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1
Introduction

M
agnetic Resonance Imaging (MRI) has transformed medical imaging by offering

unparalleled non-invasive visualization of soft tissues, contrasting with techniques

such as Computed Tomography (CT) that rely on ionizing radiation. By employing strong

magnetic fields, typically ranging from 1.5 to 7 Tesla, MRI facilitates the acquisition of

images with a high signal-to-noise ratio (SNR), providing detailed spatial resolution of

anatomical and pathological structures essential for clinical assessment. The versatility of

MRI lies in the employment of a variety of imaging sequences, where parameters such as

sequence timing, including the echo and repetition time, flip angle of radio frequency pulses,

and the use of inversion pulses determine the contrast of the image. 𝑇1/𝑇2/𝑇 ∗
2 -weighted

and fluid-attenuated inversion recovery (FLAIR) contrasts are among the most commonly

used modalities, each offering a different representation of anatomy and pathology in the

human body.

MRI transcends conventional anatomical imaging, which focuses mainly on structural

visualization of tissues and organs, including functional and quantitative assessments for

applications in neurological diagnostics, therapeutic monitoring, and biomarker creation.

For example, in acute settings, such as stroke diagnosis, MRI can reveal early ischemic

changes and penumbral tissue [1], enabling dynamic assessment of tissue viability and

guiding time-critical intervention decisions. In chronic conditions such as multiple sclerosis

(MS), MRI allows precise quantification of lesion load and distribution [2], facilitating

both diagnosis and therapeutic monitoring through longitudinal assessment of disease

progression. Furthermore, advanced MRI techniques have emerged as valuable tools

for providing insights into pathophysiological mechanisms that cannot be assessed with

conventional structural imaging, such as iron quantification for studying neurodegenerative

processes and age-related changes in the brain [3],

Image acquisition fundamentally depends on the spatial frequency information in the

corresponding domain, known as k-space. During acquisition, the frequency and phase

of the measured signal are modulated repetitively by varying readout gradients. These

gradients establish a linear relationship between spatial position and resonance frequency.

The MR signal is sampled along the frequency-encoding direction. Among the broad

spectrum of MRI readout strategies, 2D and 3D Euclidean imaging are the most widely used
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in the clinic. In 2D imaging, multiple slices of a single view are acquired sequentially, using

one readout direction and one phase-encoding direction. In contrast, 3D imaging acquires

a volumetric view across all three anatomical planes (axial, coronal, and sagittal), with

a single readout direction and two phase-encoding directions simultaneously acquiring

data from an entire volume. The objective of the reconstruction task is to transform the

sampled k-space data into a visually interpretable image. This transformation is realized

through the inverse Fourier transform.

Nevertheless, the need for continuous sampling in k-space introduces an inherent

temporal constraint. MRI acquisition can be accelerated by strategically undersampling the

k-space along the phase-encoding dimensions. However, acquiring a sparse representation

of the k-space introduces complex aliasing artifacts, as it violates the Nyquist-Shannon

sampling theorem, which establishes a minimum sampling rate required to accurately

represent a continuous-time signal without aliasing [4]. Balancing this trade-off between

acquisition speed and image fidelity presents significant challenges, where the presence

of system noise, the noise produced by the scanner during acquisition, further amplifies

these fundamental challenges of the reconstruction task.

These combined factors of prolonged acquisition times and image reconstruction chal-

lenges can potentially delay treatment decisions and compromise clinical efficiency, crucial

in time-critical settings such as acute ischemic stroke. In addition, the requirement for

patients to remain still for extended periods to minimize motion artifacts can be particularly

challenging for those who are uncomfortable or claustrophobic. The cumulative impact of

these technical and practical constraints affects individual patient care while limiting the

number of patients that can be examined in a given period, potentially increasing waiting

times and reducing overall accessibility to this valuable diagnostic tool.

The overarching aim of this thesis is to accelerate MR imaging while maintaining or

improving diagnostic image quality. Central to our research is the formulation of the

reconstruction process through a linear forward model, which mathematically describes

the relationship between the sampled k-space measurements and the underlying image.

This theoretical framework serves as the foundation for understanding the challenges and

opportunities inherent in accelerated MRI reconstruction.

1.1 Accelerated MRI Reconstruction
The linear forward measurement model that describes the process of acquiring, undersam-

pling, and transforming k-space signals is mathematically expressed as 𝑦𝑖 = 𝐴 (𝑥)+𝜎, 𝑖 =
1, ..., 𝑐, where 𝑖 denotes a single receiver coil for a total number of 𝑐 coils. 𝐴 ∶ ℂ𝑛 ↦ ℂ𝑛×𝑛𝑐

models the linear forward operator of accelerating an MRI acquisition, with 𝑛 representing

the total number of pixels in the true image 𝑥 and 𝜎 ∈ ℂ𝑛
denotes the measured white

noise from the scanner, assumed to be constant across all coil channels. Consequently,

the observed measurement vector 𝑦 ↦ ℂ𝑚
emerges as the result of applying the linear

transformation 𝐴 to the signal vector 𝑥 ↦ ℂ𝑛
, with𝑚≪ 𝑛, further perturbed by an additive

noise vector 𝜎.
The forward operator 𝐴 is given by 𝐴 = 𝑃 ⊙ ⊙𝜖, with 𝑃 denoting the undersampling

scheme, where the type of imaging sequence (2D or 3D) dictates the specific undersampling

scheme used. 2D imaging utilizes 1D undersampling along one phase-encoding direc-

tion, while 3D imaging employs undersampling in two phase-encoding directions. The
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undersampling patterns, often characterized by random, equidistant, Gaussian, or Poisson

distributions, introduce varying degrees of incoherence into the acquired data, influencing

the complexity of the subsequent reconstruction task.

Next, in 𝐴,  denotes the Fourier transform and 𝜖 ∶ ℂ𝑛 ×ℂ𝑛×𝑛𝑐 ↦ ℂ𝑛×𝑛𝑐 denotes the

expand operator, which transforms a single-coil image 𝑥 into 𝑥𝑐 multi-coil images, given

by 𝜖 (𝑥) = (𝑆0⊙𝑥, ..., 𝑆𝑐⊙𝑥) = (𝑥0, ..., 𝑥𝑐). 𝑆 denotes the coil sensitivity maps, a matrix

representing the spatial sensitivities that scale every voxel in the multi-coil images by a

complex number.

The concept of using multiple receiver coils positioned around the target area to

simultaneously acquire data from different spatial locations is known as Parallel Imaging (PI)

[5]. The introduction of PI marked a significant milestone in accelerating MRI acquisition,

effectively reducing scanning times and increasing SNR. However, increased acceleration

factors lead to decreased PI efficacy, due to the ill-posed nature of the inverse problem

mapping 𝑦 ↦ 𝑥 .
An approach to approximate a solution to this inverse problem is through Maxi-

mum A Posteriori (MAP) estimation, which leverages prior knowledge of MRI to con-

strain the solution space. MAP estimation can be formulated as an optimization problem:

𝑥𝑀𝐴𝑃 = argmax𝑥 (log𝑝(𝑦 |𝑥)+ log𝑝(𝑥)), where 𝑝(𝑦 |𝑥) denotes the likelihood function and

𝑝(𝑥) represents the prior probability distribution of the signal. This formulation embodies

the essence of Bayesian inference, seeking to balance the information in the measured data

and the a priori assumptions about the signal’s characteristics. The solution is typically ob-

tained through iterative optimization algorithms by following the gradient of the objective

function.

1.1.1 Compressed Sensing
The emergence of Compressed Sensing (CS) marked another significant advancement in

accelerating MRI [6]. CS leverages the inherent sparsity of MRI data in certain transform

domains to achieve significant reductions in scanning times. These transform domains

include the wavelet domain, characterized by the inherent sparsity of medical images due to

their hierarchical structure [7]; the domain of finite differences [8], which captures smooth

features within anatomical structures; the discrete cosine transform domain [9], which

identifies periodic patterns in images; and the gradient domain [10], which represents sharp

edges and boundaries between various tissue types. When coupled with incoherent k-space

undersampling, these sparsifying transforms can enable robust image reconstruction from

substantially fewer k-space measurements. The wavelet domain, in particular, emerged as

a cornerstone in CS-MRI applications, as it effectively captures both localized features and

global image characteristics [11].

CS reconstruction can be mathematically expressed as a constrained optimization prob-

lem: min |Ψ𝑥 |1 subject to |𝐴(𝑥)−𝑦 |22 ≤𝜎, whereΨ denotes the sparsifying wavelet transform

and 𝜎 represents a small constant related to the noise level [6]. In CS, undersampling is

typically modeled using pseudo-random variable-density sampling, with a denser sampling

of the low-frequencies and a more sparse sampling of the higher frequencies. This strategy

preserves crucial structural information while introducing incoherent aliasing artifacts

that CS algorithms can effectively suppress. The integration of PI with CS, known as PICS,

has further advanced the field by enabling image reconstruction at higher acceleration
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factors.

However, implementing CS reconstruction in clinical practice faces several significant

challenges. The undersampling patterns must be optimized to balance the theoretical

requirements of incoherent sampling against practical hardware constraints and physiolog-

ical limitations. CS performance strongly depends on image contrast characteristics, with

high-contrast features, such as white and gray matter, being more easily recoverable than

subtle low-contrast structures, such as deep gray matter (e.g., basal ganglia and thalamus) in

𝑇1-weighted brain MRI. This contrast-dependent behavior can impact diagnostic accuracy,

particularly at higher acceleration factors. Furthermore, the computational demands of CS

reconstruction present practical challenges in clinical workflows where timely results are

crucial, necessitating a delicate balance between reconstruction quality and imaging times.

1.1.2 Deep Learning
Deep learning (DL) has ushered in a transformative era in medical image processing,

offering novel approaches to long-standing challenges in acquisition, reconstruction, and

analysis. The progression from Ciresan et al.’s pioneering work in neuronal structure

segmentation [12] to the revolutionary introduction of the U-Net [13] marked a significant

advancement in the analysis and interpretation of medical images on a large scale. The U-

Net has become a cornerstone in medical image analysis, spawning numerous adaptations

across various imaging modalities [14] and tasks, including MRI reconstruction [15].

The application of DL to MRI reconstruction has evolved through several stages. Initial

approaches utilized convolutional neural networks (CNNs) [16], but were limited by their

inability to incorporate domain-specific knowledge. A pivotal advancement in DL-based

accelerated MRI reconstruction emerged with the development of physics-informed DL

networks. Physics-informed DL networks leverage the prior knowledge about MR imag-

ing by integrating the forward model of MRI reconstruction into their learning scheme

through the enforcement of data consistency [17, 18]. These advanced networks have

been shown to effectively generalize to diverse data, exhibiting robustness to variations in

acquisition parameters, anatomical regions, and diseases [19–21], while allowing for rapid

reconstruction times, overcoming the limitations of CS reconstruction.

1.2 Deep Multitask Learning
Although DL has demonstrated remarkable success in various medical imaging tasks, from

image reconstruction to analysis, those tasks are usually performed separately of each

other. This independent task execution fails to leverage the rich interconnections inherent

in medical imaging, where the quality of the downstream analysis tasks is fundamentally

dependent on the quality of the prior tasks. For example, raw k-space data must first

be reconstructed into high-quality images, which then can serve as input for estimating

quantitative parameter maps, ultimately enabling accurate tissue segmentation. Each stage

presents unique learning challenges: the computational complexity of sophisticated recon-

struction algorithms, the inherent difficulty of learning accurate quantitative parameter

mappings from reconstructed images, and the challenge of learning robust segmenta-

tion models from limited annotated training data. This cascade of interdependent tasks

highlights the broader challenge of efficient medical image analysis.
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Recent work by Adler et al. [22] explored the importance of task-relatedness in medical

imaging, by investigating the fundamental relationships between image acquisition, recon-

struction, and analysis tasks. Building on task-relatedness in medical imaging tasks and

the principles of multitask learning (MTL) [23], this thesis introduces the concept of Deep

Multitask Learning (DMTL). In MTL, simultaneous learning of related tasks can enhance

generalization and performance across all tasks involved through shared representations.

DMTL extends this concept to medical imaging applications, not merely by identifying task

relationships, but actively leveraging the intricate relationships between imaging tasks,

using DL networks, to improve overall performance. An abstract representation of DMTL

can be seen in Fig. 1.1.

Figure 1.1: Abstract representation of the deep multitask learning (DMTL) concept applied in medical imaging.

1.3 Thesis Aim & Outline
This thesis aims to accelerate MR imaging by developing and validating novel methodolog-

ical frameworks that bridge physics-informed DL reconstruction with MTL approaches

through the concept of DMTL. The chapters follow a structured path from methodologi-

cal developments in accelerated MRI reconstruction to large-scale and practical clinical

evaluations, then to the introduction and application of MTL for joint reconstruction and

segmentation, and finally to the practical implementation of DMTL.

In Chapter 2, we assess the importance of data consistency in physics-informed DL re-

construction networks. At the same time, we introduce a novel reconstruction network, the

Cascades of Independently Recurrent Inference Machines (CIRIM). The CIRIM sequentially

connects multiple Recurrent Inference Machines (RIM) [18] to achieve an optimal trade-off

between fast reconstruction times and high image quality. The integration of cascades

of RIMs addresses the critical issue of vanishing and exploding gradients commonly en-

countered in Recurrent Neural Networks (RNNs) [24]. The performance of the CIRIM and

several state-of-the-art DL-based reconstruction networks and CS is evaluated on multiple

heterogeneous datasets, including brain and knee imaging. Furthermore, the generaliz-

ability of these models is tested in a real-world scenario, including the reconstruction of

unseen during training data of patients with MS lesions.

The robustness and clinical applicability of DL-based reconstruction is extensively

evaluated inChapters 3 and 4. Chapter 3 presents our contributions to the Multi-Coil MRI

(MC-MRI) reconstruction challenge, a pivotal initiative alongside the fastMRI challenges

[19, 20], which establishes standardized evaluation frameworks for DL-based reconstruction.

Chapter 4 evaluates the performance of the CIRIM in a challenging clinical context,
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comprehensively comparing it with the clinical standard PICS in reconstructing highly

accelerated (twelve-fold) 3D FLAIR data encompassing various neurological conditions,

such as stroke, MS, tumors, and Meniere’s disease. This evaluation, supported by both

quantitative metrics and an expert radiologists’ assessment, provides crucial insights into

the practical utility of DL-based reconstruction.

InChapter 5, we argue that the reconstruction task should be perceived as a standalone
task but rather consider the task-relatedness of subsequent tasks, such as segmentation, to

improve overall performance. By connecting a segmentation network to the CIRIM, we

propose a novelMTL approach for joint reconstruction and segmentation (MTLRS). Building

upon the developments of the previous chapters, in Chapter 6, we present the Advanced
Toolbox for Multitask Medical Imaging Consistency (ATOMMIC). ATOMMIC embodies the

conceptualization and practical implementation of DMTL and, more importantly, provides

full reproducibility of the research presented in this thesis. Finally, a discussion, limitations,

and future directions of DMTL for accelerating MRI are discussed in Chapter 7.
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Assessment of data consistency through cascades of independently recurrent inference

machines for fast and robust accelerated MRI reconstruction

Abstract
Objective. Machine Learning methods can learn how to reconstruct magnetic resonance
images (MRI) and thereby accelerate acquisition, which is of paramount importance to the
clinical workflow. Physics-informed networks incorporate the forward model of accelerated
MRI reconstruction in the learning process. With increasing network complexity, robustness
is not ensured when reconstructing data unseen during training. We aim to embed data
consistency (DC) in deep networks while balancing the degree of network complexity. While
doing so, we will assess whether either explicit or implicit enforcement of DC in varying
network architectures is preferred to optimize performance. Approach. We propose a scheme
called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through
unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly
by a designed term. Extensive comparison of the CIRIM to compressed sensing as well as
other Machine Learning methods is performed: the End-to-End Variational Network (E2EVN),
CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated
on 𝑇1-weighted and FLAIR contrast brain data, and 𝑇2-weighted knee data. Both 1D and
2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5×
prospectively undersampled 3D FLAIR MRI data of multiple sclerosis (MS) patients with white
matter lesions. Main results. The CIRIM performed best when implicitly enforcing DC, while
the E2EVN required an explicit DC formulation. Through its cascades, the CIRIM was able to
score higher on structural similarity and PSNR compared to other methods, in particular under
heterogeneous imaging conditions. In reconstructing MS patient data, prospectively acquired
with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast
while efficiently denoising the images. Significance. The CIRIM showed highly promising
generalization capabilities maintaining a very fair trade-off between reconstructed image
quality and fast reconstruction times, which is crucial in the clinical workflow.

2.1 Introduction
Magnetic resonance imaging (MRI) non-invasively images the anatomy of the human body.

It is important to note that data are acquired in the frequency domain, known as k-space.

Conventionally, the measured signals need to adhere to the Nyquist-criterion to allow for

inverse Fourier transforming them to the image domain without aliasing. Due to hardware

limitations and physical constraints, however, sampling the full k-space leads to long

scanning times. Almost 25 years ago, parallel-imaging (PI) [1] was introduced to reduce

acquisition times, overcoming hardware and software limitations by applying multiple

receiver coil arrays. Each coil has a distinct sensitivity profile which can be exploited in

reconstructing undersampled data. With sensitivity encoding (SENSE) the multicoil data

are transformed to the image domain through the inverse Fourier Transform, after which

a reconstruction algorithm dealiases the images based on the coil sensitivity maps [2]. The

combination of PI with compressed sensing (CS) [3, 4] is now standardly applied in clinical

settings, allowing for high acceleration factors by utilizing the constrained reconstruction

through a sparsifying transform.

Machine Learning (ML) methods can learn how to reconstruct images by training

them on acquired data for which a reference reconstruction is available. As such the

reconstruction times can be reduced, which is of paramount importance to the clinical
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workflow. The UNet [5] may be the most popular network in the field and the base for

numerous other methods, as elaborated upon below. Its unique architecture, with the

down- and up-sampling operators and the large number of features on the output, has

made it a cornerstone approach in image reconstruction today. Although such a network

architecture can perform well, its performance is still limited due to operating only in

image space without any MR physics knowledge incorporated.

Physics-informed networkswere therefore introduced, incorporating the forwardmodel

of accelerated MRI reconstruction in the learning process. The variational network (VN) [6]

and the recurrent inference machines (RIM) [7–9] proposed to solve the inverse problem of

accelerated MRI reconstruction through a Bayesian estimation. Alternatively, scan-specific

techniques were used to restore missing k-space from fully-sampled autocalibration data

[10–12]. Furthermore, dual-domain networks were proposed to leverage the k-space

information and perform corrections both in the frequency domain and the image domain.

The Learned Primal-Dual reconstruction technique (LPDNet) [13] replaced the proximal

operators in the Primal-Dual Hybrid Gradient algorithm [14] with learned operators,

yielding a learning scheme combined with model-based reconstruction. The KIKI-net [15]

introduced a sequence of convolutional neural networks (CNN) performed in k-space (K)

and image space (I). Later, concatenations of UNets were applied to replace the sequence

of CNNs in the KIKI-net [16]. Finally, the Model-Based Deep Learning technique [17]

proposed a learned model-based reconstruction scheme involving a data consistency term.

With increasing network complexity, however, robustness is not ensured when recon-

structing data unseen during training. This especially concerns clinical data with pathology

for which fully sampled reference data cannot be obtained. This was understood in recent

MRI reconstruction challenges [18–20], in which deep end-to-end schemes, such as the

End-to-End Variational Network (E2EVN) [21], the XPDNet [22], and the Joint-ICNet [23]

allowed for higher image quality at increased acceleration factors but not necessarily

for generalization to out-of-distribution data containing pathologies. Recurrent neural

networks (RNNs), i.e. the RIM and the pyramid convolutional RNN [24], appeared to

generalize well on out-of-distribution data due to their nature of maintaining a notion of

memory [25]. However, they scored lower on the trained data compared to the previously

mentioned networks, possibly due to a limited number of iterations required to avoid gradi-

ent instabilities. Such methods would potentially benefit of increased network complexity

as can be achieved using a number of cascades of networks [26–28]. The cascades can

be considered as stacked networks targeting to resolve aliasing artifacts and to enhance

denoising by iteratively evaluating the reconstruction, but without sharing parameters

through backpropagation. Unfortunately, a solution may no longer be consistent with the

acquired data with increasing network complexity. This raises a need for embedding data

consistency in deep networks while balancing the degree of network complexity.

Data consistency (DC) can be embedded into the learning scheme in several ways, such

as through gradient descent [6, 8, 21, 29], an iterative energy minimization process, namely

variable-splitting [30], generative adversarial networks [31–34], adversarial transformers

[35], complex-valued networks [32, 36, 37], transfer learning [38], manifold approximation

[39], or through sparsity [40–44]. Recent work evaluated enforcing DC in three ways, by

gradient descent, by proximal mapping, and by variable-splitting [45]. It was shown that

the training set could be reduced in size by doing so. The best results were obtained when
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train and test domains were aligned. However, it remains unknown whether either explicit

or implicit enforcement of DC in varying network architectures is the best approach to

optimize performance.

This work proposes a scheme called Cascades of Independently Recurrent Inference Ma-

chines (CIRIM). The CIRIM comprise RIM blocks sequentially connected through cascades

and the efficient Independently Recurrent Neural Network (IndRNN) [46] as recurrent

unit. The cascades allow us to train a deep but balanced RNN for improved de-aliasing

and denoising, while maintaining stable gradient calculations. The enforcement of DC

in an implicit or explicit manner will be assessed by comparison to the E2EVN. The net-

works are further compared to the CascadeNet [26], the KIKINet [15], the LPDNet [13],

the RIM [8], the RIM built with the IndRNN, the UNet [5], and conventional Compressed

Sensing reconstruction [4]. The performance is evaluated on multi-modal MRI datasets

applying different undersampling strategies. As a clinical application, we focused on recon-

structing (out-of-training distribution) FLAIR data of multiple sclerosis patients. Finally,

reconstruction times are also assessed as a critical aspect of improving clinical workflow.

2.2 Methods
In this section, first in 2.2.1, the MRI acquisition process is introduced. In 2.2.2, the

background on solving the inverse problem of accelerated MRI reconstruction through

a Bayesian approach is set. In 2.2.2 and 2.2.2, unrolled optimization by gradient descent

is reviewed via the Recurrent Inference Machines (RIM) and the End-to-End Variational

Network (E2EVN). The Cascades of Independently Recurrent Inference Machines (CIRIM)

is then proposed in 2.2.2, to expand further de-aliasing capabilities of a deep trainable

RNN. Furthermore, assessment of data consistency (DC) is performed in 2.2.2 and 2.2.2 to

evaluate to what extent the performance of networks depends on the cascades or the DC

formulation, or both. In 2.2.2, the loss function is explained with respect to the network’s

architecture. In 2.2.3, the experiments are described, i.e. the used datasets, the computed

evaluation metrics, and the hyperparameters to be optimized.

2.2.1 Accelerated MRI acqisition
The process of accelerating the MRI acquisition can be described through a forward model.

Let the true image be denoted by 𝐱 ∈ ℂ𝑛, with 𝑛 = 𝑛𝑥 ×𝑛𝑦 , and let 𝐲 ∈ ℂ𝑚, with 𝑚 ≪ 𝑛,
be the set of the sparsely sampled data in k-space. The forward model describes how

the measured data are obtained from an underlying reference image. For the 𝐢th coil of 𝐜
receiver coils, the forward model is formulated as:

𝑦𝑖 = 𝐴 (𝑥)+𝜎𝑖, 𝑖 = 1,… , 𝑐, (2.1)

in which 𝐀 ∶ ℂ𝐧 ↦ ℂ𝐧×𝐧𝐜 denotes the linear forward operator modeling the sub-sampling

process of multicoil data and 𝜎𝑖𝑖𝑖 ∈ ℂ𝐧
denotes the measured noise for the 𝐢th coil. 𝐀 is given

by

𝐴 = 𝑃 ◦𝐹 ◦ 𝜀. (2.2)

Here, 𝐏 is a sub-sampling mask selecting a fraction of samples to reduce scan time. 𝐹𝐹𝐹
denotes the Fourier transform, projecting the image onto k-space. 𝜀 ∶ ℂ𝑛 ×ℂ𝑛×𝑛𝑐 ↦ ℂ𝑛×𝑛𝑐
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denotes the expand operator, transforming 𝐱 into 𝐱𝐜 multicoil images and is given by

𝜀 (𝑥) = (𝑆0𝑥,… , 𝑆𝑐𝑥) = (𝑥0,… , 𝑥𝑐) , (2.3)

where 𝐒𝐢 are the coil sensitivity maps, a diagonal matrix representing the spatial sensitivities

that scale every pixel of the reference image by a complex number.

The adjoint backward operator of 𝐀 in (2.2), projecting 𝐲 onto image space, is given by

𝐴∗ = 𝜌 ◦𝐹−1 ◦𝑃𝑇 , (2.4)

where 𝐹𝐹𝐹−𝟏 denotes the inverse Fourier transform, and 𝜌 ∶ ℂ𝑛×𝑛𝑐 ×ℂ𝑛×𝑛𝑐 ↦ ℂ𝑛
denotes the

reduce operator that serves for combining the multicoil images 𝐱𝐜 into 𝐱. 𝜌 is given by

𝜌 (𝐱𝟎,… ,𝐱𝐜) =
𝑐
∑
𝑖=1

𝑆𝐻𝑖 𝐱𝐢, (2.5)

with 𝐇 representing Hermitian complex conjugation.

2.2.2 The inverse problem of acceleratedMRI reconstruction
The objective when solving the inverse problem of accelerated MRI reconstruction (figure

2.1) is to map the sparsely sampled k-space measurements to an unaliased, highly accurate

image. The inverse transformation of restoring the true image from the set of the sparsely

sampled measurements can be found through the Maximum A Posteriori (MAP) estimator,

given by

�̂�𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 {log𝑝 (𝑦 |𝑥)+ log𝑝 (𝑥)} , (2.6)

which is the maximization of the sum of the log-likelihood and the log-prior distribution

of 𝐲 and 𝐱, respectively. The log-likelihood expresses the log probability that k-space data

𝐲 are obtained given an image 𝐱, yielding a data fidelity term derived from the posterior

𝑝 (𝑦 |𝑥). The log-prior distribution regularizes the solution by representing an MR-image’s

most likely appearance.

Conventionally, equation (2.6) is reformulated as the following optimization problem

�̂�𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥

{
𝑐
∑
𝑖=1

𝑑 (𝑦𝑖,𝐴 (𝑥))+𝑅 (𝑥)

}

, (2.7)

where 𝑑 ensures data consistency between the reconstruction and the measurements,

reflecting the error distribution given by the log-likelihood distribution in equation (2.6). 𝑅
is a regularizer weighted by 𝜆, which constrains the solution space by incorporating prior

knowledge over 𝑥 .
Assuming Gaussian distributed data and ignoring the regularization term in equation

(2.7), the negative log-likelihood is:

log𝑝 (𝑦 |𝑥) = −
1
𝜎2

𝑐
∑
𝑖=1

‖𝐴 (𝑥)−𝑦𝑖‖22. (2.8)
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Figure 2.1: The objective in accelerated MRI reconstruction is to solve the inverse problem of recovering an

unaliased image (𝑥) from a set of sparsely sampled measurements (𝑦). A forward model starts from the true

image representation (𝑥) (top-first), measured over multiple receiver coils (𝑆) (bottom-first image). It is Fourier

transformed to k-space (top-second) and sub-sampled using a mask (𝑃 ) (top-third) to obtain sparsely sampled

measurements (𝑦) (top-fourth). Through the inverse Fourier transform (bottom-second) and after combining

with coil sensitivity maps (bottom-first), an aliased image is obtained (bottom-third).

Recurrent inference machines (RIM)
The RIM [8] were originally proposed as a general inverse problem solver. The RIM targets

iterative optimization of a model with a complex-valued parametrization, requiring taking

derivatives with respect to a complex variable. This can be achieved using the Wirtinger- or

ℂℝ-calculus [47–49]. Gradient descent is performed by us using the Wirtinger derivative,

to yield a real-valued cost function of complex values. The unrolled scheme for generating

updates is presented in figure 2.2.

Non-convex optimization can be performed based on the approach by [50]. The update

rules are learned by the optimizer 𝐡, which has its own set of parameters 𝜙. Formulating

equation (2.6) accordingly, resulting updates are of the form

𝑥𝜏+1 = 𝑥𝜏 +ℎ𝜙 (∇𝑦 |𝑥𝜏 , 𝑥𝜏) , (2.9)

at iteration 𝜏 and for a (a priori set) total number of iterations T.
The gradient of the log-likelihood function is given by

∇𝑦 |𝑥 ∶ =
1
𝜎2𝐴

∗ (𝐴 (𝑥)−𝑦) . (2.10)

The advantage of the RIM is the explicit modeling of the update rule 𝐡𝜙 using a recurrent
neural network (RNN). In addition to the gradient information, the model is aware of the

position of the estimation in variable space equation (2.9).
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Figure 2.2: The recurrent inference machines unrolled over two iterations. The inputs to the model are the set of

sparsely sampled measurements (𝑦) (top, second image), the coil sensitivities maps (𝑆𝑐) (top, first image), and the

initial estimation (𝑥𝟎) (top, third image) for the estimation of the log-likelihood gradient (llg) (∇𝑦 |𝑥𝟎 ). The llg is
passed through a network to produce updates; the network maintains hidden states initialized by 𝑠𝟎 = 𝟎, 𝑠𝟏 = 𝟎.
At each iteration (𝜏) the network updates itself and after total (T) iterations produces the final estimation (𝑥T)
(rightmost).

By inserting equation (2.10) into (2.9), the update equations are obtained, given by

𝑠0 = 0, 𝑥0 = 𝐴∗(𝑦),

𝑠𝜏+1 = ℎ∗𝜙 (∇𝑦 |𝑥𝜏 , 𝑥𝜏 , 𝑠𝜏) , 𝑥𝜏+1 = 𝑥𝜏 +ℎ𝜙 (∇𝑦 |𝑥𝜏 , 𝑥𝜏 , 𝑠𝜏+1) .
(2.11)

where 𝐡𝜙∗ is the updated model for state variable 𝐬. Equation (2.11) reflects that not the

prior is explicitly evaluated, but instead its gradient when performing updates. The step size

is learned implicitly in combination with the prior. Therefore, 𝐡𝜙 also acts as regularizer 𝐑
in equation (2.7). Observe that the RIM contains latent (hidden) states, representing the

recurrent aspects of the network.

End-to-end variational network (E2EVN)
The variational network (VN) [6] introduces a mapping to real-valued numbers, going

from mapping ℂ𝑛 ↦ ℂ𝑚
to mapping ℝ2𝑛 ↦ ℝ2𝑚

. 𝐱 can be computed by least-squares

minimization in equation (2.8). As originally proposed in [51] and adapted by the VN,

the idea is to perform gradient descent through the iterative Landweber algorithm. By

defining a regularizer 𝐑, equation (2.7) can be formulated as a trainable gradient scheme

with time-varying parameters.

The End-to-End Variational Network (E2EVN) [21] uses a UNet as regularizer (𝑅𝑈𝑁𝑒𝑡 ),

whose parameters are learned from the data. Unrolled optimization of the regularized

problem in equation (2.7) is performed through cascades, given by

�̂�𝑘+1 =𝑈𝑁𝑒𝑡𝑘 (
∗ (𝑦𝑘)) , (2.12)
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for cascade 𝑘, with 1⩽ 𝑘 ⩽𝐾 for a total number of𝐾 cascades. Next, an explicitly formulated

data consistency step applies k-space corrections. This step is given by

𝑦𝑘+1 = 𝑦𝑘 −𝑑(𝑦𝑘 −𝑦)−𝐴(�̂�𝑘+1), (2.13)

where 𝑑 (𝑦𝑘 −𝑦) is a soft DC term, with a weighting factor 𝑑. The optimization is initialized

with the (sparsely sampled) measurement data, 𝑦𝑘=1 = 𝑦. The eventual image is obtained

via the adjoint operator 𝑥𝐾 = 𝐴∗ (𝑦𝐾 ).
In this paper, we test omitting the DC step, in equation (2.13), and evaluate if the

network’s performance is more dependent on the cascades or the gradient step. In that case,

updates are given by equation (2.12). Note that the cascades effectively yield sequentially

connected VN blocks, targeting de-aliasing (figure 2.3).

The complex-valued image to complex-valued image mapping is performed in image

space by concatenating the real and imaginary parts along the coil dimension. After the

regularizer’s update in equation (2.12), the image is reshaped to have the real and imaginary

parts stacked to a complex (last) dimension.

Cascades of independently recurrent inference machines (CIRIM)
We now propose Cascades of Independently Recurrent Inference Machines (CIRIM), con-

sisting of sequentially connected RIM blocks (Figure 2.3). The cascades allow building a

deep RNN without vanishing or exploding gradients issues and further evaluate Eq. (2.7)

through K cascades. As such the RIM acts as regularizer (𝑅𝑅𝐼𝑀 ), while the updates to the

CIRIM are given by

�̂�𝑘+1 = 𝑥𝑘 +𝜆𝑅𝑅𝐼𝑀𝑘 (𝑥𝑘) , (2.14)

for cascade 𝑘, with 1 ⩽ 𝑘 ⩽ 𝐾 .
In previous work [7, 8], the gated recurrent unit (GRU) [52] was used as recurrent unit

for the RIM. A key novelty of our approach is to include the Independently Recurrent Neural

Networks (IndRNN) [46] as a more efficient unit for balancing the network’s complexity

while increasing the number of trainable parameters through the cascades.

Through the cascades the network’s size has increased, but it is unclear whether either

implicitly evaluating data consistency through the log-likelihood gradient in equation

(2.8) is adequate, or an additional learned gradient step is needed to constrain the solution

space further. In a similar manner as in equation (2.13), we assess enforcing DC explicitly

and interleaved between the cascades. By doing so, we aim to understand to what extent

the network’s performance and de-aliasing capabilities depend on the cascades or the

formulation of the DC.

Then, the updated prediction of the model is given by

�̂�𝑘+1 = 𝐴∗ (𝑦𝑘 −𝑑 (𝑦𝑘 −𝑦)−𝐴 (�̂�𝑘+1)) , (2.15)

with 𝑥𝐾 = 𝐴∗ (𝑦𝐾 ). If this DC step is omitted, updates to the CIRIM are given by equation

(14). Implementation notation for the recurrent units can be found in the appendix.

