

000
001 **SEARCHFIRESAFETY:**
002 **A RETRIEVAL-AUGMENTED LEGAL QA DATASET**
003 **FOR FIRE SAFETY**
004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

009
010 **ABSTRACT**
011

012 Retrieval-augmented generation (RAG) promises to bridge complex legal statutes and
013 public understanding, yet hallucination remains a critical barrier in real-world use. Because
014 statutes evolve and provisions frequently cross-reference, maintaining *temporal currency*
015 and *citation awareness* is essential, favoring up-to-date sources over static parametric
016 memory. To study these issues, we focus on the under-examined domain of South Korean
017 fire safety regulation—a complex web of fragmented legislation, dense cross-references,
018 and vague decrees. We introduce SEARCHFIRESAFETY, the first RAG-oriented question-
019 answering (QA) resource for this domain. It includes: (i) 941 real-world, open-ended QA
020 pairs from public inquiries (2023–2025); (ii) a corpus of 4,437 legal documents from
021 117 statutes with a citation graph; and (iii) synthetic single-hop (Yes/No) and multi-hop
022 (MCQA) benchmarks targeting legal reasoning and uncertainty.

023 Experiments with five Korean-capable LLMs show that: (1) multilingual dense retrievers
024 excel due to the domain’s mix of Korean, English loanwords, and Sino-Korean
025 terms (i.e., Chinese characters); (2) grounding LLMs with SEARCHFIRESAFETY sub-
026 stantially improves factual accuracy; but (3) multi-hop reasoning still fails to resolve
027 conflicting provisions or recognize informational gaps. **Additionally, we find that (4) domain**
028 **adaptation via continued pre-training improves accuracy but significantly de-**
029 **grades uncertainty awareness when evidence is insufficient.** Our results affirm that RAG is
030 necessary but not yet sufficient for legal QA, and we offer SEARCHFIRESAFETY as
031 a rigorous testbed to drive progress in Legal AI. All data resources are available at:
032 <https://anonymous.4open.science/r/SearchFireSafety-C2AB/>.

033
034 **1 INTRODUCTION**
035

036 Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) helps bridge the gap between complex technical
037 information and public understanding. Recent work demonstrates its promise in medicine (Zakka et al., 2024),
038 climate science (Biswas et al., 2025), and finance (Iaroshev et al., 2024; Choi et al., 2025). However, research
039 on RAG has not fully resolved issues of inconsistency and hallucination, often triggered by noisy or irrelevant
040 retrieved documents (Shuster et al., 2021; Chen et al., 2024b). The risk of hallucination is a critical bottleneck
041 in safety-sensitive domains such as law and regulation, where potential impact is high and the risks require
042 careful mitigation (Magesh et al., 2024).

043 In this work, we study RAG in the under-examined but socially important domain of South Korean fire-safety
044 law. Fire-safety compliance directly affects everyday stakeholders—building owners, school administrators,
045 small businesses, and local officials—who routinely consult regulations to determine eligibility, required
046 installations, and responsibility. However, the legal framework governing fire safety is complex and frag-

Figure 1: Overview of the proposed framework and datasets. (1) Collection of real-world QA pairs from the Korean National Fire Agency petition portal. (2) Construction of a temporally current legal corpus with human-in-the-loop remediation of non-text artifacts and a hyperlink-induced citation graph. (3) Generation of synthetic QA to evaluate hallucination in the legal domain.

mented, encompassing the *Building Act*, the *Framework Act on Fire Services*, the *Act on the Installation and Management of Fire-Fighting Systems*, and the *Special Act on the Safety Control of Publicly Used Establishments*, among others (Kodur et al., 2020; Song, 2023).

South Korean fire-safety law also poses distinctive challenges for RAG evaluation beyond language alone. The application of RAG in the legal domain presents challenges that are significantly more pronounced than in general-purpose settings due to two primary factors. First, retrieval is hindered by a significant semantic gap between informal user queries and formal legal terminology, which poses a particular problem for sparse retrieval methods. Second, legal documents are interconnected through a dense web of statutory cross-references and hierarchical delegations via presidential decrees and administrative rules, many of which are vague or overly broad (Song, 2023; Cho & Kim, 2024). For instance, Article 7 of the Enforcement Decree of the Fire-Fighting Act references over a dozen statutes, including the *Building Act*, *Child Welfare Act*, and *Mental Health Act*, creating a dense and intricate citation graph that is difficult for non-experts to navigate.

To study these challenges, we introduce **SEARCHFIRESAFETY**, the first question answering (QA) dataset tailored to Korea's fire safety legal domain. We collect 941 real-world, open-ended QA pairs and ground them in a corpus of 4,437 legal documents. We also construct a legal citation graph to map interconnections within the corpus. Based on this graph, we generate synthetic legal reasoning questions that mirror the domain's complexity and robustly evaluate agent performance, especially under retrieval failures.

Using **SEARCHFIRESAFETY**, we evaluate five Korean-capable Large Language Models (LLMs) across diverse RAG strategies. Our experiments demonstrate that grounding models in our structured dataset substantially improves factuality and alignment. Furthermore, our inclusion of synthetic datasets enables an evaluation of model performance under retrieval failure, specifically testing the models' reasoning capabilities and uncertainty awareness. **We also explore domain adaptation via continued pretraining (CPT), revealing a critical trade-off: while CPT enhances accuracy with complete information, it significantly impairs a model's ability to abstain when information is missing.**

In summary, our main contributions are as follows:

- We introduce **SEARCHFIRESAFETY**, the first dedicated QA benchmark for the South Korean fire-safety legal domain. By constructing a legal citation graph, we also generate synthetic multi-hop reasoning questions to rigorously test model performance in complex regulatory environments.
- We conduct a comprehensive evaluation of retrieval-augmented generation strategies, revealing a critical robustness gap in current LLMs.
- We identify a significant trade-off between domain adaptation and safety. Our experiments with continued pretraining show that while domain-specific training improves standard accuracy, it degrades the models' uncertainty awareness.

