
AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter
Efficient Fine-Tuning of Large Models

Anonymous ACL submission

Abstract

We present a novel Parameter-Efficient Fine-001
Tuning (PEFT) method, dubbed as Adaptive002
Freezing of Low Rank Adaptation (AFLoRA).003
Specifically, for each pre-trained frozen weight004
tensor, we add a parallel path of trainable005
low-rank matrices, namely a down-projection006
and an up-projection matrix, each of which007
is followed by a feature transformation vector.008
Based on a novel freezing score, we the incre-009
mentally freeze these projection matrices dur-010
ing fine-tuning to reduce the computation and011
alleviate over-fitting. Our experimental results012
demonstrate that we can achieve state-of-the-013
art performance with an average improvement014
of up to 0.85% as evaluated on GLUE bench-015
mark while yeilding up to 9.5× fewer average016
trainable parameters. While compared in terms017
of runtime, AFLoRA can yield up to 1.86×018
improvement as opposed to similar PEFT alter-019
natives. Besides the practical utility of our ap-020
proach, we provide insights on the trainability021
requirements of LoRA paths at different mod-022
ules and the freezing schedule for the different023
projection matrices. Code will be released.024

1 Introduction025

Pre-trained language models such as BERT (De-026

vlin et al., 2018), GPT-3 (Brown et al., 2020), and027

LLaMA2 (Touvron et al., 2023) have demonstrated028

commendable performance on various natural lan-029

guage processing (NLP) tasks. However, their zero-030

shot performance on many downstream tasks often031

falls short of expectations. One possible solution032

is full fine-tuning (FFT) of the model on the down-033

stream dataset. However, the large model parame-034

ter size makes this process prohibitively costly.035

To address this challenge, various parameter-036

efficient fine-tuning (PEFT) methods including low037

rank adaptation (LoRA) (Hu et al., 2021), adapter038

tuning (He et al., 2021), and prompt tuning (Lester039

et al., 2021). These methods add parameters to the040

trained model for fine-tuning, bypassing the need041

Figure 1: Schematic comparison of LoRA (Hu et al.,
2021), ELoRA (Kopiczko et al., 2024), and AFLoRA
and their associated advantages and disadvantages in
terms of various metrics. rL and rV , represent rank of
the low rank path used in LoRA and ELoRA methods,
respectively. FT and KU refers to fine-tuned weights and
Kaiming uniform initialization function, respectively.

