.r.t. to a set S iff it has no children in S and is not incident to an edge that cannot be oriented
via Proposition 4 w.r.t. S.

We prove the statement by induction over the steps of the algorithm. Let S be the set of remain-
ing nodes in an arbitrary step of the algorithm. Our induction hypothesis is that for Vi, Vj ∈ S and
Vk ∈ Bi (where Bi is defined as in Algorithm 2) we have

1. Vi is an unconfounded sink w.r.t. to some set S′ ⊆ S iff Vi is an unconfounded sink w.r.t.
some S′′ ⊆ V

2. if there is no S′ ⊆ V \ {Vi, Vj} such that Vi |= Vj | S′ then Vj ∈ Bi

Clearly, this holds in the initial step as S = V .
Suppose we find δi(VS) = 0 for Vi ∈ S and |S| > 1. By Proposition 4, we know that all nodes

that are adjacent in the underlying MAG and are in S must be parents of Vi. This means, all nodes
that are not separable from Vi must be direct parents of Vi, which are, by our induction hypothesis 2),
the nodes in Bi. Since Vi does not have children in S, it also suffices to check Vi |= Vj |S \ {Vi, Vj}
for Vj ∈ S (instead of conditioning on all subsets of S) to determine whether Vj is in Bi. So we
can already add these direct edges to the output. If, on the other hand, Vi is not adjacent to a node in
S, we have Vi |= Vj |S \ {Vi, Vj} for Vj ∈ Bi, so we add precisely the correct set of parents. Since
Vi is not a parent of any of the nodes in S \ {Vi}, Vi cannot be in the set of unobserved parents of
a node in S \ {Vi} after it’s removal and conditioning on Vi cannot block an open path. Thus, the
induction hypothesis still holds in the next step.

Suppose now there is no unconfounded sink and we explore Vi. By our induction hypothesis 2),
Bi contains the parents of Vi and by Proposition 4 it suffices to only look at subsets of Bi to orient
direct edges, as we only orient edges that also exist in the MAG. And also due to the induction
hypothesis 2) Bi contains all nodes that are not separable from Vi. So by adding undirected edges
to all nodes in Bi can only add too many edges but not miss some.

Now it remains to show that the induction hypothesis holds if we set S to S \ {Vi} in the
previous case. For 1) we need to show that Vi cannot prevent the orientation of an edge w.r.t.
S \ {Vi}. Suppose there are Vk, Vl ∈ S \ {Vi} such that they are not separable and PAl ̸ |= d

GU l.
If Vi ̸∈ U l, then the edge between Vk and Vl could not have been oriented w.r.t. to S already. So
suppose Vi ∈ U l, i.e. there is a direct edge from Vi to Vl in the original DAG. We would not remove
Vi from S if this edge was orientable, so there must a hidden confounder or mediator between Vi

and Vl, i.e. we have PAl ̸ |= d
GU l w.r.t. to S. But then we also have Vk ̸ |= d

GU l w.r.t. to S, due to the
edge between Vi and Vk. So in this case, Proposition 4 wouldn’t allow us to direct the edge w.r.t.
S \{Vi} as we again have PAl ̸ |= d

GU l. So by removing Vi we do not render any edges unorientable.
For 2) it suffices to note that we only remove nodes from Bi if we found an independence.

For |S| < 2, the algorithm enters the final pruning stage. From the discussion above it is clear,
that we already have the correct result, up to potentially too many undirected edges. In the final
step we certainly remove all these edges Vi − Vj , as we check m-separation for all subsets of the
neighbourhoods Adj(Vi) and Adj(Vj), which are supersets of the true neighbourhoods.
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E.2. On the output of AdaScore and CAM-UV

The algorithm we described in Algorithm 2 outputs (if desired by the user) a mixed graph with the
skeleton of the underlying MAG and direct edges that indicate a direct causal influence. The CAM-
UV algorithm similarly outputs direct parental relationships and a set of pairs of nodes with what
Maeda and Shimizu (2021) call unobserved backdoor paths (UBP) and unobserved causal paths
(UCP) between them. Yet, they do not investigate whether their algorithm only outputs said pairs.
In fact, the following example shows that CAM-UV can also add pairs to this set that have neither
a UBP nor a UCP between them.