094
095
096 Table 1: The statistics of the SEARCHFIRESAFETY dataset.
097
098
099
100
101
102
103
104
105
106

Category	Statistic	Number
Open-Ended QA	Total pairs	941
	Pairs with mapped documents	702
	Avg. question (answer) length	97.14 (267.39)
	Avg. relevant documents per question (excluding zeros)	1.13 (1.52)
Legal Documents	Total documents	4437
	Avg. length in each document	478.84
	Avg. words in each document	103.37
	Avg. relevant documents (excluding zeros)	1.84 (4.71)
Single-Hop QA (Yes/No)	Total pairs	9238
	Multi-Hop QA (MCQ)	4007

107
108
109

2 REAL-WORLD OPEN-ENDED QA

110111 The primary goal of this work is to construct a question answering (QA) dataset grounded in real-world
112 scenarios derived from fire safety legislation and requiring legal reasoning.113 **Data Collection** We crawled the official government petition portal of the Korean National Fire Agency
114 (NFA) to gather QA records published between February 23, 2023, and April 30, 2025.¹ Each record contains
115 a citizen inquiry and the corresponding official response from an NFA officer; we treat the official response as
116 the **gold-standard** answer. From these records, we parsed 941 single-row QA instances.117 NFA officers cite relevant legal documents explicitly in their responses. To link each question to its supporting
118 legal documents, we first employed BM25 (Robertson & Zaragoza, 2009) to generate candidate pairings
119 between the legal sources referenced in NFA answers and the titles in our compiled legal corpus. Subsequently,
120 all authors independently reviewed each QA instance alongside its candidate statutes in a side-by-side viewer
121 to verify and finalize these mappings.122 **Statistics** Table 1 (upper block) summarizes the dataset: it contains 941 Korean QA pairs with average
123 question and answer lengths of 97.14 and 267.39 characters, respectively. Among these, 702 questions are
124 linked to at least one supporting document, yielding an average of 1.13 linked documents per question (1.52
125 when excluding unmapped cases).126 **Data Analysis** An illustrative QA pair appears in the top block of Table 2. The real-world, open-ended
127 QA subset has two properties that make retrieval challenging. First, because the questions are posed by
128 non-experts, there is a persistent gap between colloquial phrasing and formal legal terminology. This linguistic
129 mismatch complicates retrieval—especially sparse methods—since everyday expressions (e.g., “*outdoor fire*
130 *equipment*”) may refer to narrowly defined statutory terms (e.g., *outdoor hydrant*), undermining exact lexical
131 matching and even semantic linkage.132 Second, the questions are distributed across four broad categories (see Appendix B). Notably, 15.7% of
133 questions fall into the Interpretation of Regulations category. These are queries that directly reference legal
134 statutes by name or number, such as, “Does Article 19 of the Building Act not apply?” The prevalence of these
135 explicit citations presents an opportunity to improve retrieval. To capitalize on this, we prepend structured
136 metadata—specifically the law name and article identifier—to each legal document, allowing retrievers to
137 better match these precise references.140
141 ¹<https://www.epeople.go.kr/>

141 Table 2: An example from SEARCHFIRESAFETY. Comprising a real-world inquiry and the official response
 142 issued by the Korean National Fire Agency (NFA). The answer is grounded in a specific legal provision,
 143 linked via the corresponding Matched Document ID (red). Each matched document may also reference
 144 Related Document IDs (blue), indicating cross-referenced provisions.

145 **Question ID: 49**

146 **Question:** I would like to inquire whether a removable safety railing installed in a school, with an installation
 147 height exceeding 1.2 meters, can still be recognized as an opening.

148 **Answer:** According to [Article 2, Subparagraph 1, Item \(b\) of the Enforcement Decree of the Act on the](#)
 149 [Installation and Management of Fire-Fighting Systems](#), the height of an opening is defined as the vertical
 150 distance from the floor to the bottom of the opening, and it shall be no more than 1.2 meters. Therefore, if the
 151 height of a removable safety railing exceeds 1.2 meters, the area shall be regarded as a windowless floor.

152 **Matched Document ID: 3057**

153 **Matched Document:** Article 2 (Definitions) The terms used in this Decree are defined as follows:

154 1. A “windowless floor” means a ground floor with an opening meeting all the following conditions (referring
 155 to window and entrance, created for lighting, ventilation, air circulation, entrance, etc., other similar things;
 156 hereinafter the same shall apply) whose aggregate floor area does not exceed 1/30 of the total area (referring
 157 to the area calculated pursuant to [Article 119 \(1\) 3 of the Enforcement Decree of the Building Act](#); hereinafter
 158 the same shall apply):

159 a. It shall be big enough for a circle with at least 50 centimeters in diameter can pass through;

160 b. **It shall be at least 1.2 meters high from the surface of the floor to the bottom of its opening;** (...)

161 **Related Document ID: 2027**

162 **Related Document:** [Article 119 \(Methods of Calculating Area\)](#)

163 (1) Pursuant to Article 84 of the Act, the area, height, and number of floors of a building shall be calculated
 164 as follows: (...)

165 3. Floor area means the area of the horizontal projection plane of each floor of a building or part of the
 166 building enclosed by the centerlines of walls, columns, or other similar partitions; (...)

167

3 LEGAL DOCUMENT CONSTRUCTION

168 We aim to build and release a temporally current corpus of Korean statutes and subordinate regulations.
 169 Because these legal documents evolve through frequent amendments, an automated pipeline capable of
 170 continuous updates is essential. To this end, we implemented a crawler for the Korea National Law Information
 171 Center² to construct a corpus reflecting all laws and regulations in force as of April 30, 2025.

172 **Citation Graph Construction via Hyperlinks** As illustrated in Table 2, a single parent instrument rarely
 173 contains all relevant information; instead, it delegates to subordinate statutes, enforcement rules, or notices
 174 via links to *related documents*. To capture inter-document dependencies that support multi-hop retrieval, we
 175 parse [tags](#) in statutory HTML pages and treat each intra-corpus hyperlink to another statute or regulation
 176 as a directed edge. Post-processing removes malformed or external links and normalizes anchors to canonical
 177 provision identifiers.

178 **Human-in-the-loop Curation** While assembling the corpus, we encountered two significant issues that
 179 impede machine readability. First, detailed provisions like annexes are often provided as standalone PDF
 180 files. Second, essential artifacts within the primary HTML, such as tables and mathematical formulas, are
 181 frequently embedded as images rather than machine-readable text. To address this, we built an automated
 182 ingestion pipeline augmented with a human-in-the-loop (HITL) verification stage:

183 ²<https://www.law.go.kr/>

188 • PDF Extraction: For supplementary PDF documents, we manually downloaded the files and then used
 189 GPT-4o together with `pdfplumber`³ to extract text.
 190 • Image Transcription: For the 2% of provisions containing content embedded as images, we employed
 191 GPT-4.1-mini to transcribe visual elements into structured text.

