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Abstract

Many healthcare applications are inherently multimodal and involve multiple types1

of physiological signals. As sensors for measuring these signals become more2

ubiquitous, it is increasingly important to improve machine learning methods3

that consume multimodal healthcare data. Pretraining foundation models is a4

promising avenue for success. However, methods for developing foundation models5

in healthcare are still early in exploration and it is unclear which pretraining6

strategies are most effective given the diverse set of physiological signals collected.7

This is in part due to challenges of multimodal learning with health data: data8

across many patients is difficult to obtain and expensive, and there is a lot of inter-9

subject variability. Furthermore, modalities are often heterogeneously informative10

across the downstream tasks of interest. Here, we explore these challenges in11

the PhysioNet 2018 Challenge dataset collected across 1,985 patients. We used a12

masked autoencoding objective to pretrain a multimodal model on the dataset. We13

show that the model learns representations that can be linearly probed for a diverse14

set of downstream tasks. We hypothesize that cross-modal reconstruction objectives15

are important for the success of multimodal training as they encourages the model16

to combine information across modalities. We demonstrate that adding modality17

drop in the input space improves model performance across downstream tasks. We18

also show that late-fusion models pretrained with contrastive learning objectives19

are not as effective as across multiple tasks. Finally, we analyze the representations20

developed in the model. We show how attention weights become more cross-modal21

and temporally aligned as a result of our chosen pretraining strategy. The learned22

embeddings also become more distributed in terms of the modalities that each23

unit in the model encodes. Taken together, our work demonstrates the utility of24

multimodal foundation models with health data, even across diverse physiological25

data sources. We further argue how more explicit means of inducing cross-modality26

may be valuable additions to any multimodal pretraining strategy.27

1 Introduction28

Healthcare applications often involve integrating information across many modalities. For instance,29

to diagnose sleep disorders, physicians may evaluate neural, muscular, and respiratory signals [Ibáñez30

et al., 2018]. Adding to the complexity, the data used in healthcare spans a wide variety of formats31

(imaging data, time series, etc) and are collected from sensors placed on many different body locations32

[Acosta et al., 2022]. Many of these sensors for health data are becoming increasingly prevalent33

in everyday wearable devices [Jeong et al., 2018, Wu and Luo, 2019, Iqbal et al., 2021]. This34

technological advance is a promising opportunity for personalized healthcare and improving patient35

care. Thus, it is more and more important to leverage artificial intelligence to aid the interpretation of36

health data with heterogenous sensors.37
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In many settings, artificial intelligence has achieved unprecedented success in the development of38

multimodal foundation models [Jin et al., 2024, Bordes et al., 2024, Wadekar et al., 2024]. For39

instance, models can now integrate information across language, vision, audio, and video to solve40

complex tasks and perform human-like feats of reasoning [Radford et al., 2021, Alayrac et al., 2022,41

Wu et al., 2023, Lu et al., 2024, Mizrahi et al., 2024]. Multimodal foundation models are pretrained42

in a self-supervised manner on vast amounts of data to link information across modalities. The43

representations developed by these models are useful for tasks that require multimodal understanding.44

After pretraining, these models may be further trained on a downstream task or the representations45

they produce can be used as is. Pretraining strategies often outperform models trained from scratch on46

the same tasks and require less labeled data [Jin et al., 2024]. The success of multimodal foundation47

models in other domains suggests that similar advances can be achieved in healthcare settings.48

There are further reasons to believe that health data in particular can benefit from foundation model49

strategies. Annotated data is limited in health data because clinical expertise is often necessary to50

create labels. Thus, the label efficiency of pretrained models is very useful in this setting. Furthermore,51

when considering wearable health devices, it becomes more important to develop models that are52

size-efficient. If a model pretrained on health data can successfully transfer its representations across53

many downstream tasks, this can greatly save on memory and runtime costs for wearable devices.54

However, working with health data also introduces new types of challenges. Pretraining often55

consumes large amounts of unlabeled data, but patient privacy concerns limit the amount of large56

datasets available in this domain [Acosta et al., 2022, Shaik et al., 2023]. In addition, the cost57

associated with deploying many health sensors can make large-scale data collection prohibitively58

expensive [Acosta et al., 2022]. Thus, it becomes less clear whether pretraining can be as effective59

as it is in settings like natural language, where large corpora are more widely available. In health60

applications, it is also common for certain modalities to vary greatly in their informativeness for61

different downstream tasks [Krones et al., 2024]. This problem is exacerbated in wearable devices62

since different sensors may suffer from unequal amounts of noise, perhaps due to weaker contact or63

interference from other devices [Ates et al., 2022, Canali et al., 2022]. This poses a challenge for64

developing general purpose models that can be used for diverse tasks.65

Here, we investigate these challenges by pretraining a multimodal model in a publicly available66

dataset with 1,985 patients. We are specifically concerned with time series data collected from67

physiological signals measured overnight from patients. Our contributions are the following:68