to adjust the weights of the pre-trained model. In 042

particular, LoRA (Hu et al., 2021) and its variants 043

(Zhang et al., 2023) add a trainable low-rank path 044

consisting of down-projection and up-projection 045

matrices to the model, inspired by (Aghajanyan 046

et al., 2020) which showed that such low-rank paths 047

can effectively approximate the trained weight ten- 048

sors. ELoRA (Kopiczko et al., 2024) extends LoRA 049

by adding trainable feature transformation vectors 050

to the output of each project matrix. They showed 051

that SoTA accuracy can be achieved with the pro- 052

jection matrices frozen after random initialization 053

while keeping the two feature transformation vec- 054

tors trainable, significantly reducing the number 055

of trainable parameters. However, compared to 056

LoRA, ELoRA incurs higher computation costs 057

due to higher rank needed for the frozen projec- 058

tion matrices. Fig. 1 illustrates LoRA and ELoRA, 059

contrasting it to our proposed AFLoRA approach. 060

Our contributions. To reduce the trainable param- 061

eter count and computation costs of fine-tuning, 062

we present Adaptive Freezing of Low Rank Adapta- 063

tion (AFLoRA). More specifically, we first inves- 064

tigate the rank needed for the frozen LoRA path 065

in ELoRA and observe that reducing the rank of 066

the frozen projection matrices (PM) causes a drop 067

in fine-tuning performance. Inspired by this, we 068

1



present AFLoRA, that starts with a low-rank train-069

able path that includes projection matrices and fea-070

ture transformation vectors and train the path for071

some epochs. We then gradually freeze the projec-072

tion matrices based on a novel freezing score that073

acts as a proxy for the trainability requirement of a074

LoRA tensor. In this way, we not only help allevi-075

ate the over-fitting issue but also, increase computa-076

tion efficiency. To evaluate the benefit of AFLoRA,077

we perform extensive evaluations on multiple NLP078

benchmark datasets and compare accuracy, FLOPs,079

and training time with several existing alternatives.080

In specific, compared to ELoRA we yield 1.86×081

and 2.96× improvement in runtime and FLOPs,082

respectively, while remain comparable as LoRA on083

these two metrics. Compared to LoRA we require084

9.5× fewer average trainable parameters to yield085

similar or improved performance.086

2 Related Works087

PEFT refers to a collection of methodologies that088

focus on allowing a small number of parameters089

to fine-tune to yield good performance on a090

downstream task. For example, prefix-tuning091

(Li and Liang, 2021) adds trainable prefix to-092

kens to a model’s input or hidden layers while093

adapter-tuning (Houlsby et al., 2019) inserts small094

neural network layers, known as adapters, within095

each layer of a pre-trained model. LoRA (Hu096

et al., 2021), on the other hand, adds low-rank097

tensors in parallel to the frozen pre-trained weights.098

AdaLoRA (Zhang et al., 2023) allows the rank of099

the LoRA path to be chosen in an adaptive way.100

Other variants like SoRA (Ding et al., 2023) and101

LoSparse (Li et al., 2023) have investigated the102

impact of sparsity in and alongside the low-rank103

path, respectively. Recently, efficient low-rank104

adaptation (ELoRA) (Kopiczko et al., 2024) has105

proposed to keep the LoRA path frozen, while106

introducing two trainable feature transformation107

vectors. Thus, this work only studies an extreme108

scenario of keeping the LoRA path frozen, and,109

to the best of our knowledge, no work has110

investigated the trainability requirement of the111

projection matrices.112

113

3 Motivational Case Study114

To understand the high rank requirement for the115

frozen projection metrices in ELoRA, we conduct116

two sets of fine-tuning on SST-2 and MRPC, with117

Figure 2: Performance of ELoRA with two different
ranks of the frozen projection matrices.