192 Both outputs were subsequently audited by human annotators, who corrected transcription errors and ensured
 193 fidelity to the source material.
 194

195 **Chunking Strategy and Statistics** To preserve legal semantics during indexing, we align chunks with
 196 native legal units. For *statutes*, we chunk at the Article level; for *administrative rules*, we use second-level
 197 decimal headings (e.g., 1.1); and for *annex tables* (“*byeolpyo*”), we chunk at the item (“*ho*”) level. This
 198 unit-aware segmentation minimizes cross-provision fragmentation while supporting fine-grained retrieval. We
 199 also prepend metadata—specifically the law name and article identifier—to each chunked document.

200 The final corpus comprises 4,437 legal documents—spanning statutes, enforcement decrees/rules, and
 201 administrative notices. Documents contain, on average, 478.84 Korean characters (approximately 103.37
 202 words). Each document links to an average of 1.84 other documents; excluding isolates, the average rises to
 203 4.71, indicating substantial inter-document connectivity.

204 **Corpus Coverage** Our corpus construction is guided by two key design principles: *practical relevance*
 205 and *structural connectivity*. First, by curating sources cited frequently in NFA responses, we concentrate
 206 on “active legislation”—provisions that actually trigger inquiries in real-world scenarios. This approach
 207 avoids diluting the benchmark with dormant or rarely applied laws, ensuring the corpus reflects the *working*
 208 *knowledge* required for genuine legal consultation. Second, rather than treating these statutes as isolated
 209 texts, we explicitly trace and preserve their citation links to form a cohesive legal graph. Unlike approaches
 210 that stochastically sample unrelated laws, our method retains the valid legislative dependencies essential for
 211 interpretation. This combination of high-utility content and preserved structure allows us to model realistic
 212 legal contexts, serving as the necessary foundation for the citation-graph-based synthetic data generation
 213 described in the subsequent section.

214 4 SYNTHETIC QA CONSTRUCTION AND HALLUCINATION

215 While the open-ended tasks described in the previous section provide realistic data points, they present
 216 significant challenges for consistent quantitative evaluation. To address this limitation and rigorously assess
 217 legal reasoning capabilities, we construct a synthetic evaluation set designed to explicitly probe model
 218 hallucination. Hallucination remains a critical barrier to practical deployment in legal domains where trust-
 219 worthiness is paramount (Magesh et al., 2024). To quantify this failure mode, we formulate our benchmark as
 220 a multiple-choice question (MCQ) task, encompassing both standard queries and yes/no questions.

221 We constructed this dataset as a multi-hop question answering task rooted in the citation graph topology
 222 introduced in Section 3. Instead of sampling arbitrary documents, we generated questions from pairs of
 223 documents (Document A and Document B) explicitly linked within the graph. The fundamental design
 224 principle is strict conditional dependency: questions are constructed to be unanswerable from the primary
 225 document (Document A) in isolation, becoming solvable only when synthesized with the referenced document
 226 (Document B). An illustrative example of such an MCQ is presented in Table 3.

227 Accordingly, each item consists of a naturally phrased question without explicit citation markers, accompanied
 228 by five options: one correct answer derivable only from the combination of Documents A and B, one
 229 uncertainty option (e.g., “Cannot be determined”), and three plausible distractors. This structure allows us to
 230 effectively detect whether a model hallucinates an answer based on insufficient context.

231
 232
 233
 234 ³<https://pypi.org/project/pdfplumber/>

235 Table 3: Example synthetic multiple-choice QA constructed from Document 3057 and Document 2027 in
 236 Table 2, illustrating that the correct choice is identifiable only under full context.
 237

238 **Question:** When checking whether the total opening area stays within 1/30 of the floor area, which definition
 239 of *floor area* should be used?

240 **Option 1:** The gross area measured by the outermost exterior dimensions of the building.

241 **Option 2:** The horizontal projected area of each floor enclosed by the *centerlines of walls, columns, or similar*
 242 *partitions*.

243 **Option 3:** The usable interior area excluding all walls, columns, and service shafts.

244 **Option 4:** The sum of areas of all rooms shown on the interior finish plan.

245 **Option 5:** Cannot be answered with the given information.

246 **Correct Answer (Full Context):** Option 2

247 **Correct Answer (Partial Context):** Option 5

249 **Rationale:** The area-calculation rule needed to interpret “floor area” is present only in the related document.
 250 With full context, the correct definition is the centerline-based horizontal projection (Option 2). With partial
 251 context, the definition is missing, so the question is not answerable (Option 5).

252
 253 Using GPT-4o (OpenAI, 2024), we synthetically generated an initial set of 5,091 MCQ pairs. To ensure data
 254 quality, human annotators conducted an exhaustive review, resulting in a final validated set of 4,007 questions.
 255 Items were discarded based on three primary criteria: a small subset (3 items) contained malformed answer
 256 sets; a modest number (55 items) remained unanswerable even with both documents; and the majority of
 257 excluded items (1,076 items) failed the dependency criterion, as they were answerable using Document A
 258 alone despite being designed for multi-hop reasoning.

260 5 EXPERIMENTS

261 5.1 EXPERIMENTAL SETUP

264 **Models** We evaluate five publicly available LLMs with Korean capability. These include Qwen3-8B (Team,
 265 2025); Exaone3.5-2.4B and 7.8B (LG AI Research, 2024); HyperClova-1.5B; and GPT-4o (OpenAI, 2024).
 266 All open-weight models are run in FP16 on a single RTX-A6000 (48GB), whereas GPT-4o is accessed
 267 through the OpenAI API. For Qwen3-8B, we utilized a reasoning mode.

268 **Evaluation Protocols** We evaluate the Multi-Hop QA dataset under three complementary settings, each
 269 isolating a different capability of the RAG pipeline:

- 271 **1. Zero-Shot (no context).** The model is given only the question, without any supporting documents. This
 272 setting measures parametric knowledge.
- 273 **2. Full Context (gold context; Doc A+B).** The model is provided with the full gold context. For instance,
 274 in the MCQ task, this encompasses both Document A and Document B. Since each instance is designed
 275 such that the answer can only be derived by synthesizing information from both documents, this setting
 276 evaluates multi-hop reasoning under ideal evidence conditions.
- 277 **3. Partial Context (Doc A only).** The model receives Document A together with the question, while
 278 Document B is withheld. The prompt explicitly includes an additional option, “*Cannot be determined*
 279 with the given information”, and instructs the model to select it when evidence is insufficient. Because
 280 Partial Context examples are unanswerable by design, this setting evaluates both (i) reasoning over
 281 incomplete context and (ii) uncertainty awareness—i.e., the ability to abstain instead of hallucinating
 (see Table 7).