• We explore the development of a multimodal foundation model in a dataset of diverse69

physiological signals: electroencephalography (EEG), electromyography (EMG), elec-70

trooculography (EOG), and electrocardiology (ECG). We demonstrate the strength of the71

learned representations in linear probe experiments on a disparate set of downstream tasks.72

• We show how explicitly enforcing cross-modal reconstruction in the pretraining objective73

improves the quality of the learned representations over standard multimodal MAE. We74

also show how late-fusion models pretrained with contrastive learning does not effectively75

transfer across multiple tasks.76

• We analyze the learned representations to show that attention weights in the model be-77

come increasingly cross-modal under the pretraining objective we use. We also show that78

individual units in the model become more diversely tuned to the different modalities.79

2 Related Work80

Pretraining models with self-supervised objectives is a popular and effective strategy in machine81

learning [Ericsson et al., 2022, Gui et al., 2023]. After pretraining, the parameters of the model82

can be finetuned for some downstream task. Alternatively, another common approach is to freeze83

the pretrained model and train a lightweight readout head that uses the learned representations84

from the model to solve downstream tasks. This approach is especially attractive if efficiency in85

parameter tuning is a priority. In either case, a pretraining paradigm often outperforms training a86

model from scratch. Pretraining is especially useful if labeled data in the downstream task is limited87

as it provide a means for experimenters to define inductive biases on the model representations.88

Self-supervised strategies span several categories, including generative methods, contrastive learning,89

and autoencoding [Del Pup and Atzori, 2023, Gui et al., 2023]. We limit our discussion to the latter90

two in the context of multimodal pretraining.91
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Figure 1: A. A 30-second sample from the training dataset. B. Data is split by patient identity for
each part of the training procedure. The PhysioNet 2018 dataset consists of unlabeled data from
989 patients and labeled data from 996 patients, where each patient contributes 7.7 hours of data on
average. The data for pretraining consists of all patients in the unlabeled dataset and 657 patients
from the labeled dataset. The data for training and finetuning is drawn from the patients of the labeled
dataset that were also used for pretraining. The data for the validation and test are drawn from the
remaining patients of the labeled dataset not used for either pretraining or training. C. Diagram of the
main pretraining strategy we use: multimodal masked autoencoding with modality drop in the input
space. Tokenizers are modality-specific.

Contrastive learning is a self-supervised learning framework where models are optimized such that92

representations of data in positive pairs become more similar while representations of data in negative93

pairs become more dissimilar [Chen et al., 2020, Purushwalkam and Gupta, 2020]. The definition94

of positive and negative pairs is crucial to the success of these methods. One way to define these95

pairs is to construct multiple “views” of a data sample through augmentations, like in the SimCLR96

algorithm [Chen et al., 2020, Yuan et al., 2021]. Thus, a positive pair of data may be two different97

augmentations of a single data sample (negative pairs would then be constructed across different98

data samples). When working with multimodal data, another option is to consider each modality99

as a distinct view of a data sample. In this case, positive pairs can be constructed by comparing100

representations across modalities, as in CLIP-style pretraining [Radford et al., 2021, Yuan et al., 2021,101

Zhang et al., 2022].102

Masked autoencoding (MAE) is another popular pretraining strategy. In MAE, random patches of103

the input are masked, and the model must use the remaining portions of the input to reconstruct104

the masked portion [He et al., 2022]. This method has been extended to settings with multimodal105

data, often to combine text data and vision data [Arici et al., 2021, Geng et al., 2022, Bachmann106

et al., 2022, Zhao et al., 2023, Mizrahi et al., 2024]. To do so, these models combine data across107

modalities early on so that representations are multimodally fused through layers of the model. The108

joint embeddings are then used for the MAE task to reconstruct inputs across all modalities. This109

structure inherently allows for the possibility of cross-modal reconstruction, as information from110

one modality can be used to reconstruct another. MAE methods can be more compute- and size-111

efficient due to the fused encoding structure used and the large amounts of data typically dropped out112

as a result of the masking strategy Bachmann et al. [2022], Mizrahi et al. [2024]. Of the above, the113

method used for our model is most similar to MultiMAE introduced in Bachmann et al. [2022].114

Both of these pretraining strategies have been applied to physiological signals, although examples115

are sparser than in other domains. We first discuss examples using contrastive learning strategies.116