Example 9 In the following we will extensively reference Algorithm 1 and Algorithm 2 from Maeda
and Shimizu (2021). Suppose we apply CAM-UV to a sufficiently large sample from a distribution
that fulfills CAM-UV’s assumptions w.r.t. to the graph G shown in Figure 7, where U is unobserved.
First note, that there is neither a UBP nor a UCP w.r.t. to U between I and Y . Further, CAM-UV
will not add X to the set MY of non-descendants of Y , due to the UBP between them. Similarly, I
is not added to MY , as

Y − f(X)− g(I) ̸ |= {X, I} and Y − h(I) ̸ |= I

for any functions f, g and h. Hence, Algorithm 2 in (Maeda and Shimizu, 2021) then finds

I ̸ |= Y

and adds them to the set of pairs with UBP and UCP between them.
On the other hand, the path I → X ← U → Y is an inducing path w.r.t. to U . Therefore it is

well-defined that AdaScore adds an (undirected) edge here.

I X

U

Y

Figure 7: The CAM-UV algorithm will add I and Y to the set of nodes with unobserved backdoor
path or unobserved causal path between them, though there is no such path between them.

This begs the question whether CAM-UV then also outputs the skeleton of the underlying MAG
like AdaScore. The answer is negative, as the following example shows.

Example 10 Suppose we apply CAM-UV to a sufficiently large sample from a distribution that
fulfills CAM-UV’s assumptions w.r.t. to the graph G shown in Figure 7, where now U1 and U2 are
unobserved. Again, there is neither a UBP nor a UCP w.r.t. to U1, U2 between Z and Y . Similarly
to Example 9, CAM-UV will not add X to the parent sets of Z and Y due to the UBP between X
and Y and the UCP between Z and X . Therefore, Algorithm 2 in (Maeda and Shimizu, 2021) will
find

Z ̸ |= Y,
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and add the pair (Z, Y ) to the nodes with UBP or UCP between them.
In contrast, Z and Y are not connected by an inducing path, as X separates them. Therefore,

the underlying MAG (and thus the output of AdaScore) does not contain an edge between Z and Y .

U2 X

U1

YZ

Figure 8: CAM-UV will add Z and Y to the set of nodes with unobserved backdoor path or un-
observed causal path between them, though there is neither such path nor an inducing
between them.

E.3. Finite sample version of AdaScore

All theoretical results in the paper have assumed that we know the density of our data. Obviously, in
practice, we have to deal with a finite sample instead. Especially, in Proposition 2 and Proposition 4
we derived criteria that compare random variables with zero. Clearly, this condition is almost never
met in practice. Therefore, we need to find ways to reasonably set thresholds for these random
quantities.

First note, that we use the Stein gradient estimator (Li and Turner, 2017) to estimate the score
function, given by

Ĝ
Stein = −(K + ηI)−1⟨∇, K⟩, (26)

where vi
Z is the i-th of m ∈ N samples of the observable variables in the set Z, K is the matrix with

Kij = K(vi, vj), we use ⟨∇, K⟩ to denote a matrix with ⟨∇, K⟩ij =
∑m

k=1∇vk
j
K(vi

Z , vk
Z) and K is

the RBF kernel in our case. This means especially that for a node Vi we get a vector of estimates(
̂∂Vi log p(vk

Z)
)

k=1,...,m
(27)

i.e. an estimate of the score for every one of the m samples. Analogously, we get a m×d×d tensor
for the estimates of ∂2

∂Vi∂Vj
log p(v) and m empirical estimates of the residual δi(VZ).

In Proposition 2 we showed that

∂2

∂Vi∂Vj
log p(vZ) = 0 ⇐⇒ Xi |= m

MG
V

Vj |VZ \ {Vi, Vj}.

In the finite sample version, we use a one-sample t-test on the vector of estimated cross-partial
derivatives with the null hypothesis that the means is zero. Due to the central limit theorem, the
sample mean follows approximately a Gaussian distribution, regardless of the true distribution of
the observations. In the pruning steps, we do not conduct a test for every possible subset of the
neighbourhood. Instead, we pick the subset with the minimal mean absolute value of the estimated
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cross-partial derivatives and conduct the t-test for this set. I.e. if we consider pruning the edge
Vi − Vj) we pick the subset

Z = min
Z′⊆Bj∪Bi

mean | ̂δi,j(VZ′)|.