282 Table 4: Generation performance (%) on real-world open-ended QA across four retrieval strategies: **Zero-Shot**
 283 (no context) and **Full Context** (gold context). **Bold** = best within each model.

Model	Strategy	ROUGE-1	ROUGE-L	BERTSCORE	LLM-AS-A-JUDGE	WIN-RATE
HyperCLOVA-1.5B	Zero-Shot	22.57	20.13	62.85	6.84	6.13
	Full Context	28.47	25.68	64.84	26.64	8.97
Exaone3.5-2.4B	Zero-Shot	31.09	27.13	55.26	6.55	9.54
	Full Context	41.87	37.09	60.08	13.96	11.97
Exaone3.5-7.8B	Zero-Shot	28.64	24.68	55.59	13.96	15.10
	Full Context	42.84	38.50	61.62	47.29	13.53
Qwen3-8B	Zero-Shot	27.24	23.29	55.86	11.11	11.54
	Full Context	43.49	38.96	59.70	17.95	17.38
GPT-4o	Zero-Shot	20.91	18.61	59.74	24.50	15.95
	Full Context	28.60	26.49	66.30	58.97	17.52

296
 297
 298 **Evaluation Metrics** To evaluate open-ended generation, we report a combination of reference-based and
 299 model-based metrics. First, we compute lexical- and embedding-level overlap with the gold answer using
 300 ROUGE-1/L (Lin, 2004) and BERTSCORE (Zhang et al., 2020). While informative, these metrics may not
 301 fully capture semantic correctness, especially when multiple valid phrasings exist. For multiple-choice tasks
 302 (Multi-hop MCQA and Single-hop Yes/No QA), we report top-1 ACCURACY (%).

303 To assess factual and semantic alignment more directly, we adopt an LLM-AS-A-JUDGE protocol (Liu et al.,
 304 2023). Specifically, we use GPT-4o OpenAI (2024) as the evaluator. For each instance, the judge is provided
 305 with the question, the gold answer, and the model’s response, and is instructed to output a binary decision
 306 indicating whether the response is correct with respect to the gold answer. The exact evaluation prompt
 307 and decision rubric are fixed across all experiments and are provided in Appendix I. In addition, we report
 308 WIN-RATE in a pairwise comparison setting (Wang et al., 2024; Wolfe, 2023), where GPT-4o selects the
 309 better of two answers: the model output versus the gold answer. Win-Rate is defined as the proportion of
 310 cases in which the model output is preferred by the judge.

312 5.2 REAL-WORLD OPEN-ENDED QA RESULTS

313 **Generation Performance** Table 4 reports generation results on the real-world open-ended QA. Because
 314 ROUGE-1/L and BERTSCORE primarily reflect lexical/semantic similarity to human references rather than
 315 factual correctness, we treat them as auxiliary indicators. Even so, conditioning on legal context consistently
 316 increases similarity to human answers compared to answering directly. For example, for Exaone3.5-7.8B,
 317 moving from *Zero-Shot* to *Full Context* raises ROUGE-L from 27.13 to 38.50 and BERTSCORE from 55.59
 318 to 61.62.

319 Despite achieving high lexical similarity to human references, models like Exaone3.5-2.4B and Qwen3-8B
 320 receive low LLM-AS-A-JUDGE scores (13.96 and 17.95, respectively). This discrepancy indicates that their
 321 outputs, while superficially plausible, often contain conclusions that diverge markedly from expert legal
 322 interpretations. Even with *Full Context* documents, state-of-the-art GPT-4o falls short of domain-expert gold
 323 answers by either metric: LLM-AS-A-JUDGE (58.97%) and WIN-RATE (17.52%).

324 **LLM Judge Reliability** In Table 5, we further assess the reliability of LLM-AS-A-JUDGE by conducting a
 325 human evaluation of GPT-4o’s answers. Overall agreement between the LLM judge and human raters is high
 326 at 88.30% (TP+TN). Nevertheless, false negatives account for 10.80% of cases, which suggests that the LLM
 327 judge is more stringent than human annotators. For example, it may label an answer as *incorrect* when it is
 328

329 Table 5: Confusion Matrix between LLM-AS-A-JUDGE predictions and HUMAN ANNOTATION. TP=61.20%,
 330 FP=0.90%, FN=10.80%, TN=27.10%.

		HUMAN ANNOTATION	
		LLM-AS-A-JUDGE	Correct
Correct	Correct	61.20	0.90
	Incorrect	10.80	27.10

337
 338 factually consistent yet underspecified, whereas a human rater would deem it *correct* (refer to Appendix K for
 339 further analysis).⁴
 340

341 **Case Study: Hallucination in Legal Reasoning** The most revealing insight comes from the true negatives
 342 (i.e., TN=27.10%). A substantial portion of these cases highlights the inherent difficulty of the legal reasoning
 343 task itself, a challenge that persists even with full access to relevant documents. A common failure mode
 344 is the model’s inability to connect colloquial user phrasing with precise statutory terminology, leading it to
 345 invert conclusions about legal responsibility.

346 For example, consider the query: “Must a *tamper switch* be installed on the shutoff valve of the indoor
 347 fire-hydrant water-supply pipe?” The applicable regulation states that “the shutoff valve . . . must provide
 348 an open/close indication.” Models often fail to recognize that a *tamper switch* is the specific device that
 349 provides this indication. This leads them to the incorrect conclusion that “Although the regulation requires
 350 an open/close indication, there is no explicit rule requiring a *tamper switch*; therefore, installation is not
 351 mandatory.”

352 5.3 SYNTHETIC MULTIPLE CHOICE QA RESULTS

353 **Parametric vs. External Knowledge** Table 6 compares performance between the *Zero-Shot* and *Full*
 354 *Context* setting. The *Zero-Shot* setting relies solely on a model’s internal (parametric) knowledge, whereas
 355 the *Full Context* setting provides all required information—Document A plus Document B—to answer each
 356 question. With complete information, most models achieve substantial gains over their *Zero-Shot* baselines.
 357 Notably, Exaone3.5-7.8B (77.31%) and Qwen3-8B (74.91%) slightly outperform GPT-4o (73.26%) under
 358 *Full Context*. This pattern suggests that, while GPT-4o is strong at recognizing when information is missing,
 359 other models can be highly effective at synthesizing evidence when the relevant context is fully provided.
 360

361 To understand how context changes model behavior, we analyze instances where a model’s prediction
 362 flips between settings. The *Correction Rate*—the proportion of *Zero-Shot* errors corrected under *Full Context*—
 363 highlights the benefit of retrieval: most models correctly revise between 53.87% and 64.66% of their
 364 initial mistakes. However, even accurate context can sometimes harm performance. We observe *context-
 365 induced errors*, quantified as the *Introduced Error Rate* (IER), where a previously correct *Zero-Shot* answer
 366 becomes incorrect after conditioning on the provided documents. IER is highest for GPT-4o at 18.68% and
 367 is also notable for Exaone3.5-7.8B at 12.05%. These effects align with prior observations that LLMs can
 368 struggle to blend contextual knowledge with parametric knowledge (Xu et al., 2024).