ELoRA having rank (r) of 1024 and 4, respectively. 118

As we can see in Fig. 2, the model with r = 4, 119

yields poorer performance, highlighting the need 120

for high rank for the frozen tensors. This high rank 121

causes ELoRA to potentially be FLOPs inefficient. 122

123

4 AFLoRA: Methodology 124

Module Structure. Inspired by the framework 125

proposed by Kopiczko et al. (2024), we design 126

the LoRA module to encompass four components, 127

namely, the down-projection linear layer (loraA), 128

the up-projection linear layer (loraB), and two 129

feature transform vectors (sd, and sb) placed be- 130

fore and after loraB . However, unlike (Kopiczko 131

et al., 2024), we keep both the projection matri- 132

ces (loraA and loraB) and vectors trainable at 133

the beginning and keep the rank very low. The 134

module processes a given input X through these 135

components to produce an output Y . The complete 136

operation for a layer l can be described as follows: 137

Y = W l
0X + Λl

bB
lΛl

dA
lX (1) 138

Here, Al and Bl are the trainable LoRA tensors of 139

loralA and loralB , respectively. Λd and Λb are the 140

vectors of sd, and sb, respectively. W l
0 represents 141

the frozen pre-trained weights. We use Kaiming 142

Uniform initialization for Al and Bl, and follow 143

(Kopiczko et al., 2024) to initialize the vectors. 144

Adaptive Freezing. In pruning literature (Han 145

et al., 2015; Molchanov et al., 2019; Zhang et al., 146

2022), sensitivity is gauged to reflect weight vari- 147

ability, necessitating consideration of both the 148

weights’ magnitudes and their gradients. Small 149

weight values suggest minimal impact, while minor 150

gradient values indicate stability. Taking inspira- 151

tion from this idea, here we introduce the concept 152

of a "freezing score". However, unlike pruning 153

where both magnitude and gradient play a critical 154

role to identify insignificant weight, we leverage 155

only gradient as a proxy to compute the freezing 156

score. This is because, we assume large magnitude 157

weights with negligible change has same priority 158

to be frozen as that for small magnitude weights. 159

2



Table 1: Comparison of different LoRA variants with DeBERTaV3 on the GLUE benchmark.
Method #Params. ↓ CoLA ↑ SST-2 ↑ MRPC ↑ QNLI ↑ STS-B ↑ RTE ↑ MNLI ↑ QQP ↑ Avg. ↑
FFT 184M 69.21 95.64 89.22 93.78 91.59 82.49 89.98/89.95 92.05/89.31 87.82
LoRA (r=8) 1.33M 69.73 95.57 89.71 93.76 91.86 85.32 90.47/90.46 91.95/89.26 88.38
AdaLoRA 1.27M 70.86 95.95 90.22 94.28 91.39 87.36 90.27/90.30 92.13/88.41 88.83
SoRA(r=4) 0.47M 71.05 95.57 90.20 93.92 91.76 86.04 90.38/90.43 92.06/89.44 88.71
ELoRA* 0.16M 70.74 95.18 90.93 93.58 91.08 87.36 90.11/90.22 90.69/87.63 88.53
AFLoRA (r = 4) 0.14M** 72.01 96.22 91.91 94.42 91.84 88.09 89.88/90.17 90.81/87.77 89.23

* The original paper has results with the RoBERTa, we generated the results with our implementation on DeBERTaV3 with rank of 1024.
** As the number of trainable parameters is changed during training, we computed this by averaging over the whole training epochs.

This score quantifies the degree to which weights160

vary throughout the training process. Consequently,161

when the expected changes to the weights become162

negligible, we may consider them to be frozen,163

thereby saving computational resources and energy.164

Following equation describes the freezing score165

evaluation steps for a low-rank tensor Al.166

IAl = |∇L(θ)| , I(t)Al = β1I
(t−1)

Al + (1− β1)I
(t)

Al (2)167

168
U

(t)

Al =
∣∣∣I(t)

Al − I
(t)

Al

∣∣∣ , U (t)

Al = β2U
(t−1)

Al +(1−β2)U
(t)

Al (3)169

170
s
(t)

Al = mean(I
(t)

Al ◦ U
(t)

Al ) (4)171

Here, for each projection tensor at iteration t, we172

compute a smoothed gradient (I(t)Al ) and uncertainly173

tensor (U (t)

Al ), as shown in Eq. 2 and 3, respectively.174

We then evaluate the freezing score s
(t)

Al , as the175

mean of the tensor generated via Hadamard product176

(◦) between I
(t)

Al and U
(t)

Al .177

To apply thresholding on the LoRA freezing scores,178

we use the cubic schedule as (Zhang et al., 2022).179

In specific, we keep the projection matrices train-180

able for the initial ti training steps, and then pro-181

gessively freeze them by calculating the freezing182

fraction r(t) as shown in the Eq. 5. Finally all183

the projection matrices freeze beyond T − tf steps.184

Note, at a step t, for a computed freezing fraction185

k, we freeze the lowest k% projection matrices.186

r(t) =


0 0 ≤ t < ti

1−
(
1− t−ti−tf

T−ti−tf

)3

ti ≤ t < T − tf

1 otherwise
(5)187

188
where t refers to current #step, T is the total num-189

ber of fine-tuning steps. We set ti to the steps190

corresponding to one epoch and set tf to 70% of191

the total training steps.192

5 Experiments193

Models & Datasets. We use the PEFT framework194

of (Mangrulkar et al., 2022) and evaluate the195

fine-tuning performance of DeBERTaV3-base (He196

et al., 2020) to fine-tune on our framework on197

the General Language Understanding Evaluation198

Figure 3: A comparison of various system performance
between LoRA, ELoRA, and AFLoRA.