Abbaspourazad et al. [2023] uses a large-scale Apple Watch dataset to classify demographics and117

health information from two modalities: photoplethysmography (PPG) and ECG. Thapa et al. [2024]118
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used sleep data collected across EEG, EMG, ECG, and EOG sensors for downstream sleep-related119

classification tasks. Raghu et al. [2022] uses cardiac and blood-related signals to predict mortality120

rate and pulmonary arterial pressure. Both Abbaspourazad et al. [2023] and Raghu et al. [2022] use121

a SimCLR-like strategy through data augmentations, while Thapa et al. [2024] uses a CLIP-like122

strategy and construct data pairs across modalities.123

In comparison to contrastive methods, MAE pretraining is less common for multimodal physiological124

signals. Mathew et al. [2024] uses MAE-pretraining in a model for phonocardiogram (PCG) and125

ECG data. The data was collected from digital stethoscopes, and the model was finetuned to classify126

signatures of cardiovascular disease. The closest example to our work is from Liu et al. [2023], where127

a multimodal transformer model is pretrained on EEG, EMG, and EOG signals with a MultiMAE-like128

objective. However, this work was more limited in dataset size (100 patients in each pretraining129

dataset) and focused on one specific downstream task per pretrained model. In our work, we use a130

larger dataset with 1,985 patients and evaluate how well MultiMAE-pretrained models can perform131

on diverse downstream tasks. We later will make comparisons with contrastive methods as well.132

A focus of our work is in encouraging cross-modal representation learning. This is inspired by works133

arguing that multimodal learning can be improved by optimizing for cross-modal reconstruction134

[Kleinman et al., 2023, Hussen Abdelaziz et al., 2020, Hazarika et al., 2022]. While this objective is135

already present in the original MultiMAE algorithm, a simple way to further encourage cross-modal136

learning is to randomly drop modalities from the input [Hazarika et al., 2022, Hussen Abdelaziz137

et al., 2020, Arici et al., 2021, Deldari et al., 2023]. This pressures the model to learn relationships138

across modalities in order to satisfy the reconstruction task. In the health data field, modality dropout139

strategies have been used to improve performance in tasks with missing modalities or heterogeneous140

noise, but they are still limited in their use in a general pretraining strategy. Furthermore, analyses of141

how representations are shaped by multimodal fusion are largely unexplored. We investigate both142

these questions in this work.143

3 Methods144

3.1 Dataset145

We use the publicly available PhysioNet 2018 Challenge dataset [Ghassemi et al., 2018]. This dataset146

consists of physiological signals collected during overnight sleep from 1,985 subjects. On average,147

each subject contributes 7.7 hours of recording [Ghassemi et al., 2018]. The dataset contains many148

sensors, but here we focus on EEG, EMG, EOG, and ECG recordings (Figure 1A). For EEG, we use149

only the F3-M2 differential pair for our main results. We note that the signals from these sensors150

show distinct characteristics and are not obviously related (Figure 1A).151

Patient demographics such as age and gender were also recorded in the dataset. The physiological data152

comprises of unlabeled data from 989 patients and labeled data from 996 patients. In the labeled set,153

30-second contiguous windows were manually annotated by several certified sleep technologists into154

one of five sleep stages: wakefulness, stage 1, stage 2, stage 3, or rapid eye movement (REM). The155

same windows were also manually annotated for the presence of arousals (e.g. snores, vocalizations,156

respiratory effort, leg movement, etc.). Prior literature using this dataset mostly focus on the sleep157

staging task [Perslev et al., 2019, Banville et al., 2021, Phan et al., 2021], and comparisons to these158

works are discussed in the Appendix.159

To prevent data leakage, data is split over patient identity. The pretraining dataset is comprised of of160

all 989 patients in the unlabeled set and 657 patients in the labeled set. The training/finetuning dataset161

for downstream tasks is comprised of the 657 patients in the labeled set that were used for pretraining162

(that is, the training/finetuning dataset is a subset of the pretraining dataset). The validation set and163

test set are constructed from the remaining 117 and 219 patients of the labeled set, respectively,164

and are not seen in either pretraining or training/finetuning. The validation set is used to select165

hyperparameters of the model and the test set is used for the evaluation scores reported in the results.166

A visualization of these data splits are in Figure 1B.167

The signals are preprocessed with an anti-aliasing bandpass FIR filter then downsampled from 200168

Hz to 100 Hz using decimation by 2. Specifically, EEG and EOG signals were filtered to 0.1-30 Hz169

[Feng et al., 2021, Satapathy et al., 2024]. EMG and ECG signals were filtered to 0.1-70 Hz [Burns170
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Table 1: Balanced accuracy with linear probe evaluation: unimodal vs multimodal. All models are
pretrained before the encoder is frozen and representations are linearly probed for each task. We
show the test balancy accuracy for a random guess (“Random”), for models trained entirely from
scratch (“Scratch”), and for models pretrained and then linearly probed for the task (“Pretrained”).
Note that "Pretrained-All’ is a multimodal model pretrained with MultiMAE and input modality drop.
Mean score and standard deviation for the three tasks are shown in columns. We additionally define
an aggregate score which gives the average score over all tasks, normalized by the corresponding
chance performance value (a score of 0 would indicate no improvement from chance). 500 patients
are used in the training set for task finetuning. 5 random seeds are used in each training/finetuning
stage. Asterisks indicate the best-performing unimodal model for each task.