We then conduct the t-test with the empirical estimates of δi,j(VZ).
For Proposition 4, we first prove the following connection to the independence of fitted additive

noise models.

Proposition 21 (Zero MSE implies ANM) Let Z be a set of variable indices such that Vj ∈ VZ .
Then with Rj(VZ) := Vj − E[Vj |V\Vj

] we get

E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2 = 0 =⇒ Vj = E[Vj |V\Vj
] + Rj(VZ),

with V\Vj |= Rj(VZ). In other words, if the score can be estimated with zero MSE, then Vj can be
described by an additive noise model in V\Vj

with independent noise.

Proof If the MSE of the final regression is zero, we have by definition

0 = E[∂Vj log p(VZ)− E[∂Vj log p(VZ)|Rj(VZ)]]2 (28)

=
∫ (

∂Vj log p(vZ)− E[∂Vj log p(VZ)|Rj(vZ)]
)2

dvZ , (29)

which implies that ∂Vj log p(vZ) = E[∂Vj log p(VZ)|Rj(vZ)] almost everywhere, since this is an
integral over non-negative values. Denote q(r) = E[∂Vj log p(VZ)|r]. By the fundamental theorem
of calculus we have

log p(vZ) =
∫

∂Vj log p(vZ)dvj + c(v\Vj
)

p(vZ) = exp
(∫

∂Vj log p(vZ)dvj + c(v\Vj
)
)

= exp
(∫

q(Rj(vZ))dvj + c(v\Vj
)
)

= exp
(∫

q(vj − E[Vj |v\Vj
])dvj + c(v\Vj

)
)

= exp
(
Q(Rj(vZ)) + c(v\Vj

)
)

= exp (Q(Rj(vZ))) · exp
(
c(v\Vj

)
)

,

for some function Q and some c(v\Vj
) which is constant in Vj (but may depend on V\Vj

). Since Vj

is deterministic in V\Vj
and Rj(VZ) by definition, we get

p(Rj(vZ), v\Vj
) = p(vZ) = exp (Q(Rj(vZ))) · exp

(
c(v\Vj

)
)

and further, since this joint distribution can be factorized into two functions of V\Vj
and Rj(VZ)

respectively, we get Rj(VZ) |= V\Vj
Now we have established that we can write

Vj = E[Vj |V\Vj
] + Rj(VZ),
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and V\Vj |= Rj(VZ), or in other words, that Vj can be described by an additive noise model in V\Vj
.

This means, we can use a classical independence test on the regression residual Rj(VZ) (that we had
to estimate anyway) and the regressors V\Vj

. If such a test rejects, this also rejects that δj(VZ) = 0.
We used the kernel independence test proposed by (Zhang et al., 2012) to this end.

As candidate sink for set Z ⊆ V , we pick the node Vi = mini mean(δi(VZ)).
In the case where we use Proposition 4 to orient edges, we only need to decide whether a

previously undirected edge Vi−Vj needs to be oriented one way, the other way, or not at all. Again,
here the issue lies in the fact that we need to iterate over possible sets of parents of the nodes. We
pick the subset

Zj = min
Z′⊆Bj

mean(δ̂j(VZ′),

i.e. the set with the lowest MSE. We then conduct the test with the estimates of δi(VZj ) and δj(VZj )
to check if the edge is pointing to Vj . If there is a directed edge between them, one of the residuals
will be independent from the regressors and the other one won’t.

Just like Montagna et al. (2023d) we use a cross-validation scheme to generate the residuals, in
order to prevent overfitting. We split the dataset into several equally sized, disjoint subsamples. For
every residual we fit the regression on all subsamples that don’t contain the respective target.

E.4. Complexity

Proposition 22 Complexity Let n be the number of samples and d the number of observable nodes.
Algorithm 2 runs in

Ω
(
(d2 − d) · (r(n, d) + s(n, d))

)
and O

(
d2 · 2d(r(n, d) + s(n, d))

)
,

where r(n, d) is the time required to solve a regression problem and s(n, d) is the time for calculat-
ing the score. With e.g. kernel-ridge regression and the Stein-estimator, both run in O(n3).