(GLUE) benchmark (Wang et al., 2018). The 199

details of the hyperparameter settings for each 200

dataset are listed in Appendix A.2. 201

202

Performance Comparison. We benchmark 203

the performance with AFLoRA and present 204

comparison with LoRA and its variants. For 205

ELoRA, we reproduce the results at our end while 206

the results for other methods are sourced from 207

(Ding et al., 2023). As shown in Table 1, AFLoRA 208

can achieve SoTA performance on majority of 209

datasets and on average while requiring similar 210

and 9.5× fewer average trainable parameters as 211

compared to ELoRA and LoRA, respectively. 212

213

Runtime & FLOPs Comparison. Fig. 3 shows 214

the comparison of the normalized average train- 215

ing runtime, normalized FLOPs, and normalized 216

trainable parameters. For AFLoRA, we average 217

the training time, FLOPs, and trainable parame- 218

ters over six GLUE datasets (except the MNLI and 219

QQP datasets). Note, for LoRA and ELoRA, the 220

trainable parameters and FLOPs remain fixed for 221

all the dataset. We compute their average runtime 222

same way as ours. Compared to ELoRA we can 223

yield up to 1.86× and 2.96× runtime and FLOPs 224

improvement while remain comparable with LoRA 225

in these two metrices. Compared to LoRA we yield 226

9.5× parameter reduction, while remain compara- 227

ble with ELoRA. These results clearly demonstrate 228

AFLoRA as PEFT method that can yield similar 229

parameter efficiency as ELoRA while costing no 230

training overhead in terms of FLOPs or time. 231

6 Ablations and Discussions 232

We conducted our ablation studies on six GLUE 233

benchmark datasets, omitting QQP and MNLI, the 234

two most computationally demanding datasets. 235

3



Table 2: Ablation study on the trainability impact of the
projection matrices (PM) of the AFLoRA module. We
keep the vectors trainable throughout for all.

PM #Params. CoLA SST-2 MRPC QNLI STS-B RTE Avg.
Trainable 0.45M 70.15 95.99 92.4 94.16 89.90 88.45 88.51
Frozen 0.08M 70.36 94.95 89.22 93.61 91.17 85.92 87.54
AFLoRA (Ours) 0.14M 72.01 96.22 91.91 94.42 91.84 88.09 89.23

Table 3: The ablation study of making the matrix com-
ponents of different parts trainable.

FFN Attn CoLA SST-2 MRPC QNLI STS-B RTE Avg.
✓ ✓ 70.33 95.76 90.93 94.36 91.44 87.37 88.48

0.15M 0.19M 0.18M 0.19M 0.16M 0.17M 0.17M
✗ ✓ 71.118 95.986 89.951 94.12 91.39 86.28 88.14

0.11M 0.13M 0.12M 0.13M 0.12M 0.12M 0.12M
✓ ✗ 72.01 96.22 91.91 94.42 91.84 88.09 89.02

0.13M 0.18M 0.13M 0.13M 0.13M 0.13M 0.14M

Do we really need adaptive freezing? We236

conducted experiments with all the LoRA PMs237

frozen (same as ELoRA), all the LoRA PMs238

trainable, and with our adaptive training of239

LoRA PMs. We use, r = 4 for the LoRA path,240

for all. As we can see in Table 2, keeping the241

projection matrices trainable yield better average242

performance compared to keeping them frozen243

throughout. However, AFLoRA with adaptive244

freezing yields even better performance than245

keeping them trainable throughout, potentially246

highlighting its ability to regularize the fine-tuning247

against overfitting.248

249

Do we need to keep the PMs trainable for all250

layer types? There are two major layer types,251

FFN and the attention layers. We place the PMs in252

both along with the feature transformation vectors.253

We then study the necessity of keeping the PMs254

trainable in these two layer types. Note, here, we255

keep the vectors trainable for all throughout. As256

shown in Table 3, keeping the PMs trainable (and257

then adaptive freezing) in the FFN yields better258

performance compared to the alternatives. Note259

we keep the PMs in the attention layers frozen to260

random values. Interestingly, allowing all PMs261

to initially train and then adaptively freeze yields262

poorer performance than allowing them only in263

MLP. This may hint at the FFN weights to play264

more important role in fine-tune performance.265

266

Ablation with sensitivity choices. Fig. 4 presents267

ablation with three sensitivity scores based268

on three different sensitivity choices, namely,269

|grad(p)| (adopted in AFLoRA), |p ∗ grad(p)|,270

and |grad(p)/p|. On average, the freezing score271

adopted in AFLoRA, consistently yield better272

accuracy over the other two.273

274

Figure 4: A comparison of performance outcomes uti-
lizing three distinct freezing score methodologies.

Figure 5: The visualization of freezing iterations for
each layer. ’out’ means the output layer, and ’inter’
means the intermediate layer. ’A’ and ’B’ represent the
down-projection and up-projection matrix respectively.
The darker the color, the more iterations the matrix/layer
has to go through before freezing.