Loss function
For calculating the loss, we compare magnitude images derived from the complex-valued

estimations �̂� against the fully sampled reference 𝑥 . As a loss function, we choose the
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Figure 2.3: Overview scheme for performing unrolled optimization through cascades. The first row represents

the Cascades of Independently Recurrent Inference Machines (CIRIM), in which a RIM is used as a regularizer

(𝐑𝐑𝐈𝐌). The prediction ( ̂𝐱𝐤𝟏 ) of the first cascade (𝐤𝟏) is given as input to the subsequent cascade (𝐤𝟐), while an
(optional) additional data consistency step can be performed through an explicitly formulated term (𝐝). After
(𝐊) cascades the network returns the final prediction (𝐱𝐊). The second row depicts the End-to-end Variational

Network (E2EVN), where a UNet is used as a regularizer (𝐑𝐔𝐍𝐄𝐓). Similarly, as for the CIRIM, the updates are

passed through the cascades and the data consistency step. In the third row, first, the backward operator (𝐀∗
) is

shown, transforming multicoil k-space measurements onto a coil-combined image; second, the forward operator

(𝐀) is depicted, transforming a coil-combined image into multicoil k-space measurements; third, the log-likelihood

gradient (∇𝐲|𝐱𝐤 ) reflects the implicit gradient step of the RIM and fourth, the (optional) interleaved between the

cascades DC term (𝐝) is presented, enforcing an explicit gradient step to the CIRIM and the E2EVN.

𝓁1−𝑛𝑜𝑟𝑚. The 𝓁1−𝑛𝑜𝑟𝑚 represents the sum of the absolute difference, given by

𝐿(𝑙1)(�̂�) = |�̂� −𝑥 |. (2.16)

For the E2EVN and other trained models, the loss is given by equation (16). For the

CIRIM, the loss is weighted depending on the number of iterations and averaged over the

𝐾 cascades, to emphasize the predictions of the later iterations. The loss is then formulated

as
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𝐿(𝑙1)(�̂�) =
∑𝑐

𝑖=1(
1
𝑞𝑇 ∑𝑇

𝜏=1𝑤𝜏 |�̂�𝜏 −𝑥 |)
𝐾

, (2.17)

where 𝑞 is the total number of pixels of the image and 𝑤𝜏 is a weighting vector of

length 𝑇 prioritizing the loss at later time-steps. The weights are calculated by setting

𝑤𝜏 = 10−
𝑇−𝜏
𝑇−1 .

2.2.3 Experiments
For our experiments, we used multiple datasets as described in 2.3.1. Scanning parameters

of these datasets are given in table 2.1.

Our experiments focused on assessment of the following aspects:

A. Training and validation in fully sampled and retrospectively undersampled data. The

undersampling strategy is described in Section 2.2.3.

B. Independent evaluation in prospectively undersampled data of Multiple Sclerosis

patients containing white matter lesions.

We trained and compared the CIRIM and the E2VN to the LPDNet, the KIKINet, and the

CascadeNet [13, 15, 26], the hyperparameters of which are described in 2.3.3. For comparing

the performance of the methods regarding assessment (A) we chose the structural similarity

index measure (SSIM) [53] and the peak signal-to-noise ratio (PSNR). For assessment (B),

we calculated the contrast resolution (CR), the noise in the white matter (WMN), the noise

in the background (BGN), and a resulted weighted average (WA). The metrics are described

in 2.3.4.

Datasets
For assessment (A), three fully sampled raw complex-valued multi-coil datasets were

obtained. The first dataset was acquired in-house. To this end, eleven healthy subjects

were included, from whom written informed consent (under an institutionally approved

protocol) was obtained beforehand. The ethics board of Amsterdam UMC declared that this

study was exempt from IRB approval. All eleven subjects were scanned by performing 3D

T1-weighted brain imaging on a 3.0 T Philips Ingenia scanner (Philips Healthcare, Best, The

Netherlands) in Amsterdam UMC. The data were visually checked to ascertain that they

were not affected by motion artifacts. After scanning, raw data were exported and stored

for offline reconstruction experiments. The training set was composed of ten subjects

(approximately 3000 slices) and the validation set of one subject (approximately 300 slices).

The second dataset consisted of 451 2D multislice FLAIR scans, publicly available

through the fastMRI brains dataset [54]. The training set consisted of 344 scans (approx-

imately 5000 slices) and the validation set of 107 scans (approximately 500 slices). The

number of coils varied from 2 to 24. The data were cropped in the image domain to 320 for

the readout direction by the size of the phase encoding direction (varied from 213 to 320).

The cropped images were visually evaluated to not crop any tissue (only air).

The third dataset was composed of 3D knee scans of 20 subjects, available on a public

repository [55]. From these data, two subjects were discarded due to observed motion
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artifacts. The training set consisted of 17 subjects (approximately 12 000 slices) and the

validation set of one subject (approximately 700 slices).

For all datasets, coil sensitivities were estimated using an autocalibration procedure

called ecalib from the BART toolbox [56], which leverages the ESPIRiT algorithm [57]. For

training and validation, slices were randomly selected by setting a random seed to enable

deterministic behavior for all methods and ensure reproducibility. Note that the validation

set was only used to calculate the loss at the end of each epoch and not included into the

training set. Finally, all volumes were normalized to the maximum magnitude.

For assessment (B), testing the methods’ ability to reconstruct unseen pathology, a

dataset of 3D FLAIR data of multiple sclerosis patients with known white matter lesions

was obtained. Data were prospectively undersampled with a factor of 7.5x based on a

Variable-Density Poisson disk distribution. Originally these data were acquired on a 3.0 T

Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands) in Amsterdam UMC,

within the scope of a larger, ongoing study. The local ethics review board approved this

study and patients provided informed consent prior to imaging. A fully-sampled reference

scan was also acquired and used to estimate coil sensitivity maps using the caldir method of

the BART toolbox [56]. The data were visually checked after which all subjects with motion

artifacts were discarded, ending up including 18 patients (approximately 4000 slices).

Undersampling
The masks for retrospective undersampling in assessment (A) were initially defined in 2D.

As such the models trained on all modalities could also be used later for reconstructing

high-resolution isotropic FLAIR data for assessment (B). The 3D datasets were first Fourier

transformed along the frequency encoding axis and used as separate slices along the two-

phase encoding axes. The 2D multislice FLAIR dataset was initially Fourier transformed

along the frequency encoding axis and undersampled per slice in 2D, to train a model on

an identical contrast as in assessment (B), while also having pathology present in the data.

All data were retrospectively undersampled in 2D by sampling k-space points from

a Gaussian distribution with a full width at half maximum (FWHM) of 0.7, relative to

the k-space dimensions. Hereby the sampling of low frequencies is prioritized whereas

incoherent noise is created due to the random sampling. Note that in this way, we abide by

the compressed sensing (CS) requirement of processing incoherently sampled data [3]. For

autocalibration purposes, data points near the k-space center were fully sampled within

an ellipse of which the half-axes were set to 2% of the fully sampled region. Acceleration

factors of 4×, 6×, 8×, and 10× were used by randomly generating a sampling mask (𝑃 ) with
according sampling density (both during training and validation).

To abide to the underlying sampling protocol, and to test the model’s ability to recon-

struct undersampled data in 1D, we performed an additional experiment with retrospective

undersampling in just one dimension. Equidistant k-space points were sampled in the

phase encoding direction [57]. The acceleration factor was set to four, while the central

region was densely sampled retaining eight percent of the fully-sampled k-space.

Hyperparameters
For the CIRIM models, hyperparameters were selected as follows. The number of cas-

cades 𝐾 was set to 5, the number of channels to 64 for the recurrent and convolutional

layers, and the number of iterations 𝑇 to 8. The hyperparameter search for finding the
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optimal number of cascades is shown in the Supplementary Material (available online at

stacks.iop.org/PMB/67/124001/mmedia). The kernel size of the first convolutional layer

was set to 5 × 5 and to 3 × 3 for the second and third layers. The optimization of these

hyperparameters is described elsewhere [8]. Next, we trained models on the T1-Brain

dataset, the T2-Knee dataset, and the FLAIR-Brain dataset to realize the DC step from

equation (15).

For the E2EVN models, we chose 8 cascades, 4 pooling layers, 18 channels for the

convolutional layers, and included the DC step from equation (13). The hyperparameter

search for finding the optimal number of cascades, pooling layers, and number of chan-

nels, is again shown in the supplementary material. Then, for further optimization, we

experimented with training models on the T1-Brain dataset, the T2-Knee dataset, and the

FLAIR-Brain dataset while omitting the DC step. The inputs to the UNet regularizer were

padded for making the inputs square, setting the padding size to 11, and the outputs were

unpadded for restoring the original input size.

For the baseline UNet, the number of input and output channels was set to 2. The

number of channels for the convolutional layers was set to 64, and we chose 2 pooling

layers. Similar to the E2EVN, the padding size was set to 11, while no dropout was applied.

The selected hyperparameters for the UNet were motivated by the configuration in [58].

For the LPDNet, the KIKINet, and the CascadeNet, the choice of the hyperparameters

was motivated from the baseline proposed models. For the LPDNet we used the same

network architecture for both the primal and the dual part, being a UNet with 16 channels,

2 pooling layers, and padding size of 11, while no dropout was applied. The number of the

primals, the duals, and the number of unrolled iterations was set to 5. Similarly, for the

KIKINet, we used the UNet architecture for the k-space and the image space networks. The

number of channels was set to 64, the number of pooling layers to 2, and the padding size

to 11, without applying any dropout. Finally, for the CascadeNet the number of cascades

set to 10, using a sequence of CNNs with 64 channels and depth size of 5, without applying

batch normalization.

For all models, we applied the ADAM optimizer (Kingma and Ba 2015), setting the

learning rate to 1e-3, except for the CascadeNet where the learning rate was set to 1e-5. The

batch size was set to 1, allowing training on various input sizes. The data type was set to

complex64 for complex-valued data and to float16 for real-valued data. For training models

with 2D undersampling, the loss function for the CIRIM is given by equation (17) and for

all models by equation (16). For training models with 1D undersampling, we used the SSIM

as loss function, motivated by [20], as a better option for resolving artifacts introduced by

equidistant undersampling.

CS reconstructions were performed using the BART toolbox [56]. Here we used parall-

el-imaging compressed sensing (PICS) with a 𝓁1-wavelet sparsity transform. The regular-

ization parameter was set to 𝛼 = 0.005, which was heuristically determined as a trade-off

between aliasing noise and blurring. The maximum number of iterations was set to 60. We

tested the reconstruction times of CS on the GPU (turning the -g flag on).

All experiments were performed on an Nvidia Tesla V100 with 32GB of memory. The

code was implemented in PyTorch 1.9 [59] and PyTorch-Lighting 1.5.5 [60], on top of novel

frameworks [61, 62], and can be found at https://github.com/wdika/mridc.

https://github.com/wdika/mridc
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Evaluation metrics
For quantitative evaluation of the fully-sampled measurements, we compared normalized

magnitude images derived from the complex-valued estimations 𝑥𝜏 against the reference 𝑥
and calculated SSIM and PSNR metrics.

For evaluating robustness on the 3D FLAIR MS data, we computed the contrast resolu-

tion (CR), the noise in the white matter (WMN), the noise in the background (BGN), and a

resulted weighted average (WA) of those three metrics.

Since the data are not fully-sampled, the CR is an efficient metric to evaluate the signal

level between the white matter and the lesions. To compute CR, lesion segmentations

were performed using a pretrained multi-view convolutional neural network (MV-CNN).

The MV-CNN was previously trained on combined Fast Imaging Employing Steady-state

Acquisition (FIESTA), 𝑇2-weighted and contrast-enhanced 𝑇1-weighted data, for eye and

tumor segmentation of retinoblastoma patients [63]. For the segmentation of the white

matter, the statistical parametric mapping (SPM) toolbox was used [64]. The mean lesion

intensity was compared to that of presumed homogeneous surrounding white matter. To

that end, the lesion masks were dilated by four voxels and intersected with the whole brain

white matter mask. The CR is then defined as the difference between the lesion signal and

the signal in the surrounding white matter, divided by the summation of them, given by

𝐶𝑅 =
𝑠lesion− 𝑠WM Surrounding Lesion

𝑠lesion+ 𝑠WM Surrounding Lesion

. (2.18)

The WMN is defined as the mode of the gradient magnitude image 𝑥 , given by

𝑊𝑀𝑁 =mode(∇
||||
𝑥

𝑥WM

||||)
, (2.19)

where �̄�WM is the mean WM intensity. The background noise (BGN) is computed as the

99-percentile value in the background region, being the complement of a tissue mask.

A weighted average (WA) was eventually defined as the combination of the CR, the

WMN, and the BGN after scaling them to maximum value.

Finally, for every scan, the signal-to-noise ratio (SNR) was calculated as follows,

𝑆𝑁𝑅 =
𝑡 |𝑥 |
|̃𝑌 |

, (2.20)

where 𝑡 |𝑥 | is the mean value after thresholding the magnitude image 𝑥 to discard the

background, and ̃|𝑦 | the median magnitude value within a square region in the periphery

of k-space, which was assumed to be dominated by imaging noise. The threshold 𝑡 was set
using Otsu’s method (Otsu 1979).

2.3 Results
Figure 2.4 shows SSIM and PSNR scores upon assessing DC explicitly and implicitly for

the CIRIM (figure 2.4(a)) and the E2EVN (figure 2.4(b)). The models were trained on the

T1-Brain dataset, the T2-Knee dataset, and the FLAIR-Brain dataset.

A qualitative evaluation of the CIRIM’s and the E2EVN’s performance on the trained

datasets, accelerated with ten-times Gaussian 2D undersampling, is presented in figure 2.5.
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The CIRIM performed significantly better than the E2EVN on the 𝑇1-Brain and the FLAIR-

Brain dataset. On the FLAIR-Brain dataset, the E2EVN failed to accurately reconstruct the

center of brain, as well as to resolve noise in the White Matter lesion. On the 𝑇2-Knee
dataset, the two models performed comparably in terms of SSIM, while the CIRIM showed

a slight improvement in PSNR.

(a)

(b)

Figure 2.4: Data consistency (DC) assessment for (a) Cascades of Independently Recurrent Inference Machines

and (b) End-to-End Variational Network. DC is enforced both explicitly (red) and implicitly (blue). The first row

represents SSIM scores and the second row PSNR scores. Performance is reported for models trained on the

𝑇1-Brain dataset (first column), the 𝑇2-Knee dataset (second column), and the FLAIR-Brain dataset (third column).

In figure 2.6, the CIRIM is compared to the RIM and the IRIM. SSIM and PSNR scores

are reported for each model trained on the T1-Brain dataset, the T2-Knee dataset, and the

FLAIR-Brain dataset. The IRIM performed slightly worse compared to the RIM, while the

CIRIM performed best.

Table 2.2 collates overall performance of the methods on all training datasets (𝑇1-Brain,
𝑇2-Knee, FLAIR-Brain). The methods were evaluated with ten-times accelerated data

using Gaussian 2D masking, and four times accelerated equidistant 1D masking. For the

FLAIR-Brain dataset we dropped the slices outside the head, containing no signal. The
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CIRIM performed best in all settings in terms of SSIM and PSNR, while only the E2EVN

had comparable performance for the evaluation on the 𝑇2-Knee dataset. Representative
reconstructions can be found in the supplementary material, as well as further evaluation

for four-, six-, and eight-times acceleration for Gaussian 2D undersampling.

Figure 2.5: Comparison of the CIRIM (third column) to the E2EVN (fourth column) for reconstructing ten-times

accelerated slices from the 𝑇1-Brain dataset (first row, first and second image), the 𝑇2-Knee dataset (second row,

first and second image), and the FLAIR-Brain dataset (third row, first and second images). For the FLAIR-Brain

dataset, the inset focuses on a reconstructed White Matter lesion; obtained through the fastMRI + annotations

[65]. The arrow points out to a region of interested.

The trained models on each dataset and undersampling scheme were used to evaluate

performance on out-of-training distribution data, containing MS lesions. As summarized

in table 2.3, the performance is evaluated quantitatively by measuring the CR of the recon-

structed lesions, the WMN, the background noise (BGN) and a WA. A combination of high

CR, low WMN and low BGN yields a low WA and reflects highly accurate reconstruction

(figures 2.6, S.2.7, S.2.8), such as in the CIRIM FLAIR-Brain model and PICS. The models

trained on the FLAIR-Brain, the FLAIR-Brain 1D, and the T1-Brain datasets scored high on

CR and low on WMN compared to the T2-Knee trained models. The CIRIM and the RIM

achieved the lowest BGN. The CascadeNet, the E2EVN, the KIKINet, and the UNet models

reported high BGN, in general corresponding to more aliased reconstruction. The LPDNet
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achieved high CR and relatively low WMN and BGN, but the observed reconstruction

quality was poor. This also highlighted the need for combined metrics and qualitative

evaluation to evaluate performance.

Figure 2.7 shows reconstructions of a coronal slice from the MS FLAIR-Brain dataset.

Visually, the CIRIM, PICS, RIM, and IRIM reconstructions appear similar. The E2EVN and

the CascadeNet showed inhomogeneous intensities and high contrast deviations. The

LPDNet showed more aliased reconstructions, with lower contrast levels. The KIKINet and

the UNet seemed in our experiments not able to resolve background noise and in general

resulted in more distorted images. Example reconstructions of two more subjects including

axial and sagittal plane reconstructions can be found in the supplementary material.

Figure 2.6: Comparison of the Cascades of Independently Recurrent Inference Machines (CIRIM) (blue color), to

the recurrent inference machines (RIM) (red color), and the independently recurrent inference machines (IRIM)

(green color). Performance is reported for SSIM (first row) and PSNR (second row), on the 𝑇1-Brain dataset (first

column), the 𝑇2-Knee dataset (second column), and the FLAIR-Brain dataset (third column).

Finally, in figure 2.8, the reconstruction times of all methods are reported. As input,

one volume from the trained fastMRI FLAIR brains dataset was taken, consisting of fifteen

slices cropped to a matrix size of 320 × 320. The KIKINet, PICS, and the LPDNet were the

slowest methods, requiring 247 ms, 245 ms, and 237 ms respectively to reconstruct the

volume. The CIRIM needed 139 ms, the RIM 48 ms, the E2EVN 44 ms, the CascadeNet 42

ms, the IRIM 28 ms, and the UNet 8 ms.

2.4 Discussion
In this paper, we proposed the CIRIM, for a balanced increase in model complexity while

maintaining generalization capabilities. We assessed DC both implicitly through unrolled

optimization by gradient descent and explicitly by a formulated term. Robustness was

evaluated by reconstructing sparsely sampled MRI data containing unseen pathology. The

CIRIM was extensively compared to another unrolled network, the E2EVN, and a range of

other methods.

In experiments reconstructing brain and knee data containing different contrasts, the

proposed CIRIM performed best, with promising generalization capabilities. On the 𝑇2-knee
dataset, the E2EVN performed equivalently to the CIRIM, while on the 𝑇1-brain and the
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FLAIR-brain datasets for eight- and ten-times acceleration, the measured PSNR dropped by

approximately 5% of what compared to what. Visually, this reflected in missing anatomical

details such as vessels. The LPDNet, the RIM, and the IRIM performed comparable but

slightly worse than the CIRIM. The CascadeNet and the KIKINet, dropped further in SSIM

and PSNR on all trained datasets, resulting in more noisy reconstructions. PICS and the

UNet showed most of the time overly smoothed results. Interestingly, for 1D undersampling

the CascadeNet showed comparable performance to the CIRIM, but it was more sensitive

to banding artifacts.

Table 2.3: Independent evaluation of model performance on the 3D FLAIR MS Brains dataset for different training

datasets. The reported figures collate: contrast resolution (CR), gradient magnitude with white matter noise

(WMN), background noise (BGN), and weighted average (WA). The mean and standard deviation on each metric

is given. The best scores are underlined and model highlights in bold. Methods are sorted in alphabetical order.

Method Trained Dataset CR↑ WMN↓ BGN↓ WA↓
CascadeNet 𝑇1-Brain 0.128 ± 0.028 0.135 ± 0.022 0.292 ± 0.078 1.08

𝑇2-Knee 0.087 ± 0.040 0.290 ± 0.059 0.302 ± 0.083 1.43

FLAIR-Brain 0.145 ± 0.030 0.126 ± 0.016 0.265 ± 0.071 0.96

FLAIR-Brain 1D 0.139 ± 0.025 0.121 ± 0.016 0.309 ± 0.068 1.05

CIRIM 𝑇1-Brain 0.179 ± 0.025 0.145 ± 0.030 0.172 ± 0.092 1.69

𝑇2-Knee 0.097 ± 0.020 0.285 ± 0.034 0.322 ± 0.053 0.62

FLAIR-Brain 0.183 ± 0.025 0.131 ± 0.029 0.104 ± 0.085 0.55
E2EVN 𝑇1-Brain 0.173 ± 0.030 0.110 ± 0.017 0.137 ± 0.074 0.62

𝑇2-Knee 0.145 ± 0.034 0.144 ± 0.010 0.359 ± 0.095 1.13

FLAIR-Brain 0.159 ± 0.041 0.116 ± 0.014 0.358 ± 0.064 1.03

FLAIR-Brain 1D 0.134 ± 0.035 0.141 ± 0.020 0.356 ± 0.052 1.77

IRIM 𝑇1-Brain 0.159 ± 0.025 0.128 ± 0.027 0.200 ± 0.070 0.80

𝑇2-Knee 0.078 ± 0.021 0.260 ± 0.122 0.348 ± 0.118 1.51

FLAIR-Brain 0.169 ± 0.027 0.145 ± 0.020 0.213 ± 0.075 0.77

FLAIR-Brain 1D 0.176 ± 0.025 0.151 ± 0.020 0.432 ± 0.075 1.40

KIKINet 𝑇1-Brain 0.117 ± 0.032 0.184 ± 0.042 0.423 ± 0.075 0.77

𝑇2-Knee 0.149 ± 0.026 0.235 ± 0.032 0.294 ± 0.087 1.10

FLAIR-Brain 0.105 ± 0.077 0.175 ± 0.040 0.626 ± 0.096 1.75

FLAIR-Brain 1D 0.103 ± 0.026 0.144 ± 0.035 0.352 ± 0.052 1.29

LPDNet 𝑇1-Brain 0.240 ± 0.046 0.126 ± 0.029 0.210 ± 0.070 0.56

𝑇2-Knee 0.030 ± 0.051 0.206 ± 0.031 0.204 ± 0.040 1.34

FLAIR-Brain 0.117 ± 0.024 0.099 ± 0.012 0.332 ± 0.075 1.15

FLAIR-Brain 1D 0.066 ± 0.029 0.129 ± 0.024 0.338 ± 0.070 1.40

RIM 𝑇1-Brain 0.178 ± 0.025 0.168 ± 0.026 0.170 ± 0.093 0.71

𝑇2-Knee 0.091 ± 0.036 0.149 ± 0.030 0.251 ± 0.091 1.18

FLAIR-Brain 0.197 ± 0.029 0.175 ± 0.025 0.134 ± 0.088 0.58

FLAIR-Brain 1D 0.183 ± 0.027 0.158 ± 0.026 0.165 ± 0.074 0.67

UNet 𝑇1-Brain 0.182 ± 0.034 0.174 ± 0.022 0.276 ± 0.069 0.87

𝑇2-Knee 0.125 ± 0.040 0.324 ± 0.084 0.285 ± 0.089 1.93

FLAIR-Brain 0.085 ± 0.027 0.079 ± 0.010 0.625 ± 0.137 1.72

FLAIR-Brain 1D 0.087 ± 0.027 0.105 ± 0.023 0.345 ± 0.070 1.40

PICS 0.178 ± 0.025 0.140 ± 0.018 0.147 ± 0.092 0.64

Zero-Filled 0.072 ± 0.023 0.092 ± 0.017 0.372 ± 0.064 1.39

The RIM-based models (RIM, IRIM, CIRIM), trained on FLAIR and T1-weighted brain

data, and PICS, could accurately reconstruct Multiple Sclerosis lesions unseen during
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Figure 2.7: Reconstructions of a representative coronal slice of a 7.5x accelerated 3D FLAIR scan of a MS patient.

Segmented MS lesions are depicted with red colored contours. Shown is the aliased linear reconstruction (first

row-first image), PICS (first row-second image), and models’ reconstructions on each trained scheme: the FLAIR-

Brain dataset with Gaussian 2D undersampling (second-last row, first column), the 𝑇1-Brain dataset with Gaussian

2D undersampling (second-last row, second column), the FLAIR-Brain dataset with equidistant 1D undersampling

(second-last row, third column), and the 𝑇2-Knee dataset with Gaussian 2D undersampling (second-last row,

fourth column). The inset on the right bottom of each reconstruction focuses on a lesion region with high spatial

detail.
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Figure 2.8: Inference times for reconstructing one volume from the FLAIR brains dataset using different methods.

The x-axis represents methods’ number of trainable parameters. The y-axis shows the run time in seconds.

training. Spatial detail when reconstructing MS lesions was preserved with better denoised

images, compared to, e.g. the CascadeNet. The E2EVN and the LPDNet did not show any

significant improvement in this respect. The reason for such behavior might be that these

scans, in contrast to the training data, came without a fully sampled center since a separate

reference scan was acquired. This deviation from the training data could explain the lower

performance of some of the models. Conditional deep priors tend to learn dealiasing of

undersampled acquisitions on images that they have trained on. In such a situation, learning

k-space corrections might be disadvantageous. The KIKINet and the UNet performed

significantly worse than the other methods, thereby appearing to be sensitive to noisy

inputs. Furthermore, the models trained on knees were inadequate in reconstructing MS

lesions, indicating training anatomy preference rather than generalization. Remarkably, this

was also realized by the performance of the networks trained on the FLAIR-Brain datasets

with equidistant 1D undersampling. All models generalized well on reconstructing the MS

data, despite the deviating undersampling scheme (variable density poisson sampling in

2D).

The SNR, the number of coils, and the size of the training dataset appeared to be

important parameters that influenced performance. This is to be seen in the reported SSIM

and PSNR scores. Here, the E2EVN models performed highest on the largest dataset, i.e.

the T2-weighted knee dataset, which contained approximately 12 000 slices. However,

all models experienced lower performance due to lower SNR (17.1 ± 4.5) and number of

coils (8), compared to the T1-weighted brain dataset (3000 slices, SNR of 25.7 ± 5.4, and

32 coils). The FLAIR brain dataset, despite its relatively high SNR (5000 slices and SNR of

23.6 ± 4.8), did not necessarily yield high quality in reconstructed images. The deviating

number of coils (from 2 to 24), field strength (1.5 T an 3 T), and matrix sizes, resulted

in a challenging dataset to converge with when training a model. In this situation, the

advantage of implementing cascades was most apparent, making the CIRIM being robust
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with all tested acceleration factors (4x, 6x, 8x—supplementary material and 10x—table 2.2).

PICS and the UNet scored overall lower, illustrating that learning a prior with an efficient

model is advantageous.

Importantly, our results show that the RIM-based models can reconstruct image details

unseen during training. The RIM explicitly contains a formulation of the prior information

of an MR image and acts as optimizer itself. Unrolled optimization is performed by gradient

descent (Putzky andWelling 2017), such that DC is enforced implicitly. The CIRIM allows to

further denoise the reconstructed images through the cascades without sharing parameters,

similar to previously proposed deep cascading networks [26, 66, 67]. The cascades thereby

allowed us to train an overall deep network of multiple connected RNNs that captures

long-range dependencies while avoiding vanishing or exploding gradients. The E2EVN

also performs unrolled optimization through cascades, but explicitly enforces DC with a

formulated term.

Recent work has pointed out the importance of benchmarking and quantifying the

performance of deep networks regarding the GPU memory required for training, the

inference times, the applications, and the optimization [45, 68, 69]. With regard to inference

times, methods such as the LPDNet and the KIKINet did not seem to improve in speed over

the conventional CS algorithm, implemented on the GPU. The reason for these methods

being slower is that they consist of deep feed-forward large convolutional layers. The RIM,

the E2EVN, and the CascadeNet reduce reconstruction times by a factor of six compared to

CS. Here, inference is performed over an iterative scheme, in which sharing of parameters

is optimized either through time-steps or cascades. The IRIM and the UNet even further

reduce the time by a factor of two and six, respectively. The CIRIM serves as a balanced deep

network, being two times faster than the slowest methods and two times slower than the

other cascading networks. The performance gain in further denoising and generalization

capabilities may counterbalance the need for longer inference times.

2.5 Conclusion
The CIRIM implicitly enforces DC when targeting unrolled optimization through gradi-

ent descent. The comparable E2EVN performed best when DC was explicitly enforced,

performing well on the training distributions. However, it appeared to be inadequate on

reconstructing out-of-training distribution data without a fully sampled center. The CIRIM

performed best on all training datasets, tested undersampling schemes and acceleration

factors. Also, it showed robust performance on reconstructing accelerated FLAIR data

containing MS lesions, achieving good lesion contrast and efficient denoising compared

to PICS, the baseline RIM and the IRIM. In contrast, methods such as the CascadeNet and

the LPDNet were sensitive to highly noisy untrained data, showing limited generalization

capabilities. The KIKINet and the UNet tended to oversimplify the reconstructed images,

performing markedly worse than rest methods. To that extent, the impression is that

evaluating the forward process of accelerated MRI reconstruction, frequently through time,

is of great importance for generalization in other settings. The implemented cascades and

the application of the RIM to a deeper network allowed backpropagation on a smaller

number of time-steps but on higher frequency for each iteration. Thus, a key advantage of

the CIRIM is that it maintains a very fair trade-off between reconstructed image quality

and fast reconstruction times, which is crucial in the clinical workflow.
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2.7 Appendix
Appendix. Gated recurrent unit (GRU) The GRU has two gating units, the reset gate and

the update gate. These gates control how the information flows in the network. The

update gate regulates the update to a new hidden state, whereas the reset gate controls the

information to forget. Both gates act in a probabilistic manner.

The activation of the reset gate 𝐫 at iteration 𝜏, for updating equation (9), is computed

by

𝑟𝜏 = 𝜎 (𝑊𝑟 [𝑠𝜏−1, 𝑥𝜏]+𝑏𝑟 ) , (2.21)

Similarly, the update gate 𝐳 is computed by

𝑧𝜏 = 𝜎 (𝑊𝑧 [𝑠𝜏−1, 𝑥𝜏]+𝑏𝑧) . (2.22)

The actual activation of the next hidden state 𝐬𝜏 is then computed by

𝑠𝜏 = (1−𝑧𝜏)⊙𝑠𝜏−1+𝑧𝜏 ⊙𝑠𝜏 , (2.23)

where ⊙ represents the Hadamard product and 𝑠𝜏 is given by

𝑠𝜏 = tanh(𝑊𝑠 [𝑟𝜏 ⊙𝑠𝜏−1, 𝑥𝜏]+𝑏𝑠) . (2.24)

Appendix. Independently Recurrent Neural Network (IndRNN) The IndRNN addresses

gradient decay over iterations, following an independent neuron connectivity within a

recurrent layer. The update on equation (9) and at iteration 𝜏 is given by

𝑠𝜏 = 𝜎 (𝑊𝑥𝜏 +𝑢⊙𝑠𝜏−1+𝑏) , (2.25)

where 𝐖 is the weight for the current input, 𝐮 is the weight for the recurrent input, and 𝐛
is the bias vector.
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Supplementary Material

Figure S.2.1: Comparison of varying number of cascades for the Cascades of Independently Recurrent Inference

Machines, on the trained datasets (𝑇1-Brain, 𝑇2-Knee, FLAIR-Brain) using Gaussian 2D 10x undersampling. Top

figure reports SSIM scores and bottom figure PSNR scores.
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Figure S.2.2: Comparison of varying number of cascades, pooling layers, and channels for the End-to-End Varia-

tional Network, on the trained datasets (𝑇1-Brain, 𝑇2-Knee, FLAIR-Brain) using Gaussian 2D 10x undersampling.

Top figure reports SSIM scores and bottom figure PSNR scores.
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Table S.2.1: SSIM & PSNR scores of all methods evaluated on the 𝑇1-Brain dataset (third and fourth column), the

𝑇2-Knee dataset (fifth and sixth column), and the FLAIR-Brain dataset (seventh, eighth, ninth and tenth column).

For all datasets performance is reported for four times acceleration using Gaussian 2D undersampling. The second

column reports the total number of trainable parameters for each model. Best performing models are highlighted

in bold. Methods are sorted in alphabetical order.

Method Params 𝑇1-Brain Gaussian2D4x 𝑇2-Knee Gaussian2D4x FLAIR-Brain Gaussian2D4x

SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
CascadeNet 1.1 M 0.962 ± 0.016 33.3 ± 0.9 0.908 ± 0.030 35.2 ± 2.3 0.925 ± 0.068 33.6 ± 4.7

CIRIM 264k 0.981 ± 0.007 39.2 ± 0.6 0.919 ± 0.027 36.3 ± 2.3 0.945 ± 0.061 36.5 ± 5.3

E2EVN 19.6 M 0.972 ± 0.011 35.6 ± 0.6 0.919 ± 0.027 36.4 ± 2.3 0.912 ± 0.071 32.6 ± 5.3

IRIM 53k 0.980 ± 0.008 38.9 ± 0.6 0.912 ± 0.029 35.8 ± 2.2 0.937 ± 0.066 35.9 ± 5.2

KIKINet 1.9 M 0.960 ± 0.020 34.9 ± 0.2 0.891 ± 0.033 34.6 ± 1.9 0.889 ± 0.074 32.1 ± 4.4

LPDNet 118k 0.976 ± 0.007 37.2 ± 0.0 0.907 ± 0.028 35.4 ± 1.9 0.898 ± 0.083 31.5 ± 4.6

PICS 0.912 ± 0.028 33.9 ± 0.4 0.814 ± 0.025 33.8 ± 3.7 0.856 ± 0.160 31.8 ± 10.0

RIM 94k 0.980 ± 0.008 39.0 ± 0.7 0.914 ± 0.027 36.0 ± 2.3 0.941 ± 0.063 36.0 ± 5.2

UNet 1.9 M 0.928 ± 0.022 28.1 ± 4.5 0.894 ± 0.033 34.2 ± 2.2 0.865 ± 0.087 30.3 ± 4.8

Zero-Filled 0.869 ± 0.056 20.1 ± 1.1 0.823 ± 0.017 22.8 ± 0.9 0.824 ± 0.084 21.0 ± 4.6

Table S.2.2: SSIM & PSNR scores of all methods evaluated on the 𝑇1-Brain dataset (third and fourth column), the

𝑇2-Knee dataset (fifth and sixth column), and the FLAIR-Brain dataset (seventh, eighth, ninth and tenth column).