Sleep Age Arousal Aggregate
Random – 0.2 0.5 0.5 0.0

Scratch

EEG 0.717 ± 0.003 0.641 ± 0.004 0.568 ± 0.093 1.0 ± 0.101
EMG 0.461 ± 0.004 0.55 ± 0.006 0.538 ± 0.074 0.494 ± 0.076
EOG 0.697 ± 0.006 0.626 ± 0.006 0.56 ± 0.082 0.952 ± 0.084
ECG 0.279 ± 0.006 0.605 ± 0.022 0.516 ± 0.038 0.213 ± 0.025
All 0.737 ± 0.003 0.626 ± 0.018 0.595 ± 0.013 1.042 ± 0.009

Pretrained

EEG 0.745 ± 0.001* 0.662 ± 0.001 0.604 ± 0.093 1.085 ± 0.106
EMG 0.442 ± 0.001 0.615 ± 0.003 0.533 ± 0.048 0.502 ± 0.052
EOG 0.727 ± 0.001 0.653 ± 0.003 0.636 ± 0.071* 1.07 ± 0.078
ECG 0.339 ± 0.002 0.703 ± 0.002* 0.526 ± 0.04 0.385 ± 0.042
All 0.744 ± 0.001 0.719 ± 0.002 0.637 ± 0.081 1.144 ± 0.09

et al., 2007, Feng et al., 2021, Satapathy et al., 2024]. All signals are then resampled to 100 Hz. We171

use 30-second samples of data for pretraining and for the downstream classification tasks.172

Three tasks are constructed from this dataset: (1) sleep scoring, (2) age classification, and (3) arousal173

identification. Sleep scoring is a 5-way classification problem. Both arousal and age will be treated as174

a binary classification problem. In the age classification task, we aim to identify whether a patient’s175

age is under 55 (the mean age) or not.176

3.2 Model architecture177

Our model architecture is based off that of the vision transformer [Alexey, 2020]. Modality-specific178

tokenizer layers are followed by fused encoding layers, so that multimodal information is fused early179

on (Figure 1C). The input to the model is a 30 second time series from multiple sensors sampled at180

100 Hz. We divide each time series into 30 chunks that are one second each. These chunks are then181

fed to the tokenizer layers. Tokenizers are trained for each modality and consist of one convolutional182

layer and one linear layer. Specifically, each signal chunk first passes through a 1D convolutional183

layer (with 64 channels and kernel size of 21) before a max pooling operation. Then, a linear layer184

projects each token into a 512-dimensional embedding space. This is followed by layer normalization185

to ensure signals from all modalities have comparable scales. Given 1,985 patients with an average186

of 7.7 hours of recording time each, the total dataset size is 1,834,140.187

To summarize, the output of a tokenizer for one modality is 30 tokens with embedding dimension188

D = 512. Sinusoidal positional embeddings and a learnable modality embedding are then added to189

each token. Finally, tokens across modalities are fused through concatenation.190

This fused vector is then passed to the joint encoding layers, which is comprised of eight transformer191

layers with multi-head self-attention [Vaswani, 2017] and normalization before attention layers192

[Xiong et al., 2020]. Each transformer layer has 8 heads, and each layer has a 10% dropout rate193

during training over attention weights and projection weights.194

3.3 Pretraining objectives195

We use a multimodal masked autoencoding (MAE) objective similar to MultiMAE from Bachmann196

et al. [2022]. As mentioned above, tokens across all modality tokenizers are fused via concatenation.197

In MultiMAE, a fixed portion of these tokens are masked at uniform and dropped from the fused198
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vector. We use a 70% masking rate (see Appendix for how the mask rate was selected). The199

remaining unmasked tokens are passed into the encoder and processed. To prepare the input for the200

decoder layers, the tokens that are output from the encoder are then interleaved with learnable mask201

tokens. Values in the mask token are initialized from N (0, 0.02) with truncation at [�2, 2]. These202

learnable mask tokens act as placeholders for the signal to be reconstructed (i.e., the dropped tokens).203

Mask tokens are inserted in the location of the previously dropped tokens. Positional information is204

preserved by adding the appropriate positional embedding to the newly interleaved mask tokens.205

A decoder is trained for each modality to reconstruct the original signal. Each decoder consists206

of a cross-attention layer and a transformer layer before a linear projection. The input into each207

modality decoder is the subset of tokens from the encoder output that corresponds to that modality.208