Proof Algorithm 2 runs its main loop d times. It first checks for the existence of an unconfounded
sink, which involves solving 2d regression problems (including cross-validation prediction) and
calculating the score, adding up to (2d2− d) regressions and d score evaluations. In the worst case,
we detect no unconfounded sink and iterate through all subsets of the neighbourhood of a node
(which is in the worst case of size d− 1) and for all other nodes in the neighbourhood we solve 2d
regression problems and evaluate the score. For each subset we calculate two regression functions,
the score and calculate the entries in the Hessian of the log-density, i.e. d · 2d regressions, d · 2d−1

scores and additionally 2d−1 Hessians. If we are unlucky, this node has a directed outgoing edge
and we continue with this node (with the same size of nodes). This can happen d− 1 times. So we
get (d2 − d) · 2d regressions and (d2 − d) · 2d−1 scores and Hessians. In the final pruning step we
calculate for every previously undirected edge (of which there can be (d2 − d)/2) a Hessian for all
subsets of the neighbourhoods, which can again be 2d−1 subsets. Using the pruning procedure from
CAM for the directed edges we also spend at most O(nd3) steps.

In the best case, we always find an unconfounded sink. Then our algorithm reduces to NoGAM.
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Appendix F. Experimental details

In this section, we present the details of our experiments in terms of synthetic data generation and
algorithms hyperparameters.

F.1. Synthetic data generation

In this work, we rely on synthetic data to benchmark AdaScore’s finite samples performance. For
each dataset, we first sample the ground truth graph and then generate the observations according to
the causal graph.

Erdös-Renyi graphs. The ground truth graphs are generated according to the Erdös-Renyi model.
It allows specifying the number of nodes and the probability of connecting each pair of nodes). In
ER graphs, a pair of nodes has the same probability of being connected. To introduce hidden
variables we randomly drop columns from the data matrices. Whenever the resulting graph contains
no hidden confounder (or in the case of nonlinear data also hidden mediators) we reject the choice of
hidden variables and sample again. We similarly reject choices without hidden variables or hidden
mediators for the experiments in Figure 2. We always compare against the graph that AdaScore
would output in the limit of infinite data.

Nonlinear causal mechanisms. Nonlinear causal mechanisms are parametrized by a neural net-
work with random weights. We create a fully connected neural network with one hidden layer
with 10 units, Parametric ReLU activation function, followed by one normalizing layer before the
final fully connected layer. The weights of the neural network are sampled from a standard Gaus-
sian distribution. This strategy for synthetic data generation is commonly adopted in the literature
(Montagna et al., 2023a,b; Ke et al., 2023; Brouillard et al., 2020; Lippe et al., 2022).

Linear causal mechanisms. For the linear mechanisms, we define a simple linear regression
model predicting the effects from their causes and noise terms, weighted by randomly sampled co-
efficients. Coefficients are generated as samples from a Uniform distribution supported in the range
[−3,−0.5]∪ [0.5, 3]. We don’t use too small coefficients to avoid trivial cases of close to unfaithful
datasets (Uhler et al., 2012).

Noise terms distribution. The noise terms are sampled from a Uniform distribution supported
between −2 and 2.

Finally, we remark that we standardize the data by their empirical standard deviation. This
is known to remove shortcuts that allow finding a correct causal order sorting variables by their
marginal variance, as in varsortability, described in Reisach et al. (2021), or sorting variables by
the magnitude of their score |∂Xi log p(X)|, a phenomenon known as scoresortability analyzed by
Montagna et al. (2023b).