369 **Uncertainty Awareness** The *Partial Context* setting requires models to recognize that the provided doc-
 370 uments are insufficient to determine the answer and to abstain accordingly. However, LLMs often lack

371
 372 ⁴To validate this comparison, two authors independently rated the model outputs. Because each question was paired
 373 with the NFA’s official answer (i.e., the gold standard) and the relevant legal documents were provided explicitly, reliable
 374 evaluation was feasible even without specialized legal expertise. Accordingly, we obtained a high Cohen’s Kappa score
 375 ($\kappa = 0.88$), indicating strong inter-rater agreement. Any remaining disagreements were resolved through discussion until
 a consensus was reached.

376 Table 6: Accuracy (%) on the Multi-Hop QA dataset for Zero-Shot and Full Context scenarios. **Zero-**
 377 **Shot** evaluates parametric knowledge, while **Full Context** (Doc A+B) evaluates reasoning with complete
 378 information. We also report accuracy changes conditioned on the initial Zero-Shot prediction.

Model	Zero-Shot	Full Context	Correction Rate	Introduced Error Rate
HyperCLOVA-1.5B	53.19	69.16	53.87	17.39
Exaone3.5-2.4B	55.34	74.43	58.59	12.78
Exaone3.5-7.8B	55.39	77.31	64.09	12.05
Qwen3-1.7B	31.54	45.56	36.98	35.82
Qwen3-8B	53.96	74.91	64.66	16.35
GPT-4o	59.94	73.26	61.20	18.68

381
 382 Table 7: Accuracy (%) on the Partial Context in
 383 Multi-Hop QA.

Model	Partial Context
HyperCLOVA-1.5B	8.82
Exaone3.5-2.4B	45.86
Exaone3.5-7.8B	53.69
Qwen3-1.7B	71.98
Qwen3-8B	51.66
GPT-4o	72.73

384 Table 8: Accuracy (%) on the Single-hop QA dataset.

Model	Zero-Shot	Full Context
HyperCLOVA-1.5B	39.67	91.65
Exaone3.5-2.4B	76.93	94.17
Exaone3.5-7.8B	77.02	96.50
Qwen3-8B	53.03	90.15
GPT-4o	79.60	96.29

399 calibrated awareness of what they do not know and tend to answer indiscriminately (Zhao et al., 2024).
 400 In our experiments, GPT-4o exhibits the strongest uncertainty awareness, achieving 72.73% accuracy in
 401 detecting information insufficiency (Table 7). By contrast, smaller models—most notably HyperClova-1.5B
 402 at 8.82%—struggle and frequently attempt to answer despite incomplete evidence. Qwen3-8B (51.66%) and
 403 Exaone variants (45.86%, 53.69%) also perform poorly. These results underscore how difficult it is, in the
 404 legal domain, for models to identify noisy or incomplete support and to refrain from overconfident generation.

405 **Single-Hop QA Results** Table 8 demonstrates that providing the relevant legal document significantly
 406 improves accuracy across all models. GPT-4o achieves the highest Zero-Shot performance (79.60%), while
 407 Exaone-7.8b reaches the top accuracy with Oracle RAG (96.50%). The most substantial improvement is
 408 observed in HyperClova-1.5B, which jumps from 39.67% to 91.65%. This highlights that while the model
 409 may lack extensive internalized legal knowledge, it possesses strong reading comprehension capabilities
 410 when grounded in the correct statute.

412 **Training on a Legal-Domain Corpus** To study domain adaptation effects, we perform continued pretraining
 413 (CPT) for Qwen3-8B using a legal-domain corpus. The training data combines our collected fire-safety statutes
 414 with additional Korean legal resources from AI Hub⁵ (criminal law, civil law, and intellectual property law),
 415 totaling 0.83B tokens.

416 Table 9 compares the base model to its CPT-adapted counterpart. CPT improves standard accuracy, increasing
 417 Zero-Shot by +4.93%p and Full Context by +3.77%p, bringing performance close to GPT-4o under Full
 418 Context. However, CPT substantially reduces Partial Context accuracy from 51.66% to 38.94% (-12.72%p).
 419 Since Partial Context questions are unanswerable by design, this drop indicates weaker uncertainty awareness
 420 and a higher tendency to produce answers under insufficient evidence. These results highlight a non-trivial

421
 422 ⁵<https://www.aihub.or.kr/>

423
424 Table 9: Comparison between Qwen3-8B and Qwen3-8B + CPT (continued pre-training) on Multi-Hop QA
425 under Zero-Shot, Partial Context, and Full Context settings.
426
427

Model	Zero-Shot	Partial Context	Full Context
Qwen3-8B	53.96	51.66	74.91
Qwen3-8B + CPT	58.89 (+4.93)	38.94 (-12.72)	78.68 (+3.77)

431
432 trade-off between accuracy under complete evidence and robustness to missing evidence, reinforcing the value
433 of **SEARCHFIRESAFETY** in revealing such failure modes beyond conventional single-setting QA evaluation.
434

435 5.4 SUMMARY OF FINDINGS

436 Across both real-world open-ended QA and synthetic multi-hop MCQA, our results highlight three consistent
437 patterns. First, providing relevant legal documents substantially improves answer quality, confirming that
438 external grounding is indispensable for legal QA. Second, performance under Full Context can be strong
439 even for mid-sized models, but this strength does not transfer to Partial Context settings, where many models
440 fail to abstain and instead hallucinate. Third, domain-adaptive training via continued pretraining improves
441 standard accuracy yet can reduce uncertainty awareness, indicating that progress measured by conventional
442 QA metrics may conceal important safety regressions. Together, these findings validate the central motivation
443 of **SEARCHFIRESAFETY**: legal RAG systems must be evaluated not only for correctness under complete
444 evidence but also for robustness and calibrated abstention under missing or noisy evidence.
445