For all datasets performance is reported for six times acceleration using Gaussian 2D undersampling. The second

column reports the total number of trainable parameters for each model. Best performing models are highlighted

in bold. Methods are sorted in alphabetical order.

Method Params 𝑇1-Brain Gaussian2D6x 𝑇2-Knee Gaussian2D6x FLAIR-Brain Gaussian2D6x

SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
CascadeNet 1.1 M 0.953 ± 0.022 32.5 ± 0.8 0.886 ± 0.035 34.0 ± 2.4 0.907 ± 0.079 32.1 ± 4.7

CIRIM 264k 0.975 ± 0.010 37.6 ± 0.3 0.901 ± 0.032 35.1 ± 2.2 0.932 ± 0.073 35.1 ± 5.3

E2EVN 19.6 M 0.963 ± 0.014 33.9 ± 1.0 0.901 ± 0.032 35.1 ± 2.2 0.891 ± 0.084 30.8 ± 5.4

IRIM 53k 0.974 ± 0.011 37.2 ± 0.6 0.894 ± 0.034 34.7 ± 2.4 0.921 ± 0.079 34.3 ± 5.0

KIKINet 1.9 M 0.948 ± 0.030 33.5 ± 0.4 0.868 ± 0.039 33.5 ± 2.0 0.856 ± 0.094 30.3 ± 4.6

LPDNet 118k 0.971 ± 0.010 36.3 ± 0.3 0.893 ± 0.031 34.6 ± 1.7 0.883 ± 0.093 30.9 ± 4.5

PICS 0.889 ± 0.029 32.4 ± 0.5 0.779 ± 0.031 32.1 ± 3.9 0.842 ± 0.163 31.0 ± 8.9

RIM 94k 0.974 ± 0.010 37.5 ± 0.7 0.896 ± 0.033 34.5 ± 2.3 0.926 ± 0.075 34.6 ± 5.2

UNet 1.9 M 0.910 ± 0.035 27.8 ± 3.6 0.872 ± 0.040 32.8 ± 2.4 0.829 ± 0.102 28.7 ± 4.7

Zero-Filled 0.821 ± 0.077 18.2 ± 2.1 0.746 ± 0.024 19.6 ± 1.2 0.739 ± 0.109 17.8 ± 4.5

Table S.2.3: SSIM & PSNR scores of all methods evaluated on the 𝑇1-Brain dataset (third and fourth column), the

𝑇2-Knee dataset (fifth and sixth column), and the FLAIR-Brain dataset (seventh, eighth, ninth and tenth column).

For all datasets performance is reported for eight times acceleration using Gaussian 2D undersampling. The

second column reports the total number of trainable parameters for each model. Best performing models are

highlighted in bold. Methods are sorted in alphabetical order.

Method Params 𝑇1-Brain Gaussian2D8x 𝑇2-Knee Gaussian2D8x FLAIR-Brain Gaussian2D8x

SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
CascadeNet 1.1 M 0.940 ± 0.031 31.8 ± 0.8 0.870 ± 0.040 33.0 ± 2.5 0.888 ± 0.090 31.1 ± 4.6

CIRIM 264k 0.970 ± 0.012 36.6 ± 0.5 0.888 ± 0.043 34.3 ± 2.3 0.922 ± 0.082 34.2 ± 5.1

E2EVN 19.6 M 0.952 ± 0.020 32.6 ± 1.3 0.887 ± 0.036 34.3 ± 2.5 0.870 ± 0.094 30.0 ± 4.8

IRIM 53k 0.968 ± 0.014 36.2 ± 0.4 0.881 ± 0.038 34.0 ± 2.2 0.908 ± 0.088 33.3 ± 4.9

KIKINet 1.9 M 0.936 ± 0.034 32.2 ± 0.9 0.853 ± 0.042 32.7 ± 1.8 0.833 ± 0.108 29.0 ± 4.7

LPDNet 118k 0.966 ± 0.013 35.4 ± 0.2 0.882 ± 0.035 33.9 ± 1.8 0.868 ± 0.102 30.2 ± 4.6

PICS 0.875 ± 0.030 31.5 ± 0.7 0.752 ± 0.036 30.7 ± 4.0 0.834 ± 0.164 30.5 ± 8.2

RIM 94k 0.969 ± 0.013 36.3 ± 0.5 0.883 ± 0.036 34.1 ± 2.2 0.914 ± 0.084 33.6 ± 5.0

UNet 1.9 M 0.891 ± 0.042 27.1 ± 3.3 0.857 ± 0.044 32.1 ± 2.1 0.800 ± 0.114 27.6 ± 4.5

Zero-Filled 0.790 ± 0.080 17.7 ± 2.0 0.702 ± 0.029 18.2 ± 1.2 0.688 ± 0.123 16.5 ± 4.6
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Figure S.2.3: Reconstructions of a ten times accelerated slice with a Gaussian 2D mask, from the validation set

of the 𝑇1-weighted brains dataset (first row-second). The ground truth is presented on the first row-first image.

The CIRIM 7C (first row-fourth), the RIM (second row-first), and the IRIM (second row-second) enforced Data

Consistency (DC) implicitly by gradient descent. The E2EVN 8C (second row-fourth), the CascadeNet (third

row-first), and the KIKINet (third row-second) enforced DC explicitly by a formulated DC term.
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Figure S.2.4: Reconstructions of a ten times accelerated slice with a Gaussian 2D mask, from the validation set

of the 𝑇2-weighted knees dataset (first row-second). The ground truth is presented on the first row-first image.

The CIRIM 5C (first row-fourth), the RIM (second row-first), and the IRIM (second row-third) enforced Data

Consistency (DC) implicitly by gradient descent. The E2EVN 8C (second row-second), the CascadeNet (third

row-first), and the KIKINet (third row-third) enforced DC explicitly by a formulated DC term.
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Figure S.2.5: Reconstructions of a ten times accelerated slice with a Gaussian 2D mask, from the validation set

of the FLAIR brains dataset (first row-second). The ground truth is presented on the first row-first image. The

inset focuses on a reconstructed White Matter lesion; obtained through the fastMRI+ annotations (Zhao et al.,

2021). The arrow points out to a region of interested that some models failed to reconstruct. The CIRIM 5C

(first row-fourth), the RIM (second row-first), and the IRIM (second row-second) enforced Data Consistency (DC)

implicitly by gradient descent. The E2EVN 8C (second row-fourth), the CascadeNet (third row-first), and the

KIKINet (third row-second) enforced DC explicitly by a formulated DC term.
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Figure S.2.6: Reconstructions of a four times accelerated slice with an equidistant 1D mask, from the validation

set of the FLAIR brains dataset (first row-second). The ground truth is presented on the first row-first image.

The inset focuses on a reconstructed White Matter lesion; obtained through the fastMRI+ annotations (Zhao et

al., 2021). The CIRIM 5C (first row-fourth), the RIM (second row- second), and the IRIM (second row- fourth)

enforced Data Consistency (DC) implicitly by gradient descent. The E2EVN 8C (second row-third), the KIKINet

(third row-first), and the CascadeNet (third row-third) enforced DC explicitly by a formulated DC term.
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Figure S.2.7: Reconstructions of a representative axial slice of a 7.5x accelerated 3D FLAIR scan of a MS patient.

Segmented MS lesions are depicted with red colored contours. Shown is the aliased linear reconstruction (first

row-first image), PICS (first row-second image), and models’ reconstructions on each trained scheme: the FLAIR-

Brain dataset with Gaussian 2D undersampling (second-last row, first column), the 𝑇1-Brain dataset with Gaussian

2D undersampling (second-last row, second column), the FLAIR-Brain dataset with equidistant 1D undersampling

(second-last row, third column), and the 𝑇2-Knee dataset with Gaussian 2D undersampling (second-last row,

fourth column). The inset on the right bottom of each reconstruction focuses on a lesion region with high spatial

detail.
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Figure S.2.8: Reconstructions of a representative sagittal slice of a 7.5x accelerated 3D FLAIR scan of a MS

patient. Segmented MS lesions are depicted with red colored contours. Shown is the aliased linear reconstruction

(first row-first image), PICS (first row-second image), and models’ reconstructions on each trained scheme: the

FLAIR-Brain dataset with Gaussian 2D undersampling (second-last row, first column), the 𝑇1-Brain dataset

with Gaussian 2D undersampling (second-last row, second column), the FLAIR-Brain dataset with equidistant

1D undersampling (second-last row, third column), and the 𝑇2-Knee dataset with Gaussian 2D undersampling

(second-last row, fourth column). The inset on the right bottom of each reconstruction focuses on a lesion region

with high spatial detail.
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Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models

and Their Generalizability to Varying Coil Configurations

Abstract
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have
the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community
lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution
brain images, and evaluate how these proposed algorithms will behave in the presence of
small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction
challenge provides a benchmark that aims at addressing these issues, using a large dataset of
high-resolution, three-dimensional, 𝑇1-weighted MRI scans. The challenge has two primary
goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the
generalizability of these models to data acquired with a different number of receiver coils.
In this paper, we describe the challenge experimental design and summarize the results of
a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant
comparative information on the current MRI reconstruction state-of-the-art and highlight the
challenges of obtaining generalizable models that are required prior to broader clinical adoption.
The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly
available. They provide an objective performance assessment for future developments in the
field of brain MRI reconstruction.

3.1 Introduction
Brain magnetic resonance imaging (MRI) is a commonly used diagnostic imaging modality.

It is a non-invasive technique that provides images with excellent soft-tissue contrast.

Brain MRI produces a wealth of information, which often leads to a definitive diagnosis

of a number of neurological conditions, such as cancer and stroke. Furthermore, it is

broadly adopted in neuroscience and other research domains. MRI data acquisition occurs

in the Fourier or spatial-frequency domain, more commonly referred to as 𝑘-space. IImage

reconstruction consists of transforming the acquired k-space raw data into interpretable

images. Traditionally, data is collected following the Nyquist sampling theorem [1], and for

a single-coil acquisition, a simple inverse Fourier Transform operation is often sufficient to

reconstruct an image. However, the fundamental physics, practical engineering aspects,

and biological tissue response factors underlying the MRI data acquisition process make

fully sampled acquisitions inherently slow. These limitations represent a crucial drawback

when MRI is compared to other medical imaging modalities, impact both patient tolerance

of the procedure and throughput, and more broadly neuroimaging research.

Parallel imaging (PI) [2–4] and compressed sensing (CS) [5, 6] are two proven ap-

proaches that are able to reconstruct high-fidelity images from sub-Nyquist sampled

acquisitions. PI techniques leverage the spatial information available across multiple,

spatially distinct, receiver coils to allow the reconstruction of undersampled kspace data.

Techniques, such as generalized autocalibrating partially parallel acquisition (GRAPPA)

[3], which operates in the 𝑘-space domain, and sensitivity encoding for fast MRI (SENSE)

[2], which works in the image domain, are currently used clinically. CS methods leverage

image sparsity properties to improve reconstruction quality from undersampled 𝑘-space
data. Some CS techniques, such as compressed SENSE [6], have also seen clinical adoption.

Those PI and CS methods that have been approved for routine clinical use are generally

restricted to relatively conservative acceleration factors (e.g., 𝑅 = 2× to 3× acceleration).
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Currently employed comprehensive brain MRI scanning protocols, even those that use PI

and CS, typically require between 30 and 45 min per patient procedure. Longer procedural

times increase patient discomfort, thus lessening the likelihood of patient acceptance. It

also increases susceptibility to both voluntary and involuntary motion artifacts.

In 2016, the first deep-learning-based MRI reconstruction models were presented [7, 8].

The excellent initial results obtained by these models caught the attention of the MR

imaging community, and subsequently, dozens of deep-learning-based MRI reconstruction

models were proposed, (cf., [7–30]. Many of these studies demonstrated superior quantita-

tive results from deep-learning-based methods compared to nondeep-learning-based MRI

reconstruction algorithms [10, 16, 31]. These new methods are also capable of accelerating

MRI examinations beyond traditional PI and CS methods. There is good evidence that

deep-learning-based MRI reconstruction methods can accelerate MRI examinations by

factors greater than 5 [32, 33].

A significant drawback, that hinders the progress of the brain MRI reconstruction

field, is the lack of benchmark datasets. Importantly, the lack of benchmarks makes the

comparison of different methods challenging. The fastMRI effort [32] is an important

initiative that provides large volumes of raw MRI 𝑘-space data. The initial release of the
fastMRI dataset provided two-dimensional (2D) MR acquisitions of the knee. A subsequent

release added 2D brain MRI data with 5 mm slice thickness, which was used for the 2020

fastMRI challenge [34]. The Calgary-Campinas [35] initiative contains numerous sets of

brain imaging data. For the purposes of this benchmark, we expanded theCalgary-Campinas
initiative to includeMRI raw data from three-dimensional (3D), high-resolution acquisitions.

High-resolution images are crucial for many neuroimaging applications. Also importantly,

3D acquisitions allow for undersampling along two phase encoding dimensions, instead of

one for 2D imaging. This potentially allows for further MRI acceleration. These 𝑘-space
datasets correspond to either 12- or 32-channel data.

The goals of the Multi-Coil Magnetic Resonance Image (MC-MRI - https://www.

ccdataset.com/mr-reconstruction-challenge) Reconstruction Challenge are to provide

benchmarks that help improve the quality of brain MRI reconstruction, facilitate compari-

son of different reconstruction models, better understand the difficulties related to clinical

adoption of these models, and investigate the upper limits of MR acceleration. The specific

objectives of the challenge are as follows:

1. Compare the performance of different brain MRI reconstruction models on a large

dataset, and

2. Assess the generalizability of these models to datasets acquired with different coils.

The results presented in this report correspond to benchmark submissions received up

to 20 November, 2021. Four baseline solutions and three new benchmark solutions were

presented and discussed during an online session at the Medical Imaging Deep Learning

Conference held on 9 July, 2020.
1
. Two additional benchmark solutions were submitted after

the online session. Collectively, these results provide a relevant performance summary of

some state of the artMRI reconstruction approaches, including differentmodel architectures,

processing strategies, and emerging metrics for training and assessing reconstruction

1
See video of session at https://www.ccdataset.com/mr-reconstruction-challenge/mc-mrrec-2020-midl-recording

https://www.ccdataset.com/mr-reconstruction-challenge
https://www.ccdataset.com/mr-reconstruction-challenge
https://www.ccdataset.com/mr-reconstruction-challenge/mc-mrrec-2020-midl-recording
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models. The MC-MRI reconstruction challenge is ongoing and open to new benchmark

submissions
2
. A public code repository with instructions on how to load the data, extract

the benchmark metrics, and baseline reconstruction models are available at https://github.

com/rmsouza01/MC-MRI-Rec.

3.2 Materials and Methods
3.2.1 Calgary-Campinas Raw MRI Dataset
The data used in this challenge were acquired as part of the Calgary Normative Study [36],

which is a multi-year, longitudinal project that investigates normal human brain aging by

acquiring quantitative MRI data using a protocol approved by our local research ethics

board. Raw data from 𝑇1-weighted volumetric imaging was acquired, anonymized, and

incorporated into the Calgary-Campinas (CC) dataset [35]. The publicly accessible dataset

currently provides k-space data from 167 3D, 𝑇1-weighted, gradient-recalled echo, 1 mm3

isotropic sagittal acquisitions collected on a clinical 3T MRI scanner (Discovery MR750;

General Electric Healthcare, Waukesha, WI). The brain scans are from presumed healthy

subjects (mean ± standard deviation age: 44.5± 15.5 years; range: 20 years to 80 years;
71/167 (42.5%) male).

The datasets were acquired using either a 12-channel (117 scans, 70.0%) or 32-channel
receiver coil (50 scans, 30.0%). Acquisition parameters were TR/TE/TI = 6.3 ms / 2.6 ms /

650 ms (93 scans, 55.7%) or TR/TE/TI = 7.4 ms / 3.1 ms / 400 ms (74 scans, 44.3%), with 170

to 180 contiguous 1.0 mm slices and a field of view of 256 mm × 218 mm. The acquisition

matrix size [𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧] for each channel was [256,218,170−180], where 𝑥 , 𝑦, and 𝑧 denote
readout, phase-encode, and slice-encode directions, respectively. In the slice-encode (𝑘𝑧)
direction, only 85% of the 𝑘-space data were collected; the remainder (15% of 170-180) was

zero-filled. This partial acquisition technique is common practice in MRI. The average

scan duration is 341 seconds. Because 𝑘-space undersampling only occurs in the phase-

encode and slice-encode directions, the 1D inverse Fourier transform (iFT) along 𝑘𝑥 was
automatically performed by the scanner and hybrid (𝑥,𝑘𝑦 , 𝑘𝑧) datasets were provided. This
pre-processing effectively allows the MRI reconstruction problem to be treated as a 2D

problem (in 𝑘𝑦 and 𝑘𝑧). The partial Fourier reference data was reconstructed by taking the

2D iFT along the 𝑘𝑦 −𝑘𝑧 plane for each individual channel and combining these using the

conventional square-root sum-of-squares algorithm [37].

3.2.2 MC-MRI Reconstruction Challenge Description
The MC-MRI Reconstruction Challenge was designed to be an ongoing investigation that

will be disseminated through a combination of in-person sessions at meetings and virtual

sessions, supplemented by periodic online submissions and updates. The benchmark is

readily extensible and more data, metrics, and research questions are expected to be added

in further updates. Individual research groups are permitted to make multiple submissions.

The processing of submissions is semi-automated, and it takes on average 48 h to generate

an update of the benchmark leaderboard.

Currently, the MC-MRI reconstruction challenge is split into two separate tracks. Teams

can decide whether to submit a solution to just one track or to both tracks. Each track has

2
See current leaders for the individual challenge tracks at https://www.ccdataset.com/

https://github.com/rmsouza01/MC-MRI-Rec
https://github.com/rmsouza01/MC-MRI-Rec
https://www.ccdataset.com/
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a separate leaderboard. The tracks are:

• Track 01: Teams had access to 12-channel data to train and validate their models.

Models submitted are evaluated by only using the 12-channel test data.

• Track 02: Teams had access to 12-channel data to train and validate their models.

Models submitted are evaluated for both the 12-channel and 32-channel test data.

In both tracks, the goal is to assess the brain MR image reconstruction quality and in

particular note any loss of high-frequency details, especially at the higher acceleration rates.

By having two separate tracks, we hoped to determine whether a generic reconstruction

model trained on data from one coil would have decreased performance when applied to

data from another coil.

Two MRI acceleration factors were tested: 𝑅 = 5 and 𝑅 = 10. These factors were chosen
intentionally to exceed the acceleration factors typically used clinically with PI and CS

methods. A Poisson disc distribution sampling scheme, where the center of 𝑘-space was
fully sampled within a circle of radius of 16 pixels to preserve the low-frequency phase

information, was used to achieve these acceleration factors. For brevity, we have only

reported the results for 𝑅 = 5, but the online challenge leaderboard contains the results for

both acceleration factors.

The training, validation and test split of the challenge data is summarized in Table

3.1. The initial 50 and last 50 slices in each participant’s image volume were removed

because they have little anatomy present. The fully sampled 𝑘-space data of the training
and validation sets were made public for teams to develop their models. Pre-undersampled

𝑘-space data corresponding to the test sets were provided for the teams for accelerations

of 𝑅 = 5 and 𝑅 = 10.

Table 3.1: Summary of the raw MRI 𝑘-space datasets used in the first edition of the challenge. Reported are the

number of slices in the test sets after removal of the initial 50 and last 50 slices (see text).

Coil Category # of datasets # of slices

12-channel

Train 47 12,032

Validation 20 5,120

Test 50 7,800
32-channel Test 50 7,800

3.2.3Quantitative Metrics
In order to measure the quality of the image reconstructions, three commonly used, quan-

titative performance metrics were selected: peak signal-to-noise ratio (pSNR), structural

similarity (SSIM) index [38], and visual information fidelity (VIF) [39]. The choice of per-

formance metrics is challenging and it is recognized that objective measures such as pSNR,

SSIM, and VIF may not correlate well with subjective human image quality assessments.

Nonetheless, these metrics provide a broad basis to assess model performance in this

challenge.
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The pSNR is a metric commonly used for MRI reconstruction assessment and consists

of the log ratio between the maximum value of the reference reconstruction and the root

mean squared error (RMSE):

𝑝𝑆𝑁𝑅(𝑦, �̂�) = 20 log10(
max(𝑦)
RMSE ) = 20log10

⎛
⎜
⎜
⎝

max(𝑦)√
1
𝑀 ∑𝑀

𝑖=1[𝑦(𝑖)− �̂�(𝑖)]2

⎞
⎟
⎟
⎠
, (3.1)

where 𝑦 is the reference image, �̂� is the reconstructed image, and 𝑀 is the number of

pixels in the image. Higher pSNR values represent higher-fidelity image reconstructions.

However, pSNR does not take into consideration the factors involved in human vision. For

this reason, increased pSNR can suggest that reconstructions are of higher quality, when

in fact they may not be as well-perceived by the human visual system.

Unlike pSNR, SSIM and VIF are metrics that attempt to model aspects of the human

visual system. SSIM considers biological factors, such as luminance, contrast, and structural

information. SSIM is computed using:

𝑆𝑆𝐼𝑀(𝑥, �̂�) =
(2𝜇𝑥𝜇�̂� + 𝑐1)(2𝜎𝑥�̂� + 𝑐2)

(𝜇2𝑥 +𝜇2�̂� + 𝑐1)(𝜎2𝑥 +𝜎2
�̂� + 𝑐2)

(3.2)

where 𝑥 and �̂� represent corresponding image windows from the reference image and the

reconstructed image, respectively; 𝜇𝑥 and 𝜎𝑥 represent the mean and standard deviation

inside the image window, 𝑥; and 𝜇�̂� and 𝜎�̂� represent the mean and standard deviation

inside the reconstructed image window, �̂� . The constants 𝑐1 and 𝑐2 are used to avoid

numerical instability. SSIM values for non-negative images are within [0,1], where 1

represents two identical images.

The visual information fidelity metric is based on natural scene statistics [40, 41]. VIF

models the natural scene statistics based on a Gaussian scale mixture model in the wavelet

domain, and additive white Gaussian noise is used to model the human visual system.

The natural scene of the reference image is modeled into wavelet components (C) and the

human visual system is modeled by adding zero-mean white Gaussian noise in the wavelet

domain (N), which results in the perceived reference image (E = C + N). In the same way,

the reconstructed image, which is called the distorted image, is also modeled by a natural

scene model (D) and the human visual system model (N’), leading to the perceived distorted

image (F = D + N’). The VIF is given by the ratio of the mutual information of I(C, F) and

I(C, E):

VIF =
𝐼 (𝐶,𝐹)
𝐼 (𝐶,𝐸)

, (3.3)

where 𝐼 represents the mutual information.

Mason et al. [42] investigated the VIF metric for assessing MRI reconstruction quality.

Their results indicated that it has a stronger correlation with subjective radiologist opinion

about MRI quality than other metrics such as pSNR and SSIM. The VIF Gaussian noise

variance was set to 0.4 as recommended in [42]. All metrics were computed slice-by-slice

in the test set. The reference and reconstructed images were normalized by dividing them

by the maximum value of the reference image.
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3.2.4 Visual Assessment
An expert observer (NN) with over 5 years of experience analyzing brain MR images and

manually segmenting complex structures, such as the hippocampus and hypothalamus,

visually inspected 25 randomly selected volumes for the 12-channel test set and other 25

volumes for the 32-channel test set for the best two submissions as determined from the

quantitative metrics. The best two submissions were obtained by sorting the weighted

average ranking. The weighted average ranking was generated by applying pre-determined

weights to the ranking of the three individual quantitative metrics (0.4 for VIF, 0.4 for SSIM,

and 0.2 for pSNR). We chose to give higher weights to VIF and SSIM because they have a

better correlation with the human perception of image quality.

The visual assessment of the images was done by comparing the machine-learning-

based reconstructions to the fully sampled reference images. This allowed the observer

to distinguish between data acquisition related quality issues (e.g., motion) and problems

associated with image reconstruction. The image quality assessment focused mostly

on overall image quality and how well-defined was the contrast between white-matter,

graymatter, and other relevant brain structures. The goal of the visual assessment was to

compare the quality of the reconstructed MR images against the fully sampled reference

images and not to compare the quality of the different submissions, because the benchmark

is ongoing and we wanted to account for potential observer memory bias effects [43] in

the qualitative metrics due to the difference between submission dates of the different

solutions to the benchmark (i.e., future submissions will be visually assessed at different

dates compared to current submissions).

3.2.5 Models
Track 01 of the challenge included four baseline models, selected from the literature.

These models are the zero-filled reconstruction, the U-Net model [44], the WW-net model

[45], and the hybrid-cascade model [46]. To date, Track 01 has received six independent

submissions from ResoNNance [47] (two different models), The Enchanted (two different

models), TUMRI, and M-L UNICAMP teams.

The ResoNNance 1.0 model submission was a recurrent inference machine [48], ResoN-

Nance 2.0 was a recurrent variational network [49]. The Enchanted 1.0 model was inspired

by [50], where they used magnitude and phase networks, followed by a VS-net architecture

[51]. The Enchanted 2.0 used an end-to-end variational network [52], and it was the only

submission that used self-supervised learning [53] to initialize their model. The pretext task

to initialize their models was the prediction of image rotations [54]. TUMRI used a similar

model to the WW-net, but they implemented complex-valued operations [55]. They used a

linear combination of VIF and MS-SSIM [56] as their loss function. M-L UNICAMP used

a hybrid model with parallel network branches operating in 𝑘-space and image domains.

Links to the source code for the different models are available in the benchmark repository.

Some of the Track 01 models were designed to work with a specific number of coil channels,

thus they were not submitted to Track 02 of the challenge.

Track 02 of the challenge included two baseline models (zerofilled reconstruction and

the U-Net model). ResoNNance and The Enchanted teams submitted two models each to

Track 02. The models submitted by ResoNNance and The Enchanted teams were the same

models that were used for Track 01 of the challenge. Table 3.2 summarizes the processing
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domains (image, 𝑘-space or dual/hybrid), the presence of elements, such as coil sensitivity

estimation, data consistency, and the loss function used during training of the models. For

more details about the models, we refer the reader to the source publications or the code

repositories for the unpublished work.

3.3 Results
3.3.1 Track 01
The quantitative results for Track 01 are summarized in Table 3.3. There were in total 10

models (four baseline and six submitted) in Track 01. The zero-filled and U-Net reconstruc-

tions had the worst results. The M-L UNICAMP, Hybrid Cascade, WW-net, and TUMRI

models were next with similar results in terms of SSIM and pSNR. Notably, the TUMRI

submission achieved the second-highest VIF metric. ResoNNance and The Enchanted

teams’ submissions achieved the highest overall scores on the quantitative metrics. The

ResoNNance 2.0 submission had the best SSIM and pSNR metrics and the fourth-best VIF

metric. The Enchanted 1.0 submission obtained the best VIF metric. The Enchanted 2.0

submission achieved the second-best SSIM metric, and the third-best VIF and pSNR metrics.

Representative reconstructions resulting from the different models for 𝑅 = 5 are shown in

Figure 3.1.

Table 3.2: Summary of the submissions including processing domain, presence of coil sensitivity estimation (SE),

presence of data consistency (DC), and basis of the training loss functions. ∗ indicates a baseline model. Loss

functions: Mean Absolute Error (MAE), Structural Similarity (SSIM), Mean Squared Error (MSE), Multi-Scale

SSIM (MS-SSIM), and Visual Information Fidelity (VIF).

Model Domain SE DC Loss function
ResoNNance 2.0 Hybrid Yes Yes MAE and SSIM

The Enchanted 2.0 Image Yes Yes Cross entropy (pretext) and SSIM (main task)

ResoNNance 1.0 Image Yes Yes MAE and SSIM

The-Enchanted 1.0 Image Yes Yes MSE (first step) and SSIM (second step)

TUMRI Hybrid No Yes MS-SSIM and VIF

WW-Net∗ Hybrid No Yes MSE

Hybrid-cascade∗ Hybrid No Yes MSE

M-L UNICAMP Hybrid No Yes MSE

U-Net∗ Image No No MSE

Zero-filled∗ N/A No N/A N/A

Twenty five images in the test set were visually assessed by our expert observer for

the two best submission (ResoNNance 2.0 and The Enchanted 2.0). Out of the 50 images

assessed by the expert observer, only two (4.0%) were deemed to have minor deviations,

such as shape, intensity, and contrast between the reconstructed images and the reference

(cf., 3.2A). Twenty seven images (54.0%) were deemed to have similar quality to the fully

sampled reference, and 21 (42.0%) were rated as having similar quality when compared to

the reference, but exhibited filtering of the noise in the image background (cf.,3.2B).
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Figure 3.1: Representative reconstructions of the different models submitted to Track 01 (i.e., 12-channel) of
the challenge for 𝑅 = 5. Note that the reconstructions from the top four methods, ResoNNance 1.0 and 2.0, and

The Enchanted 1.0 and 2.0, try to match the noise pattern seen in the background of the reference image, while

ML-UNICAMP, Hybrid-cascade, WW-net, and TUMRI seem to have partially filtered this background noise.

3.3.2 Track 02
Two teams, ResoNNance and The Enchanted, submitted a total of four models to Track 02

of the benchmark. Their results were compared to two baseline techniques. The models

submitted to Track 02, except for the U-Net baseline, which has a higher input dimension

(i.e., the input dimensions depends on the number of receiver coils), was the same as the

models submitted for Track 01, so for the 12-channel test dataset, the results are the same

as in Track 01 (see 3.3).

The results for Track 02 using the 32-channel test set are summarized in Table 3.4. For

the 32-channel test dataset, The Enchanted 2.0 submission obtained the best VIF and pSNR

metrics, and the second-best SSIM score. The ResoNNance 2.0 submission obtained the best

SSIMmetric, second-best pSNR, and third-best VIFmetrics. The ResoNNance 1.0 submission

obtained the third-best SSIM and pSNR metrics, and second-best VIF. The Enchanted 1.0

submission obtained the fourth-best SSIM and VIF, and fifth-best pSNR. The zero-filled and

UNet reconstructions obtained the worse results. Representative reconstructions resulting

from the different models are depicted in 3.3.

Twenty five images in the test set were visually assessed by our expert observer for
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Figure 3.2: Quality assessment comparing the fully sampled reference and the reconstruction obtained by team

ResoNNance 2.0. (A) The top row shows the border of the left putamen, where the reconstructed image has a

discrepancy in shape compared to the reference image (highlighted with red circles). The bottom row shows

that changes in the shape of the structure are also visible in the next slice of the same subject (highlighted with

red arrows). It is important to emphasize that these | discrepancies are not restricted to the putamen, but a

systematic evaluation of where these changes occur is out of scope for this work. (B) Illustration of a case where

the expert observed rated that the deep-learning-based reconstruction improved image quality. In this figure, we

can see smoothening of cortical white matter without loss of information as no changes appeared in the pattern

of gyrification within cortical gray matter

the two best submissions (ResoNNance 2.0 and The Enchanted 2.0). Out of the 50 images

assessed by the expert observer, 14 (28.0%) were deemed to have deviations from common

anatomical borders. A total of 34 images (68.0%) were deemed to have a similar quality
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Table 3.3: Summary of the Track 01 results for 𝑅 = 5. The best value for each metric and acceleration is emboldened.

Mean ± standard deviation are reported. ∗ indicates a baseline model.

Model SSIM pSNR (dB) VIF
ResoNNance 2.0 𝟎.𝟗𝟒𝟏±𝟎.𝟎𝟐𝟗 𝟑𝟓.𝟕±𝟏.𝟖 0.957±0.034

The Enchanted 2.0 0.937±0.033 34.9±2.4 0.973±0.036
ResoNNance 1.0 0.936±0.031 35.3±1.8 0.960±0.035

The-Enchanted 1.0 0.912±0.034 30.3±2.8 𝟎.𝟗𝟗𝟑±𝟎.𝟏𝟕𝟔
TUMRI 0.868±0.044 32.5±1.7 0.989±0.045

WW-Net∗ 0.870±0.043 32.5±1.7 0.929±0.049
Hybrid-cascade∗ 0.860±0.044 32.7±1.6 0.954±0.042
M-L UNICAMP 0.868±0.044 32.4±1.7 0.918±0.053

U-Net∗ 0.779±0.039 26.8±1.7 0.642±0.068
Zero-filled∗ 0.726±0.045 25.2±1.5 0.518±0.066

Table 3.4: Summary of the Track 02 results for 𝑅 = 5 using the 32-channel test set. The best value for each metric

and acceleration is emboldened. Mean ± standard deviation are reported. ∗ indicates a baseline model.

Model SSIM pSNR (dB) VIF
ResoNNance 2.0 𝟎.𝟗𝟔𝟏±𝟎.𝟎𝟐𝟕 38.3±2.2 0.955±0.036

The Enchanted 2.0 0.960±0.037 𝟑𝟖.𝟑𝟒±𝟑.𝟐 𝟏.𝟎𝟐𝟒±𝟎.𝟎𝟑𝟒
ResoNNance 1.0 0.947±0.033 37.7±2.9 0.992±0.030

The Enchanted 1.0 0.907±0.046 30.1±2.7 0.834±0.236
U-Net∗ 0.832±0.058 31.5±2.6 0.804±0.045

Zero-filled∗ 0.780±0.041 26.4±1.5 0.472±0.064

to the fully sampled reference, and only two images (4.0%) were rated as having similar

quality when compared to the reference, but exhibited filtering of the noise in the image

background.

3.4 Discussion
The first track of the challenge compared ten different reconstruction models (Table 3.3).

As expected, the zero-filled reconstruction, which does not involve any training from the

data, universally had the poorest results. The second worst technique was the U-Net model,

which used as input the channel-wise zero-filled reconstruction and tried to recover the

high-fidelity image. The employed U-Net [44] model did not include any data consistency

steps. The remaining eight models all include a data consistency step, which seems to be

an essential step for high-fidelity image reconstruction, as has been previously highlighted

in [10, 14].