F.2. AdaScore hyperparameters

For AdaScore, we set the α level for the required hypothesis testing at 0.05. For the CAM-pruning
step, the level is instead set at 0.001, the default value of the dodidscover Python implementation
of the method, and commonly found in all papers using CAM-pruning for edge selection (Rolland
et al., 2022; Montagna et al., 2023c,d; Bühlmann et al., 2014). For the remaining parameters. The
regression hyperparameters for the estimation of the residuals are found via cross-validation during

39

https://www.pywhy.org/dodiscover/dev/index.html
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Table 2: p-values for stochastic ordering: sparse linear fully observable model

less greater
3 5 7 9 3 5 7 9

camuv 0.61060 0.44153 0.76942 0.79324 0.39970 0.56901 0.23885 0.22248
nogam 0.60030 0.12113 0.08691 0.03375 0.41007 0.88947 0.92142 0.96828
rcd 0.61060 0.08267 0.34901 0.68977 0.39970 0.92142 0.66085 0.32940
lingam 0.70844 0.79324 0.99854 1.00000 0.30083 0.21454 0.00177 0.00000
random 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000

inference: tuning is done minimizing the generalization error on the estimated residuals, without
using the performance on the causal graph ground truth. Finally, for the score matching estimation,
the regularization coefficients are set to 0.001. In the respective experiments, we provided the fact
that there are no latent confounders to AdaScore.

F.3. Random baseline

In our synthetic experiments we also considered a random baseline. Since we did not want the
sparsity of the ground truth graph to influence the performance of the random baseline, we chose
the following approach: we use the Erdös-Renyi model, described above, to generate a new graph
with the same edge probability and the same number of nodes (including hidden variables) as the
ground truth graph. We then project this graph onto the actually observed nodes by generating the
PAG skeleton over these nodes and directing edges iff they are identifiable by Proposition 4 (using
graphical criteria).

F.4. Compute resources

All experiments have been run on an AWS EC2 instance of type m5.12xlarge. These machines
contain Intel Xeon Platinum 8000 processors with 3.1 GHz and 48 virtual cores as well as 192 GB
RAM. All experiments can be run within a day.

Appendix G. Additional Experiments

In this section, we provide additional experimental results. All synthetic data has been generated as
described in Appendix F.1.

G.1. Hypothesis Tests

Additionally to the plots in Figure 1 (and also Figure 11) we conducted hypothesis tests to see
whether the results of AdaScore are stochastically greater or less than the results of the other algo-
rithms. I.e. we tested the null-hypothesis that P (A > B) = P (B < A), where A denotes the SHD
of AdaScore w.r.t. the ground truth graph and B the SHD of one of the baseline algorithms. In Ta-
bles 2 to 9 we provided p-values for the exact Mann-Whitney U test with alternatives that AdaScore
is less than the given baseline or greater, respectively.
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Table 3: p-values for stochastic ordering: sparse nonlinear fully observable model

less greater
3 5 7 9 3 5 7 9

camuv 1.00000 1.00000 0.99953 0.98249 0.00000 0.00000 0.00052 0.01876
nogam 1.00000 0.99995 0.99892 0.95951 0.00000 0.00006 0.00120 0.04554
rcd 0.07464 0.13831 0.00019 0.00001 0.93279 0.87331 0.99985 0.99999
lingam 0.97206 0.99564 0.70844 0.65099 0.03172 0.00516 0.30083 0.35898
random 0.60030 0.02009 0.00005 0.00001 0.42051 0.98249 0.99995 0.99999

Table 4: p-values for stochastic ordering: sparse linear latent variables model

less greater
3 5 7 9 3 5 7 9

camuv 0.18443 0.60030 0.74417 0.79324 0.82267 0.41007 0.26455 0.22248
nogam 0.18443 0.23058 0.10060 0.07858 0.82267 0.77752 0.90412 0.92536
rcd 0.31976 0.62082 0.41007 0.50533 0.69917 0.38940 0.60030 0.50533
lingam 0.25583 0.76942 0.97702 0.99600 0.76115 0.23885 0.02620 0.00436
random 0.00001 0.00000 0.00000 0.00000 0.99999 1.00000 1.00000 1.00000

Table 5: p-values for stochastic ordering: sparse nonlinear latent variables model

less greater
3 5 7 9 3 5 7 9

camuv 0.99854 0.97206 0.87887 0.76115 0.00161 0.03172 0.13242 0.25583
nogam 0.34901 0.52665 0.42051 0.28242 0.67060 0.48400 0.58993 0.72659
rcd 0.96625 0.51600 0.22248 0.00146 0.03589 0.50533 0.79324 0.99868
lingam 0.12113 0.13831 0.33915 0.01054 0.88425 0.87331 0.68024 0.99095
random 0.00010 0.00001 0.00000 0.00000 0.99991 0.99999 1.00000 1.00000