446 6 RELATED WORK

447 The NLP community has shown growing interest in the legal domain (Ariai & Demartini, 2024). Previous
448 studies, such as LexGLUE (Chalkidis et al., 2022; Niklaus et al., 2023), have demonstrated the applicability
449 of language models to a range of legal tasks, including judgment prediction and question answering. With
450 the rapid advancement of LLMs, legal retrieval datasets have also emerged across multiple jurisdictions
451 and languages (Louis & Spanakis, 2022; Zhong et al., 2020; Liu et al., 2024; Hou et al., 2025; Pipitone
452 & Alami, 2024; Gao et al., 2024). For instance, CLERC (Hou et al., 2025) compiles U.S. federal case
453 documents and links citation data to support reference retrieval and long-form answer generation. **Recent**
454 **efforts such as Zheng et al. (2025) further demonstrate the growing interest in developing high-quality legal**
455 **RAG datasets.** Non-English datasets include the French statutory retrieval benchmark BSARD (Louis &
456 Spanakis, 2022) and Chinese legal retrieval datasets such as LeDQA (Liu et al., 2024) and JEC-QA (Zhong
457 et al., 2020). In the Korean legal domain, LEGAR-BENCH (Kim et al., 2025) focuses on legal case retrieval,
458 while LBOX-Open (Hwang et al., 2022) provides multi-task annotations—such as classification, judgment
459 prediction, and summarization—within legal case documents.
460

461 7 CONCLUSION

462 We introduce **SEARCHFIRESAFETY**, the first Korean QA dataset for retrieval-augmented generation in fire-
463 safety law, combining real-world open-domain queries, synthetic single-hop and multi-hop tasks, authoritative
464 legal documents, and an explicit citation graph to evaluate retrieval, generation, reasoning, and *uncertainty*
465 *awareness*. Experiments indicate that stronger retrieval substantially improves factual grounding when relevant
466 context is supplied, yet multi-step legal reasoning remains challenging. We expect this work to catalyze
467 research in legal AI by providing a realistic, regulation-heavy benchmark for this challenging domain.
468
469

470 REFERENCES
471

472 Farid Ariaia and Gianluca Demartini. Natural language processing for the legal domain: A survey of tasks,
473 datasets, models, and challenges. *arXiv preprint arXiv:2410.21306*, 2024.

474 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Celine
475 Lin, and Pavlo Molchanov. Small language models are the future of agentic ai, 2025. URL <https://arxiv.org/abs/2506.02153>.

476 Arjun Biswas, Hatim Chahout, Tristan Pigram, Hang Dong, Hywel T.P. Williams, Fai Fung, and Hailun Xie.
477 Evaluating retrieval augmented generation to communicate UK climate change information. In Kalyan
478 Dutia, Peter Henderson, Markus Leippold, Christoper Manning, Gaku Morio, Veruska Muccione, Jingwei
479 Ni, Tobias Schimanski, Dominik Stammbach, Alok Singh, Alba (Ruinan) Su, and Saeid A. Vaghefi (eds.),
480 *Proceedings of the 2nd Workshop on Natural Language Processing Meets Climate Change (ClimateNLP
481 2025)*, pp. 126–141, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-
482 89176-259-6. doi: 10.18653/v1/2025.climateNLP-1.9. URL <https://aclanthology.org/2025.climateNLP-1.9/>.

483 Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz,
484 and Nikolaos Aletras. Lexglue: A benchmark dataset for legal language understanding in english. In
485 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*, 2022. URL
486 <https://aclanthology.org/2022.acl-long.297>.

487 Jianly Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge-m3-embedding:
488 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation.
489 *Findings of ACL 2024*, 2024a. URL <https://aclanthology.org/2024.findings-acl.137>.

490 Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. Benchmarking large language models in retrieval-
491 augmented generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
492 17754–17762, 2024b.

493 Sang-Kyu Cho and Shin-Sung Kim. A study on the efficient response to architectural civil complaints using
494 large language models (llm). *Journal of the Architectural Institute of Korea*, 40(9):81–90, 2024. doi:
495 10.5659/JAIK.2024.40.9.81. URL <https://doi.org/10.5659/JAIK.2024.40.9.81>.

496 Chanyeol Choi, Jihoon Kwon, Jaeseon Ha, Hojun Choi, Chaewoon Kim, Yongjae Lee, Jy yong Sohn, and
497 Alejandro Lopez-Lira. Finder: Financial dataset for question answering and evaluating retrieval-augmented
498 generation, 2025. URL <https://arxiv.org/abs/2504.15800>.

499 Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fusion outperforms condorcet
500 and individual rank learning methods. In *Proceedings of the 32nd international ACM SIGIR conference on
501 Research and development in information retrieval*, pp. 758–759, 2009.

502 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without relevance
503 labels. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
504 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, Toronto,
505 Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.99. URL
506 [https://aclanthology.org/2023.acl-long.99/](https://aclanthology.org/2023.acl-long.99).

507 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
508 and Haofen Wang. Retrieval-augmented generation for large language models: A survey, 2024. URL
509 <https://arxiv.org/abs/2312.10997>.

517 Abe Bohan Hou, Orion Weller, Guanghui Qin, Eugene Yang, Dawn Lawrie, Nils Holzenberger, Andrew Blair-
 518 Stanek, and Benjamin Van Durme. Clerc: A dataset for u.s. legal case retrieval and retrieval-augmented
 519 analysis generation. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp.
 520 7913–7928, 2025. URL <https://aclanthology.org/2025.findings-naacl.441>.

521

522 Wonseok Hwang, Dongjun Lee, Kyoungyeon Cho, Hanuh Lee, and Minjoon Seo. A multi-task benchmark
 523 for korean legal language understanding and judgement prediction (lbox-open). In *NeurIPS Datasets and*
 524 *Benchmarks Track*, 2022. URL <https://arxiv.org/abs/2206.05224>.

525 Ivan Iaroshev, Ramalingam Pillai, Leandro Vaglietti, and Thomas Hanne. Evaluating retrieval-augmented
 526 generation models for financial report question and answering. *Applied Sciences*, 14(20), 2024. ISSN 2076-
 527 3417. doi: 10.3390/app14209318. URL <https://www.mdpi.com/2076-3417/14/20/9318>.

528

529 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models hallucinate,
 530 2025. URL <https://arxiv.org/abs/2509.04664>.