The M-L UNICAMP had the eighth-lowest pSNR and VIF metrics, and the seventh-

lowest SSIM score. In contrast, the top ranked methods were either cascaded networks

(Hybrid-cascade, WWnet, TUMRI, The Enchanted 1.0 and 2.0) or recurrent methods (ResoN-

Nance 1.0 and 2.0).

The top four models in the benchmark were the ResoNNance 1.0 and 2.0 and The

Enchanted 1.0 and 2.0 submissions. These four models estimated coil sensitivities and
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Figure 3.3: Representative reconstructions of the different models submitted to Track 02 of the challenge for 𝑅 = 5
using the 32-channel coil.

combined the coil channels, which made these models flexible and capable of working

with datasets acquired with an arbitrary number of receiver coils. The top two models

ResoNNance 2.0 and Enchanted 2.0 are hybrid models. They are followed in rank by

ResoNNance 1.0 and Enchanted 1.0, which are imagedomain methods. The other better

performing models (M-L UNICAMP, Hybrid Cascade, WW-net, and TUMRI) used an

approach that receives all coil channels as input, making these models tailored to a specific

coil configuration (i.e., number of channels). Though the methods that combined the

channels before reconstruction using coil sensitivity estimations similarly to [52], such
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Figure 3.4: Sample reconstruction illustrating artifacts (highlighted in red boxes) that seem to be present on

images reconstructed by models that used coil sensitivity estimation as part of their method.

as from ResoNNance and The Enchanted teams, demonstrated the best results so far, it

is still unclear if this approach is superior to models that do not combine the channels

before reconstruction. A recent work [29] indicated that the separate channel approach

may be advantageous compared to models that combine the 𝑘-space channels before

reconstruction.

All of the models submitted to the MC-MRI Reconstruction Challenge had a relatively

narrow input convolutional layer (e.g., 64 filters), which may have resulted in the loss

of relevant information. In [29], they used 15-channel data and the first layer had 384

filters. Another advantage of models that receive all channels as input is that they seem

more robust to artifacts that can occur in the reconstructed images due to problems in

coil sensitivity estimation. This finding was observed in our visual assessment mostly

in methods that involved coil sensitivity estimation (ResoNNance and The Enchanted—

Figure 3.4). Similar artifacts were not observed in images produced on models that do not

require coil sensitivity estimation.

In our study, we also noted variability in the ranking across metrics (Table 3.3). For

example, The Enchanted 1.0 submission had the best VIF score, but only the fourth-best

SSIM and seventh-highest pSNR metrics. This variability reinforces the importance of
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Figure 3.5: Three sample reconstructions, one per row, for the top twomodels. The Enchanted 2.0 and ResoNNance

2.0 and the reference are illustrated. The arrows in the figure indicate regions of interest that indicate deviations

between the deep-learning-based reconstructions and the fully sampled reference.

including many benchmarks that can summarize the result of multiple submissions by

using a consistent set of multiple metrics. Studies that use a single image quality metric,

for example, are potentially problematic if the chosen measure masks specific classes of

performance issues. While imperfect, the use of a composite score based on metric rankings

attempts to reduce this inherent variability by examining multiple performance measures.

Visual inspection of the reconstructedMR images (cf., Figures 3.1, 3.3) indicates that with

some models and for some samples in the test set, the reconstructed background noise is

different from the background noise in the reference images. This observation, particularly
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with the ResoNNance and The Enchanted teams’ submissions, leads to questions onwhether

the evaluated quantitative metrics are best suited to determine the reconstruction quality.

Given a noisy reference image, a noise-free reconstruction will potentially achieve lower

pSNR, SSIM, andVIF than the same reconstructionwith added noise. This finding is contrary

to human visual perception, where noise impacts the image quality negatively and is, in

general, undesired. During the expert visual assessment, 23 of 50 (46.0%) reconstructions
were rated higher than the fully sampled reference due to the fact that the brain anatomical

borders in these images were preserved, but the image noise was filtered out.

All trainable baseline models and the model submitted by M-L UNICAMP used mean

squared error (MSE) as their cost function. The model submitted by TUMRI was trained

using a combination of multi-scale SSIM (MS-SSIM) [56] and VIF as their cost function. The

model The Enchanted 1.0 has two components in their cost function: (1) their model was

trained using MSE as the cost function with the target being the coil-combined complex-

valued fully sampled reference and then (2) their Down-Up network [57] received as input

the absolute value of the reconstruction obtained in the previous stage, and the reference

was the square-root sum-of-squares fully sampled reconstruction. The Down-Up network

was trained using SSIM as the loss function. The model The Enchanted 2.0 is the only

model that was pre-trained using a self-supervised learning pretext task of predicting

rotations. The pretext task was trained using cross-entropy as the loss function. The main

task (i.e., reconstruction task) was trained using SSIM as the loss function.

The ResoNNance 1.0 and 2.0 models used a combination of SSIM and mean absolute

error (MAE) as the training loss function, which is a combination that has been shown

to be effective for image restoration [58]. Because the background in the images is quite

substantial and SSIM is a bounded metric that is computed across image patches, this

observation causes models trained using SSIM as part of their loss function to try to match

the background noise in their reconstructions. This observation may offer a potential

explanation for why the models submitted by The Enchanted and ResoNNance teams

were able to preserve the noise pattern in their reconstructions. Metrics that are based

on visual perception are important and evaluating the possibility of using these types of

metrics as part of the loss functions is an interesting research avenue for the field of MRI

reconstruction.

For 𝑅 = 5, the top three models: ResoNNance 2.0, The Enchanted 2.0, and ResoNNance

1.0 produced the most visually pleasing reconstructions and also had the top performing

metrics. It is important to emphasize that 𝑅 = 5 in the challenge is relative to the 85% of

k-space that was sampled in the slice-encode (𝑘𝑧) direction. If we consider the equivalent
full 𝑘-space, the acceleration factor would be 𝑅 = 5.9. Based on the Track 01 results, we

would say that an acceleration between 5 and 6 might be feasible to be incorporated into

a clinical setting for a single-sequence MR image reconstruction model. Further analysis

of the image reconstructions by a panel of radiologists is needed to better assess clinical

value before achieving a definite conclusion.

The second track of the challenge compared six different reconstruction models (Tables

3.3, 3.4). The models, The Enchanted 2.0 and ResoNNance 2.0, achieved the best overall

results. For the 12-channel test set (Figure 3.1), the results were the same as the results they

obtained in Track 01 of the challenge since the models were the same. More interesting

are the results for the 32-channel test set. Though the metrics for the 32-channel test set
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are higher than the 12-channel test set, by visually inspecting the quality of the recon-

structed images, it is clear that 32- channel image reconstructions are of poorer quality

compared to 12-channel reconstructions (Figure 3.3). In total, 28% of the 32-channel images

assessed by the expert observer were deemed to have poorer quality when compared the

reference against 4% of the 12-channel images rated. This fact raises concerns about the

generalizability of the reconstruction models across different coils. Potential approaches

to mitigate this issue is to include representative data collected with different coils in the

training and validation sets or employ domain adaptation techniques [59], such as data

augmentation strategies, that simulate data acquired under different coil configurations, to

make the models more generalizable.

Though the generalization of learned MR image reconstruction models and their po-

tential for transfer learning has been previously assessed [60], the results from Track 02 of

our challenge indicate that there is still room for improvements. Interestingly, the model

The Enchanted 2.0 is the only model that employed self-supervised learning, which seems

to have had a positive impact on the model generalizability for the 32-channel test data.

One important finding that we noticed during the visual assessment of the images is

that some of the reconstructed images enhanced hypointensity regions within the brain

white matter, while in others images, these hypointensities were blurred out of the image

(cf., Figure 3.5). In many cases, it was unclear from the fully sampled reference whether

this hypointensity region corresponded to noise in the image or if it indicated the presence

of relevant structures, such as lesions that appear as dark spots in 𝑇1-weighted images.

This finding is critical especially when targeting diseases that often present small lesions.

Further investigation is necessary to determine its potential impact before the clinical

adoption of these reconstruction models.

3.5 Summary
The MC-MRI reconstruction challenge provided an objective benchmark for assessing

brain MRI reconstruction and the generalizability of models across datasets collected with

different coils using a high-resolution, 3D dataset of 𝑇1-weighted MR images. Track 01

compared ten reconstruction models and Track 02 compared six reconstruction models. The

results indicated that although the quantitative metrics are higher for the test data not seen

during training (i.e., 32-channel data), visual inspection indicated that these reconstructed

images had poorer quality. This conclusion that current models do not generalize well

across datasets collected using different coils indicates a promising research field in the

coming years that is very relevant for the potential clinical adoption of deep-learning-based

MR image reconstruction models. The results also indicated the difficulty of reconstructing

finer details in the images, such as lacunes. TheMC-MRI reconstruction challenge continues

and the organizers of the benchmark will periodically incorporate more data, which will

potentially allow to train deeper models. As a long-term benefit of this challenge, we expect

that the adoption of these deep-learning-based MRI reconstruction models in the clinical

and research environments will be streamlined.
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Abstract
Object: To compare compressed sensing (CS) and the Cascades of Independently Recurrent
Inference Machines (CIRIM) with respect to image quality and reconstruction times when
12-fold accelerated scans of patients with neurological deficits are reconstructed. Materials
and Methods: Twelve-fold accelerated 3D 𝑇2-FLAIR images were obtained from a cohort of 62
patients with neurological deficits on 3 T MRI. Images were reconstructed offline via CS and the
CIRIM. Image quality was assessed in a blinded and randomized manner by two experienced
interventional neuroradiologists and one experienced pediatric neuroradiologist on imaging
artifacts, perceived spatial resolution (sharpness), anatomic conspicuity, diagnostic confidence,
and contrast. The methods were also compared in terms of self-referenced quality metrics,
image resolution, patient groups and reconstruction time. In ten scans, the contrast ratio (CR)
was determined between lesions and white matter. The effect of acceleration factor was assessed
in a publicly available fully sampled dataset, since ground truth data are not available in
prospectively accelerated clinical scans. Specifically, 451 FLAIR scans, including scans with
white matter lesions, were adopted from the FastMRI database to evaluate structural similarity
(SSIM) and the CR of lesions and white matter on ranging acceleration factors from four-fold
up to 12-fold. Results: Interventional neuroradiologists significantly preferred the CIRIM
for imaging artifacts, anatomic conspicuity, and contrast. One rater significantly preferred
the CIRIM in terms of sharpness and diagnostic confidence. The pediatric neuroradiologist
preferred CS for imaging artifacts and sharpness. Compared to CS, the CIRIM reconstructions
significantly improved in terms of imaging artifacts and anatomic conspicuity (p<0.01) for
higher resolution scans while yielding a 28% higher SNR (p=0.001) and a 5.8% lower CR (p=0.04).
There were no differences between patient groups. Additionally, CIRIM was five times faster
than CS was. An increasing acceleration factor did not lead to changes in CR (p=0.92), but led
to lower SSIM (p=0.002). Discussion: Patients with neurological deficits can undergo MRI at
a range of moderate to high acceleration. DL reconstruction outperforms CS in terms of image
resolution, efficient denoising with a modest reduction in contrast and reduced reconstruction
times.

4.1 Introduction
Time is of utmost importance in diagnosing neurological deficits like Multiple Sclerosis

(MS) [1, 2], and tumors [3], and initiating prompt treatment in patients with confirmed

acute ischemic stroke (AIS). MS and tumor patients are commonly recalled to the clinic

for repeated magnetic resonance imaging (MRI) to monitor disease progression. In the

case of AIS, MRI plays a vital role in distinguishing between ischemic or hemorrhagic

strokes or mimics [4, 5], visualizing any occlusions, and estimating the onset time [6, 7] and

infarct core size [8]. The longer acquisition time required for an MRI examination than for

computed tomography (CT) raises concerns about delaying immediate management and

treatment decisions during emergencies in the case of a stroke. Given these considerations,

exploring ways to accelerate MR sequences currently utilized in diagnosing neurological

deficits is necessary.

In recent decades, there have been important advancements in accelerating clinical MRI.

Initially, iterative reconstruction techniques such as SENSE [9] and GRAPPA [10] were

proposed for parallel imaging. Compared with parallel imaging, compressed sensing (CS)
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[11] pinvolves accelerating MRI through iterative reconstruction of irregularly undersam-

pled data to a much greater degree. When imaging neurological deficits, most sequences

can benefit from CS. One study used a combination of CS and SENSE to accelerate 3D

𝑇1-echo-spoiled gradient echo and 𝑇2-FLAIR sequences up to five times [3]. Others have

also used CS and SENSE to accelerate the time-of-flight MR angiography (TOF-MRA)

sequence by approximately ten times [12, 13].

Iterative image reconstruction techniques have two main limitations that hinder their

use in a fast-paced clinical environment. First, iterative reconstruction may yield a pro-

longed reconstruction time. Especially for high-resolution images obtained after zero-

filling, the reconstruction times can exceed the measurement times, which limit the clinical

workflow. Second, the quality of the CS-reconstructed image may deteriorate when the

acceleration factor increases [1]. Thus, novel reconstruction techniques applied to neuro-

logical deficits should ideally decrease scanning and reconstruction times while preserving

image quality.

Deep learning (DL) can accelerate the imaging time by using graphical processing units

(GPUs) for reconstruction while allowing for efficient denoising of the data. For example,

one study used DL to reduce the scanning time by approximately 60% when reconstructing

data [14]. Additionally, DL has exhibited promising results in reconstructing MRI data

with pathologies [2, 15, 16], making it a valuable tool for clinical applications.

Physics-informed DL methods learn how to solve the inverse problem of accelerated

MRI reconstruction from the data [17–19]. The objective is to map the undersampled k-

space measurements to a denoised image. This approach benefits from generalizing well to

modalities not seen during the network training. Recently, the Cascades of Independently

Recurrent Inference Machines (CIRIM) were proposed, which balances efficiency and

network complexity, and is fast with excellent denoising and generalization capabilities

[20]. This could make this network a good candidate for use in neurological deficits. The

CIRIM was shown to outperform CS reconstruction in terms of commonly computed

metrics, i.e., structural similarity and the peak signal-to-noise ratio. In fast and potentially

time-critical imaging settings, CS may thus render inferior image quality, increasing the

need for improved image reconstruction under these conditions. Furthermore, an extensive

clinical evaluation of this method is still lacking.

This work aims to achieve highly accelerated imaging and fast reconstruction in diagnos-

ing patients with neurological deficits. We evaluate the image reconstruction performance

of the previously proposed CIRIM in a representative clinical dataset. This dataset consists

of highly accelerated (12X) 3D 𝑇2-FLAIR images obtained as part of routine clinical practice

and includes data from fifty-seven patients with neurological deficits, stroke, tumors, and

multiple sclerosis (MS). Compressed sensing (CS) is the reference reconstruction method

used in the clinic to which we compare our CIRIM method. Challenges lie in the dataset’s

inhomogeneity and preservation of pathologies unseen during training. Since the dataset

was acquired as part of the clinical routine, no fully sampled scans are available; these scans

take too long to acquire clinically. Therefore, the CIRIM is trained on a different dataset and

compared to CS in terms of reconstruction times and image quality, which are scored both

subjectively and objectively. Subdisciplines in radiology may have different requirements

in terms of image quality and scanning time. We compare the perceived image quality

rated by radiologists with diverse specializations, i.e., intervention neuroradiology and
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pediatric neuroradiology.

4.2 Material and methods
4.2.1 Patients and ethics
The data for this retrospective study were routinely collected in our hospital (anonymized

for review). All patients included in this study (n=62, 34 females) came to the hospital as

part of the clinical routine, including patients with stroke (n=8), other vascular pathologies

(n=6), multiple sclerosis (relapsing-remitting MS, n=10; progressive MS, n=3; undefined

MS, n=4), tumors (n=8), and Meniere’s disease (n=3). The mean age was 53±14 (range: 9

to 88) years. The sample size was chosen such that subjects over a broad age range with

a spectrum of diseases were included. All the data were anonymized prior to analysis.

Informed consent was not required according to the IRB.

4.2.2 Data acqisition
Patient data were consecutively acquired on a 3T Philips Ingenia Elition scanner equipped

with a 32-channel head coil between 08/2021 and 02/2023. The scan parameters of the

𝑇2-FLAIR sequence varied and were in the following ranges: field of view (FOV) from

249×249×180 to 251×251×180 mm, scanning matrix from 216×174×120 to 240×251×180, zero-
filled reconstruction matrix from 336×336×240 to 528×528×360, acquisition resolution from

1.05×1.00×1.00 to 1.15×1.43×1.50 mm3, and reconstruction resolution from 0.48×0.48×0.50
to 0.74×0.74×0.75 𝑚𝑚3

. The other parameters were TR=8000ms, TE=311ms, TI=2400ms,

turbo factor=186, and scan time=1m52s to 3m00s. As per standard of care, the data were

prospectively undersampled with a variable density mask with a radial shutter to a factor

of 12. Sensitivity-reference scan data were obtained for coil sensitivity estimation. Raw

data were retained in archive per clinical routine and exported in addition to on-scanner

reconstructions in DICOM format.

4.2.3 Data (pre)processing
The raw data were preprocessed in a custom pipeline in MATLAB (version R2019b, Math-

Works). Preprocessing for parallel-imaging CS (PICS) and CIRIM reconstruction was

identical. The FLAIR k-space data were loaded, phase and offset-corrected, and sorted with

MRecon (version 4.4.4, GyroTools). Oversampling was removed in the readout direction,

and the matrix was zero-filled to match the original output resolution, leading to an eight-

fold increase in matrix size. The sensitivity-reference scan was upsampled and brought

into alignment with the FLAIR scan. Sensitivity maps were calculated with caldir (range

50) implemented in the BART toolbox [21]. Five subjects were discarded due to excessive

motion artifacts, in which there was no exclusion bias toward a particular diagnostic label,

resulting in a dataset of fifty-seven (n=57) subjects.

4.2.4 Parallel-Imaging Compressed Sensing (PICS)
Offline CS reconstructions were performed via the BART toolbox. We used the PICS

algorithm with a 𝓁1-wavelet sparsity transform. The regularization factor was heuristically

set to 0.5 to balance artifacts and noise, for a maximum of 60 iterations.
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4.2.5 Cascades of Independently Recurrent Inference Ma-
chines (CIRIM)

For DL reconstruction, we trained a CIRIM on fully sampled 3D 𝑇1-weighted data of

healthy volunteers, retrospectively undersampled twelve times from a 2D variable density

Poisson distribution. Previous work has shown that a network trained on 𝑇1-weighted
data can generalize well to unseen FLAIR images [20]. Training data were acquired on a

3.0T Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands), and comprised

magnetization-prepared rapid gradient echo (MPRAGE) scans, no acceleration, an isotropic

resolution of 1.0𝑚𝑚3
and a FOV of 256 × 240𝑚𝑚2

. The training set consisted of ten subjects

(approximately 2000 slices), and the validation set consisted of one subject (approximately

200 slices). No cross-validation was performed during training. Rather, this study serves as

an independent study with an external validation test dataset. An overview of the network

architecture is shown in Figure 4.1. The hyperparameters of the network were selected

as follows. The number of channels was set to 128 for the recurrent and convolutional

layers, the number of time steps was set to 8, and the number of cascades was set to 4.

Additionally, we adopted and implemented a new stable backend using PyTorch Lighting

1.6.0 with floating-point 16 precision for fast reconstruction times. Model parameters were

initialized randomly. The code is available online at https://github.com/wdika/atommic. +

Figure 4.1: Schematic showing the architecture of the Cascades of Independently Recurrent Inference Machines

(CIRIM) with four cascades. From left to right: raw k-space data and accompanying sensitivity maps are used to

create an initial estimate entered into an IRIM block for calculating the gradient to update the image. An IRIM

block consists of subsequent convolutional layers activated by a rectified linear unit (ReLU), recurrent layers

(IndRNN), and a final convolutional layer. Four identical IRIM blocks are connected into cascades that share

features but no parameters.

4.2.6 Reconstruction time
The reconstruction time was measured as the total time taken for reconstructing a 32-

channel volume of size 432×432×278. Notably, when performing a reconstruction with the

BART toolbox, there is a small overhead per slice of writing a temporary file and deleting

it. For a fair comparison, we accumulated this overhead time, approximately three seconds,

and subtracted it from the final reconstruction times. The measurements were repeated

three times to ensure precision.

Reconstructions were performed offline on an Nvidia Tesla V100 GPU card with 32GB

of memory.

https://github.com/wdika/atommic
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4.2.7 Expert ratings
All the reconstructions were stored in DICOM format for subjective rating of image quality.

Two experienced interventional neuroradiologists (J.S., B.E.) with 23 and 17 years of

experience and one experienced pediatric neuroradiologist (S.R.) with 14 years of experience

were asked to subjectively rate the CIRIM and CS images on multiple categories. The raters

were blinded to the diagnosis of the cases whose images were processed for the study. The

raters were only asked to review the FLAIR sequence. They scored images side-by-side

on multiple categories on a 1 to 5 image quality scale. The scores were as follows: 1 for

non-diagnostic quality, 2 for poor quality, 3 for acceptable quality, 4 for good quality, and 5

for excellent quality. The order of the reconstruction methods was randomized, and the

raters remained unaware of the method used and the patients’ clinical information. Inspired

by previous work, five scoring categories were adopted. Imaging artifacts related to aliasing

resulting from image acceleration, ranging from excessive artifacts that severely degrade

images to no artifacts present. Perceived spatial resolution referred to image sharpness

and the ability to discern small structures down to the voxel level sharpness, ranging from

unacceptable, extreme blur levels to a high level of detail at the native level of the defined

spatial resolution. Anatomic conspicuity ranged from being unable to discern (small)

anatomical and pathological structures to perfect identification of structures. Diagnostic

confidence summarized the certainty in the diagnosis of pathology, e.g., a lesion, on a scan,

ranging from being unable and highly uncertain in diagnosis to perfect ability to diagnose

a scan. Image contrast referred to the relative difference in the intensity of known tissue

types and pathology ranging from no contrast visible to extremely good contrast [3, 22].

After the individual rating of the data, a review meeting was held with the readers, in

which selected subjects with discrepancies in reading scores were re-evaluated.

4.2.8Quantitative analyses
Since a fully sampled scan of the patient data is lacking, we calculated self-referenced

quantitative measures of image quality using MRI Quality Control (MRIQC) [23]. Specif-

ically, we selected the following set of metrics that we deemed relevant for the task of

image reconstruction: coefficient of joint variation (CJV) [24], signal-to-noise ratio, a qual-

ity index (QI1) of the proportion of voxels corrupted by artifacts [25], the entropy focus

criterion (EFC), being the Shannon entropy of voxel intensities as an indication of ghosting

and blurring induced by head motion [26], the foreground to background energy ratio

(FBER), being the mean energy of image values within the head relative to outside the

head [27], and the full width at half maximum (FWHM) of the spatial distribution of the

image intensity values in units of voxels [28]. To assess the dependency of FWHM on SNR,

Gaussian noise was added post hoc to one randomly selected CIRIM reconstruction and

FWHM was recalculated.

4.2.9 Statistics
Statistical analyses were performed using SciPy [29]. The statistical significance threshold

was set at p < 0.01 for all tests. Bonferroni correction for multiple comparisons was used

when necessary. A one-sample Wilcoxon signed-rank test was used to determine whether

the expert scores significantly preferred one over the other reconstruction method. A paired

t-test was used to determine whether the SNR differed significantly between methods.
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Probabilistic ordinal linear regression was performed to evaluate the interaction effect of

higher image resolution on improved rating scores, depending on the reconstructionmethod

used. The voxel volume was used as image resolution metric. For each reconstruction

method and per patient group, post hoc one-sample Wilcoxon signed-rank tests were

used to determine significance at a Bonferroni-corrected threshold over multiple scoring

categories.

4.3 Results
In total, the data of 57 subjects were complete and could be successfully reconstructed

via the PICS and the CIRIM network. Figure 4.2 shows selected example images in which

efficient denoising of the CIRIM compared with PICS can be seen. The CIRIM was also able

to accurately reconstruct structures where PICS failed, such as the left internal capsule

in the first example (Figure 4.2-top row). Figure 4.3 depicts example images where the

raters did not clearly prefer one method. Ratings varied in terms of imaging artifacts and

sharpness. In rare cases, PICS was preferred over the CIRIM in terms of image sharpness,

as illustrated in Figure 4.4.

The raters significantly preferred the CIRIM over PICS in most cases, as shown in

Table 4.1. For imaging artifacts, Rater 2 and Rater 3 significantly preferred the CIRIM

(mean±SD = 3.8±0.6 vs. 3.4±0.5, p<0.01, and 2.9±0.4 vs. 2.2±0.6, p<0.01, respectively),

whereas Rater 1 preferred PICS (4.6±0.7 vs. 4.1±0.8, p<0.01). With respect to sharpness,

Rater 2 preferred the CIRIM (4.1±0.6 vs. 3.4±0.5, p<0.01), Rater 3 preferred PICS (2.8±0.5

vs. 2.3±0.5, p<0.01), and Rater 1 showed no significant difference. Rater 1 and Rater 3

preferred the CIRIM for anatomic conspicuity (4.5±0.7 vs. 3.3±0.8, p<0.01, and 3.0±0.5

vs. 2.6±0.6, p<0.01, respectively) and contrast (4.8±0.5 vs. 3.2±0.6, p<0.01, and 3.0±0.5 vs.

2.5±0.6, p<0.01, respectively). While Rater 1 significantly preferred the CIRIM in terms

of diagnostic confidence (4.7±0.5 vs. 3.5±0.8, p<0.01), Rater 3 had no increased diagnostic

confidence in the CIRIM after Bonferroni correction (2.9±0.6 vs. 2.6±0.7, p=0.029).

Table 4.1: Subjective ratings of the clinical cohort from two expert interventional neuroradiologists, Raters 1 and

2, and one expert pediatric neuroradiologist, Rater 3, of 57 side-by-side CIRIM and PICS reconstructions.

Category Rater 1 Rater 2 Rater 3

Method (Mean ± SD) p value Method (Mean ± SD) p value Method (Mean ± SD) p value

PICS CIRIM PICS CIRIM PICS CIRIM

Imaging artifacts 4.6 ± 0.7 4.1 ± 0.8 <0.001* 3.4 ± 0.5 3.8 ± 0.6 0.005* 2.2 ± 0.6 2.9 ± 0.4 <0.001*
Perceived spatial resolu- 4.5 ± 0.7 4.5 ± 0.7 0.639 3.4 ± 0.5 4.1 ± 0.6 <0.001* 2.8 ± 0.5 2.3 ± 0.5 <0.001*
tion (Sharpness)

Anatomic conspicuity 3.3 ± 0.8 4.5 ± 0.7 <0.001* 3.8 ± 0.6 3.9 ± 0.6 0.463 2.6 ± 0.6 3.0 ± 0.5 0.002*
Diagnostic confidence 3.5 ± 0.8 4.7 ± 0.5 <0.001* 3.8 ± 0.6 4.1 ± 0.6 0.050 2.6 ± 0.7 2.9 ± 0.6 0.029**

Contrast 3.2 ± 0.6 4.8 ± 0.5 <0.001* 3.9 ± 0.7 3.7 ± 0.7 0.088 2.5 ± 0.6 3.0 ± 0.5 0.003*
Images were scored from 1 to 5. A score of 1 indicates nondiagnostic quality, 2 poor quality, 3 acceptable quality, 4

good quality, and 5 excellent quality. A one-sample Wilcoxon signed-rank test was used to determine significance

at a Bonferroni-corrected threshold of p = 0.05/5 = 0.01, indicated in bold

SD standard deviation

*Significant difference

**Not significant after Bonferroni correction

Rater 1 reported two illustrative multiple sclerosis (MS) cases where lesions were better

visible in CIRIM reconstructions. In another patient, Rater 1 noted that the internal capsule

was not visible on the PICS reconstruction. In contrast, the CIRIM resulted in better image
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Figure 4.2: Reconstructions of 12 times accelerated FLAIR scans for three different subjects, where the CIRIM was

able to generate better image quality. In the top row, PICS could not accurately depict the left internal capsule

lesion (example indicated by the arrow), whereas the CIRIM preserved the contrast.

quality (Figure 4.2). Rater 3 reported that the CIRIM reconstruction was more blurred in

20 cases (scoring 2 on Sharpness): out of these cases PICS outscored the CIRIM by one

point 14 times, and both scored equally on Sharpness six times. In one case, only the PICS

reconstruction perceived by Rater 3 was more blurred (scoring 2 on sharpness). Rater 3

also stated that subtle MS lesions sometimes appeared slightly blurred, making it harder to

discriminate them from artifacts. Raters 2 and 3 agreed that the CIRIM reconstructions were

smoother than PICS reconstructions without apparent loss of detail. The interpretations of

these two raters can be seen in Figure 4.3. The figure shows high-quality reconstructions

of both PICS and the CIRIM, where PICS produces grainier images, whereas the CIRIM
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Figure 4.3: Reconstructions of 12 times accelerated FLAIR scans of two subjects, where the CIRIM and PICS

provided high-quality reconstructions but were interpreted differently by two raters in a side-by-side comparison.

Rater 2 interpreted the CIRIM reconstructions as having sharper edges, whereas Rater 3 interpreted the grainier

PICS reconstructions as resulting in increased sharpness.

Figure 4.4: Reconstructions of a 12 times accelerated FLAIR scan, where the CIRIM yielded a more blurred

reconstruction than PICS did for small 𝑇2 high signal intensities among patients with small vessel disease

(example indicated by the arrow).

results in smoother images. In a few selected cases, the grainy results of PICS resulted

in higher sharpness scores than those of the CIRIM (Figure 4.4). Patient group analyses

revealed no significant effect of disease on rating scores. Higher image resolution yielded

significantly better imaging artifacts (p<0.01) and anatomic conspicuity (p<0.01) rating

scores in CIRIM reconstructions (Table 4.2). For PICS, no improvements were observed.
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The interaction effect between reconstruction method and resolution was non-significant

(p>0.05).

Table 4.2: Probabilistic ordinal linear regression for evaluating the effect of image resolution depending on the

reconstruction method used

Category PICS CIRIM

𝛽 [CI] p 𝛽 [CI] p

Imaging artifacts 0.098 [-0.287, 0.482] 0.619 0.528 [0.135, 0.922] <0.008*
Perceived spatial resolu- 0.222 [-0.166, 0.610] 0.262 0.503 [0.109, 0.896] 0.012**

tion (Sharpness)

Anatomic conspicuity -0.008 [-0.391, 0.375] 0.967 0.562 [0.163, 0.961] <0.006*
Diagnostic confidence 0.159 [-0.224, 0.541] 0.417 0.494 [0.098, 0.891] 0.015**

Contrast 0.262 [-0.122, 0.645] 0.181 0.483 [0.082, 0.884] 0.018**

A one-sample Wilcoxon signed-rank test was used to determine significance at a Bonferroni-corrected threshold

of p = 0.05/5 = 0.01, indicated in bold

*Significant difference

**Not significant after Bonferroni correction

Quantitative self-referenced MRI Quality Control (MRIQC) metrics are reported in

Figure 4.5.A. CIRIM reconstructions had a significantly higher signal-to-noise ratio (SNR)

and foreground to background energy ratio (FBER), yielding an improved outcome. The

full width at half maximum (FWHM) was significantly higher in CIRIM reconstructions,

reflecting a worse scoring. Adding Gaussian noise to a CIRIM reconstruction, resulting in

a lowering in SNR from 11 to 8.5, yielded a lower estimated FWHM of 3.8 instead of 4.4.

In terms of reconstruction times is given in Figure 4.5.B,. CIRIM reconstructions were,

on average, approximately five times faster (146±1.7s) than PICS reconstructions were

(707±20s).

Figure 4.5: Quantitative self-referenced MRI Quality Control (MRIQC) metrics: coefficient of joint variation (CJV),

signal-to-noise ratio (SNR), quality index 1 (QI1), entropy focus criterion (EFC), foreground to background ratio

(FBER), full width at half maximum (FWHM). Arrows indicate better values. Significance is indicated with an

asterisk (*) at p<0.05 (corrected).

Figure 4.6 shows contrast resolution (CR) as a function of the acceleration factor and

highlights two example slices. No significant effect of the acceleration factor on the CR was

observed (p=0.92). The SSIM decreased significantly with increasing acceleration factor

(p=0.002), for which a plot is depicted in Figure 4.7.
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Figure 4.6: a Contrast ratio as a function of the acceleration factor for 10 FLAIR slices with an annotated

white matter lesion in the FastMRI dataset. Different colors represent data from diferent subjects. b Selected

reconstructions with bounding box colors matching the plotted lines in (a), and white and yellow bounding boxes

positioned around the lesion and a selected white matter region.

When comparing lesion contrast in manually annotated lesions in our data, on average,

the CR is 5.8% lower in CIRIM reconstructions than in PICS reconstructions, decreasing

from 1.17 to 1.10. This difference was significant (p=0.04). Figure 4.8 illustrates that the CR

is marginally lower but to a large extent preserved in CIRIM compared with PICS.

4.4 Discussion
We demonstrated the value of reconstructing highly accelerated clinical FLAIR data with

DL. The CIRIM could generalize well to heterogeneous clinical data that had not been

previously reported, as it was trained on another distribution with another contrast (i.e.,

3D-𝑇1 scans of healthy volunteers). Rather than being explicitly trained on reconstructing a
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specific contrast or tissue, the physics-informed network has learned to efficiently denoise

FLAIR images. Notably, obtaining fully sampled FLAIR data in patients is infeasible as it

leads to excessive scanning times of up to 30 minutes at the current isotropic resolution,

with associated imaging artifacts. Despite not being optimized for this type of data, the

CIRIM retained its efficient denoising capacity in a dataset with a high degree of clinically

desirable zero-filling.

Compared with the default PICS method, the CIRIM network’s denoising ability led

to an almost 30% increase in SNR in brain tissue. In line with the improved calculated

SNR, subjective metrics were primarily scored in favor of CIRIM. The increased SNR in

CIRIM reconstructions led to significantly higher rating scores for imaging artifacts and

anatomic conspicuity for higher-resolution images. While showing a smooth appearance,

small features were still discernible in most images, which is clinically relevant [30]. The

higher FWHM seen in CIRIM-reconstructions can be attributed to noise effects dominating

the histogram distribution based on which this metric is computed. Image quality is

thus maintained when reconstructing clinical data in a modality unseen during training,

allowing for a reduction in scanning time or an increase in resolution while maintaining

clinically acceptable image quality.