Table 6: p-values for stochastic ordering: dense linear fully observable model

less greater
3 5 7 9 3 5 7 9

camuv 0.91309 0.28242 0.55847 0.99823 0.09132 0.73545 0.46271 0.00213
nogam 0.87331 0.12113 0.01632 0.00367 0.13831 0.88947 0.98479 0.99693
rcd 0.81557 0.07464 0.82961 0.96828 0.19171 0.92915 0.17733 0.03375
lingam 0.91309 0.98585 1.00000 1.00000 0.09132 0.01521 0.00000 0.00000
random 0.00000 0.00000 0.00108 0.00234 1.00000 1.00000 0.99912 0.99806
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Table 7: p-values for stochastic ordering: dense nonlinear fully observable model

less greater
3 5 7 9 3 5 7 9

camuv 1.00000 0.99999 0.99095 0.79324 0.00000 0.00001 0.01054 0.21454
nogam 1.00000 1.00000 1.00000 0.96625 0.00000 0.00000 0.00000 0.03813
rcd 0.16363 0.02298 0.00000 0.00000 0.84937 0.97991 1.00000 1.00000
lingam 0.94892 0.81557 0.76115 0.48400 0.05713 0.19171 0.24726 0.53729
random 0.97545 0.28242 0.00010 0.00000 0.02620 0.73545 0.99992 1.00000

Table 8: p-values for stochastic ordering: dense linear latent variables model

less greater
3 5 7 9 3 5 7 9

camuv 0.24726 0.11053 0.90868 0.99902 0.76115 0.89452 0.10060 0.00120
nogam 0.05404 0.18443 0.09132 0.00977 0.94892 0.82961 0.91309 0.99163
rcd 0.48400 0.13242 0.99912 0.99928 0.52665 0.87887 0.00108 0.00088
lingam 0.19171 0.90412 0.99948 0.99987 0.81557 0.10060 0.00058 0.00015
random 0.01316 0.00000 0.00027 0.25583 0.98777 1.00000 0.99976 0.75274

Table 9: p-values for stochastic ordering: dense nonlinear latent variables model

less greater
3 5 7 9 3 5 7 9

camuv 0.48400 0.89940 0.97991 0.97702 0.53729 0.10548 0.02298 0.02620
nogam 0.00052 0.16363 0.37918 0.10060 0.99953 0.84937 0.64102 0.90412
rcd 0.71758 0.32940 0.98368 0.36903 0.29156 0.68977 0.01751 0.65099
lingam 0.00016 0.00108 0.06371 0.00257 0.99987 0.99902 0.93965 0.99766
random 0.00072 0.00177 0.13831 0.00003 0.99935 0.99854 0.87331 0.99997
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G.2. Non-additive mechanisms

In Figure 1 we have demonstrated the performance of our proposed method on data generated by
linear SCMs and non-linear SCMs with additive noise. But Proposition 2 also holds for any faithful
distribution generated by an acyclic model. Thus, we employed as mechanism a neural network-
based approach similar to the non-linear mechanism described in Appendix F. Instead of adding the
noise term, we feed it as additional input into the neural network. Results in this setting are reported
in Figure 9. As neither the mixed graph mode of AdaScore nor any of the baseline algorithms has
theoretical guarantees for the orientation of edges in this scenario, we report the F1-score (popular in
classification problems) w.r.t. to the existence of an edge, regardless of orientation. Our experiments
show that AdaScore can, in general, correctly recover the graph’s skeleton in all the scenarios, with
an F1 score median between 1 and ∼ 0.75, respectively for small and large numbers of nodes.

On the other hand, if we let AdaScore output a PAG, we can apply the ordinary orientation
rules of FCI (Spirtes et al., 2000). In Figure 10 we compare the vanilla FCI algorithm with kernel
independence test (Zhang et al., 2012) against AdaScore on dense and sparse ground truth graphs.
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(b) Latent variables model

Figure 9: Empirical results for non-additive causal mechanisms on sparse and dense graphs with
different numbers of nodes, on fully observable (no hidden variables) and latent variable
models. We report the F1 score w.r.t. the existence of edges (the higher, the better).
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MONTAGNA FALLER BLÖBAUM KIRSCHBAUM LOCATELLO

fci adascore

3 5 7 9
number of nodes

0

10

20

30

40

50
sh

d
sparse

3 5 7 9
number of nodes

0

10

20

30

40

50

sh
d

dense

Figure 10: Results for the vanilla FCI algorithm with kernel independence test versus PAG output
of AdaScore. We used non-additive causal mechanisms on sparse (left) and dense graphs
(right) with different numbers of nodes. We report the SHD.