531 Chaeeun Kim, Jinu Lee, and Wonseok Hwang. Legalsearchlm: Rethinking legal case retrieval as legal elements
 532 generation. *arXiv preprint arXiv:2505.23832*, 2025. URL <https://arxiv.org/abs/2505.23832>.

533

534 Venkatesh Kodur, Puneet Kumar, and Muhammad Masood Rafi. Fire hazard in buildings: review, assessment
 535 and strategies for improving fire safety. *PSU research review*, 4(1):1–23, 2020.

536

537 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
 538 Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-
 539 intensive nlp tasks. *Advances in neural information processing systems*, 33:9459–9474, 2020.

540

541 LG AI Research. Exaone 3.5: Series of large language models for real-world use cases, 2024. URL
 542 <https://arxiv.org/abs/2412.04862>.

543

544 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Proceedings of the ACL*
 545 *Workshop on Text Summarization Branches Out*, pp. 74–81, 2004. URL <https://aclanthology.org/W04-1013>.

546

547 Bulou Liu, Zhenhao Zhu, Qingyao Ai, Yiqun Liu, and Yueyue Wu. Ledqa: A chinese legal case document-
 548 based question answering dataset. In *Proceedings of the 33rd ACM International Conference on Information*
 549 *and Knowledge Management (CIKM 2024)*, pp. 5385–5389, 2024. URL <https://github.com/BulouLiu/LeDQA>.

550

551 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-Eval: NLG evaluation
 552 using GPT-4 with better human alignment. *arXiv preprint arXiv:2303.16634*, 2023.

553

554 Antoine Louis and Gerasimos Spanakis. A statutory article retrieval dataset in french. In *Proceedings*
 555 *of the 60th Annual Meeting of the Association for Computational Linguistics*, 2022. URL <https://aclanthology.org/2022.acl-long.468>.

556

557 Varun Magesh, Faiz Surani, Matthew Dahl, Mirac Suzgun, Christopher D. Manning, and Daniel E. Ho.
 558 Hallucination-free? assessing the reliability of leading ai legal research tools, 2024. URL <https://arxiv.org/abs/2405.20362>.

559

560 Joel Niklaus, Veton Matoshi, Pooja Rani, Andrea Galassi, Matthias Stürmer, and Ilias Chalkidis. Lextreme: A
 561 multi-lingual and multi-task benchmark for the legal domain. In *Proceedings of the 61st Annual Meeting*
 562 *of the Association for Computational Linguistics*, 2023. URL <https://arxiv.org/abs/2301.13126>.

563

564 OpenAI. *GPT-4o System Card*, August 2024. <https://cdn.openai.com/gpt-4o-system-card.pdf>.

565

566

567 Oded Ovadia, Menachem Brief, Moshik Mishaeli, and Oren Elisha. Fine-tuning or retrieval? comparing
568 knowledge injection in LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings
569 of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 237–250, Miami,
570 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
571 emnlp-main.15. URL <https://aclanthology.org/2024.emnlp-main.15/>.

572 Suzi Park and Hyopil Shin. Kr-sbert: A pre-trained korean-specific sentence-bert model. <https://github.com/snunlp/KR-SBERT>, 2021.

573

574 Nicholas Pipitone and Ghita Houir Alami. Legalbench-rag: A benchmark for retrieval-augmented generation
575 in the legal domain, 2024. URL <https://arxiv.org/abs/2408.10343>.

576

577 Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond. *Founda-
578 tions and Trends in Information Retrieval*, 3(4):333–389, 2009.

579

580 Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. *Information
581 Processing & Management*, 24(5):513–523, 1988.

582

583 Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation reduces
584 hallucination in conversation. In *Findings of the Association for Computational Linguistics: EMNLP 2021*,
585 pp. 3784–3803, 2021.

586

587 Ji-hyeok Song. Research on methods to enhance building fire safety via amendments to the fire services
588 act. Master’s thesis, Sungkyunkwan University, Seoul, South Korea, February 2023. URL <https://www.riss.kr/link?id=T16647456>.

589

590 Heydar Soudani, Evangelos Kanoulas, and Faegheh Hasibi. Fine tuning vs. retrieval augmented generation
591 for less popular knowledge. In *Proceedings of the 2024 Annual International ACM SIGIR Conference on
592 Research and Development in Information Retrieval in the Asia Pacific Region*, SIGIR-AP 2024, pp. 12–22.
593 ACM, December 2024. doi: 10.1145/3673791.3698415. URL <http://dx.doi.org/10.1145/3673791.3698415>.

594

595 Heydar Soudani, Evangelos Kanoulas, and Faegheh Hasibi. Why uncertainty estimation methods fall short in
596 RAG: An axiomatic analysis. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
597 Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 16596–16616,
598 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi:
599 10.18653/v1/2025.findings-acl.852. URL [https://aclanthology.org/2025.findings-acl.852/](https://aclanthology.org/2025.findings-acl.852).

600

601 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

602

603 Peiyi Wang, Lei Li, Zefan Cai, et al. Large language models are not fair evaluators: Uncovering position bias.
604 In *Proc. ACL 2024*, 2024.

605

606 Cameron R. Wolfe. Llm-as-a-judge: Using large language models for evaluation. <https://cameronrwolfe.substack.com/p/llm-as-a-judge>, 2023.

607

608 Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu. Knowledge
609 conflicts for LLMs: A survey. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings
610 of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8541–8565, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.486. URL <https://aclanthology.org/2024.emnlp-main.486/>.

611 Cyril Zakka, Rohan Shad, Akash Chaurasia, Alex R Dalal, Jennifer L Kim, Michael Moor, Robyn Fong,
612 Curran Phillips, Kevin Alexander, Euan Ashley, et al. Almanac—retrieval-augmented language models for
613 clinical medicine. *Nejm ai*, 1(2):Aloa2300068, 2024.

614
615 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
616 text generation with bert. In *International Conference on Learning Representations (ICLR)*, 2020. URL
617 <https://arxiv.org/abs/1904.09675>.

618 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang,
619 Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding
620 and reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.

621 Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaiqiang Wang, Zhicong Cheng,
622 Zhaochun Ren, and Dawei Yin. Knowing what LLMs DO NOT know: A simple yet effective self-detection
623 method. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference
624 of the North American Chapter of the Association for Computational Linguistics: Human Language
625 Technologies (Volume 1: Long Papers)*, pp. 7051–7063, Mexico City, Mexico, June 2024. Association for
626 Computational Linguistics. doi: 10.18653/v1/2024.nacl-long.390. URL <https://aclanthology.org/2024.nacl-long.390/>.