Cross-modal reconstruction is enabled through the cross-attention layer, where the input is the query209

and the entire encoder output is passed as keys/values. The linear layer projects each token from the210

embedding dimension (512) to the original signal dimension (100). The loss is calculated only over211

the reconstructed signal corresponding to the dropped tokens.212

To encourage additional cross-modal interactions, we also use input modality drop during pretraining213

(Figure 1B) [Hazarika et al., 2022, Hussen Abdelaziz et al., 2020, Arici et al., 2021, Deldari et al.,214

2023]. In every batch, one randomly chosen modality is completely dropped on top of the typical215

MultiMAE uniform masking over tokens.216

In later experiments we will make comparisons with contrastive learning objectives, resulting in217

modifications to the pretraining loss and the model architecture. In this case, the model will be218

converted to a late fusion structure that is typical for models trained with contrastive objectives.219

Further details can be found in the corresponding results section (§4.3) and Appendix F.220

3.4 Finetuning221

We are most interested in understanding how well representations learned by the pretrained model can222

transfer to multiple tasks. As such, after pretraining, we discard the decoder and freeze the encoder.223

The output of the encoder is layer normalized and average pooled over the token dimension. This224

512-dimensional vector is then passed to a linear classification head. A classification head is trained225

for each of the downstream tasks with weighted cross entropy loss to account for class imbalance.226

This is most relevant for the arousal detection task, where arousal events are extremely rare (2.7%227

of data samples). Although not the focus of this paper, we also conduct full finetuning experiments228

where both encoder and classifier parameters are trained (Appendix E).229

3.5 Optimization230

Models are pretrained for 2000 epochs or until a fixed compute time of 10 days is exceeded. For231

finetuning, models are trained for 200 epochs. Learning rates were scheduled with 10 epochs of232

linear warmup to 1⇥ 10�4 and cosine annealing thereafter [Loshchilov and Hutter, 2016]. We used233

the AdamW optimizer [Loshchilov and Hutter, 2017]. The model checkpoint chosen for evaluation234

was from the epoch where the lowest validation error was achieved, except in the case of pretraining235

the MultiMAE model with input modality drop. In this case, the validation error was quite noisy and236

the most recent checkpoint was chosen instead. Additional details can be found in the Appendix.237

4 Experiments238

4.1 A pretrained multimodal model develops representations that support a diverse set of239

tasks in the PhysioNet18 dataset.240

We first assess the extent to which pretraining and multimodal learning benefits downstream task241

performance in this dataset. We evaluate performance on the three tasks when both unimodal and242

multimodal models are trained from scratch. The balanced accuracy achieved by these models on243

the test set is shown in Table 1 (“Scratch” rows). In addition to the three tasks, we also define an244

aggregate score to highlight models that perform well across all tasks. The aggregate score is defined245

as 1
N

P
N

i

si�ri
ri

, where si is the average test score on task i, ri is the chance level performance for246

task i, and N = 3 is the total number of tasks. Scores are measured using balanced accuracy. We247

see that the multimodal model performs overall better than any of the unimodal models (compare248
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Table 2: Linear probe evaluation on all three tasks, comparing multimodal pretraining strategies. All
models are pretrained before the encoder is frozen and representations are linearly probed for each
task. Mean test score and standard deviation for the three tasks are shown in columns. Aggregate
score is defined as in Table 1. 500 patients are used in the training set for task finetuning. 5 random
seeds are used in each training/finetuning stage.

Pretraining Strategy Sleep Age
Balanced Acc. Cohen Kappa Balanced Acc. AUROC

Contrastive CLIP-style (LOO) 0.708 ± 0.0004 0.572 ± 0.001 0.643 ± 0.004 0.705 ± 0.006
Contrastive CLIP-style (Pairwise) 0.703 ± 0.001 0.559 ± 0.001 0.646 ± 0.0003 0.698 ± 0.0003

Contrastive SimCLR-style 0.656 ± 0.001 0.52 ± 0.001 0.624 ± 0.009 0.673 ± 0.015
MultiMAE Only 0.734 ± 0.001 0.618 ± 0.001 0.684 ± 0.001 0.758 ± 0.001

MultiMAE + Input Mod. Drop 0.744 ± 0.001 0.63 ± 0.002 0.719 ± 0.002 0.785 ± 0.002

Pretraining Strategy Arousal Aggregate ScoreBalanced Acc. AUROC
Contrastive CLIP-style (LOO) 0.71 ± 0.002 0.776 ± 0.001 1.082 ± 0.005

Contrastive CLIP-style (Pairwise) 0.708 ± 0.002 0.772 ± 0.001 1.075 ± 0.002
Contrastive SimCLR-style 0.585 ± 0.048 0.616 ± 0.070 0.900 ± 0.040