Discussion on Freezing Trend. We use the RTE 275

dataset as a case study, to understand the freezing 276

trend of the PMs across different layers. In spe- 277

cific, we illustrate the specific number of iterations 278

required before freezing each component in Fig.5. 279

Interestingly, as can be seen from the figure, analy- 280

sis reveals that the down-projection matrix parallel 281

the intermediate linear layer require longer training 282

duration prior to being frozen, as compared to the 283

other PMs. This may potentially hint at the low 284

approximation ability of the intermediate layer as 285

compared to the second MLP in the FFN. 286

7 Conclusions 287

In this paper we presented AFLoRA, an adaptive 288

freezing of LoRA adapters that allow near opti- 289

mal trainability of the LoRA projection matrices 290

and freezes them driven by a "freezing score" af- 291

ter certain fine-tuning steps. Compared to LoRA, 292

AFLoRA can reduce the trainable parameters by up 293

to 9.5× while yielding 0.85% average imporved 294

performance as evaluated on GLUE benchmark. 295

8 Limitation 296

In the ablation study with various freezing score 297

metrics, we discovered that alternative scoring 298

methods outperform ours on certain datasets, sug- 299

gesting possible room for research in refining the 300

freezing scores. This can further improve perfor- 301

mance with AFLoRA. Additionally, integration of 302

AFLoRA in the adaptive rank evaluation frame- 303

work can potentially open a new direction of PEFT 304

that we consider as a future research. 305

4



References306

Armen Aghajanyan, Luke Zettlemoyer, and Sonal307
Gupta. 2020. Intrinsic dimensionality explains the effec-308
tiveness of language model fine-tuning. arXiv preprint309
arXiv:2012.13255.310

Tom Brown, Benjamin Mann, Nick Ryder, Melanie311
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind312
Neelakantan, Pranav Shyam, Girish Sastry, Amanda313
Askell, et al. 2020. Language models are few-shot314
learners. Advances in neural information processing315
systems, 33:1877–1901.316

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and317
Kristina Toutanova. 2018. Bert: Pre-training of deep318
bidirectional transformers for language understanding.319
arXiv preprint arXiv:1810.04805.320

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,321
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.322
Sparse low-rank adaptation of pre-trained language mod-323
els. arXiv preprint arXiv:2311.11696.324

Song Han, Jeff Pool, John Tran, and William Dally.325
2015. Learning both weights and connections for effi-326
cient neural network. Advances in neural information327
processing systems, 28.328

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and329
Weizhu Chen. 2020. Deberta: Decoding-enhanced330
bert with disentangled attention. arXiv preprint331
arXiv:2006.03654.332

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng333
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing, and334
Luo Si. 2021. On the effectiveness of adapter-based335
tuning for pretrained language model adaptation. arXiv336
preprint arXiv:2106.03164.337

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,338
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-339
mundo, Mona Attariyan, and Sylvain Gelly. 2019.340
Parameter-efficient transfer learning for nlp. In Interna-341
tional Conference on Machine Learning, pages 2790–342
2799. PMLR.343

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan344
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and345
Weizhu Chen. 2021. Lora: Low-rank adaptation of large346
language models. arXiv preprint arXiv:2106.09685.347

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M348
Asano. 2024. ELoRA: Efficient low-rank adaptation349
with random matrices. In The Twelfth International350
Conference on Learning Representations.351

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.352
The power of scale for parameter-efficient prompt tun-353
ing. arXiv preprint arXiv:2104.08691.354

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:355
Optimizing continuous prompts for generation. arXiv356
preprint arXiv:2101.00190.357

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, 358
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023. 359
Losparse: Structured compression of large language 360
models based on low-rank and sparse approximation. 361
arXiv preprint arXiv:2306.11222. 362

Sourab Mangrulkar, Sylvain Gugger, Lysandre De- 363
but, Younes Belkada, Sayak Paul, and Benjamin 364
Bossan. 2022. Peft: State-of-the-art parameter- 365
efficient fine-tuning methods. https://github.com/ 366
huggingface/peft. 367

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Fro- 368
sio, and Jan Kautz. 2019. Importance estimation for neu- 369
ral network pruning. In Proceedings of the IEEE/CVF 370
conference on computer vision and pattern recognition, 371
pages 11264–11272. 372

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 373
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 374
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos- 375
ale, Dan Bikel, Lukas Blecher, Cristian Canton Fer- 376
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude 377
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cyn- 378
thia Gao, Vedanuj Goswami, Naman Goyal, Anthony 379
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, 380
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is- 381
abel Kloumann, Artem Korenev, Punit Singh Koura, 382
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 383
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 384
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 385
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, 386
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan 387
Silva, Eric Michael Smith, Ranjan Subramanian, Xiao- 388
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, 389
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, 390
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan 391
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey 392
Edunov, and Thomas Scialom. 2023. Llama 2: Open 393
foundation and fine-tuned chat models. 394