Figure 4.7: Structural similarity (SSIM) as a function of acceleration factor for the FastMRI validation set of 107

scans.

When embedding DL-enabled reconstruction methods in the clinic, it is interesting

to note that the neuroradiologists, Raters 1 and 2, agreed on higher image quality in the

CIRIM reconstructions than in the PICS reconstructions. On a more detailed level, a lower

interrater agreement regarding sharpness and contrast in specific cases was observed.

Specifically, Rater 1 significantly preferred CIRIM in terms of sharpness, suggesting that

further denoised reconstructions yielded sharper edges than PICS did. Rater 2 perceived the

denoising as a loss of spatial resolution or smoothness, resulting in a significant preference

for PICS over CIRIM. Regarding image contrast, Rater 2 preferred CIRIM because of
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Figure 4.8: Manual annotation of a lesion (red) and proximal white matter (green) in CIRIM (left) and PICS (right)

reconstructions.

improved dealiasing of adjacent regions, leading to enhanced visibility of lesions. Notably,

not all the raters were accustomed to reading data with a high acceleration factor (12

times) in their daily routine. Rater 3 reported that in the field of pediatric neuroradiology,

image quality at a slightly less aggressive acceleration is to preferable. Previous work

also reported mixed interrater agreement [3]. It is evident that CIRIM reconstructions

differ significantly from iterative reconstruction algorithms, highlighting the need for good

interaction and communication when implementing DL reconstruction methods in the

clinic.

Another essential advantage of the model used is its ability to increase reconstruction

speed, which is highly relevant in neurological deficits where acquisition speed, reconstruc-

tion times, and image quality need to be balanced. At large FOVs, PICS might be too slow

for clinical use despite being deployed on fast GPUs. Image quality and reconstruction

time can be traded within the CIRIM by choosing a different number of cascades than those

used here. Compared with previous work, we increased the number of channels of the

network from 64 to 128, aiming to improve image quality further.

The main protocol used in this study was designed to have a high acceleration factor

of 12x. Other related works chose a more conservative acceleration factor in the range of

2x to 4x [31]. This sequence was set up as multislice, allowing for acceleration along one

phase-encoding dimension only. In contrast, here, a 3D FLAIR sequence is adopted with

two phase encoding dimensions, allowing for much higher speed-up factors. Notably, this

sequence is the standard of care in our clinic with compressed sensing reconstruction.
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We intentionally designed the experiments to compare the performance of CIRIM and

PICS on reconstruction alone and to do so offline (i.e., off-scanner). We wanted to exclude

any on-scanner postprocessing to visually enhance the images, as this approach may be in

place for some vendors. Postprocessing is typically performed with proprietary software.

Thus, we disregarded this step to avoid an unbalanced comparison between methods.

Moreover, leaving out post-processing makes the presented results more easily comparable

with results from other vendors. However, in future research, it would be valuable to

investigate the denoising capabilities of both CIRIM and on-scanner postprocessing filters

for comparison purposes.

A few limitations need to be noted regarding the present study. In certain CIRIM

reconstructions, a small amount of blur was introduced, possibly caused by the high

acceleration factor (twelvefold) and the resulting low intrinsic signal in the data of some

patients. Highly accelerated deep learning-based reconstructions need to be carefully

evaluated in the clinic, since artifacts may appear differently than with conventional

reconstruction methods. Metrics often used in image reconstruction in addition to SNR,

such as the structural similarity index (SSIM), could not be computed since we did not

have a fully sampled scan. Another limitation is that we could not compare with on-

scanner reconstruction times since hardware and software differences hinder a comparison

of the algorithm with the reconstructions performed on-scanner. Furthermore, a fully

sampled reference could not be acquired, because of the risk of motion artifacts and image

blurring in the 24 to 30 minute scanning time of a sequence without acceleration. For the

prospectively acquired patient data, no ground truth data were available, and comparisons

with clinically used CS reconstructions prohibited an assessment of changes in diagnosis.

However, the analysis of FastMRI data demonstrated that CR is preserved over a broad

range of acceleration factors.

We demonstrated the added value of deep learning in reconstructing 3D FLAIR scans

in a clinically representative sample with neurological deficits. Reconstructions made with

the physics-informed CIRIM model have increased SNRs and appear less noisy than PICS

iterative reconstruction. The higher SNR in CIRIM reconstructions enables scanning at

higher resolution. Moreover, the CIRIM achieves faster reconstruction times, which is

crucial for the timely diagnosis of neurological deficits. Online inference on MRI scanners

requires a graphical processing unit (GPU) to be installed on the reconstruction computer.

The CIRIM, which balances the network size and is therefore memory efficient, does not

place high demands on the specifications of GPU cards, requiring 1.6 GB of memory for 264k

parameters in total. This work shows the promise of physics-informed neural networks in

accelerated MRI reconstruction. Future work should evaluate whether the surplus in the

SNR can be traded for further acceleration.
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Supplementary Material

Figure S.4.1: Example reconstructions of FastMRI FLAIR scans with relatively high and low Structural Similary

(SSIM) values, with absolute difference maps relative to the ground truth. Note that the line artefact in the lower

scan is present in the ground truth and largely filtered out in the CIRIM reconstructions.









5

101

5
MultiTask Learning for

accelerated-MRI
Reconstruction and

Segmentation of Brain
Lesions in Multiple Sclerosis

Karkalousos, D., Išgum, I., Marquering, H.A., & Caan, M.W.A. (2024, January)

In Medical Imaging with Deep Learning (pp. 991-1005). PMLR.



5

102

MultiTask Learning for accelerated-MRI Reconstruction and Segmentation of Brain

Lesions in Multiple Sclerosis

Abstract
This work proposes MultiTask Learning for accelerated-MRI Reconstruction and Segmentation
(MTLRS). Unlike the common single-task approaches, MultiTask Learning identifies relations
between multiple tasks to improve the performance of all tasks. The proposed MTLRS consists of
a unique cascading architecture, where a recurrent reconstruction network and a segmentation
network inform each other through hidden states. The features of the two networks are shared
and implicitly enforced as inductive bias. To evaluate the benefit of MTLRS, we compare
performing the two tasks of accelerated-MRI reconstruction and MRI segmentation with pre-
trained, sequential, end-to-end, and joint approaches. A synthetic multicoil dataset is used to
train, validate, and test all approaches with five-fold cross-validation. The dataset consists of 3D
FLAIR brain data of relapsing-remitting Multiple Sclerosis patients with known white matter
lesions. The acquisition is prospectively undersampled by approximately 7.5 times compared
to clinical standards. Reconstruction performance is evaluated by Structural Similarity Index
Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Segmentation performance is evaluated
by Dice score for combined brain tissue and white matter lesion segmentation and by per
lesion Dice score. Results show that MTLRS outperforms other evaluated approaches, providing
high-quality reconstructions and accurate white matter lesion segmentation. A significant
correlation was found between the performance of both tasks (SSIM and per lesion Dice score,
𝜌 = 0.92, 𝑝 = 0.0005). Our proposed MTLRS demonstrates that accelerated-MRI reconstruction
and MRI segmentation can be effectively combined to improve performance on both tasks,
potentially benefiting clinical settings.

5.1 Introduction
Acquisition, reconstruction, and analysis of Magnetic Resonance Imaging (MRI) are cur-

rently performed in a sequence of distinct tasks. Performing each task independently misses

the opportunity to share valuable information between the tasks and jointly optimize their

performance. MultiTask Learning (MTL) is a technique in which multiple domain-related

tasks are trained in parallel using shared features, effectively acting as inductive bias. MTL

can implicitly identify task-relatedness, yielding improved generalization [1]. By utilizing

the information in multiple tasks, the performance of each task can be improved. Recently

task-adapted reconstruction was proposed to combine reconstruction with related tasks

[2] in different approaches.

In a pre-trained approach, a reconstruction network and a segmentation network

are trained separately to perform the tasks individually. In a sequential approach, the

segmentation network is fine-tuned using the predictions of the reconstruction network.

In an end-to-end approach, the reconstruction and the segmentation networks are trained

together at the same time. For performing end-to-end accelerated-MRI reconstruction

and MRI segmentation, Huang et al. [3] proposed the SEgmentation Recurrent Attention

Network (SERANET), starting from the subsampled k-space to result in a segmentation. In

a joint approach, the reconstruction and segmentation networks are trained end-to-end,

computing a joint reconstruction and segmentation loss with a weighting factor balancing

the two tasks. For performing the two tasks jointly, Sun et al. [4] proposed the SegNet,

consisting of cascades of U-Nets for reconstruction and a separate decoder for segmentation,

using the output of all the reconstruction encoders. Similarly, the Image Deep Structured
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Low-Rank (IDSLR) [5] and the RecSeg [6] methods perform joint reconstruction and

segmentation. The IDSLR uses only the output of the final encoder for segmentation, while

the RecSeg uses a second U-Net.

In this work, we formulate the inverse problem of accelerated-MRI reconstruction

and the task of MRI segmentation as a multitask problem. In contrast to earlier meth-

ods, we show that performance on both tasks can be improved by informing each other

through a recurrent approach. To this end, we leverage the Cascades of Independently

Recurrent Inference Machines (CIRIM) [7] for accelerated-MRI reconstruction and we add

a segmentation network to the cascades to inform MultiTask Learning for accelerated-MRI

Reconstruction and Segmentation (MTLRS). Following [2], the aim is to find a forward

operator that directly maps accelerated-MR images to MRI segmentation. In MTLRS, this

direct operator is modeled by coupling the output of the hidden layers of the reconstruc-

tion network with the output of the segmentation network. We develop and evaluate the

proposed MLTRS using five-fold cross-validation on a synthetic multicoil dataset of 3D

FLAIR data of relapsing-remitting Multiple Sclerosis patients with known white matter

lesions.

5.2 Methods
5.2.1 MultiTask Learning for accelerated-MRI Reconstruc-

tion and Segmentation
The inverse problem of accelerated-MRI reconstruction can be formalized through a forward

model. Let 𝑥 ∈ ℂ𝑛
with 𝑛 = 𝑛𝑥 ×𝑛𝑦 , be a true image and let 𝑦 ∈ ℂ𝑚

, with 𝑚 << 𝑛, be the set
of sparse k-space measurements. The forward model describes 𝑦 as

𝑦𝑖 = 𝐴 (𝑥)+𝜎𝑖, 𝑖 = 1, ..., 𝑐, (5.1)

where 𝑖 denotes the current receiver coil, for a total of 𝑐 coils. 𝐴 ∶ ℂ𝑛 ↦ ℂ𝑛×𝑛𝑐 is the

linear forward operator of accelerating MR acquisition, and 𝜎𝑖 ∈ ℂ𝑛
denotes the noise

from the scanner for the 𝑖− 𝑡ℎ coil. 𝐴 is given by 𝐴 = 𝑈 ⊙ ⊙𝜖, where 𝑈 denotes the

subsampling operator and  the Fourier transform. 𝜖 ∶ ℂ𝑛 ×ℂ𝑛×𝑛𝑐 ↦ ℂ𝑛×𝑛𝑐 is the expand

operator, transforming 𝑥 into 𝑥𝑐 multicoil images, given by 𝜖 (𝑥) = (𝑆0⊙𝑥, ..., 𝑆𝑥 ⊙𝑥) =
(𝑥0, ..., 𝑥𝑐) where 𝑆 denote the coil sensitivity maps. Subsequently, the backward operator

for projecting the sparse k-space to image space is given by 𝐴∗ = 𝑟 ⊙−1⊙𝑈 𝑇
, where

−1
denotes the inverse Fourier transform. 𝑟 ∶ ℂ𝑛×𝑛𝑐 ×ℂ𝑛×𝑛𝑐 ↦ ℂ𝑛

is the reduce operator

computing a coil-combined image given by 𝑟 (𝑥0, ..., 𝑥𝑐) =∑𝑐
𝑖=1 𝑆𝐻𝑖 ⊙𝑥𝑖, where 𝐻 denotes

the Hermitian complex conjugate.

When solving the inverse problem of accelerated-MRI reconstruction, the 𝑦 ↦ 𝑥 map-

ping (Eq. 5.1) can be found through aMaximumAPosteriori (MAP) estimation. Formulating

the MAP estimation into a non-convex optimization scheme [8] results in updates of the

form

𝑥𝜄+1 = 𝑥𝜄+𝜃𝜙 (∇𝑦 |𝑥𝜄 , 𝑥𝜄) , (5.2)

at iteration 𝜄, for total number of iterations 𝐼 . ∇𝑦 |𝑥𝜄 is the gradient of the log-likelihood given
by ∇𝑦 |𝑥 ∶= 1

𝜎2𝐴∗ (𝐴 (𝑥)−𝑦), assuming data are acquired under a Gaussian distribution. 𝜃𝜙
explicitly models the update rule using a Recurrent Neural Network (RNN).
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Here, we use a learned inverse problem solver, the Cascades of Independently Recurrent

Inference Machines (CIRIM) [7]. The update equations of the network for the first cascade

are given by

ℎ𝑘=10 = 0, 𝑥0𝑘=1 = 𝐴∗ (𝑦) ,

ℎ𝑘=1𝜄+1 = 𝜃∗𝜙 (∇𝑦 |𝑥𝜄 , 𝑥𝜄,ℎ𝜄) , ̂𝑥𝜄+1𝑘=1 = 𝑥𝜄+𝜃𝜙 (∇𝑦 |𝑥𝜄 , 𝑥𝜄,ℎ𝜄+1) ,
(5.3)

where 𝜃∗𝜙 is the updated model for the hidden state variable ℎ and 𝑘 denotes the current

cascade, for total 𝐾 cascades. For the rest 2 ≤ 𝑘 ≤ 𝐾 cascades, we extend the CIRIM

by including a segmentation network and further informing it of the segmentation task

described by

𝑠 = 𝑇 (𝑥) , (5.4)

where 𝑇 ∶ 𝑥 ↦ 𝑠 is the generic forward segmentation operator and can be replaced by

any segmentation network. MultiTask Learning for accelerated-MRI Reconstruction and

Segmentation (MTLRS) is then realized by coupling the output of the hidden states with 𝑠,
resulting in updates of the form

ℎ𝑘≥20 = 𝑥𝐼 𝑘−1 ∗ 𝑠𝑘−1, 𝑥0𝑘≥2 = 𝑥𝐼 𝑘−1,

ℎ𝑘≥2𝜄+1 = 𝜃∗𝜙(∇𝑦 |𝑥𝜄𝑘 , 𝑥𝜄
𝑘 , 𝑥𝐼 𝑘−1 ∗ 𝑠𝑘−1) , ̂𝑥𝜄+1𝑘≥2 = 𝑥𝜄𝑘 +𝜃𝜙(∇𝑦 |𝑥𝜄𝑘 , 𝑥𝜄

𝑘 ,ℎ𝑘𝜄+1) .
(5.5)

In this way, the reconstruction informs the segmentation network and vice versa. A

schematic representation is shown in Fig. 5.1.

Figure 5.1: Schematic overview of the MultiTask Learning for accelerated-MRI Reconstruction and Segmentation

(MTLRS) framework. MTLRS consists of 𝐾 cascades of a reconstruction network (top-leftmost block on each

cascade) and a segmentation network (top-rightmost block on each cascade). On each cascade, the network first

performs a reconstruction (𝑥𝐼 𝑘), next a segmentation (𝑠𝑘), and finally couples the segmented output with the

output of the hidden layers (ℎ𝑘0 and ℎ𝑘𝐼 ), to initialize the hidden layers of the next cascade. After 𝐾 cascades, the

network outputs a final reconstruction (𝑥𝐼 𝑘=𝐾 ) and segmentation (𝑠𝑘=𝐾 ) (top-rightmost).
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5.2.2 Loss function
The loss function in MTLRS is described by a joint reconstruction 𝐿𝑟𝑒𝑐𝑜𝑛 (�̂�, 𝑥) and segmen-

tation 𝐿𝑠𝑒𝑔 (𝑠, 𝑠) loss. The joint loss is given by

𝐿𝑗𝑜𝑖𝑛𝑡 =
1
𝑁

𝑁
∑
𝑛=1

(1−𝛼)𝐿𝑟𝑒𝑐𝑜𝑛 (�̂�𝑛, 𝑥𝑛)+𝛼𝐿𝑠𝑒𝑔 (𝑠𝑛, 𝑠𝑛) , (5.6)

where 𝑛 is the current batch and 𝑁 is the total number of training samples. 𝑥 is the ground

truth image, �̂� the predicted reconstruction, 𝑠 the ground truth segmentation label, and 𝑠
the predicted segmentation. 𝛼, with 0 ≤ 𝛼 ≤ 1, is a weighting factor, balancing the influence
of each task to the final loss.

𝐿𝑟𝑒𝑐𝑜𝑛 is usually computed on the magnitudes 𝑥 and �̂� , where 𝑥0 = 𝐴 (𝑦) is the initially
zero-filled reconstruction. In the case of the 𝑙1-norm, the loss is given by

𝐿𝑙1 (�̂�, 𝑥) =
1
𝑁

𝑁
∑
𝑛=1

|�̂�𝑛−𝑥𝑛| . (5.7)

For MTLRS, 𝐿𝑟𝑒𝑐𝑜𝑛 is weighted over the number of recurrent iterations. Thus Eq. 5.7 is

reformulated as

𝐿𝑙1 (�̂�, 𝑥) =
1
𝑁

𝑁
∑
𝑛=1(

1
𝑞𝐼

𝐼
∑
𝜏=1

𝑤𝜏 |𝑥𝜏𝑛−𝑥𝑛|)
, (5.8)

where 𝑞 is the total number of pixels and 𝑤𝜏 is a vector containing 𝐼 weights, for a total
number of iterations 𝐼 , to emphasize the loss at later recurrent iterations. The weights are

calculated as 𝑤𝜏 = 10−
𝐼−𝜏
𝐼−1 .

For segmentation loss, we choose the commonly used binary cross-entropy loss and

combine it with the Dice loss to ameliorate class imbalance given the very small size of

white matter lesions compared to segmented brain tissue. Therefore, a combined weighted

binary cross-entropy and Dice loss assures stable loss computation. 𝐿𝑠𝑒𝑔 is then given by

𝐿𝑠𝑒𝑔 (𝑠, 𝑠) = 𝛽𝐿𝐶𝐸 (𝑠, 𝑠)+ (1−𝛽)𝐿𝐷𝑖𝑐𝑒 (𝑠, 𝑠) , (5.9)

where 𝐿𝐶𝐸 (𝑠, 𝑠) = − 1
𝑁 ∑𝑁

𝑛=1 𝑠𝑛 𝑙𝑜𝑔 𝑠𝑛+(1− 𝑠𝑛) 𝑙𝑜𝑔 (1− 𝑠𝑛) and 𝐿𝐷𝑖𝑐𝑒 (𝑠, 𝑠) = 1−
2∑𝑁

𝑛=1 𝑠𝑛𝑠𝑛
∑𝑁

𝑛=1 𝑠𝑛
2+∑𝑁

𝑛=1 𝑠2𝑛
. Finally, 𝛽 is a weighting factor balancing the contribution of each loss. In

this work, we set 𝛽 = 0.5.

5.2.3 Experiments
In our experiments, we evaluate the proposed MTLRS (Sec. 5.2.1) against other approaches

which perform accelerated-MRI reconstruction and MRI segmentation without feature

sharing. In a pre-trained approach, we train a reconstruction and a segmentation network

separately and then use them independently at inference. In a sequential approach, we

fine-tune the pre-trained segmentation network on the outputs of the reconstruction

network. In an end-to-end approach, we train the two networks simultaneously but only

compute a segmentation loss. In a joint approach, the two networks are trained with a

joint reconstruction and segmentation loss (Eq. 5.6). The novelty of MTLRS lies in sharing
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features between the reconstruction and the segmentation network. Through a sequence

of cascades, the segmented output is concatenated with the output of the hidden layers to

initialize the hidden layers of the subsequent cascade. In that way, MTLRS is informed by

the outputs of both tasks, in addition to a joint loss. In a joint approach, the network is

only informed by the joint loss.

In all these approaches, we choose the Cascades of Independently Recurrent Inference

Machines (CIRIM) as the reconstruction network and the Attention-UNet [9] as the seg-

mentation network, which empirically have been found to be well-performing models

for each task. Additionally, we compare the performance of MTLRS with previously pub-

lished methods. For this purpose, we implemented the end-to-end approach SEgmentation

Recurrent Attention Network (SERANET) [3], and the joint approaches, RECSEGNET

[6], Image Deep Structured Low-Rank (IDSLR) [5], and SEGNET [4]. All models were

trained and tested on an Nvidia Tesla V100 GPU with 32GB memory. The hyperparameter

settings for all methods can be found in the Appendix. The code is publicly available at

https://github.com/wdika/mridc.

5.2.4 Dataset
A clinical dataset was used to train, validate, and test all methods using five-fold cross-

validation. The dataset consisted of 3D FLAIR coil-combined magnitude brain images of

19 relapsing-remitting Multiple Sclerosis (MS) patients with white matter lesions. Data

were acquired on a 3.0T scanner in our hospital. The local ethics review board approved

this study, and the patients provided informed consent. Prospective undersampling was

performed, accelerating imaging approximately 7.5 times under a Variable-Density Poisson

disk distribution. Coil sensitivity maps were estimated using the caldir method of the

BART toolbox (Uecker et al., 2015) on a fully-sampled reference.

The coil-combined magnitude images were used to synthesize multicoil complex data.

To this end, we used a pre-trained CIRIM model trained only for reconstruction on 2D

multislice FLAIR data [10], accelerated approximately eight times under a Variable-Density

Poisson disk distribution. Minimal random gaussian noise was added to the synthetic data,

with a relative weighting factor of 10−5. Data were then retrospectively accelerated by

approximately 7.5 times under a Variable-Density Poisson disk distribution. Next, we used

the reconstructed images to predict two segmentation classes, brain tissue (combined white

and gray matter) and white matter lesions, as a reference standard for MRI segmentation.

To obtain brain tissue segmentations, we used the statistical parametric mapping (SPM)

toolbox [11]. To obtain white matter lesion segmentations, we used a pre-trained network

for eye and tumor segmentation of retinoblastoma patients [12]. All segmentations were

visually inspected and manually corrected when necessary to assure segmentation accuracy.

5.2.5 Evaluation
For evaluating reconstruction, we compute Structural Similarity Index Measure (SSIM)

[13] and Peak Signal-to-Noise-Ratio (PSNR) on the normalized magnitude images between

the synthesized ground truth 𝑥 and the prediction �̂� . SSIM and PSNR are first computed

per slice and per plane for each subject and then averaged to evaluate the reconstruction

performance as a 3D volume. To evaluate segmentation, we calculate the Dice score as an

overlap metric between the standard 𝑠 and the prediction 𝑠. Dice score is reported for the

https://github.com/wdika/mridc
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combined (white and gray matter) tissue and white matter lesion segmentation and for

only the white matter lesion segmentation. Dice scores are computed across all planes and

slices for all subjects. To assess whether a correlation in performance between both tasks

exists, we correlated SSIM and per lesion Dice scores using Spearman’s rank test.

5.3 Results
Figure 5.2 shows an overall comparison, averaged over five-folds, of MTLRS to the Pre-

Trained, Sequential, End-to-End, and Joint approaches. Note that the Sequential and the

End-to-End approaches are optimized only for segmentation. MTLRS performed best on

both reconstruction and segmentation. The Joint approach performed close to MTLRS

but with a larger standard deviation. The Pre-Trained approach dropped in performance

on both tasks, while it performed on par with the Sequential approach on segmentation,

showing no apparent benefit when further optimizing the segmentation model on the

reconstructed outputs. The End-to-End approach was the worst segmentation method,

indicating the need for a joint loss rather than only segmentation loss.

Figure 5.2: Quantitative evaluation averaged over five-folds when performing accelerated-MRI reconstruction

and MRI segmentation with different approaches (x-axis). Data were retrospectively undersampled 7.5 times.

SSIM and PSNR (top) evaluate reconstruction. DICE and DICE Lesions (bottom) evaluate segmentation.

Table 5.1 reports the performance of MTLRS and the evaluated previously published

methods, averaged over five-folds. In both tasks, MTLRS outperformed the RECSEGNET,

IDSLR, SEGNET, and SERANET, showing a clear advantage for the multitask approach.

Overview tables reporting the performance of all approaches and previously published

methods on each fold can be found in the Appendix.

Figure 5.3 shows an example of a reconstructed and segmented axial slice by MTLRS

and the evaluated previously published methods. MTLRS provided the highest reconstruc-

tion quality (SSIM) and the most accurate lesion segmentation (Dice). The RECSEGNET

performed comparably with MTLRS in reconstruction, while the IDSLR and SEGNET
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reduced reconstruction performance further. The SERANET was the worst-performing

method on reconstruction.

SSIM and lesions Dice scores were significantly correlated (𝜌 = 0.92, 𝑝 = 0.0005). More

examples of reconstructions and segmentations can be found in the Appendix.

Table 5.1: Overall comparison, averaged over five-folds, of MTLRS to previously published methods when

performing accelerated-MRI reconstruction and MRI segmentation. SSIM and PSNR evaluate reconstruction.

DICE and DICE Lesions evaluate segmentation. Metrics are computed on retrospectively undersampled data

by 7.5 times. The arrow pointing upward indicates higher is better. Methods are sorted by DICE, while the

best-performing method is shown in bold.

Method SSIM ↑ PSNR ↑ DICE ↑ DICE Lesions ↑

MTLRS 0.940 ± 0.017 35.26 ± 1.30 0.691 ± 0.065 0.574 ± 0.069
RECSEGNET 0.787 ± 0.041 28.93 ± 0.99 0.512 ± 0.059 0.229 ± 0.086

SERANET 0.508 ± 0.063 0.221 ± 0.082

IDSLR 0.758 ± 0.034 27.31 ± 0.96 0.490 ± 0.054 0.186 ± 0.075

SEGNET 0.749 ± 0.039 27.07 ± 1.14 0.479 ± 0.056 0.178 ± 0.065

Figure 5.3: Reconstruction and segmentation of an axial slice with white matter lesions. An acceleration factor of

approximately 7.5 was used to undersample the data retrospectively (top-second column). Methods are sorted by

SSIM. SSIM is computed for evaluating reconstruction performance against the ground truth (top-first column).

The per lesions Dice score is computed to evaluate segmentation performance against the reference labels

(bottom-first column).

5.4 Discussion & Conclusion
We proposed MultiTask Learning for accelerated-MRI Reconstruction and Segmentation

(MTLRS).MultiTask Learningwas realized through a unique cascading network architecture

consisting of a recurrent reconstruction network and segmentation network. The output

of the hidden layers was combined with the segmented images to inform a sequence of
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cascades, thus serving as an inductive bias. Performance was evaluated using five-fold cross-

validation. MTLRS outperformed the Pre-Trained, Sequential, and End-to-End approaches

and existing methods (RECSEGNET, SERANET, IDSLR, SEGNET) on reconstructing 7.5

times accelerated 3D FLAIR brain data of Multiple Sclerosis patients and on segmenting

white matter lesions identified on this data. Additionally, it improved marginally upon the

Joint approach. The reason could lie in the fact that the reconstruction network architecture

used in MTLRS and the joint and pre-trained approaches was the same as the pre-trained

network used in synthesizing the multicoil dataset. Therefore, future work will evaluate

our method on a dataset where fully sampled reference data is available, e.g., knee data from

the recently held KS-challenge [14]. Interestingly, a strong correlation was found between

the quality metrics of both tasks. The results suggest that improved dealiasing during

reconstruction leads to improved contrast and better-defined lesion boundaries, thereby

supporting a more accurate segmentation. In future work, more tasks can be combined,

such as classifying the underlying pathologies and improving performance by informing

each other. Thus, MultiTask Learning is yet to be further explored, with potentially a high

value if applied in the clinical setting, where aside from improving performance, the need

for waiting time between multiple tasks would not be needed.
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Appendix
Hyperparameters
In our experiments, we set the hyperparameters of the related compared work according

to what is reported by the authors in the original work.

For the CIRIM, we set the number of features to 64 for the convolutional and recurrent

layers, cascades to 5, and recurrent iterations to 8. For the AttentionUNet, we set the

number of features to 64, pooling layers to 2, and dropout to 0. For the SERANET, we chose

the U-Net as the reconstruction network. We set the number of features to 32, pooling

layers to 4, and dropout to 0 for the reconstruction, segmentation, and recurrent modules,

and built three reconstruction blocks. For the RECSEGNET and the IDSLR, we set the

number of features to 64, pooling layers to 2, and dropout to 0. For the IDSLR, the number

of iterations was set to 5. 𝛼 was set to 0.5 for the RECSEGNET and 10𝑒 −6 for IDSLR.

Finally, for the SEGNET, we set the number of features to 64, pooling layers to 2, dropout

to 0, and cascades to 5.

For finding the optimal value for 𝛼 in the joint loss for MTLRS (Eq. 5.6), we performed a

hyperparameter search as presented in Figure 5.4. The tested values are 0.01,0.1,0.5,0.9,0.99,
going from favoring the reconstruction loss to balancing the loss to favoring the segmenta-

tion loss. The optimal 𝛼 value was found to be 0.9.
We used ADAM as optimizer for all methods and set the learning rate to 10−4.

Figure 5.4: Hyperparameter search for finding the optimal 𝛼 value in the joint loss (Eq. 5.6). Reconstruction and

segmentation performance are realized on an SSIM (x-axis) over Dice (y-axis) plot. From left to right. The ∗
indicates the value resulting in the best SSIM & Dice scores.

Overview five-fold cross-validation
Tables 5.2 and 5.3 report performance on each of the five folds of the cross-validation, of

MTLRS and all compared approaches and previously published methods when performing

accelerated-MRI reconstruction and MRI segmentation. MTLRS was the best-performing

method overall on all folds and all metrics. Only on the second fold and on PSNR the Joint

approach scored higher than MTLRS.
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Table 5.2: Overall performance of MTLRS and the Pre-Trained, Sequential, End-to-End, and Joint approaches

for five-fold cross-validation when performing accelerated-MRI reconstruction and MRI segmentation. SSIM

and PSNR evaluate reconstruction. DICE and DICE Lesions evaluate segmentation. Metrics are computed on

retrospectively undersampled data by 7.5 times. The arrow pointing upward indicates higher is better. Methods

are sorted by DICE, while the best-performing method is shown in bold.

Method SSIM ↑ PSNR ↑ Dice ↑ Dice Lesions ↑

Fold 1

MTLRS 0.936 ± 0.036 34.94 ± 3.50 0.656 ± 0.094 0.511 ± 0.098
Joint 0.936 ± 0.037 34.79 ± 3.46 0.651 ± 0.096 0.505 ± 0.105

Pre-Trained 0.821 ± 0.090 29.84 ± 3.33 0.475 ± 0.111 0.197 ± 0.172

End-to-End 0.474 ± 0.075 0.178 ± 0.110

Sequential 0.473 ± 0.112 0.178 ± 0.110

Fold 2

MTLRS 0.961 ± 0.025 36.69 ± 2.75 0.706 ± 0.074 0.588 ± 0.091
Joint 0.959 ± 0.034 37.13 ± 3.59 0.704 ± 0.073 0.587 ± 0.091

Sequential 0.604 ± 0.150 0.407 ± 0.270

Pre-Trained 0.882 ± 0.075 31.43 ± 2.85 0.601 ± 0.151 0.400 ± 0.272

End-to-End 0.555 ± 0.138 0.319 ± 0.236

Fold 3

MTLRS 0.944 ± 0.027 35.72 ± 3.20 0.677 ± 0.090 0.558 ± 0.107
Joint 0.933 ± 0.033 34.96 ± 3.20 0.664 ± 0.095 0.528 ± 0.120

Pre-Trained 0.838 ± 0.067 30.65 ± 2.80 0.480 ± 0.147 0.211 ± 0.246

Sequential 0.489 ± 0.141 0.220 ± 0.238

End-to-End 0.487 ± 0.111 0.204 ± 0.180

Fold 4

MTLRS 0.940 ± 0.032 35.26 ± 3.40 0.707 ± 0.051 0.572 ± 0.070
Joint 0.937 ± 0.035 34.97 ± 3.67 0.697 ± 0.059 0.552 ± 0.080

Sequential 0.506 ± 0.093 0.222 ± 0.184

Pre-Trained 0.814 ± 0.080 29.63 ± 2.95 0.500 ± 0.094 0.219 ± 0.182

End-to-End 0.495 ± 0.083 0.201 ± 0.155

Fold 5

MTLRS 0.923 ± 0.068 34.18 ± 4.57 0.654 ± 0.066 0.570 ± 0.085
Pre-Trained 0.918 ± 0.064 33.82 ± 4.52 0.636 ± 0.087 0.540 ± 0.112

Joint 0.915 ± 0.061 33.64 ± 4.52 0.646 ± 0.070 0.562 ± 0.082

Sequential 0.634 ± 0.080 0.542 ± 0.114

End-to-End 0.490 ± 0.104 0.233 ± 0.153



References

5

113

Table 5.3: Overall performance of MTLRS and previously published methods for five-fold cross-validation when

performing accelerated-MRI reconstruction and MRI segmentation. SSIM and PSNR evaluate reconstruction.