MultiMAE Only 0.604 ± 0.089 0.638 ± 0.136 1.082 ± 0.062
MultiMAE + Input Mod. Drop 0.637 ± 0.081 0.677 ± 0.128 1.144 ± 0.058

aggregate scores), although its performance on the sleep classification task slightly lags behind the249

unimodal EEG model.250

We next examine the benefits of pretraining the model and transferring the learned representations to251

each of the downstream tasks. We first pretrain the unimodal models with masked autoencoding. The252

test scores for these models are shown in Table 1 as well (“Pretrained” rows). Pretraining seems to253

benefit all models, whether unimodal or multimodal. Interestingly, the pretrained unimodal models254

reveal that a different modality is most informative for each task: EEG is more effective for sleep255

staging, ECG for age classification, and EOG for arousal classification.256

We then pretrain a multimodal model with MultiMAE and input modality drop. We evaluate this257

model on the downstream tasks (“Pretrained, All” in Table 1). The multimodal model outperforms258

the unimodal model in age classification and arousal classification, and performs very similarly to259

EEG in the sleep staging task (Table 1). We find that the multimodal model performs well in all tasks260

and achieves a higher aggregate score, despite the imbalance in modality dominance across tasks.261

Notably, the improvement in aggregate score obtained by the multimodal model is greater when262

training data is more limited (Appendix D). Given full-finetuning, though, the differences across263

models are more minimal (Appendix E).264

4.2 Adding input modality drop to MAE pretraining is important for downstream task265

performance.266

We chose our particular pretraining strategy with the hypothesis that encouraging multimodal fusion267

improves performance in the downstream tasks. We investigate whether this is the case by first testing268

the importance of using input modality drop (which theoretically should result in more cross-modal269

learning). We compare task performance to that of a standard MultiMAE strategy, which does270

not include input modality drop (Table 2). We see that removing input modality drop causes a271

performance drop in downstream tasks (compare “MAE Only” to “MAE + Input Mod. Drop” in272

Table 2). In fact, without input modality drop, MultiMAE underperforms the most informative273

unimodal models across all tasks. Overall, dropping modalities in the input appears to be a simple274

and effective means to increase performance over standard MultiMAE.275

4.3 Late fusion models with contrastive learning objectives are more variable in performance.276

Multimodal fusion is additionally encouraged in the MultiMAE model through the early fusion277

architecture, where representations across modalities are mixed early in the network. We next make278

comparisons to models with a late fusion structure where representations across modalities are not279
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Figure 2: Measures of modality fusion across model representations. A. Attention rollout from tokens
in the embeddings to tokens in the input. Here, the model is trained from scratch on sleep staging.
Values are capped at 0.03 for comparisons with (BC). B. As in (A), but for the model pretrained with
MAE. C. As in (A), but for the model pretrained with MAE and input modality drop. D. Relative
source variance (RSV) of units across layers of the model in (A) to each of the four modalities. 95%
confidence intervals shown, over 512 units in each embedding vector. EF. As in (D), but for the
models in (B) and (C), respectively.

mixed except in the decoders for downstream tasks (Appendix F). To do so, we pretrain late fusion280

models with contrastive learning, a common pretraining objective for these types of model.281

We first test SimCLR-style multiview contrastive learning [Chen et al., 2020, Purushwalkam and282

Gupta, 2020], with particular inspiration from Raghu et al. [2022]. We randomly generate aug-283

mentations for all input data samples (using the same signal augmentations from Raghu et al.284

[2022]). Positive pairs are defined as representations from adjacent time windows. We find that the285

SimCLR-style model underperform standard MultiMAE in all tasks (Table 2). This may indicate that286

defining desired relationships between of modality embeddings is important for the performance of a287

contrastive learning model.288

We next test CLIP-style pretraining to assess the benefits of using modality contrast in the contrastive
learning loss [Radford et al., 2021, Yuan et al., 2021, Zhang et al., 2022]. We will use two objectives
defined in Thapa et al. [2024], a previous work in physiological signals that inspired our approach
here. Thapa et al. [2024] defined a pairwise loss and a leave-one-out (LOO) loss:

lpair
ijk

= � log
exp(sim(xi

k
, xj

k
)) ⇤ ⌧

P
N

m=1 exp(sim(xi

k
, xj

m)) ⇤ ⌧
lLOO

ik
= � log

exp(sim(xi

k
, x̄ 6=i

k
)) ⇤ ⌧

P
N

m=1 exp(sim(xi

k
, x̄ 6=i

m )) ⇤ ⌧
for modalities i and j, sample k, temperature ⌧ , and modality embedding x. N is the total number of289

samples, and x̄ 6=i

k
is the average of representations that are not modality i given data sample k. We find290

that both CLIP-style models underperform even standard MultiMAE in sleep and age classification291