G.3. Dense graphs

In this section, we present the experiments on dense Erdös-Renyi graphs where each pair of nodes
is connected by an edge with probability 0.3. The results are illustrated in Figure 11. For dense
graphs, recovery results are similar to the sparse case, with AdaScore generally providing compara-
ble performance to the other methods.

G.4. F1 scores

The following plots show the F1 score as an additional metric for the previously discussed experi-
ments. Since the F1 score is only applicable to binary decisions, we calculate it with respect to the
binary classification of whether there is an identifiable direct edge in the ground truth graph or not in
Figures 12 and 13, or whether there is an edge that is not identifiable via Proposition 4 respectively
in Figure 14.

G.5. Increasing number of samples

In the following series of plots we demonstrate the scaling behaviour of our method w.r.t. to the
number of samples. Figure 16 shows results with edge probability 0.5 and Figure 15 with 0.3. All
graphs contain seven observable nodes. As before we observe that AdaScore performs comparably
to other methods.

G.6. Runtimes

In Figures 17 to 20 we have plotted the runtimes of the benchmarked methods in different settings.

G.7. Limitations

In this section, we remark the limitations of our empirical study. It is well known that causal
discovery lacks meaningful, multivariate benchmark datasets with known ground truth. For this
reason, it is common to rely on synthetically generated datasets. We believe that results on synthetic
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(b) Latent variables model

Figure 11: Empirical results on dense graphs with different numbers of nodes, on fully observable
(no hidden variables) and latent variable models. We report the SHD accuracy (lower is
better).
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(a) Fully observable model
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(b) Latent variables model

Figure 12: Empirical results on dense graphs with different numbers of nodes, on fully observable
(no hidden variables) and latent variable models. We report the F1 score w.r.t. to the
binary decision of whether there is an identifiable direct edge or not (the higher, the
better).

graphs should be taken with care, as there is no strong reason to believe that they should mirror the
benchmarked algorithms’ behaviors in real-world settings, where often there is no prior knowledge
about the structural causal model underlying available observations.
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(a) Fully observable model
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(b) Latent variables model

Figure 13: Empirical results on sparse graphs with different numbers of nodes, on fully observable
(no hidden variables) and latent variable models. We report the F1 score w.r.t. to the
binary decision of whether there is an identifiable direct edge or not (the higher, the
better).
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(a) Dense model
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(b) Sparse model

Figure 14: Empirical results on sparse graphs with different numbers of nodes, on fully observable
(no hidden variables) and latent variable models. We report the F1 score w.r.t. to the
binary decision of whether there is an unidentifiable edge or not (the higher, the better).
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(a) Fully observable model
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(b) Latent variables model

Figure 15: Empirical results on sparse graphs with different numbers of samples and seven nodes,
on fully observable (no hidden variables) and latent variable models. We report the SHD
accuracy (the lower, the better).
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(a) Fully observable model
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(b) Latent variables model

Figure 16: Empirical results on dense graphs with different numbers of samples and seven nodes,
on fully observable (no hidden variables) and latent variable models. We report the SHD
accuracy (the lower, the better).
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(b) Latent variables model

Figure 17: Runtime in seconds on dense graphs with different numbers of nodes, on fully observ-
able (no hidden variables) and latent variable models.
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(a) Fully observable model
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Figure 18: Runtime in seconds on sparse graphs with different numbers of nodes, on fully observ-
able (no hidden variables) and latent variable models.
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Figure 19: Runtime in seconds on dense graphs with different numbers of samples, on fully observ-
able (no hidden variables) and latent variable models.
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(a) Fully observable model
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Figure 20: Runtime in seconds on sparse graphs with different numbers of samples, on fully ob-
servable (no hidden variables) and latent variable models.
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