DICE and DICE Lesions evaluate segmentation. Metrics are computed on retrospectively undersampled data

by 7.5 times. The arrow pointing upward indicates higher is better. Methods are sorted by DICE, while the

best-performing method is shown in bold

Method SSIM ↑ PSNR ↑ Dice ↑ Dice Lesions ↑

Fold 1

MTLRS 0.936 ± 0.036 34.94 ± 3.50 0.656 ± 0.094 0.511 ± 0.098
RECSEGNET 0.781 ± 0.088 28.61 ± 2.51 0.481 ± 0.081 0.175 ± 0.120

SERANET 0.472 ± 0.063 0.160 ± 0.076

SEGNET 0.761 ± 0.072 27.47 ± 2.10 0.457 ± 0.066 0.129 ± 0.074

IDSLR 0.760 ± 0.075 27.48 ± 1.97 0.457 ± 0.067 0.129 ± 0.067

Fold 2

MTLRS 0.961 ± 0.025 36.69± 2.75 0.706 ± 0.074 0.588 ± 0.091
RECSEGNET 0.850 ± 0.079 30.29 ± 2.41 0.568 ± 0.128 0.322 ± 0.238

SERANET 0.548 ± 0.109 0.280 ± 0.200

IDSLR 0.808 ± 0.063 27.51 ± 2.24 0.526 ± 0.111 0.242 ± 0.204

SEGNET 0.791 ± 0.068 27.03 ± 2.33 0.505 ± 0.091 0.213 ± 0.150

Fold 3

MTLRS 0.944 ± 0.027 35.72 ± 3.20 0.677 ± 0.090 0.558 ± 0.107
SERANET 0.495 ± 0.096 0.202 ± 0.151

RECSEGNET 0.792 ± 0.072 29.40 ± 2.20 0.492 ± 0.110 0.199 ± 0.185

SEGNET 0.756 ± 0.067 27.86 ± 1.76 0.462 ± 0.096 0.157 ± 0.139

IDSLR 0.755 ± 0.068 27.83 ± 1.83 0.455 ± 0.093 0.137 ± 0.129

Fold 4

MTLRS 0.940 ± 0.032 35.26 ± 3.40 0.707 ± 0.051 0.572 ± 0.070
SERANET 0.526 ± 0.049 0.226 ± 0.095

RECSEGNET 0.773 ± 0.080 28.58 ± 2.33 0.493 ± 0.059 0.186 ± 0.118

SEGNET 0.747 ± 0.067 27.46 ± 2.01 0.477 ± 0.038 0.150 ± 0.071

IDSLR 0.744 ± 0.075 27.46 ± 2.04 0.480 ± 0.047 0.147 ± 0.096

Fold 5

MTLRS 0.923 ± 0.068 34.18 ± 4.57 0.654 ± 0.066 0.570 ± 0.085
RECSEGNET 0.749 ± 0.122 27.94 ± 3.21 0.507 ± 0.120 0.268 ± 0.205

IDSLR 0.719 ± 0.107 26.24 ± 2.32 0.492 ± 0.110 0.243 ± 0.188

SERANET 0.490 ± 0.104 0.233 ± 0.153

SEGNET 0.690 ± 0.103 25.48 ± 2.26 0.454 ± 0.111 0.198 ± 0.164

Overview examples
Figures 5.5 and 5.6 show examples of reconstructed and segmented slices of the coronal

and sagittal view, with white matter lesions identified in all slices. An acceleration factor
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of approximately 7.5 was used to undersample the data retrospectively. MTLRS provided

the highest reconstruction quality (SSIM) and the most accurate lesions segmentation

(Dice) in all cases. The RECSEGNET dropped significantly both in SSIM and Dice score

by oversimplifying the reconstruction and slightly overestimating lesion volume. The

same behavior is observed by the IDSLR and the SEGNET, reducing performance further.

The SERANET performed poorly on reconstruction, while segmentation performance was

comparable or better to the RECSEGNET, IDSLR, and SEGNET.

Figure 5.5: Reconstruction and segmentation of a coronal slice with white matter lesions. An acceleration

factor of approximately 7.5 was used to undersample the data retrospectively (top-second column). Methods are

sorted by SSIM. SSIM is computed for evaluating reconstruction performance against the ground truth (top-first

column). The per lesions Dice score is computed to evaluate segmentation performance against the reference

labels (bottom-first column).

Figure 5.6: Reconstruction and segmentation of a sagittal slice with white matter lesions. An acceleration

factor of approximately 7.5 was used to undersample the data retrospectively (top-second column). Methods are

sorted by SSIM. SSIM is computed for evaluating reconstruction performance against the ground truth (top-first

column). The per lesions Dice score is computed to evaluate segmentation performance against the reference

labels (bottom-first column).
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Abstract
Background and Objectives: Artificial intelligence (AI) is revolutionizing Magnetic Reso-
nance Imaging (MRI) along the acquisition and processing chain. Advanced AI frameworks
have been applied in various successive tasks, such as image reconstruction, quantitative
parameter map estimation, and image segmentation. However, existing frameworks are often
designed to perform tasks independently of each other or are focused on specific models or single
datasets, limiting generalization. This work introduces the Advanced Toolbox for Multitask
Medical Imaging Consistency (ATOMMIC), a novel open-source toolbox that streamlines AI
applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several
tasks using deep learning (DL) models and enables MultiTask Learning (MTL) to perform
related tasks in an integrated manner, targeting generalization in the MRI domain.

Methods: We conducted a comprehensive literature review and analyzed 12,479 GitHub
repositories to assess the current landscape of AI frameworks for MRI. Subsequently, we
demonstrate how ATOMMIC standardizes workflows and improves data interoperability,
enabling effective benchmarking of various DL models across MRI tasks and datasets. To
showcase ATOMMIC’s capabilities, we evaluated twenty-five DL models on eight publicly
available datasets, focusing on accelerated MRI reconstruction, segmentation, quantitative
parameter map estimation, and joint accelerated MRI reconstruction and segmentation using
MTL.

Results: ATOMMIC’s high-performance training and testing capabilities, utilizing multiple
GPUs and mixed precision support, enable efficient benchmarking of multiple models across
various tasks. The framework’s modular architecture implements each task through a collection
of data loaders, models, loss functions, evaluation metrics, and pre-processing transformations,
facilitating seamless integration of new tasks, datasets, and models. Our findings demonstrate
that ATOMMIC supports MTL for multiple MRI tasks with harmonized complex-valued and
real-valued data support while maintaining active development and documentation. Task-
specific evaluations demonstrate that physics-based models outperform other approaches
in reconstructing highly accelerated acquisitions. These high-quality reconstruction models
also show superior accuracy in estimating quantitative parameter maps. Furthermore, when
combining high-performing reconstruction models with robust segmentation networks through
MTL, performance is improved in both tasks.

Conclusions: ATOMMIC advances MRI reconstruction and analysis by leveraging MTL and
ensuring consistency across tasks, models, and datasets. This comprehensive framework serves
as a versatile platform for researchers to use existing AI methods and develop new approaches
in medical imaging.

6.1 Introduction
In recent years, Artificial Intelligence (AI) has led to significant advancements in medical

imaging, spanning various tasks along the acquisition and processing chain. Deep Learning

(DL) segmentation Convolutional Neural Networks (CNNs) enable fast and accurate seg-

mentation of anatomy and pathology in Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT) ([1–4]). DL models have also been developed to act as inverse problem

solvers, improving the reconstruction quality in MRI and CT ([5]). In MRI specifically,
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scanning time can be reduced considerably by accelerating the acquisition process, while

DL reconstruction models offer high-quality images by training on the sparse signal rep-

resentation ([6–8]). Similarly DL models can accurately estimate quantitative parameter

maps from multiple accelerated MRI acquisitions while varying sequence parameters ([9]).

MultiTask Learning (MTL) can further improve the performance of models perform-

ing individual but related tasks by combining and jointly performing them ([10]). For

instance, the segmentation efficacy depends on the reconstruction quality, as the former

task invariably follows the latter. Therefore, since tasks are related, if they are performed

simultaneously, performance can be improved on both while reducing the overhead time of

performing the tasks separately. Although MTL has been successfully applied to combine

reconstruction and segmentation ([11–14]), the challenge lies in maintaining consistency in

performance while merging multiple single-task DL models and harmonizing data support

for both complex-valued and real-valued domains. Dedicated medical imaging AI frame-

works are usually employed to address the issue of regularization across tasks and data

types. Primarily, such frameworks are task-specific, focusing on essential tasks like recon-

struction ([15, 16]) and segmentation ([1, 17, 18]), or they are modality-specific ([19–21]),

or focus on data pre-processing and data augmentations ([22]). The Medical Open Network

for Artificial Intelligence (MONAI) ([23]) is a popular framework that supports multiple

tasks, modalities, and data types. However, tasks can only be performed independently,

and complex-valued data support is limited to the reconstruction task.

Nevertheless, integrating multiple data types support or multiple methods for MTL

in existing frameworks can be complicated due to differences in data structures, formats,

and programming languages, increasing the burden for researchers who need a more

comprehensive range of options for medical image analysis. To address these inconsis-

tencies, we present the Advanced Toolbox for Multitask Medical Imaging Consistency

(ATOMMIC), an open-source toolbox supporting multiple independent MRI tasks, cur-

rently being reconstruction, segmentation, and quantitative parameter map estimation,

and uniquely integrates MTL, aiming to streamline the application of DL in MRI tasks from

reconstruction to analysis, offering a unified platform for advancing AI-driven medical

imaging research.

ATOMMIC offers several key advantages as a comprehensive AI toolbox forMR Imaging.

It provides standardized workflows for efficient training and benchmarking of a wide

range of DL models, offering versatility across applications. The toolbox implements

over 25 state-of-the-art DL models for various MRI tasks, enabling researchers to rapidly

experiment multiple approaches with simple configuration steps. ATOMMIC uniquely

harmonizes complex-valued and real-valued data support, ensuring consistency across

tasks, DL models, datasets, and training and testing schemes. The toolbox’s architecture is

based on task-specific collections of data loaders, models, loss functions, evaluation metrics,

and pre-processing transformations. This modular design facilitates easy integration of new

datasets, models, and tasks. For example, the MTL collection builds upon independent tasks,

extending them to combine related or subsequent processes, such as joint reconstruction

and segmentation or reconstruction and quantitative parameter map estimation.

Beyond support of multiple MRI tasks, multi-task learning, availability of a wide range

of DL models, support for different data types, and standardized workflows, ATOMMIC also

provides various pre-processing transformations (Sec. 6.3.3) and undersampling schemes
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(Sec 6.3.2) tailored to MR imaging research. The former include noise pre-whitening, coil

compression, coil sensitivity map estimation, zero-filling, domain-specific cropping, various

normalization options, and custom fast Fourier transformations. Additional features, such

as motion simulation and signal-to-noise ratio estimation, are also available. Regarding

the latter, the toolbox supports both prospectively and retrospectively undersampled

data, with various 1D and 2D masking options using different noise distributions, such as

equispaced, Gaussian, random, and Poisson, while partial Fourier sampling is also available

to simulate realistic scanning scenarios. Furthermore, ATOMMIC offers a diverse range

of loss functions for effective model training, including mean squared error (MSE), L1,

structural similarity (SSIM), noise-aware, Wasserstein ([24]), cross-entropy, and DICE

losses. It also implements popular unsupervised and self-supervised methods in MRI using

DL, such as Noise-to-Recon ([25]) and self-supervised data undersampling ([26]). Essential

evaluation metrics are provided for thorough model performance analysis across different

tasks. Model training capabilities are further enhanced in ATOMMIC by including ten

optimizers and fourteen learning rate schedulers. Advanced features such as exponential

moving average, early stopping criterion, hyperparameter optimization, layer freezing,

and export options to TensorBoard and Weights & Biases allow for tailored model training

and easy monitoring (Sec 6.3.4). Importantly, ATOMMIC is built according to NVIDIA’s

NeMO ([27]), a computationally efficient conversational AI toolkit that allows for high-

performance training and testing using multiple GPUs, multiple nodes, and mixed precision

support.

To facilitate ease of use for researchers at various experience levels, ATOMMIC includes

extensive documentation and several examples using publicly available datasets, including

the Amsterdam ultra-high field adult lifespan dataset ([9]), the Calgary Campinas 359

dataset ([28]), the fastMRI brains multicoil and knees multicoil and singlecoil datasets

([29]), the Stanford fully sampled 3D Fast Spin Echo knee dataset ([30]), the brain tumor

segmentation 2023 adult glioma challenge dataset ([31]), the ischemic stroke lesion segmen-

tation 2022 challenge dataset ([32]), and the Stanford knee MRI with multi-task evaluation

dataset ([33]).

In the following sections, we first explore the landscape of AI frameworks for medical

imaging (Sec. 6.2) through a thorough literature search and, additionally, parsing GitHub

repositories, showcasing the need formultitasking toolboxes that support multiple tasks and

data types with detailed documentation and up-to-date maintenance. Next, we introduce

ATOMMIC’s main components (Sec. 6.3). To demonstrate ATOMMIC’s capabilities, we

conduct an extensive evaluation of twenty-five DL models across eight publicly available

datasets, encompassing both brain and knee anatomies. This evaluation spans various

MRI tasks, including accelerated reconstruction, quantitative parameter map estimation,

segmentation, and MTL and assessing multiple undersampling schemes and acceleration

factors. Concurrently, we evaluate the accuracy of segmentation for brain lesions, tumors,

and knee pathologies in both standalone segmentation and MTL contexts, illustrating

ATOMMIC’s applicability across diverse scenarios (Sec. 6.4). Finally, in Sec. 6.5, we discuss

how ATOMMIC aims to provide a multitask toolbox for the research community to use,

develop, and share models and potentially datasets and pre-processing pipelines across

various MRI tasks, targeting generalization in the MRI domain.

The datasets used in the experiments (Sec. 6.3.5) are publicly accessible, while pre-
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processing pipelines, detailed API documentation, tutorials, and quick start guides are

available on the open-source ATOMMIC repository
1
, under Apache 2.0 license. Trained

models’ checkpoints are available on HuggingFace
2
, allowing for full reproducibility of the

results.

6.2 Related work
Several AI frameworks for MR Imaging have been developed over the past years. However,

they are often limited to specific tasks ([1, 15–18, 23]) or are modality-specific ([19–22]).

Most frameworks do not support MTL or unified complex/real-valued data handling across

tasks. Additionally, comprehensive benchmarking of multiple models is not commonly

supported. To demonstrate the landscape of available AI frameworks for MR Imaging,

including their key advantages and limitations, we performed a thorough literature search.

Recognizing that the emphasis in research is often placed on the model implementation

or dataset specifics rather than on frameworks, we extended our literature search of

AI frameworks for MRI to include GitHub repositories, not limited to those published

in scientific papers. Utilizing keywords such as ’medical-image-processing’, ’medical-

imaging’, ’MRI’, ’medical’, ’MRI-reconstruction’, ’MRI-segmentation’, ’neuroimaging’, ’nifti’,

’dicom’, ’compressed-sensing’, ’image-reconstruction’, ’brain’, ’medical-image-analysis’,

and ’MRI-registration’, we identified a total of 12,479 repositories. Removing duplicates

and non-existent URLs resulted in 10,747 repositories. Next, we defined a minimum usage

threshold based on the number of stars, where a star serves as a popularity and usage

metric on GitHub. The minimum number of stars was 2, the maximum was 23,400, and

the median was 13. Limiting our results to repositories with at least ten stars returned

3,623 repositories. We meticulously narrowed this list to 68 DL frameworks pertinent

to MRI. In brief, we removed repositories irrelevant to MRI, not written in English, and

containing data and file converters only. Furthermore, we discarded Graphic User Interfaces,

specific model and paper implementations, theses, lab pages, and courses. A detailed list

of the repositories, including URLs, is available on GitHub
3
. This comprehensive review

highlights a gap in frameworks supporting MultiTask Learning for MRI, complex-valued

data support, providing documentation, and up-to-date maintenance, as shown in Fig. 6.1.

Among the 68 AI frameworks for MRI identified, ATOMMIC and MONAI were notable

for their up-to-date maintenance, detailed documentation, and support for multiple inde-

pendent tasks. However, as shown in Fig. 6.1, ATOMMIC emerged as the only toolbox

supporting MTL with harmonized complex-valued and real-valued data support, compre-

hensive documentation, and up-to-date maintenance.

1
https://github.com/wdika/atommic

2
https://huggingface.co/wdika

3
https://github.com/wdika/atommic

https://github.com/wdika/atommic
https://huggingface.co/wdika
https://github.com/wdika/atommic
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Figure 6.1: Overview of AI repositories for MRI tasks parsed from GitHub. The repositories are divided into

two groups on the x-axis: those that do not support complex-valued data (left group) and those that do support

complex-valued data (right group). The repositories are further categorized based on their activity level, on the

top of the x-axis, split by vertical dashed lines: those that have committed updates within the last year (2023) are

labeled as "Active Yes" (right side), and those that have not as "Active No" (left side). The supported tasks are

depicted on the y-axis, while the horizontal dashed line showcases the multitasking toolboxes. Repositories are

visualized as dots if documentation is available (Docs Yes) and cross marks if documentation is unavailable (Docs

No). Each color signifies the language of the repository, with blue representing C++, brown representing Julia,

gray representing MATLAB, and green representing Python.

6.3 Methods
This section presents an overview of the MRI tasks supported in ATOMMIC, including

accelerated MRI reconstruction, segmentation, quantitative parameter map estimation, and

MTL for joint reconstruction and segmentation. Furthermore, we describe the process of

training and testing DL models in ATOMMIC and showcase the available pre-processing

transformations. A schematic overview summarizing ATOMMIC’s features and workflow

is included for enhanced comprehension (Fig. 6.2). Finally, we present benchmarks and use

cases to showcase the toolbox’s advantages and capabilities.

6.3.1 MRI tasks
Starting from the acquisition process, the forward model of acquiring and accelerating MRI

data can be expressed as follows:

𝑦𝑖 = 𝑃 ⋅ (𝑆𝐻𝑖 ⊙𝑥𝑖)+𝜎𝑖, 𝑖 = 1, ...,𝑁 , (6.1)

where 𝑥𝑖 represents fully sampled multicoil complex-valued data for𝑁 total coils. 𝑆𝑖 denotes
the coil sensitivity maps, which homogenize the spatial intensities, 𝐻 is the Hermitian

complex conjugate, and ⊙ is the Hadamard product.  is the Fourier transform, projecting

the data onto the frequency domain, known as k-space in MRI. 𝑃 is the undersampling

scheme, which accelerates imaging by reducing the amount of data needed to acquire, and
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Figure 6.2: Schematic overview of ATOMMIC. Starting from the left to the right, MRI data are given as input.

Next, configurations such as dataloaders, undersampling schemes, transforms, task(s) and models, optimizers,

learning rate schedulers, losses, training and optimization settings, evaluation metrics, and exports are defined.

The output is an atommic artifact (rightmost) containing the trained model’s checkpoints and configurations,

which can be directly used for inference on new datasets.

𝜎𝑖 represents the noise inherent in the acquisition process. The resulting undersampled

multicoil data are denoted by 𝑦𝑖.
While the forward process is well-defined, reconstructing high-quality images from

undersampled data or finding the inverse mapping process 𝑦 ↦ 𝑥 remains challenging.

The inverse problem of accelerated MRI reconstruction can be solved through a Bayesian

estimation. The goal is to maximize the posterior distribution of 𝑦 given 𝑥 and the prior

probability of 𝑥 . This process is known as the Maximum A Posteriori (MAP) estimation

and can be described as:

𝑥MAP = argmax
𝑥

(log𝑝 (𝑦 |𝑥)+ log𝑝 (𝑥)) . (6.2)

Substituting Eq. 6.1 into Eq. 6.2 transforms the inverse problem into a minimization

problem:

𝑥 = argmin
𝑥

{
𝑁
∑
𝑖=1

𝜃(𝑦𝑖, 𝑃 ⋅𝐹 (𝑆𝐻𝑖 ⊙𝑥𝑖)+𝜎𝑖)+𝜆𝑅 (𝑥)

}

, (6.3)

where 𝜃 represents the discrepancy between the undersampled measurements and their

predictions. The summation indicates that the multicoil data are transformed into a coil-

combined image. 𝜆 denotes the weighting factor for the regularizer 𝑅. The regularizer can
be modeled using a neural network.

Following accelerated MRI reconstruction by solving the inverse problem in Eq. 6.3,

the task of estimating quantitative parameter maps can be expressed when data from

multiple acquisitions with varying sequence parameters are available. The Multiple Echo

Recombined Gradient Echo (ME-GRE) sequence varies the echo time (TE), such that the

apparent transverse relaxation rate (𝑅∗
2 ) may be computed from repeated acquisitions. The

forward relaxation model describes the acquisition process for multiple TEs as

𝑥𝑡 =𝑀⊙𝑒−TE𝑡(𝑅
∗
2−𝐵0𝑖), (6.4)

where𝑀 is the net magnetization, 𝑡 denotes a single echo time, and 𝐵0 is the off-resonance
of the static magnetic field, and 𝑖 notates complex-valued data. Inserting the forward

relaxation model (Eq. 6.4) into the forward model of accelerated MRI acquisition (Eq. 6.1)
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results in a unified quantitative MRI forward model

𝑦𝑡,𝑖 = 𝑃 ⋅ (𝑆
𝐻
𝑖 ⊙(𝑀⊙𝑒−TE𝑡(𝑅

∗
2−𝐵0)))+𝜎𝑖. (6.5)

The resulting parameter maps follow from minimizing Eq. 6.3.

In MultiTask Learning (MTL), multiple related tasks are combined and performed si-

multaneously instead of individually, aiming to identify relationships, leading to better

generalization and enhancing the performance of each task ([34]). For example, recon-

struction can be combined with subsequent tasks, such as quantitative parameter map

estimation or segmentation, by modeling the regularizer 𝑅 in Eq. 6.3 with a neural network

and approximating 𝑥 through an iterative training scheme. The predicted reconstruction, �̂� ,
is given as input to the subsequent task-specific network during each iteration. In the case

of MTL for reconstruction and quantitative parameter map estimation, �̂� is inserted into

Eq. 6.5. When combining reconstruction with segmentation, �̂� is mapped onto delineated

anatomical structures. Features are shared, effectively acting as inductive bias for all tasks

using a joint loss function ([11–14]).

6.3.2 Undersampling MRI
Data undersampling, as described in Eq. 6.1 by the undersampling mask 𝑃 , is crucial
to accelerate the acquisition process by partially sampling or sub-sampling the k-space.

Prospective undersampling refers to accelerating imaging during the data acquisition phase.

Retrospective undersampling refers to generating undersampling masks post-acquisition

and applying them to fully sampled data, usually for research purposes. ATOMMIC

supports both prospective and retrospective undersampling. Each undersampling scheme

is implemented in a respective class as follows.

For equispaced 1D undersampling, the Equispaced1DMaskFunc class is utilized

to generate a mask with evenly spaced lines in the fully sampled k-space ([35]). A number

of fully sampled low frequencies in the center of k-space is defined as 𝑁low_freqs = (𝑁 ⋅
center_fractions), where𝑁 is the size of the k-space andcenter_fractions
is a parameter that can be adjusted. The chosen accelerations define the resulting

undersampling rate, equal to
𝑁

accelerations . For 2D equispaced undersampling, the

Equispaced2DMaskFunc class provides similar functionality. For amore randomized

approach, the Random1DMaskFunc class allows for 1D undersampling with random

spacing of the sampled k-space lines.

In the case of Gaussian density weighted undersampling, the Gaussian1DMaskFu-
nc class generates a Gaussian 1D mask. Data points are sampled based on the proba-

bility density function of the Gaussian distribution. The half-axes of the ellipse are set

to the center_scale percentage of the fully sampled region. The peripheral points

are randomly sampled according to a Gaussian probability density function. Here, the

center_fractions equivalent is the Full-Width at Half-Maximum (FWHM). Sim-

ilarly, the Gaussian2DMaskFunc class allows Gaussian 2D undersampling, where

data points near the center of the k-space are fully sampled within an ellipse. The half-axes

of the ellipse are set to the center_scale percentage of the fully sampled region. The

Poisson2DMaskFunc class allows for non-random sampling, generating a 2D mask

following a Variable-Density Poisson-disc sampling pattern.
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Figure 6.3: Overview of undersampling options in ATOMMIC. From left to right, columns one to seven present

retrospective undersampling using Equispaced 1D (E1D), Equispaced 2D (E2D), Gaussian 1D (G1D), Gaussian

2D (G2D), Random 1D (R1D), Poisson 2D (P2D), and Poisson 2D with 20% Partial Fourier (P2DPF) masking,

respectively. Note that Partial Fourier can be applied to any masking. The last column presents prospective

undersampling (Prosp) using the Calgary-Campinas 359 dataset default 2D Poisson mask ([28]).

The partial_fourier parameter sets a percentage of outer k-space that is not

sampled, resulting in a partially sampled k-space. An illustrative overview of the under-

sampling options is provided in Fig. 6.3.

6.3.3 MRI transforms
MRI transforms in ATOMMIC refer to pre-processing, i.e., data augmentations, intensity

normalization, andmulticoil-related transforms. The following transforms are implemented

to handle both complex-valued and real-valued data for any task (Fig. 6.2).

The NoisePreWhitening class ensures that the inherent noise in the acquisition

process, represented by 𝜎 in Eq. 6.1, will be independent and identically distributed by

applying noise pre-whitening and decoupling or decorrelating coil signals [36]. While

MRI acquisitions commonly include separate noise measurements, such information is

only sometimes exported. When this information is unavailable, the physical properties

are modeled, assuming that the periphery of k-space is dominated by noise, such that a

patch can be defined to measure the noise level. Its size can be set manually with the

prewhitening_patch_start and prewhitening_patch_length param-

eters or automatically by toggling the find_patch_size parameter. Alternatively, if

the actual noise level is already measured and is available, it can be given as input instead of

measuring the noise level with a patch. Also, the scale_factor parameter is used for

setting an adequate noise bandwidth in outer k-space. A noise tensor is composed over all

coil elements and multiplied by its conjugate transpose. Finally, Cholesky decomposition

is performed, effectively minimizing noise correlation.

TheGeometricDecompositionCoilCompression class can compressmul-

ticoil data using the geometric decomposition method ([37]). The gcc_virtual_coi-
lss parameter defines the number of virtual coils to compress the multicoil data to. The

gcc_calib_lines parameter is the number of calibration lines used for coil compres-

sion. The gcc_align_data parameter aligns the data before coil compression. An ex-

ample of compressing 12-coil data to 4-virtual-coil data, with the GeometricDecompo-
sitionCoilCompression transformation is presented in Fig. 6.4c.
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(a) Ground Truth (GT) (b) Coil Sensitivity Maps (CSM)

(c) Geometric Decomposition Coil Compression

(GDCC)

(d) Coil Combination Methods (CCM)

Figure 6.4: Multicoil-related transforms applied to example data from the CC359 dataset ([28]). Fig. 6.4a shows

the fully sampled 12-coil Ground Truth (GT) data. Fig. 6.4b shows the estimated 12-coil Coil Sensitivity Maps

(CSM) using the EstimateCoilSensitivityMaps class. In Fig. 6.4c, the 12-coil data are reduced to 4

coils after using the Geometric Decomposition Coil Compression (GDCC) method. Fig. 6.4d shows different Coil

Combination Methods (CSM), such as the Root-Sum-of-Squares (RSS) and the SENsitivity Encoding (SENSE),

applied to the Ground Truth (GT) (first and second, respectively), and the GDCC (third and fourth, respectively).

Cropping in both the image space and k-space may be performed using the Cropper
class. Note that when cropping is applied in k-space, the Field-of-View (FOV) changes as a

result. When applied in image space, the FOV remains the same while the spatial resolution

changes. The kspace_crop parameter defines whether the cropping is performed in

k-space or image space. The crop_before_masking parameter defines whether

cropping will be applied before or after undersampling the k-space (Sec. 6.3.2). Note that

cropping after undersampling alters the relative acceleration factor.

The coil_combination_method function allows to perform either Root-Sum-

of-Squares (RSS) or SENSE ([38]) coil-combination (Fig. 6.4d). In the case of SENSE,

coil sensitivity maps need to be available. The EstimateCoilSensitivityMaps
class allows estimating coil sensitivity maps on the fly without needing to pre-compute

and store them beforehand (Fig. 6.4b). The available options are adjusted according to

the DIRECT toolkit ([16]) and include ESPIRIT ([39]), Root-Sum-of-Squares (RSS), and

unitary methods. Also, the option of estimating coil sensitivity maps using a neural

network (UNet) is available by toggling the estimate_coil_sensitivity_map
_with_nn parameter. This option allows training a model end-to-end ([40, 41]) and can

be combined with the EstimateCoilSensitivityMaps class for optimized coil

sensitivity maps estimation.
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Normalization can be applied through the Normalizer class. The normalize_-
inputs parameter determines whether the inputs will be normalized. The normaliza-
tion_type parameter determines the normalization method. The minmax and max
methods normalize the data as

data−min(data)
max(data)−min(data) and

data
max(data) , respectively, in the range

0-1. The mean_std and the mean_var methods normalize the data as
data−mean(data)

std(data)

and
data−mean(data)

var(data) respectively. The grayscale method first normalizes the data as in

minmax and then multiplies by 255 to bring the data in the range 0-255. The options fft
and none do not apply normalization. When handling complex-valued data, fft can be

more intuitive. Finally, the kspace_normalization parameter determines whether

the normalization is performed in k-space, when complex-valued data are available. By

default normalization is performed in image space.

Finally, the Composer class allows composing a series of transforms into a single

transform.

6.3.4 Training & Testing Deep Learning models for MRI tasks
in ATOMMIC

Training and testing DLmodels in ATOMMIC requires a configuration (YAML) file and a sin-

gle command to set its path, i.e., atommic run -c path_to_configuration-
_file. The configuration file allows setting various MRI transforms (as discussed in

Sec. 6.3.3), undersampling options (as explained in Sec. 6.3.2), and hyperparameters (Fig.

6.2). The installation is simple through pip install atommic. Multi-GPU and

multi-node training, mixed-precision (floating-point 16), early stopping, and Exponential

Moving Average can also be configured. For exporting and logging models, tensorboard
4

and Weights & Biases
5
support is available.

6.3.5 Experiments
In our comprehensive evaluation, we demonstrate distinct applications of ATOMMIC

in the tasks of accelerated MRI reconstruction, quantitative parameter map estimation,

segmentation, and MTL for joint reconstruction and segmentation. Twenty-five DL models

were benchmarked in various public datasets and with different hyperparameters, as

presented in Table 6.1. Hyperparameters were randomly selected between Adam ([42]) and

weighted Adam for the optimizer and cosine annealing and inverse square root annealing

for the learning-rate scheduler, as they are among the most popular options when training

DL models. For the loss functions, we presented different options depending on the task.

Datasets
For the task of accelerated MRI reconstruction, three datasets were used: the Calgary

Campinas 359 dataset (CC359) ([28]), the fastMRI Brains multicoil dataset (fastMRIBrains)

([29]), and the Stanford Fully Sampled 3D FSE Knee dataset (StanfordKnee) ([30]).

The CC359 dataset comprises 117 3D T1 weighted twelve-coil brain scans. The size

of the acquisition matrix is 256 × 218, while it varies in the slice-encoding (kz) direction

between 170 and 180 due to 15% zero-filling. In our experiments, every subject’s first 50

4
https://github.com/tensorflow/tensorboard

5
https://github.com/wandb/wandb

https://github.com/tensorflow/tensorboard
https://github.com/wandb/wandb
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and last 50 slices were excluded since these mainly resided outside the brain. The training

set consisted of 47 subjects, the validation set of 20 subjects, and the test set of 50 subjects.

A 2D Poisson disc distribution sampling pattern accelerated imaging by 5x and 10x times.

The fastMRIBrains dataset comprises of T1-weighted, T1-weighted with contrast agent

(T1POST), T2-weighted, and Fluid-Attenuated Inversion Recovery (FLAIR) scans. In our

experiments, we used the first batch of data out of 10, which contained 449 subjects in

the training set and 457 subjects in the validation set. Nine subjects were removed due to

containing not-a-number (NaN) values. The number of coils varied from four to twenty.

The matrix size ranged from minimum 512 to maximum 768 × minimum 213 to maximum

396 and was cropped to 320 × minimum 213 to maximum 320. An Equispaced 1D sampling

pattern accelerated imaging by 4x and 8x times.

The StanfordKnee dataset consists of Proton-Density (PD) 3D Fast-Spin Echo (FSE)

eight-coil data with fat saturation. The dataset included 19 subjects, split into 13 subjects

for the training set, 3 for the validation set, and 3 for the test set. The matrix size was 320

× 320 × 256. A Gaussian 2D sampling pattern was used to accelerate imaging by 12x times.

The Amsterdam Ultra-high field adult lifespan database (AHEAD) ([43]) dataset was

used to estimate quantitative parameter maps, as it contains multi-echo data necessary

for this task. It consists of thirty-two-coil 𝑇1, 𝑇2∗ and Quantitative Susceptibility Mapping

brain scans of four echo times MP2RAGE-ME 7 Tesla ([44]). Motion correction with Fat

navigators (FatNavs) and defacing in the image domain was already applied to the dataset

([9]). The scanned image resolution is 0.7mm isotropic. The objective was to estimate the

following quantitative maps: 𝑅∗
2 , 𝐵0, and the angle of the net magnetization 𝑀 , denoted as

|𝑀 |. We used the first ten subjects of the dataset, 001 to 010, of which the first six were

used for training, the next two for validation, and the last two for testing. A Gaussian 2D

sampling pattern was used to accelerate imaging by 12x times. Brain tissue segmentation

masks were pre-computed and applied during training to avoid including NaN or infinity

(Inf) values on the skull or the background. Brain tissue masks were computed by applying

Otsu’s thresholding, computing the largest connected component and the convex hull, and

applying a series of binary erosions and dilations.

For the segmentation task, three datasets were used: the Brain Tumor Segmentation

2023 Adult Glioma challenge dataset (BraTS2023AdultGlioma) ([31]), the Ischemic Stroke

Lesion Segmentation 2022 (ISLES2022SubAcuteStroke) challenge dataset ([32]), and the

segmentation-only dataset of the Stanford Knee MRI with Multi-Task Evaluation (SKM-

TEA) dataset ([33]).

The BraTS2023AdultGlioma dataset contains 1000 subjects on the training set and

251 on the validation set, while no ground truth test labels are available. The objective

is to segment four classes: necrotic tumor core, peritumoral edematous/invaded tissue,

gadolinium-enhancing tumor, and whole tumor. The ISLES2022SubAcuteStroke dataset

includes Apparent Diffusion Coefficient (ADC) maps, FLAIR scans, and Diffusion Weighted

Imaging (DWI) scans. The training set consisted of 172 subjects, the validation set 37, and

the test set 38. The objective is to segment one class, specified as stroke lesions.

The SKM-TEA dataset contains complex-valued multicoil raw data, real-valued coil-

combined data, and ground truth segmentation labels, allowing for both segmentation

independently and MTL for combined reconstruction and segmentation. Data are of

heterogeneous patient anatomy with potential distribution shifts being present as data
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were acquired from multiple vendors ([33]). The SKM-TEA segmentation-only dataset

provides data imaged in the sagittal plane, with four segmentation classes: lateral tibial

cartilage, medial tibial cartilage, lateral meniscus, and medial meniscus. In contrast, for

MTL, the complex-valued SKM-TEA dataset comprises data reconstructed in the axial plane

with both phase-encoding dimensions. The data are stored as 𝑥 ×𝑘𝑦 ×𝑘𝑧, where 𝑥 denotes

the number of slices, and 𝑘𝑦 ×𝑘𝑧, the dimensions to apply the provided undersampling

mask and coil sensitivity maps. The matrix size is 512 × 160 and is cropped to 416 × 80

to remove oversampling. Data are undersampled using a Poisson disc distribution 2D

pattern with an acceleration factor 4x. Both for segmentation only and for MTL, we split

the SKM-TEA dataset into 86 subjects in the training set, 33 in the validation set, and 36 in

the test set.