Alex Wang, Amanpreet Singh, Julian Michael, Fe- 395
lix Hill, Omer Levy, and Samuel R Bowman. 2018. 396
Glue: A multi-task benchmark and analysis platform 397
for natural language understanding. arXiv preprint 398
arXiv:1804.07461. 399

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 400
Chaumond, Clement Delangue, Anthony Moi, Pierric 401
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe 402
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, 403
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, 404
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and 405
Alexander Rush. 2020. Transformers: State-of-the-art 406
natural language processing. In Proceedings of the 2020 407
Conference on Empirical Methods in Natural Language 408
Processing: System Demonstrations, pages 38–45, On- 409
line. Association for Computational Linguistics. 410

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 411
Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo 412
Zhao. 2023. Adaptive budget allocation for parameter- 413
efficient fine-tuning. In The Eleventh International Con- 414
ference on Learning Representations. 415

5

https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY


Qingru Zhang, Simiao Zuo, Chen Liang, Alexander416
Bukharin, Pengcheng He, Weizhu Chen, and Tuo Zhao.417
2022. Platon: Pruning large transformer models with418
upper confidence bound of weight importance. In In-419
ternational Conference on Machine Learning, pages420
26809–26823. PMLR.421

A Appendix422

A.1 Dataset423

The details of train/test/dev splits and the evaluation424

metric of the GLUE (Wang et al., 2018) dataset425

are reported in Table 4. We use the Huggingface426

Transformers library (Wolf et al., 2020) to source427

all the datasets.

Table 4: Statistics of the GLUE benchmark
datasets."Mcc", "Acc", "F1" and "Pear" represent
Matthews correlation coefficient, accuracy, the F1 score
and the Pearson correlation coefficient respectively. And
"Acc" for MNLI dataset contains the accuracy for the
matched and mismatched subset of the datasets.

Dataset #Train #Valid #Test Metric
CoLA 8.5k 1,043 1,063 Mcc
SST-2 67k 872 1.8k Acc
MRPC 3.7k 408 1.7k Acc
QQP 364k 40.4k 391k Acc/F1
STS-B 5.7k 1.5k 1.4k Pear
MNLI 393k 9.8k/9.8k 9.8k/9.8k Acc
QNLI 105k 5.5k 5.5k Acc
RTE 2.5k 277 3k Acc

428

A.2 Hyperparameter configuration429

Table 5 shows the main hyper-parameter setup in430

this paper. Besides them, we use the same opti-431

mizer, warmup Ratio, and LR schedule as Hu et al.432

(2021). We use NVIDIA RTX A6000 (maximum433

GPU memory=49140MB) to measure the training434

runtime. For all experiments, we run 5 times us-435

ing different random seeds and report the average436

results.

Table 5: Hyperparameter setup for all eight datasets in
GLUE benchmark

Hyperparameter CoLA SST-2 MRPC QNLI STS-B RTE MNLI QQP
# epochs 20 10 20 10 20 20 10 10
Batch size 64
Max Seq. Len. 256
Clf. Lr.* 4E-2 4E-3 8E-2 4E-3 2E-2 4E-2 4E-3 4E-3
Learning rate 1E-2 4E-3 1E-2 1E-3 2E-3 1E-3 1E-3 4E-3
ti(epoch) 1
tf (epoch) 14 7 14 7 14 14 7 7
β1 0.85
β2 0.95

* "Clf. Lr.*" means the learning rate for the classification
head.437

A.3 Ablation study on if freezing the two438

projection matrices in the same layer439

simultaneously440

We study the value of freezing both projection ma-441

trices in the same layer simultaneously. The results,442

depicted in Table 6, demonstrate that freezing the443

projection matrices separately yields consistently 444

superior performance compared to freezing them 445

simultaneously. 446

Table 6: The ablation study on whether freezing the two
projection matrices in the same layer simultaneously or
independently.

Simultaneously Independently
CoLA 67.90 72.01
SST-2 95.87 96.22
MRPC 91.67 91.91
STS-B 91.64 91.84
QNLI 94.20 94.42
RTE 87.00 88.09
Avg. 88.05 89.02

#Params 0.146M 0.138M

6