(Table 2). Surprisingly, the contrastive model does extremely well in arousal classification. However,292

in terms of aggregate performance, using MultiMAE with input modality drop is still most effective293

out of the strategies we tested.294

Despite these results, we speculate that developing new formulations of contrastive learning may295

improve task performance. These methods are highly sensitive to the choice of positive and negative296

pairs. It may be that contrastive methods in multimodal biosignals require domain-specific design to297

reach their full potential.298

4.4 MAE + input modality drop encourages cross-modal fusion in attention weights and299

model representations.300

Finally, we wanted to understand whether our intuition about cross-modal fusion was indeed reflected301

in the representations developed by the model. We first examine the attention weights of the model to302
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understand how much each output token from the encoder is influenced by input tokens from each303

modality. We use a method called attention rollout [Abnar and Zuidema, 2020]. Attention rollout304

accounts for the effects of the residual layers by defining the attention at layer l as a sum of the raw305

attention weights and the identity matrix: Al = 0.5Wl + 0.5I where Wl = softmax(QlKT

l
). Thus,306

to obtain the attention of the output embedding to the inputs, attention weights are rolled out across307

model layers: AL ⇤AL�1 ⇤ · · · ⇤A2 ⇤A1, for L layers in the encoder.308

We plot the results of attention rollout first for a multimodal model trained from scratch on sleep-309

scoring (Figure 2A). The attention matrix develops strong vertical bands, indicating that model310

embeddings attend to specific tokens without any context-specificity. In this case, EEG and EOG311

tokens are most dominant. We next plot the attention matrix for a model pretrained with MultiMAE312

and MultiMAE with input modality drop (Figure 2BC). The attention weights are more evenly spread313

across the matrix, indicating greater cross-modal attention, although some sparse vertical bands can314

still be observed. This can be interpreted as greater context-specificity in the attention weights. We315

also observe an additional effect from both MultiMAE models where attention weights become more316

temporally aligned. That is, tokens largely attend to other tokens that occurred around the same317

window of time (Figure 2BC), an effect that is also visible when examining the raw attention matrices318

Wl (Appendix).319

Although attention rollout allowed us to better understand the benefits of MultiMAE pretraining, it is320

unclear how input modality drop affects representations. To further investigate this, we next analyze321

individual embedding units in the model to see how tuned they are to different modalities. We use322

relative source variance (RSV), which quantifies the variance in the activity of a unit due to a particular323

input modality [Kleinman et al., 2023]. As an example, assume we want to calculate RSV due to324

EEG. First, let xEEG ⇠ XEEG be a sample of EEG data from the dataset (with similar notation for325

all other modalities). The source variance of a unit a due to EEG when all other modalities j are326

fixed at samples xj is defined as327

SVa(XEEG, xEMG, xEOG, xECG) =

Var(f(XEEG, XEMG = xEMG, XEOG = xEOG, XECG = xECG)a)

where f gives the output embedding from the encoder, averaged over tokens. Symmetrically, source328

variance can also be defined for the other modalities. Taking the softmax over these source variances329

for a unit a gives the relative source variance of a. Thus if unit a is uniformly tuned to all input330

sources, it would have a RSV value of 0.25 for each modality.331

We first measure the RSV values of embedding units in the model trained from scratch on the sleep332

staging task (Figure 2D). We find that representations become more tuned for EEG in the later layers333

of the model. This is likely because EEG is more informative for the task and thus the decoder places334

greater emphasis on EEG over the other modalities. We next measure the RSV values for the MAE-335

pretrained model (Figure 2E). Interestingly, we see that across layers, units in the model become336

increasingly tuned to EMG input. This is likely because the model struggles most to reconstruct EMG337

(Appendix) and thus places greater representation weight onto that modality. In contrast, the model338

trained with MAE and modality drop is equally tuned to all modalities across all layers (Figure 2F).339

5 Limitations and Discussion340

We have shown the strength of a foundation model-style approach using physiological data with341

a diverse set of downstream tasks. We compare a variety of approaches and argue that explicitly342

incorporating objectives that promote cross-modal reconstruction greatly improves representation343

quality for solving downstream tasks. Specifically, we find that incorporating input modality drop344

is a simple, yet especially effective strategy. We note that making comparisons with other datasets345

would be additionally informative, especially since multimodal fusion strategies are often dependent346

on the dataset and task at hand [Ma et al., 2022]. In addition, developing a large range of downstream347

tasks will provide better insights into the strengths of different pretraining strategies and help identify348

those that are especially useful for general purpose training.349
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societal impacts of the work performed?696

Answer: [Yes]697

Justification: Yes, we have a healthcare-centered motiviation which we discuss thoroughly698

in the introduction.699

Guidelines:700

• The answer NA means that there is no societal impact of the work performed.701

• If the authors answer NA or No, they should explain why their work has no societal702

impact or why the paper does not address societal impact.703
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• Examples of negative societal impacts include potential malicious or unintended uses704