Hyperparameters
For the tasks of reconstruction and quantitative parameter map estimation, models were

trained for 20 epochs. For estimating quantitative parameter maps from an accelerated

MRI acquisition, we first trained reconstruction models and then used them to initialize the

quantitative parameter map estimation models. For the task of segmentation, models were

trained for 20 epochs on the BraTS2023AdultGlioma and the SKM-TEA segmentation-only

datasets and for 50 epochs on the ISLES2022SubAcuteStroke dataset since its size was

significantly smaller than the other two. For MTL for joint reconstruction and segmentation,

models were trained for 15 epochs.

The learning rate was set to 10−4, and the floating point precision was set to mixed

16 for all models on all tasks. Normalization by the max value (Sec. 6.3.3) was applied to

all models trained for reconstruction, segmentation, and MTL. To stabilize the training of

quantitative parameter map estimation models on the AHEAD dataset, we heuristically

scaled the input multi-echo k-space data by a factor of 104 and the input quantitative maps

by a factor of 10−3 as in ([9]). The AHEAD data consist of four echo times, for which the

values were 3 ms, 11.5 ms, 20 ms, and 28.5 ms, respectively.

Models were trained and tested on an Nvidia Tesla V100 GPU with 32GB memory.

A detailed overview of the selected hyperparameters for each model is presented in the

Appendix (Table 6.8). Trained models’ checkpoints are available on HuggingFace
6
.

Evaluation metrics
The performance in the reconstruction task (CC359, fastMRIBrains, and StanfordKnee

datasets), in the task of reconstruction and quantitative parameter map estimation (AHEAD

dataset), and in the task of reconstruction for MTL (SKM-TEA dataset) was evaluated by

measuring the similarity of the predicted reconstructions and the ground truth images using

the Structural Similarity Index Measurement (SSIM) ([52]) and assessing the perceived

image quality using the Peak Signal-to-Noise Ratio (PSNR). For evaluating the performance

of quantitative parameter map estimation models, the Normalized Mean Squared Error

(NMSE) was also computed.

The accuracy of the segmentation models in the BraTS2023AdultGlioma and the SKM-

TEA datasets was evaluated by quantifying the similarity between the predicted segmenta-

tions and the ground truth labels, measured by the DICE coefficient and the Intersection

6
https://huggingface.co/wdika

https://huggingface.co/wdika
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Table 6.1: Comparative evaluation of DL models using ATOMMIC for different MRI tasks. The first column

reports the task, specifically MultiTask Learning (MTL) (second row) for jointly performing accelerated MRI

reconstruction (REC) (fourth row) and MRI segmentation (SEG) (fifth row), and quantitative MRI (qMRI) for

estimating parameter maps (second row). The second column reports the publicly available datasets used for

training and testing. The third column reports the coil sensitivity maps (CSM) estimation method and the

coil combination method (CCM) (Sec. 6.3.3). When CSMs were not available, they were estimated with the

EstimateCoilSensitivityMaps transformation of ATOMMIC or End-to-End during training with a

UNet. The GeometricDecompositionCoilCompression (GDCC) transformation was applied to the

fastMRI Brains Multicoil dataset, reducing various coils (four to twenty) into single coil data. The CCM was

set either to Sensitivity Encoding (SENSE) or Root-Sum-of-Squares (RSS). The fourth column reports the used

optimizer (Opt) and learning rate scheduler (LRS). For Optim, the Adam and Adam weighted (AdamW) were used,

and for LR Sched, the Inverse Square Root Annealing (ISRA) and Cosine Annealing (CA) were used. The used loss

function is reported in the fifth column, and the trained and tested DL models are reported in the sixth column.

Task Dataset CSM-CCM Opt-LRS Loss Models
MTL SKM-TEA

[33]

Available

-SENSE

Adam-

ISRA

0.5*L1 +

0.5*DICE

Image domain Deep Structured Low-Rank

Network (IDSLR) [13]

Image domain Deep Structured Low-Rank

UNet (IDSLRUNet) [13]

Multi-Task Learning for MRI Reconstruc-

tion and Segmentation (MTLRS) [12]

Segmentation Network MRI (SegNet) [14]

qMRI AHEAD

[43]

Available

-SENSE

Adam-

ISRA

SSIM quantitative Cascades of Independently Re-

current Inference Machines (qCIRIM)

quantitative End-to-End Variational Net-

work (qVarNet) [9]

REC CC359 [28]

fastMRI

Brains Mul-

ticoil [29]

Stanford

Knees [30]

End-

to-End

-RSS

GDCC

-SENSE

ATOMMIC

-SENSE

AdamW-

CA

Adam-

ISRA

AdamW-

ISRA

0.9*SSIM

+ 0.1*L1

0.9*SSIM

+ 0.1*L1

Wasserstein

[24]

Cascades of Independently Recurrent Infer-

ence Machines (CIRIM) [45]

Convolutional Recurrent Neural Networks

(CRNN) [46]

Deep Cascade of Convolutional Neural Net-

works (CascadeNet) [47]

End-to-End Variational Network (VarNet)

[41]

Joint Deep Model-Based MR Image and Coil

Sensitivity Reconstruction Network (Join-

tICNet) [40]

KIKINet [48]

Learned Primal-Dual Net [5] [5]

Model-based Deep Learning Reconstruction

(MoDL) [6]

Recurrent Inference Machines (RIM) [8]

Recurrent Variational Network (RVN) [49]

UNet [4]

Variable Splitting Network (VSNet) [50]

XPDNet [51]

SEG BraTS

2023 Adult

Glioma [31]

ISLES 2022

Sub Acute

Stroke [32]

SKM-TEA

[33]

AdamW-

ISRA

Adam-

CA

AdamW-

ISRA

DICE

DICE

DICE

Attention UNet [3]

Dynamic UNet (DYNUNet) [1]

UNet 2D [4]

UNet 3D [4]

VNet [2]
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over Union (IOU). The accuracy of segmentation boundaries was assessed by computing

the Hausdorff Distance 95% (HD95), which provides insights into the largest segmentation

errors while minimizing the influence of outliers. Additionally, the significance of false

positives and false negatives was measured by the F1 score.

Different metrics were used to evaluate the performance of segmentation models on

the ISLES2022 SubAcuteStroke dataset, as specified in the challenge manuscript ([32]).

Specifically, due to small lesions, such as punctiform infarcts, an increase in the DICE

coefficient might result from detecting only a large lesion. Therefore, the Absolute Volume

Difference (AVD) was used to compute voxel-wise differences in the infarct volume, while

lesion-wise metrics such as the Absolute Lesion Difference (ALD) and the Lesion F1 (L-F1)

score allowed measuring of the lesion detection and to count the lesion burden accurately.

6.4 Results
We demonstrate ATOMMIC’s capabilities by evaluating twenty-five different DL models

implemented and embedded in the toolbox for the tasks of accelerated MRI reconstruction,

quantitative parameter map estimation, segmentation, and MTL for joint reconstruction

and segmentation.

Table 6.2 presents the reconstruction task performance of models trained on the CC359

and fastMRIBrains datasets. The Variational Network (VarNet) achieved the highest SSIM

and PSNR scores for 5x acceleration and the highest PSNR score for 10x acceleration on the

CC359 dataset. The Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction

Network (JointICNet) scored the highest SSIM for 10x acceleration on the CC359 dataset.

In contrast, on the fastMRIBrains dataset, the Recurrent Variational Network (RVN) scored

the highest SSIM and PSNR scores for 4x acceleration and the VarNet for 8x acceleration.

The Cascades of Independently Recurrent Inference Machines (CIRIM) yielded the highest

SSIM and PSNR scores on the StanfordKnee dataset for 12x acceleration, as presented in

Table 6.3. Conversely, on the same dataset, the Convolutional Recurrent Neural Network

(CRNN) was excluded from the analysis due to unstable gradient computation, although

trained across a wide range of learning rates (10−4 to 10−9).
Example reconstructions of brain data are shown in Fig. 6.5a and Fig. 6.5b, from the

CC359 dataset, and Fig. 6.6a and Fig. 6.6b, from the fastMRIBrain dataset. Figure 6.7 shows

example reconstructions of knee data from the StanfordKnee dataset.

Table 6.4 reports the performance of models trained on the AHEAD dataset for re-

construction and quantitative parameter map estimation. The CIRIM scored highest on

reconstructing the AHEAD data for 12x acceleration, resulting in better initializations for

the quantitative CIRIM (qCIRIM) model and, thus, more accurate quantitative parame-

ter map estimation than the VarNet. The qCIRIM outperformed the quantitative VarNet

(qVarNet) on accurately approximating the 𝑅∗
2 , 𝐵0, and |𝑀 | quantitative maps. Example

quantitative map estimations are shown in Fig. 6.8.

Table 6.5 presents the performance in the segmentation task of models trained on the

BraTS2023 AdultGlioma and the SKM-TEA segmentation-only datasets. On the BraTS2023-

AdultGlioma dataset, the UNet achieved the highest DICE score and the lowest HD95 score,

while the UNet3D achieved the highest F1 score and the AttentionUNet the highest IOU.

Although the high DICE scores, F1 and IOU scores were reported lower, which may be

attributed to the heterogeneous tumors, leading to the inclusion of non-tumor regions in the
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Table 6.2: Overview of performance on reconstructing accelerated brain data. In the first column, the name of

the model is reported. The rest of the columns report SSIM and PSNR scores for each dataset, where up arrows

indicate the highest the best. The second to fifth columns report the performance of each model on the CC359

dataset for 5x (second-third columns) & 10x (fourth and fifth column) Poisson 2D undersampling. The sixth to

ninth columns report performance on the fastMRIBrain dataset, for 4x (sixth and seventh column) & 8x (eighth

and ninth columns) Equispaced 1D acceleration. Best performing models are highlighted in bold. Methods are

sorted in alphabetical order.

CC359 - Poisson 2D fastMRIBrains - Equispaced 1D

Model 5x 10x 4x 8x

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑

CCNN 0.845 ± 0.064 28.36 ± 3.69 0.783 ± 0.089 25.95 ± 3.64 0.886 ± 0.192 33.47 ± 5.92 0.836 ± 0.202 29.40 ± 5.71

CIRIM 0.858 ± 0.074 28.79 ± 4.23 0.816 ± 0.094 26.92 ± 4.36 0.892 ± 0.184 33.83 ± 6.11 0.846 ± 0.202 30.23 ± 5.67

CRNN 0.774 ± 0.088 25.59 ± 4.19 0.722 ± 0.088 24.48 ± 3.39 0.868 ± 0.195 31.31 ± 5.46 0.806 ± 0.198 27.50 ± 5.57

JointICNet 0.872 ± 0.065 29.28 ± 3.99 0.828 ± 0.086 27.36 ± 4.10 0.832 ± 0.198 28.57 ± 5.50 0.772 ± 0.202 25.50 ± 5.38

KIKINet 0.788 ± 0.087 25.43 ± 4.16 0.742 ± 0.105 24.37 ± 3.88 0.856 ± 0.201 31.02 ± 5.68 0.805 ± 0.207 27.78 ± 5.82

LPDNet 0.849 ± 0.075 28.26 ± 4.22 0.810 ± 0.099 26.73 ± 4.23 0.882 ± 0.201 32.60 ± 6.78 0.840 ± 0.208 29.51 ± 5.93

MoDL 0.844 ± 0.068 27.97 ± 4.20 0.793 ± 0.088 25.89 ± 4.39 0.870 ± 0.188 31.44 ± 5.66 0.813 ± 0.192 27.81 ± 5.86

RIM 0.834 ± 0.077 27.45 ± 4.32 0.788 ± 0.091 25.56 ± 3.96 0.886 ± 0.188 33.12 ± 6.04 0.837 ± 0.199 29.49 ± 5.74

RVN 0.845 ± 0.067 28.14 ± 3.53 0.787 ± 0.093 26.03 ± 3.77 0.894 ± 0.180 34.23 ± 5.97 0.843 ± 0.195 30.08 ± 5.68

UNet 0.849 ± 0.070 28.85 ± 4.17 0.810 ± 0.091 27.20 ± 4.20 0.885 ± 0.182 33.09 ± 6.02 0.847 ± 0.197 29.87 ± 5.68

VarNet 0.874 ± 0.061 29.49 ± 3.86 0.827 ± 0.087 27.51 ± 4.01 0.892 ± 0.198 34.00 ± 6.30 0.856 ± 0.216 30.73 ± 5.94
VSNet 0.788 ± 0.079 25.51 ± 3.91 0.740 ± 0.089 24.19 ± 3.27 0.856 ± 0.196 30.37 ± 5.34 0.796 ± 0.197 26.88 ± 5.43

XPDNet 0.761 ± 0.100 24.27 ± 4.14 0.700 ± 0.112 22.65 ± 3.22 0.854 ± 0.212 31.03 ± 6.75 0.788 ± 0.218 26.96 ± 6.18

ZeroFilled 0.679 ± 0.103 19.89 ± 7.45 0.656 ± 0.092 19.24 ± 7.37 0.671 ± 0.194 24.12 ± 6.21 0.591 ± 0.213 21.03 ± 5.97

Table 6.3: Overview of performance on reconstructing accelerated knee data from the StanfordKnees dataset

for 12x Gaussian 2D acceleration. In the first column, the name of the model is reported. The second and third

columns report SSIM and PSNR scores, where up arrows indicate the highest the best. Best performing models

are highlighted in bold. Methods are sorted in alphabetical order.

Model StanfordKnees - Gaussian 2D 12x

SSIM ↑ PSNR ↑

CCNN 0.767 ± 0.299 31.64 ± 6.84

CIRIM 0.795 ± 0.311 32.76 ± 7.20
JointICNet 0.728 ± 0.291 29.59 ± 6.31

KIKINet 0.659 ± 0.241 27.35 ± 5.54

LPDNet 0.736 ± 0.297 29.75 ± 6.31

MoDL 0.566 ± 0.284 23.63 ± 4.66

RIM 0.769 ± 0.304 31.58 ± 6.74

RVN 0.778 ± 0.301 31.96 ± 7.00

UNet 0.771 ± 0.296 31.37 ± 6.54

VarNet 0.764 ± 0.302 31.48 ± 6.73

VSNet 0.708 ± 0.289 28.47 ± 5.82

XPDNet 0.654 ± 0.270 27.16 ± 5.81

ZeroFilled 0.548 ± 0.196 18.07 ± 6.20

predicted segmentation. Similar observations were made on the SKM-TEA segmentation-

only dataset, where the UNet3D and VNet achieved the highest DICE score. While the

UNet3D scored the highest IOU, the VNet scored the lowest HD95 and the highest F1. In

general, the lower F1 scores may be attributed to the heterogeneity of the data since they

were acquired from multiple vendors (Sec. 6.3.5). The variability of knee structures across

different patients could cause low IOU scores. The impact on the variability between high

DICE scores and low F1 and IOU scores can be seen in Fig. 6.9a and Fig. 6.9b, where the
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(a) CC359 12-coil data - 5x acceleration (b) CC359 12-coil data - 10x acceleration

Figure 6.5: Reconstructions of 12-coil T1-weighted data from the CC359 dataset, undersampled with a Poisson

disc distribution 2D sampling pattern for 5x (Fig. 6.5a) and 10x (Fig. 6.5b) acceleration. The top row-first column

shows the ground truth (Target) image. SSIM and PSNR scores are reported for each method and computed

against the Target image. Methods are sorted alphabetically.

(a) fastMRIBrains 14-coil data - 4x acceleration (b) fastMRIBrains 14-coil data - 8x acceleration

Figure 6.6: Reconstructions of 14-coil T2-weighted data from the fastMRI Brains dataset, undersampled with an

Equispaced 1D sampling pattern for 4x (Fig. 6.6a) and 8x (Fig. 6.6b) acceleration. The top row-first column shows

the ground truth (Target) image. SSIM and PSNR scores are reported for each method and computed against the

Target image. Methods are sorted alphabetically.

DynUNet underestimated the segmented classes, resulting on the worst-performing model.

Table 6.6 reports the performance of segmentation models on the ISLES2022SubAcuteSt-

roke dataset. The DynUNet achieved the lowest average lesion distance (ALD) and the

highest DICE and Lesion-F1 scores. The UNet achieved the lowest average volume differ-

ence (AVD). The worst-performing model was the VNet, which overestimated the lesion

segmentation, as shown in Fig. 6.9c.

Table 6.7 reports the performance in MTL for joint reconstruction and segmentation

models trained on the SKM-TEA dataset. The IDSLRUNET achieved the highest SSIM
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Figure 6.7: Reconstructions of 8-coil T2-weighted Fast-Spin Echo data from the Stanford Knee dataset undersam-

pled with a Gaussian 2D sampling pattern for 12x acceleration. The top row-first column shows the ground truth

(Target) image. SSIM and PSNR scores are reported for each method and computed against the Target image.

Methods are sorted alphabetically.

Table 6.4: Overview of performance on reconstructing and estimating quantitative parameter maps. The AHEAD

dataset was used, while data were 12x accelerated with a Gaussian 2D undersampling pattern. In the first column,

the name of the model is reported. Each model’s SSIM, PSNR, and NMSE scores are reported in the second, third,

and fourth columns. Up arrows indicate the highest, the best, and down arrows indicate the lowest, the best. The

performance of the reconstruction models is reported in the fourth and fifth row, while the quantitative parameter

map estimation models’ performance is reported in the seventh and eighth row. Best performing models are

highlighted in bold. Methods are sorted in alphabetical order.

Model AHEAD - Gaussian 2D - 12x

SSIM ↑ PSNR ↑ NMSE ↓

Reconstruction

CIRIM 0.910 ± 0.077 32.86 ± 8.51 0.043 ± 0.065
VarNet 0.893 ± 0.055 32.37 ± 4.88 0.047 ± 0.054

Quantitative parameter map estimation

qCIRIM 0.881 ± 0.178 28.36 ± 11.55 0.124 ± 0.363
qVarNet 0.784 ± 0.206 24.35 ± 7.77 0.192 ± 0.334

and PSNR scores, while the SegNet achieved the highest DICE, F1, and IOU and lowest

HD95 scores. The lower F1 and IOU scores, as also observed in the performance of the

segmentation-only models, may be attributed to varying patient anatomy, data acquisi-

tion, and different knee structures. Example reconstructions and segmentations when

performing MTL can be found in Fig. 6.10.
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Figure 6.8: Quantitative parameter map estimation of 32-coil T1-weighted data from the AHEAD dataset under-

sampled with a Gaussian 2D sampling pattern for 12x acceleration. The first column shows the ground truth

(Target) quantitative parameter maps, 𝑅∗
2 , |𝑀 |, and 𝐵0 from top to bottom, respectively. The CIRIM and the VarNet

were first used to reconstruct the undersampled data and give them as inputs to the qCIRIM and the qVarNet,

respectively, to estimate the quantitative parameter maps, as shown in the second and third columns. SSIM, PSNR,

and NMSE scores are reported for each method and computed against the Target quantitative parameter map.

Table 6.5: Overview of performance in the segmentation task of models trained on the BraTS2023AdultGlioma

(third to seventh row) and the SKM-TEA segmentation-only (ninth to thirteenth row) datasets. Model name,

DICE, F1, Hausdorff Distance 95% (HD95), and Intersection Over Union (IOU) scores are reported from left to

right. Up and down arrows indicate higher and lower scores being better, respectively. Best performing models

are highlighted in bold. Methods are sorted in alphabetical order.

Model DICE ↑ F1 ↑ HD95 ↓ IOU ↑

BraTS 2023 Adult Glioma

AttentionUNet 0.930 ± 0.126 0.648 ± 0.763 3.836 ± 3.010 0.537 ± 0.662
DynUNet 0.806 ± 0.276 0.104 ± 0.580 5.119 ± 5.411 0.070 ± 0.419

UNet 0.937 ± 0.118 0.671 ± 0.787 3.504 ± 2.089 0.535 ± 0.663

UNet3D 0.936 ± 0.133 0.674 ± 0.782 3.550 ± 2.162 0.528 ± 0.652

VNet 0.733 ± 0.437 0.014 ± 0.234 6.010 ± 6.097 0.000 ± 0.004

SKM-TEA segmentation-only

AttentionUNet 0.909 ± 0.088 0.637 ± 0.475 6.358 ± 2.209 0.529 ± 0.361

DynUNet 0.689 ± 0.136 0.059 ± 0.264 8.973 ± 4.507 0.015 ± 0.066

UNet 0.912 ± 0.058 0.651 ± 0.449 6.618 ± 1.793 0.516 ± 0.350

UNet3D 0.918 ± 0.068 0.789 ± 0.404 5.893 ± 2.995 0.530 ± 0.347
VNet 0.918 ± 0.081 0.816 ± 0.426 5.540 ± 3.036 0.507 ± 0.388
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Table 6.6: Overview of performance in the segmentation task of models trained on the ISLES2022SubAcuteStroke

dataset. Model name, Absolute Lesion Difference (AVD), Absolute Volume Difference (AVD), DICE, and Lesion F1

(L-F1) scores are reported from left to right. Up and down arrows indicate whether higher or lower values indicate

better performance. Best performing models are highlighted in bold. Methods are sorted in alphabetical order.

Model ISLES 2022 Sub Acute Stroke

ALD ↓ AVD ↓ DICE ↑ L-F1 ↑

AttentionUNet 0.809 ± 2.407 0.548 ± 3.411 0.709 ± 0.552 0.799 ± 0.579

DynUNet 0.752 ± 2.230 0.586 ± 3.874 0.729 ± 0.529 0.802 ± 0.564
UNet 0.909 ± 3.953 0.544 ± 3.921 0.695 ± 0.559 0.786 ± 0.585

UNet3D 0.821 ± 2.167 0.691 ± 5.458 0.687 ± 0.547 0.798 ± 0.573

VNet 2.281 ± 10.72 3.257 ± 27.430 0.490 ± 0.694 0.600 ± 0.687

(a) Brain Tumor Segmentation 2023 Adult Glioma segmentations.

(b) Stanford Knee MRI with Multi-Task Evaluation segmentations.

(c) ISLES 2022 Sub Acute Stroke segmentations.

Figure 6.9: Segmentations on the Brain Tumor Segmentation 2023 Adult Glioma dataset (Fig. 6.9a), the Stanford

Knee MRI with Multi-Task Evaluation (SKM-TEA) segmentation-only dataset (Fig. 6.9b), and the ISLES 2022

Sub Acute Stroke dataset (Fig. 6.9c). The first image on each figure shows the Ground Truth image with the

segmentation labels. The rest of the images present the segmentations of different methods. Each segmentation

method’s DICE score is reported and computed against the Ground Truth labels. Methods are sorted alphabetically.
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Table 6.7: Overview of performance in MTL for joint reconstruction and segmentation of models trained on the

SKM-TEA dataset for Poisson 2D 4x undersampling. Model name, SSIM, PSNR, DICE, F1, Hausdorff Distance 95%

(HD95), and Intersection Over Union (IOU) scores are reported from left to right. Up and down arrows indicate

whether higher or lower scores indicate higher performance. Best performing models are highlighted in bold.

Methods are sorted in alphabetical order.

Model SKM-TEA - Poisson 2D 4x

SSIM ↑ PSNR ↑ DICE ↑ F1 ↑ HD95 ↓ IOU ↑

IDSLR 0.836 ± 0.106 30.38 ± 5.67 0.894 ± 0.127 0.256 ± 0.221 4.927 ± 2.812 0.298 ± 0.309

IDSLRUNET 0.842 ± 0.106 30.53 ± 5.59 0.870 ± 0.134 0.225 ± 0.194 8.724 ± 3.298 0.212 ± 0.199

MTLRS 0.832 ± 0.106 30.48 ± 5.30 0.889 ± 0.118 0.247 ± 0.203 7.594 ± 3.673 0.218 ± 0.194

SegNet 0.840 ± 0.107 29.95 ± 5.12 0.915 ± 0.114 0.270 ± 0.284 3.002 ± 1.449 0.290 ± 0.349

6.5 Discussion and Conclusions
We presented the Advanced Toolbox for Multitask Medical Imaging Consistency (ATOM-

MIC), a versatile toolbox designed to ensure consistency in the performance of various

Deep Learning (DL) models applied in different MRI tasks such as reconstruction, quantita-

tive parameter map estimation and segmentation (Sec. 6.3.1). Consistency is ensured by

unifying the implementation of networks’ components, hyperparameters, image transfor-

mations, and training configurations. Among existing AI frameworks for MRI analysis,

ATOMMIC was found to be the only framework to uniquely harmonize complex-valued

and real-valued data support, allowing the assessment of MultiTask Learning (MTL) by

combining individual models designed for single tasks to perform joint tasks. To demon-

strate ATOMMIC’s capabilities we trained and tested twenty-five DL models on eight

publicly available datasets, including brain and knee anatomies, for three different MRI

tasks and presented applications of MTL for joint reconstruction and segmentation. Three

undersampling schemes were evaluated, ranging from 4 times to 12 times acceleration,

on the task of accelerated MRI reconstruction on three publicly available datasets, using

different loss functions, optimizers, and learning rate schedulers (Fig. 6.2). We also assessed

the effectiveness of end-to-end reconstruction and coil sensitivity maps estimation during

training, removing the overhead of pre-computing coil sensitivity maps and increasing

the storage space. Coil compression was evaluated on the reconstruction task, showing

advantages in reducing training time while maintaining high performance (Sec. 6.3.3).

Successful application of quantitative DL models was demonstrated in accurately esti-

mating quantitative parameter maps of the brain, such as the 𝑅∗
2 map, which allows for

quantifying iron deposition related to aging and Parkinson’s and Alzheimer’s disease ([9]).

Segmentation of brain lesions, tumors, and knee pathologies was also presented, while the

tasks of segmentation and reconstruction were combined to assess MTL.

Physics-based DL models outperformed other DL models on the task of accelerated MRI

reconstruction, showing an advantage in enforcing data consistency on the MRI domain

either implicity (CIRIM) or explicitly (JointICNet, RVN, VarNet). The models trained and

tested on the fastMRIBrains (Table 6.2) and StanfordKnee datasets (Table 6.3) exhibited

higher standard deviations than the models trained on the CC359 dataset (Table 6.2),

potentially due to the different undersampling patterns, multiple modalities, and varying

numbers of coils for the fastMRIBrains dataset and the small number of coils (eight) for the

StanfordKnee dataset (Sec. 6.3.5). These variations in data acquisition resulted in decreased
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Figure 6.10: Reconstructions and segmentations on the Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA)

dataset, undersampled with a Poisson disc distribution 2D pattern for 4x acceleration. First image shows the

Ground Truth image and segmentation labels. SSIM, PSNR, and DICE scores are reported for each method and

computed against the Ground Truth image and segmentation labels. Methods are sorted alphabetically. Images

are interpolated for visualisation purposes from 416×80 to 256×128.

SNR, adversely impacting the SSIM and PSNR scores. Physics-based models were also

demonstrated to accurately approximate quantitative parameter maps (Table 6.4). This

suggests that maintaining consistency, an essential feature in ATOMMIC, in the primary

task of reconstruction can enhance performance in the subsequent quantitative parameter

map estimation task, a promising advancement towards fast and robust quantification of

neurological diseases. The baseline UNet performed the best on the BraTS2023AdultGlioma

and SKM-TEA datasets on the segmentation task (Table 6.5), but F1 and IOU scores were

low for all models, potentially due to the datasets’ heterogeneity and distribution shifts. The

UNet3D and the VNet showed strengths in handling heterogeneous data. However, the VNet

struggled with small lesion segmentation in the ISLES2022SubAcuteStroke dataset (Table

6.6). The AttentionUNet achieved the highest IOU score on the BraTS2023AdultGlioma

dataset, underscoring its ability to identify relevant tumor regions, although heterogeneous

due to the integrated attention mechanisms. The dynamic nature of the DynUNet proved

advantageous in the ISLES2022SubAcuteStroke dataset, where it outperformed others,

scoring the highest ALD, DICE, and Lesion-F1 scores. ATOMMIC’s advancement in utilizing

MTL for combining tasks led to improved reconstruction quality and segmentation accuracy

when performing the two tasks jointly (Table 6.7).

ATOMMIC offers a unique AI suite for MRI reconstruction and analysis with numerous

embedded DL models, hyperparameters, training and testing schemes, and exporting op-

tions, which can significantly advance DL applications in MRI research. Evaluating multiple

DL models on a single task using a robust framework provides a better understanding of the

benefits of applying DL to medical imaging rather than just focusing on the performance

of a single model. Utilizing MTL to combine tasks is a step towards end-to-end solutions

that eliminate the overhead of splitting related tasks, leading to improved performance

and faster processing speed. ATOMMIC enables the evaluation of many DL models on
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multiple public datasets with standardized formats, thanks to the significant efforts made

by various research groups. However, supporting private datasets can be challenging. In

addition to privacy concerns, identifying a series of appropriate pre-processing steps to use

the data is often necessary, which can be time-consuming and require expert knowledge.

Raw MRI data, in particular, often come in vendor-locked proprietary formats. While the

ISMRM-RD format ([53]) represents a step towards an open vendor-agnostic format for

storing such data, integrating private datasets into open-source toolboxes remains limited.

Such limitation is also identified in our work, and further limitations include the fact

that ATOMMIC currently focuses solely on MRI, and essential tasks such as classification,

registration, and motion correction remain to be implemented towards a robust end-to-end

multitask framework.

Future work could focus on developing pre-processing pipelines for private medical

imaging datasets, including additional tasks and imaging modalities, such as Computed

Tomography. Nevertheless, open issues like data interoperability, model robustness, and

assessing MTL still require attention. The availability of public datasets, open-source code,

and comprehensive documentation is crucial to effectively adopting AI techniques and

facilitating their further development by the scientific and broader research communities.

With ATOMMIC, we aim to accelerate medical image analysis and provide a comprehensive

framework for researchers to integrate and evaluate datasets, DLmodels, tasks, and imaging

modalities.
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Appendix
Table 6.8: Overview of selected hyperparameters for all trained models on all tasks.

Model Hyperparameters

Accelerated MRI Reconstruction

CCNN num_cascades: 10, hidden_channels: 64, n_convs: 5

CIRIM recurrent_layer: IndRNN, conv_filters: [128, 128, 2], conv_kernels: [5,

3, 3], conv_dilations: [1, 2, 1], conv_bias: [true, true, false], recur-

rent_filters: [128, 128, 0], recurrent_kernels: [1, 1, 0], recurrent_dilations:

[1, 1, 0], recurrent_bias: [true, true, false], time_steps: 8, conv_dim: 2,

num_cascades: 5

CRNN num_iterations: 10, hidden_channels: 64, n_convs: 3

JointICNet num_iter: 2, kspace_unet_num_filters: 16,

kspace_unet_num_pool_layers: 2, imspace_unet_num_filters: 16,

imspace_unet_num_pool_layers: 2, sens_unet_num_filters: 16,

sens_unet_num_pool_layers: 2

KIKINet num_iter: 2, kspace_unet_num_filters: 16,

kspace_unet_num_pool_layers: 2, imspace_unet_num_filters: 16,

imspace_unet_num_pool_layers: 2

LPDNet num_primal: 5, num_dual: 5, num_iter: 5, primal_unet_num_filters: 16,

primal_unet_num_pool_layers: 2, dual_unet_num_filters: 16

MoDL unrolled_iterations: 5, residual_blocks: 5, channels: 64, regulariza-

tion_factor: 0.1

RIM recurrent_layer: GRU, conv_filters: [64, 64, 2], conv_kernels: [5, 3, 3],

conv_dilations: [1, 2, 1], conv_bias: [true, true, false], recurrent_filters:

[64, 64, 0], recurrent_kernels: [1, 1, 0], recurrent_dilations: [1, 1, 0],

recurrent_bias: [true, true, false], time_steps: 8, conv_dim: 2

RVN recurrent_hidden_channels: 64, recurrent_num_layers: 4, num_steps:

8, learned_initializer: true, initializer_initialization: "sense", initial-

izer_channels: [32, 32, 64, 64], initializer_dilations: [1, 1, 2, 4]

UNet channels: 64, pooling_layers: 4

VarNet num_cascades: 8, channels: 18, pooling_layers: 4

VSNet num_cascades: 10, imspace_model_architecture: CONV,

imspace_conv_hidden_channels: 64, imspace_conv_n_convs: 4

XPDNet num_primal: 5, num_dual: 1, num_iter: 10, use_primal_only:

true, kspace_model_architecture: CONV, image_model_architecture:

MWCNN, mwcnn_hidden_channels: 16, mwcnn_bias: true
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quantitative MRI parameter map estimation

qCIRIM quantitative_module_recurrent_layer: IndRNN, quan-

titative_module_conv_filters: [128, 128, 2], quan-

titative_module_conv_kernels: [5, 3, 3], quantita-

tive_module_conv_dilations: [1, 2, 1], quantitative_module_conv_bias:

[true, true, false], quantitative_module_recurrent_filters: [128,

128, 0], quantitative_module_recurrent_kernels: [1, 1, 0],

quantitative_module_recurrent_dilations: [1, 1, 0], quanti-

tative_module_recurrent_bias: [true, true, false], quantita-

tive_module_time_steps: 8, quantitative_module_conv_dim: 2,

quantitative_module_num_cascades: 5

qVarNet quantitative_module_num_cascades: 8, quantitative_module_channels:

18, quantitative_module_pooling_layers: 4

MRI Segmentation

AttentionUNet channels: 32, pooling_layers: 5

DynUNet channels: 32, pooling_layers: 5, activation: leakyrelu, deep_supervision:

true, deep_supervision_levels: 2

UNet channels: 32, pooling_layers: 5

UNet3D channels: 32, pooling_layers: 5, consecutive_slices: 3

VNet channels: 16, pooling_layers: 5, activation: elu

MultiTask Learning for joint Accelerated MRI Reconstruction & MRI Segmentation

IDSLR channels: 64, pooling_layers: 2, num_iters: 5

IDSLRUNET channels: 64, pooling_layers: 2, num_iters: 5
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MTLRS num_cascades: 5, reconstruction_module_recurrent_layer:

IndRNN, reconstruction_module_conv_filters: [64, 64, 2],

reconstruction_module_conv_kernels: [5, 3, 3], recon-

struction_module_conv_dilations: [1, 2, 1], reconstruc-

tion_module_conv_bias: [true, true, false], reconstruc-

tion_module_recurrent_filters: [64, 64, 0], reconstruc-

tion_module_recurrent_kernels: [1, 1, 0], reconstruc-

tion_module_recurrent_dilations: [1, 1, 0], reconstruc-

tion_module_recurrent_bias: [true, true, false], reconstruc-

tion_module_time_steps: 8, reconstruction_module_conv_dim: 2,

reconstruction_module_num_cascades: 1, segmentation_module:

AttentionUNet, segmentation_module_channels: 32, segmenta-

tion_module_pooling_layers: 5

SEGNET channels: 64, pooling_layers: 2, num_cascades: 5, final_layer_conv_dim:

2, final_layer_kernel_size: 3, final_layer_dilation: 1, final_layer_bias:

False, final_layer_nonlinear: relu
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7
Discussion

This thesis introduced novel approaches for accelerating Magnetic Resonance Imaging

(MRI) using deep learning (DL) and multitask learning (MTL). Key contributions included

the development of the Cascades of Independently Recurrent Inference Machines (CIRIM),

a physics-informed DL network that enabled fast and robust MRI reconstruction, as well as

the extensive evaluation of DL-based reconstruction across a wide range of diverse datasets,

encompassing large-scale challenges and real-world clinical settings. The boundaries of

conventional reconstruction paradigms were further extended by establishing a novel MTL

framework for joint reconstruction and segmentation, effectively leveraging the inherent

interdependencies of these tasks. Finally, practical implementations of the concepts pre-

sented in this thesis were realized in the Advanced Toolbox for Multitask Medical Imaging

Consistency (ATOMMIC). Through extensive ablation studies and theoretical analyses,

these developments effectively conceptualize the theoretical and practical framework of

deep multitask learning (DMTL) for accelerating MRI.

7.1 On the importance of data consistency and deep
networks in MRI reconstruction

In Chapter 2, we introduced the CIRIM, a sophisticated DL-based reconstruction network

that balances computational efficiency without compromising reconstruction quality. The

architectural innovation of cascading Recurrent Inference Machines (RIM) [1] effectively

implemented a form of deep supervision, where each cascade performed unrolled opti-

mization through a fixed number of iterations, known as time-steps in Recurrent Neural

Networks (RNNs). Backpropagation through reduced time-steps per cascade ensured robust

gradient flow while enabling inter-cascade information propagation. In that way, the risk

of gradients accumulation throughout lengthy sequences was mitigated, thereby decreas-

ing the likelihood of vanishing and exploding gradients. The CIRIM was theoretically

motivated by the need to balance depth in RNNs with computational stability, targeting

high reconstruction quality and fast reconstruction times. This theoretical foundation

proved essential for subsequent developments throughout the thesis, particularly in scaling
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to clinical applications (Chapter 4) and integrating subsequent analysis tasks, such as

segmentation, into the reconstruction task through the cascades (Chapter 5).
The assessment of data consistency in physics-informed DL reconstruction networks

showed that implicit enforcement, through gradient descent, as implemented in the CIRIM,

was advantageous to explicit enforcement, through a formulated term, as in other physics-

informed reconstruction networks, such as the Variational Network (VN) [2]. The implicit

enforcement of data consistency allowed the CIRIM to adapt more effectively to inherent

variations in MRI data, such as noise levels, undersampling patterns, and pathologies absent

from the training data. The observed robustness proved to be particularly crucial in the

later clinical evaluation, presented in Chapter 4.
Furthermore, the CIRIM demonstrated superior performance in reconstructing data

from three diverse datasets: 3D 𝑇1-weighted brain images, 2D FLAIR brain images, and

3D 𝑇2-weighted knee images, with multiple acceleration factors (ranging from four to

ten), and two distinct undersampling patterns (equidistant and random Gaussian). No-

tably, the CIRIM outperformed seven other DL-based reconstruction networks, as well

as the Compressed Sensing (CS) reconstruction method. Generalization capabilities were

demonstrated in reconstructing out-of-training-distribution 7.5 times accelerated FLAIR

data (under random Poisson sampling), from patients with multiple sclerosis (MS) lesions.

Although the CIRIM was trained on data from healthy subjects with different contrast

(𝑇1) and different undersampling pattern (Gaussian), it demonstrated improved dealiasing

and denoising capabilities, represented by the successful preservation of the contrast of

the lesion relative to surrounding white matter and the higher signal-to-noise ratio (SNR)

compared to other networks and CS.

Computational efficiency was another critical advancement that was later shown to be

crucial clinically (Chapter 4). Fast reconstruction times and high reconstruction quality

were balanced in the CIRIM by substituting the Gated Recurrent Unit (GRU) [3], used in

the original RIM, with the Independently RNN [4]. This replacement led to an approximate

56% decrease in total network parameters, which consequently allowed an increased

number of RIM cascades and thus increased reconstruction quality while maintaining

rapid reconstruction times. The relationship between acceleration and computational

complexity emerged as a key theme throughout the thesis. This relationship exhibits

non-linear characteristics, suggesting the existence of an optimal acceleration factor that

minimizes the total time-to-solution across both acquisition and reconstruction phases.

The findings presented in Chapter 2 contributed significantly to our understanding of

the intricate interaction between network complexity, data consistency, and robustness

in DL-based MRI reconstruction and laid the groundwork for subsequent large-scale and

clinical evaluations. While data consistency was essential for maintaining fidelity to the

acquired data, it simultaneously imposed inherent limitations on recovering high-frequency

details absent in the undersampled k-space data. This understanding directly informed the

development of the MTL for joint reconstruction and segmentation approach, presented

in Chapter 5. Nevertheless, factors such as the SNR, the number of coils, the choice of

the undersampling pattern, and the diversity of the training dataset were found to play a

critical role in assessing robustness and generalizability of DL-based reconstruction. These

findings were further validated in the following chapters.
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7.2 Robustness and generalization assessment of
deep learning based MRI reconstruction

The theoretical developments presented in Chapter 2 were extensively evaluated and

validated in several contexts, from controlled experiments to real-world clinical settings

in Chapters 3 and 4. Large-scale initiatives, such as the multi-coil MRI (MC-MRI) recon-

struction challenge, presented in Chapter 3, and the fastMRI challenges [5, 6], provided

in-depth insights into robustness and generalization in diverse acquisition scenarios. While

these standardized benchmarks have been instrumental in establishing baseline perfor-

mance metrics and identifying promising architectural approaches, the ultimate validation

of DL-based MRI reconstruction required rigorous assessment in clinical settings. The

transition from controlled to clinical evaluation, presented in Chapter 4, confronted DL-

based reconstruction with the full complexity of the clinical practice, including diverse

pathologies and the nuanced requirements for diagnostic interpretation.

7.2.1 Large-scale challenges
The MC-MRI reconstruction challenge validated the findings of Chapter 2 on the impor-

tance of enforcing data consistency for achieving robust high reconstruction performance.

Networks that enforced data consistency, implicitly or explicitly, demonstrated superior

performance to other networks, such as baseline U-Nets, with cascaded networks and

RNNs emerging as particularly effective approaches
1
.

Significant insights were obtained regarding the limitations of conventional metrics in

assessing reconstruction quality. While models trained on 12-coil configurations exhibited

strong performance in terms of Structural Similarity Index (SSIM) [7], Peak Signal-to-Noise

Ratio (PSNR), and Visual Information Fidelity (VIF) [8], when evaluated on 32-coil data

visual inspection revealed substantial artifacts that would impact clinical utility. At the

same time, the MC-MRI reconstruction challenge illuminated a fundamental challenge in

the field: the possible discrepancy between optimization criteria and clinically relevant

image quality metrics. Although quantitative metrics serve as valuable tools for preliminary

evaluation, they may not fully represent the level of image quality necessary for clinical

assessment, particularly crucial in scenarios that involve out-of-training-distribution data.

This observation directly informed our clinical evaluation approach in Chapter 4, where
we incorporated quantitative metrics and an expert radiologists’ assessment.

The fastMRI challenges further expanded our understanding of generalizability in

DL-based reconstruction networks and evaluation criteria. The 2019 fastMRI challenge

[5] provided an unprecedented large-scale dataset containing roughly 1,594 clinical knee

scans, representing the largest publicly accessible MRI dataset containing raw k-space

data at that time. Remarkable performance was demonstrated in single-coil [9]
2
and multi-

coil reconstruction [10], with high SSIM scores accompanied by high rankings from five

radiologists, of the total of seven who participated in the evaluation. However, the image

quality in single-coil reconstruction was inferior to that in multi-coil reconstruction. This

1
The top performing method submitted by our team (ResoNNance) was a baseline RIM, which can also be thought

as a CIRIM with one cascade.
2
The top performing method in single-coil reconstruction was the i-RIM, a fully invertible RIM submitted by our

team (AImsterdam).
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divergence in performance between single-coil and multi-coil reconstruction was further

explored in our work on coil handling within ATOMMIC, as detailed in Chapter 6.
Crucial insights into the failures of DL-based reconstruction were also recognized in

the 2019 fastMRI challenge. Instances where the models performed poorly were manually

identified. However, it was shown that the DL-based reconstruction quality was always

better than that of the CS baseline. Notably, there were no cases where a model completely

failed or exhibited considerable image degradation, even in images with artifacts from

metallic implants.

The second fastMRI challenge [6], in 2020, provided an even larger dataset of 7,299

brain scans, with emphasis on pathological assessment over general image quality metrics.

The challenge’s transfer learning track revealed critical limitations in cross-vendor gen-

eralization. Models trained on Siemens data were unable to generalize in reconstructing

General Electric data, where even the best-performing models produced false anatomical

structures or altered existing ones
3
.

Subsequent analysis by Johnson et al. [11] further evaluated robustness in handling

discrepancies between training datasets and real-world clinical. To that end, several

perturbations were applied to the test set of the second fastMRI challenge. The applied per-

turbations included structural changes, simulation of mismatched SNR, adjustments to the

number of coils, and variations in the undersampling pattern. Overall, the best-performing

models of the challenge, without undergoing retraining, while exhibited resilience to coil

configuration changes, demonstrated sensitivity to structural modifications and SNR varia-

tions. Interestingly, altering the sampling pattern by sampling more lines in the center of

k-space enhanced the visibility of pathologies, highlighting the importance of choosing

suitable sampling patterns in clinical settings. The extensive set of evaluation schemes

for assessing robustness in Johnson et al.’s study also motivated part of our experiments

within the ATOMMIC toolbox (Chapter 6).

7.2.2 Real world clinical evaluation
The clinical evaluation presented in Chapter 4 represented a crucial step toward validating
DL-based reconstruction in real-world scenarios. The CIRIM was shown to successfully

generalize from training on 𝑇1-weighted data from healthy subjects, due to the lack of fully

sampled clinical data with neurological conditions, in reconstructing highly accelerated

(twelve-fold) pathological FLAIR data of patients with various neurological deficits, such

as stroke, MS, tumors, and Meniere’s disease. The observed 30% improvement in SNR

over CS, coupled with a five-fold reduction in reconstruction times, suggested significant

potential for enabling fast and high-quality reconstruction in the clinical setting. These

improvements directly assessed the challenges of CS reconstruction, identified in the

introduction (Section 1.1.1), and demonstrated the practical value of the CIRIM.

The assessment of reconstruction quality by three neuroradiologists revealed additional

insights into the subjective nature of image quality assessment, which were in line with

the findings of the challenges (Section 7.2.1). The superior performance of the CIRIM was

corroborated by the consensus among the two (interventional) neuroradiologists, particu-

3
The ResoNNance submission from our team secured third place in the transfer track, utilizing a RIM. Nonetheless,

it was rated lowest by radiologists due to poor performance in reconstructing General Electric data and the

occurrence of false or modified anatomical structures.
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larly in reducing artifacts (dealiasing) and clear visualization of pathologies. Conversely,

the third neuroradiologist perceived the sharp image characteristics as blurring. This

subjective view was ascribed to the specialization in pediatric neuroradiology, with this

reader reporting that image quality at lower acceleration factors is preferable in the field

of pediatrics.

These findings highlighted that the enhanced denoising capabilities of the CIRIM, also

realized in the reconstruction of data with MS lesions in Chapter 2, can improve diagnosis

by allowing the detection of subtle pathological features that might otherwise be obscured

by noise. Despite the encouraging findings, the discrepancies in radiologists’ perceptions

of image quality highlighted the need for specialized training in interpreting DL-based

reconstructed images while raised considerations about the impact of the reconstruction

quality on subsequent analysis tasks. These considerations were further assessed in the

development of MTL for joint reconstruction and segmentation (Chapter 5) and the

development of ATOMMIC (Chapter 6).

7.3 Multitask Learning
Chapter 5 represented a significant theoretical advancement in our approach for acceler-

ating MR imaging by incorporating the segmentation task into the reconstruction task,

utilizing MTL [12]. Unlike traditional methods that handle tasks independently, sequen-

tially, or merely simultaneously through a joint loss function [13], our proposed MTL for

accelerated-MRI reconstruction and segmentation (MTLRS) framework treated the two

tasks as intrinsically coupled computational problems that share underlying representa-

tional spaces.

MTLRS outperformed traditional methodologies, such as single-task, end-to-end, and

joint, across multiple evaluation metrics in reconstructing and segmenting 7.5 times ac-

celerated 3D FLAIR MRI data from MS patients with white matter lesions. The observed

enhancements in SSIM and PSNR for reconstruction, coupled with improved Dice coef-

ficients for tissue and lesion segmentation, suggested interconnectedness in the learned

representations between the two tasks. Statistical analysis of the connection between

reconstruction quality and segmentation accuracy validated the strong and significant

association between these two tasks, revealed by Spearman’s rank correlation. Visual

inspection of the results identified more clearly defined lesion boundaries and enhanced

contrast in MTRLS, further underscoring the synergistic nature of the learning processes

within the framework. The insights gained from this study greatly influenced the develop-

ment of ATOMMIC (Chapter 6), informing its integrated approach to multiple imaging

tasks.

Additionally, the theoretical implications of our findings in Chapter 5 provide insights

into representation learning mechanisms within complex medical imaging tasks. The

success of MTLRS in leveraging shared information challenges the traditional paradigm of

treating reconstruction and analysis tasks as independent processes. Our results suggest

the existence of rich, interconnected latent spaces that simultaneously encode structural

and semantic information in medical imaging data. The emergent regularization patterns

arising from task interdependence serve a dual purpose: they enhance computational

efficiency by eliminating the redundancy of separate task execution while contributing to

robustness through intrinsic constraints imposed by shared representational structures.
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The MTLRS capability to enforce consistency across both data and task domains es-

tablished a theoretical foundation for deep multitask learning (DMTL). By connecting

multiple single-task DL networks through MTL, DMTL provides empirical evidence for

the hypothesis that shared representation learning can simultaneously optimize multiple

objectives in medical imaging.

7.4 The Advanced Toolbox forMedical Imaging Con-
sistency

Building directly upon the theoretical foundations established in the previous chapters,

in Chapter 6 we presented the Advanced Toolbox for Medical Imaging Consistency

(ATOMMIC). ATOMMIC aimed to systematically address crucial challenges in developing

and deploying DMTL methodologies for accelerating MR imaging, from reconstruction

to analysis. The efficacy of ATOMMIC was assessed through a rigorous evaluation of

twenty-five DL models in multiple datasets and imaging tasks.

The superior performance of physics-informed networks in the reconstruction task,

particularly of the CIRIM and the VN, validated the fundamental role of data consistency in

MRI reconstruction, established throughout the thesis. The segmentation analysis across

diverse anatomical regions and pathologies, including intracranial tumors, knee structures,

gliomas, and ischemic lesions, not only demonstrated the versatility of ATOMMIC, but

also confirmed the discrepancy observed in segmentation performance metrics, similar to

the discrepancy between optimization criteria and clinically relevant image quality metrics

in the reconstruction task (Chapter 3).
ATOMMIC’s capabilities were further evaluated through its application to quantitative

parameter map estimation from multi-echo MRI data. Expanding on the innovations of

Zhang et al. [14], the quantitative RIM demonstrated high precision in estimating quantita-

tive parameter maps, not only confirming the importance of incorporating data consistency

also in the quantitative MRI (qMRI) task but additionally showcasing ATOMMIC’s potential

to substantially reduce qMR imaging times. This advancement was directly related to the

clinical needs identified in Chapter 4, particularly regarding faster treatment decisions

and improved patient outcomes in neurological applications. For example, the successful

reconstruction of 𝑅∗
2 maps can provide crucial information on (local) iron deposition in the

brain, a biomarker associated with aging and neurodegenerative conditions, including MS,

Parkinson’s, and Alzheimer’s disease [15].

Central to ATOMMIC’s design was its multifaceted approach to consistency, synthe-

sizing insights from our previous research. Consistency was encompassed in three ways:

data consistency, ensuring that the reconstructed images accurately reflect the acquired

data, based on the principles established in Chapter 2; task consistency, allowing for a

comprehensive evaluation of individual tasks and DMTL, extending the findings of Chap-
ter 5; and workflow consistency, standardizing model training and evaluation processes,

incorporating insights from Chapter 4. In this way, ATOMMIC aimed to address one

of the most significant challenges in the field: generalizability in diverse heterogeneous

datasets and patient populations.
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7.5 Limitations & Future directions of Deep Multi-
task Learning for accelerating MRI

Moving from the findings presented in this thesis, future DMTL directions for accelerat-

ing MRI encompass several interconnected challenges. At their core, successful DMTL

implementations demand a balance between shared and task-specific approaches while

addressing fundamental challenges in data availability and computational efficiency.

The theoretical landscape of DMTL presents particularly intriguing challenges con-

cerning the behavior and stability of shared latent representations in high-dimensional

feature spaces. The interaction between multiple tasks introduces complex optimization

landscapes that necessitate sophisticated theoretical frameworks for analysis. Understand-

ing these dynamics will be crucial when examining the behavior of a DMTL system under

various conditions, particularly in scenarios characterized by data sparsity or extreme noise

conditions, such as the scenarios presented in Chapters 2 and 6. Future work should focus
on developing formal metrics to quantify task-relatedness and establish robustness.

Robustness can be enforced through data consistency. The integration of more complex

constraints within DMTL represents a natural extension of the principles established

in Chapter 2. While current approaches incorporate basic physical principles, future

frameworks could benefit from more sophisticated regularization schemes capable of

capturing complex MRI phenomena. For instance, modeling 𝐵0 inhomogeneity effects and

gradient nonlinearities could lead to enhanced robustness and more interpretable models.

At the same time, a significant barrier lies in data scarcity, a limitation identified

throughout our work. Our studies in the clinical assessment of DL-based reconstruction,

in Chapter 4, and MTL, in Chapter 5, highlighted the need for large annotated datasets.

For example, to establish MTLRS as a proof of concept and due to the lack of fully sampled

reference MRI data accompanied by expert annotations, we were compelled to synthesize

a multi-coil dataset from a relatively small group of MS patients. Although this synthetic

dataset allowed us to introduce the MTLRS framework, it emphasized the need for more

extensive annotated datasets.

Semi-supervised [16] and self-supervised [17] learning approaches have shown po-

tential in learning robust representations from limited labeled data; yet, their theoretical

foundations in the context of DMTL require further investigation. Another approach to

address data scarcity could lie in leveraging ATOMMIC’s flexibility in handling different

data types. ATOMMIC could be employed to develop robust privacy-preserving techniques

that allow model training across multiple institutions without sharing raw patient data.

However, the integration of data from multiple sources poses additional challenges.

Private datasets, especially when comprised of raw MRI data, are commonly stored in pro-

prietary formats, due to privacy concerns, and their usage often requires expert knowledge,

due to their complex pre-processing pipelines. To that end, efforts to develop standardized

pipelines and data formats, such as the ISMRM raw data format (ISMRMRD) [18], are

necessary but merit further research.

From a computational perspective, the scalability of DMTL also presents significant

challenges that would need to be addressed through efficient training strategies and com-

putational resource management. Exploring efficient optimization algorithms for multi-

objective learning, coupled with adaptive architectural solutions that dynamically allocate
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resources based on task complexity and data characteristics, could optimize DMTL. Never-

theless, such advancements extend beyond immediate clinical applications to fundamental

advances in understanding multi-objective learning and optimization in complex, high-

dimensional spaces.

Careful consideration should also be given to potential sources of bias when developing

DMTL approaches. Although incorporating longitudinal information presents promising

opportunities, the temporal relationships between different data modalities should be

carefully evaluated to avoid systematic biases. Such biases, especially if models are trained

on datasets that do not adequately capture diverse groups, raise serious concerns that

transcend technical aspects, touching on the core issues of equity and inclusion within

healthcare. Future researchmust emphasize diversity in data acquisition andmodel training,

encompassing not only a broad spectrum of medical cases and diseases, but also heteroge-

neous demographic populations. Additionally, the development of novel approaches that

can learn effectively from decentralized data sources would be necessary for preserving

data privacy.

Currently, the integration of DL into clinical practice has reached a notable milestone,

with major MRI manufacturers already incorporating DL-based reconstruction methods

directly into their systems. However, the findings presented in this thesis suggest that the

path to advancement lies not exclusively in complete automation, but rather in strategic

improvements to accuracy, efficiency, and workflow optimization [19]. Furthermore, this

thesis emphasized the need for a collaborative approach, where computer scientists actively

incorporate radiologists’ expertise during system development, while radiologists develop

proficiency in DL principles to optimize clinical practice. This synergistic collaboration

has the potential to transform personalized medicine, as coordinated efforts of computer

scientists, medical physicists, and clinicians can translate these theoretical advances into

tangible improvements in patient care, fundamentally advancing modern medicine.
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Summary
The intricate balance between acquisition speed and image quality in Magnetic Reso-

nance Imaging (MRI) presents a fundamental challenge. Imaging times can be significantly

reduced by accelerating the acquisition process. However, higher acceleration factors

generally lead to degradation of image quality. Low image quality increases the risk of

inaccurate analysis and, subsequently, misdiagnosis. This thesis presented a comprehen-

sive assessment of the integration of deep learning (DL) with multitask learning (MTL)

and introduced a unified deep multitask learning (DMTL) framework to accelerate the

acquisition and analysis of MRI.

Chapter 2 introduced the Cascades of Independently Recurrent Inference Machines

(CIRIM), a novel DL reconstruction network that adeptly balances network complexity

and robustness. The cascading architecture of the CIRIM allowed for enhanced dealiasing

and denoising capabilities while maintaining stable gradient calculations, despite being

a deep Recurrent Neural Network (RNN). Through an extensive evaluation, the CIRIM

demonstrated superior performance against seven other state-of-the-art DL approaches and

the clinical standard reconstruction method, Compressed Sensing (CS). The evaluation in-

cluded diverse MRI datasets, encompassing 𝑇1-weighted, 𝑇2-weighted, and FLAIR brain and

knee scans, different undersampling schemes, and varying acceleration factors. In addition,

robustness and generalization of DL-based reconstruction was tested on reconstructing

data unseen during training, specifically from patients with multiple sclerosis (MS) lesions.

The CIRIM successfully preserved the contrast of the lesion relative to surrounding white

matter and achieved a higher signal-to-noise ratio (SNR) compared to other methods and

CS, highlighting the promising potential for clinical integration.

Furthermore, in Chapter 2 data consistency enforcement in physics-informed DL

reconstruction networks was assessed. It was shown that the CIRIM’s implicit data consis-

tency enforcement, through gradient descent, was advantageous to explicit enforcement,

through a designed term, common in other physics-informed DL-based reconstruction

networks, such as the Variational Network. This finding provided valuable insights into

designing optimal MRI reconstruction strategies in the following chapters.

Chapter 3 detailed our participation in the Multi-Coil MRI Reconstruction Challenge

(MC-MRI), a worldwide collaborative initiative that extensively evaluated the generalization

capabilities and robustness of DL-based reconstruction networks. The experimentationwith

high-resolution 3D 𝑇1-weighted brain MRI scans across 12-coil and 32-coil configurations

highlighted the superiority of physics-informed networks featuring cascaded and recurrent

architectures. At the same time, crucial insights regarding cross-coil generalization were

obtained. Specifically, while models trained on 12-coil and tested on 32-coil configurations

exhibited strong performance in quantitative metrics, such as Structural Similarity Index,

Peak Signal-to-Noise Ratio, and Visual Information Fidelity, visual inspection revealed

substantial artifacts that would impact clinical utility. This observation highlighted the
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fundamental challenge of the possible discrepancy between optimization criteria and

clinically relevant image quality metrics.

Chapter 4 evaluated the application of the CIRIM in a real-world clinical setting.

The CIRIM was compared with CS in reconstructing highly accelerated (twelve-fold) 3D

FLAIR MRI scans of patients with neurological deficits, such as stroke, MS, tumors, and

Meniere’s disease. Reconstruction quality was quantitatively assessed and subjectively

scored by three expert neuroradiologists in terms of artifacts, sharpness, anatomical clarity,

diagnostic confidence, and contrast. Despite little variation in expert opinions, the CIRIM

exhibited statistically significant improvements, including enhanced artifact reduction,

superior anatomical conspicuity, and a substantial increase in SNR, while only marginally

reduced contrast ratio. Notably, the CIRIM’s five-fold increase in reconstruction speed over

CS underscored its potential for significantly accelerating imaging times.

Chapter 5 introduced a sophisticated MTL framework for simultaneous reconstruction

and segmentation (MTLRS) of accelerated MRI data, with a specific focus on brain lesions

in MS patients. MTLRS employed a unique cascading architecture, in which the CIRIM

and a segmentation network shared information through hidden states. This approach

allowed for leveraging shared features as inductive bias to enhance overall performance.

Through comparative testing against conventional pre-trained, sequential, end-to-end,

and joint methodologies, MTLRS was shown to outperform all other methods in both

the reconstruction and the segmentation task. Furthermore, a strong and significant

correlation was found between the performance of the two tasks, indicating the advantages

of addressing interrelated tasks in a unified MTL manner.

Chapter 6 presented the Advanced Toolbox for Multitask Medical Imaging Consistency

(ATOMMIC), an open-source toolbox designed to streamline AI applications for accelerated

MRI reconstruction and analysis. Within ATOMMIC, twenty-five DL models were rigor-

ously evaluated in eight diverse publicly available datasets, for the tasks of reconstruction,

segmentation, quantitative parameter map estimation, and MTL for joint reconstruction

and segmentation. ATOMMIC demonstrated versatility in the integration of multiple tasks

while maintaining consistency across data, tasks, and workflows.

In conclusion, the research presented in this thesis contributed to the field of accelerated

MRI reconstruction and analysis. The development of the CIRIM demonstrated significant

improvements in reconstruction times, while allowing for high diagnostic image quality.

The subsequent introduction of the MTLRS framework and its validation in simultaneous

reconstruction and segmentation revealed the synergistic benefits of MTL in medical

imaging. The creation and comprehensive validation of the ATOMMIC toolbox represented

a step toward standardizing AI applications in medical imaging. These contributions

collectively conceptualized the DMTL framework and its potential for accelerating MR

imaging.
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Samenvatting
De complexe balans tussen acquisitiesnelheid en beeldkwaliteit in Magnetic Resonance
Imaging (MRI) vormt een fundamentele uitdaging. Scantijden kunnen aanzienlijk worden

verminderd door het acquisitieproces te versnellen. Hogere versnellingsfactoren leiden

echter in het algemeen tot verslechtering van de beeldkwaliteit. Een lage beeldkwaliteit

maakt beeldanalyse vatbaarder voor onnauwkeurigheden en verhoogt daarmee het risico

op misdiagnoses. Dit proefschrift bevat een uitgebreide evaluatie van de integratie van

deep learning (DL) met multitask learning (MTL) en introduceert een geïntegreerd deep
multitask learning (DMTL) raamwerk voor het versnellen van MRI-acquisitie en -analyse.

Hoofdstuk 2 introduceerde de Cascades of Independently Recurrent Inference Machines
(CIRIM), een nieuw DL-reconstructienetwerk dat de balans vindt tussen netwerkcompexi-

teit en robuustheid. Door middel van cascades zorgt de CIRIM voor verbeterde mogelijk-

heden voor het verwijderen van aliasing en ruis, terwijl stabiele gradiëntberekeningen

behouden blijven in het diepe Recurrent Neural Network (RNN). Uitgebreide validatie toonde
de superioriteit van CIRIM aan ten opzichte van zeven andere state-of-the-art DL-methoden

en de klinische reconstructiemethode, Compressed Sensing (CS). Deze validatie omvatte

verschillende MRI-datasets, waaronder 𝑇1-gewogen, 𝑇2-gewogen, en FLAIR hersen- en

kniescans met verschillende manieren van onderbemonsteren bij een variërend bereik aan

versnellingsfactoren. De consistente resultaten van CIRIM bij het reconstrueren van data

van patiënten met multiple sclerose (MS) laesies, die niet in de trainingsdataset waren

opgenomen, onderstreept de potentie voor klinische implementatie.

Bovendien werd in Hoofdstuk 2 de handhaving van dataconsistentie in natuurkun-

dig-geïnformeerde DL-reconstructienetwerken beoordeeld. Er werd aangetoond dat de

impliciete handhaving van dataconsistentie door CIRIM, via een iteratief netwerk, voor-

deliger was dan expliciete handhaving via een ontworpen term, wat gebruikelijk is in

andere natuurkundig-geïnformeerde DL-reconstructienetwerken, zoals het Variational Net-
work. Deze bevinding leverde waardevolle inzichten op voor het ontwerpen van optimale

MRI-reconstructiestrategieën in de volgende hoofdstukken.

Hoofdstuk 3 beschreef onze deelname aan de Multi-Coil MRI Reconstruction Chal-
lenge (MC-MRI), een wereldwijd samenwerkingsinitiatief, waarin uitgebreid werd geëva-

lueerd hoe generaliseerbaar en robuust DL-gebaseerde reconstructienetwerken zijn. De

experimenten met hoge-resolutie 3D 𝑇1-gewogen hersen-MRI-scans met 12-kanaals- en

32-kanaalsspoelen benadrukten de superioriteit van natuurkundig-geïnformeerde netwer-

ken met cascades en iteratieve architecturen. Ook werd duidelijk hoe netwerken wel en

niet toepasbaar waren in data met meer of minder spoelelementen. Modellen getraind

op 12-kanaals en getest op 32-kanaals configuraties lieten goede prestaties zien in kwan-

titatieve metrieken, zoals de Structural Similarity Index, Peak Signal-to-Noise Ratio, en
Visual Information Fidelity. Toch onthulde visuele inspectie substantiële artefacten die

de klinische toepasbaarheid beïnvloeden. Deze observatie benadrukte de fundamentele
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uitdaging van mogelijke discrepantie tussen optimalisatiecriteria en klinisch relevante

beeldkwaliteitsmetrieken.

Hoofdstuk 4 evalueerde de toepassing van de CIRIM in een realistische klinische

omgeving. Het model werd vergeleken met CS bij het reconstrueren van sterk versnelde

(twaalfvoudige) 3D FLAIR MRI-scans van patiënten met neurologische aandoeningen,

zoals beroerte, MS, tumoren en de ziekte van Menière. De reconstructiekwaliteit werd

kwantitatief beoordeeld en subjectief gescoord door drie expert-neuroradiologen op het

gebied van artefacten, scherpte, anatomische duidelijkheid, diagnostische zekerheid en

contrast. Ondanks kleine variaties in expertbeoordelingen, liet de CIRIM statistisch signifi-

cante verbeteringen zien, waaronder verbeterde artefactreductie, superieure anatomische

zichtbaarheid, en een substantiële toename in SNR, met slechts een beperkte reductie in

contrastratio. Met name de vijfvoudige toename in reconstructiesnelheid van CIRIM ten

opzichte van CS onderstreepte de potentie voor het significant versnellen van scantijden.

Hoofdstuk 5 introduceerde een geavanceerd MTL-raamwerk voor gelijktijdige recon-

structie en segmentatie (MTLRS) van versnelde MRI-data, met een specifieke focus op her-

senlaesies bij MS-patiënten. MTLRS maakte gebruik van een unieke cascade-architectuur,

waarin het CIRIM en een segmentatienetwerk informatie deelden via hidden states. Deze
aanpak maakte het mogelijk om gedeelde kenmerken te benutten als inductieve bias om de

algehele prestaties te verbeteren. Door middel van vergelijkende tests met conventionele

vooraf getrainde, sequentiële, end-to-end en gezamenlijke methodologieën, werd aange-

toond dat MTLRS beter presteerde dan alle andere methoden in zowel de reconstructie- als

de segmentatietaak. Bovendien werd een significante en sterke correlatie gevonden tussen

de prestaties van de twee taken, wat wijst op de voordelen van het gezamenlijk aanpakken

van onderling gerelateerde taken.

Hoofdstuk 6 presenteerde de Advanced Toolbox for Multitask Medical Imaging Consis-
tency (ATOMMIC), een open-source toolbox ontworpen om AI-toepassingen in versnelde

MRI-reconstructie en -analyse te stroomlijnen. Binnen ATOMMIC werden vijfentwintig

DL-modellen geëvalueerd voor de taken van reconstructie, segmentatie, kwantitatieve

parameterschatting en MTL voor gezamenlijke reconstructie en segmentatie, over acht

diverse openbaar beschikbare datasets. ATOMMIC toonde veelzijdigheid in de integratie

van meerdere taken met behoud van robuuste consistentie over data, taken en workflows.

Concluderend heeft het onderzoek gepresenteerd in dit proefschrift bijgedragen aan

het veld van versnelde MRI-reconstructie en -analyse. De ontwikkeling van het CIRIM

toonde significante verbeteringen in reconstructietijd met behoud van hoge diagnostische

beeldkwaliteit. De daaropvolgende introductie van het MTLRS-raamwerk en de validatie

hiervan in gelijktijdige reconstructie- en segmentatietaken onthulde de synergetische

voordelen van MTL in medische beeldvorming. De ontwikkeling en uitgebreide validatie

van de ATOMMIC-toolbox vertegenwoordigde een stap richting het standaardiseren van AI-

toepassingen in medische beeldvorming. Deze bijdragen conceptualiseerden gezamenlijk

het DMTL-raamwerk en de potentie hiervan voor het versnellen van MR-beeldvorming.
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