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations705

(e.g., deployment of technologies that could make decisions that unfairly impact specific706

groups), privacy considerations, and security considerations.707

• The conference expects that many papers will be foundational research and not tied708

to particular applications, let alone deployments. However, if there is a direct path to709

any negative applications, the authors should point it out. For example, it is legitimate710

to point out that an improvement in the quality of generative models could be used to711

generate deepfakes for disinformation. On the other hand, it is not needed to point out712

that a generic algorithm for optimizing neural networks could enable people to train713

models that generate Deepfakes faster.714

• The authors should consider possible harms that could arise when the technology is715

being used as intended and functioning correctly, harms that could arise when the716

technology is being used as intended but gives incorrect results, and harms following717

from (intentional or unintentional) misuse of the technology.718

• If there are negative societal impacts, the authors could also discuss possible mitigation719

strategies (e.g., gated release of models, providing defenses in addition to attacks,720

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from721

feedback over time, improving the efficiency and accessibility of ML).722

11. Safeguards723

Question: Does the paper describe safeguards that have been put in place for responsible724

release of data or models that have a high risk for misuse (e.g., pretrained language models,725

image generators, or scraped datasets)?726

Answer: [NA]727

Justification: The paper does not pose a risk in terms of data or model misuse. The data is728

already openly available, and the model is centered around interpreting this data.729

Guidelines:730

• The answer NA means that the paper poses no such risks.731

• Released models that have a high risk for misuse or dual-use should be released with732

necessary safeguards to allow for controlled use of the model, for example by requiring733

that users adhere to usage guidelines or restrictions to access the model or implementing734

safety filters.735

• Datasets that have been scraped from the Internet could pose safety risks. The authors736

should describe how they avoided releasing unsafe images.737

• We recognize that providing effective safeguards is challenging, and many papers do738

not require this, but we encourage authors to take this into account and make a best739

faith effort.740

12. Licenses for existing assets741

Question: Are the creators or original owners of assets (e.g., code, data, models), used in742

the paper, properly credited and are the license and terms of use explicitly mentioned and743

properly respected?744

Answer: [Yes]745

Justification: Yes, we give credit to existing data and code frameworks wherever relevant.746

Guidelines:747

• The answer NA means that the paper does not use existing assets.748

• The authors should cite the original paper that produced the code package or dataset.749

• The authors should state which version of the asset is used and, if possible, include a750

URL.751

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.752

• For scraped data from a particular source (e.g., website), the copyright and terms of753

service of that source should be provided.754
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• If assets are released, the license, copyright information, and terms of use in the755

package should be provided. For popular datasets, paperswithcode.com/datasets756

has curated licenses for some datasets. Their licensing guide can help determine the757

license of a dataset.758

• For existing datasets that are re-packaged, both the original license and the license of759

the derived asset (if it has changed) should be provided.760

• If this information is not available online, the authors are encouraged to reach out to761

the asset’s creators.762

13. New Assets763

Question: Are new assets introduced in the paper well documented and is the documentation764

provided alongside the assets?765

Answer: [NA]766

Justification: We do not introduce new assets.767

Guidelines:768

• The answer NA means that the paper does not release new assets.769

• Researchers should communicate the details of the dataset/code/model as part of their770

submissions via structured templates. This includes details about training, license,771

limitations, etc.772

• The paper should discuss whether and how consent was obtained from people whose773

asset is used.774

• At submission time, remember to anonymize your assets (if applicable). You can either775

create an anonymized URL or include an anonymized zip file.776

14. Crowdsourcing and Research with Human Subjects777

Question: For crowdsourcing experiments and research with human subjects, does the paper778

include the full text of instructions given to participants and screenshots, if applicable, as779

well as details about compensation (if any)?780

Answer: [NA]781

Justification: We did not collect new data with human subjects.782

Guidelines:783

• The answer NA means that the paper does not involve crowdsourcing nor research with784

human subjects.785

• Including this information in the supplemental material is fine, but if the main contribu-786

tion of the paper involves human subjects, then as much detail as possible should be787

included in the main paper.788

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,789

or other labor should be paid at least the minimum wage in the country of the data790

collector.791

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human792

Subjects793

Question: Does the paper describe potential risks incurred by study participants, whether794

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)795

approvals (or an equivalent approval/review based on the requirements of your country or796

institution) were obtained?797

Answer: [NA]798

Justification: We did not collect new data with human subjects.799

Guidelines:800

• The answer NA means that the paper does not involve crowdsourcing nor research with801

human subjects.802

• Depending on the country in which research is conducted, IRB approval (or equivalent)803

may be required for any human subjects research. If you obtained IRB approval, you804

should clearly state this in the paper.805
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• We recognize that the procedures for this may vary significantly between institutions806

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the807

guidelines for their institution.808

• For initial submissions, do not include any information that would break anonymity (if809

applicable), such as the institution conducting the review.810
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