627
628 Lucia Zheng, Neel Guha, Javokhir Arifov, Sarah Zhang, Michal Skreta, Christopher D. Manning, Peter
629 Henderson, and Daniel E. Ho. A reasoning-focused legal retrieval benchmark. In *Proceedings of the
630 2025 Symposium on Computer Science and Law*, CSLAW '25, pp. 169–193, New York, NY, USA, 2025.
631 Association for Computing Machinery. ISBN 9798400714214. doi: 10.1145/3709025.3712219. URL
632 <https://doi.org/10.1145/3709025.3712219>.

633
634 Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. Jec-qa: A
635 legal-domain question answering dataset. In *Proceedings of the AAAI Conference on Artificial Intel-
636 ligence*, pp. 9701–9708, 2020. URL [https://aaai.org/ojs/index.php/AAAI/article/
637 view/6519](https://aaai.org/ojs/index.php/AAAI/article/view/6519).

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

658
659

A DISCUSSION

660
661
662
663
664
665
666
667
668
669
670

Usefulness of RAG in the Legal Domain Fine-tuning (FT) versus Retrieval-Augmented Generation (RAG) remains an active debate in NLP. Recent studies suggest that, for knowledge injection, RAG often outperforms FT for models under 10B parameters (Soudani et al., 2024; Ovadia et al., 2024). Moreover, in the legal profession, the case for RAG is even stronger: statutes and regulations evolve continuously, and provisions frequently cross-reference or delegate to subordinate instruments. Maintaining *temporal currency* and *citation awareness* therefore requires retrieval over up-to-date sources rather than static parametric memories. This motivates the kind of continuously maintainable data pipeline we propose. On the other hand, our results reveal limitations of RAG: even state-of-the-art models struggle when tasks demand synthesizing information across multiple, subtly conflicting provisions—a hallmark of genuine legal analysis. Thus, RAG is necessary but insufficient; legal QA also needs explicit mechanisms for conflict resolution, terminology grounding, and calibrated abstention.

671

Retrieval Performance Is Key Improving LLM performance in law is primarily a retrieval problem. Real-world, open-ended questions exhibit a large semantic gap between lay phrasing and formal legal terminology, which makes recall difficult and precision brittle. Consistent with this pattern, when supplied with *gold* context, Exaone3.5-7.8B and Qwen3-8B outperform GPT-4o on accuracy; even a 2.4B model surpasses GPT-4o in some settings—reinforcing evidence that small models can be competitive agents when context is reliable (Belcak et al., 2025). Yet in our uncertainty-awareness evaluation, smaller models are far more prone to answer unconditionally, even when context is incomplete or noisy. This aligns with findings that feeding incorrect documents does not reliably increase—and can even *decrease*—uncertainty (Soudani et al., 2025). LLMs tend to *lock in* to provided context, and, as Kalai et al. (2025) note, binary grading regimes can still reward guessing when retrieval fails to yield a confident answer.

672

673

B REAL-WORLD OPEN-ENDED QA

674
675
676
677
678
679
680

Figure 2: Distribution of Inquiry Types on Real-World Open-Ended QA.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

Figure 2 summarizes the distribution of inquiry types across four regulatory domains. Nearly half of all queries (46.6%) concern installation methods and technical standards, indicating that practitioners most frequently seek granular, practice-oriented guidance to resolve on-site implementation issues. Administrative procedures and management responsibilities account for a further 28.3%, reflecting sustained demand for clarity on permitting, documentation, inspection protocols, and accountability frameworks. A smaller, yet substantive, proportion (15.7%) pertains to the interpretation of regulations and the scope of application, including the hierarchical resolution of conflicting criteria and the explication of defined legal terms. Finally, inquiries about installation requirements and exemption criteria comprise 9.4%, typically probing the conditions under which fire-protection measures are mandatory, substitutable, or waivable.

705
706
707
708
C RETRIEVAL PERFORMANCE709
710
711
712
713
714
715
716
717
718
719
720
Table 10: Retrieval performance of different strategies and methods on real-world open-ended QA.

Strategy	Method	Language	Recall@1	Recall@5	Recall@10	Recall@100	MRR
Sparse	TF-IDF	-	7.85	17.81	23.18	51.40	15.47
	BM25	-	8.90	17.39	22.65	48.33	16.14
Dense	MiniLM-L6	English	0.05	0.19	0.33	3.17	0.37
	KR-SBERT	Korean	4.67	10.70	16.12	46.90	10.92
	Qwen3-emb	Multilingual	15.72	38.00	48.23	77.83	31.55
	BGE-m3	Multilingual	19.54	<u>42.52</u>	<u>53.00</u>	<u>80.65</u>	<u>35.94</u>
HyDE	BGE-m3	Multilingual	13.96	38.15	47.44	78.07	30.74
Hybrid	RRF	-	13.03	37.57	49.67	79.70	29.40
	wRRF	-	19.54	42.71	53.19	80.98	36.12

721
722 **Evaluation Metrics** Retrieval effectiveness is measured using two standard metrics: Recall@K, which
723 calculates the proportion of queries for which relevant documents are retrieved within the top-K results, and
724 Mean Reciprocal Rank (MRR), which emphasizes early accuracy by averaging the reciprocal ranks of the
725 first relevant document.

726
727 **Results** Table 10 reports results on our real-world, open-ended Korean QA dataset. Overall, *dense retrievers*
728 substantially outperform sparse methods such as TF-IDF and BM25. In real-world settings, non-expert users
729 often use vocabulary that differs markedly from the terminology used in legal documents; as a result, many
730 queries provide few lexical cues for sparse retrieval.

731 Our dataset contains many documents with numerals, Sino-Korean expressions, and mixed scripts, which
732 tends to favor multilingual encoders over monolingual ones. Consistent with this, multilingual models (e.g.,
733 BGE-m3, Qwen3-emb) surpass MiniLM-L6 (English-only) and KR-SBERT (Korean-only). The HyDE
734 strategy did not improve over using BGE-m3 alone (e.g., Recall@1=13.96 and MRR=30.74). Naive hybrid
735 approaches that combine sparse and dense signals degraded performance—likely due to the weak sparse
736 component—reducing Recall@1 to 13.03% and MRR to 29.40%. By contrast, our proposed hybrid strategy,
737 weighted RRF, achieved small but consistent gains: Recall@100 improved from 80.65% (BGE-m3 alone) to
738 80.98%, and MRR increased from 35.94% to 36.12%.

739
740 **D WEIGHTED RECIPROCAL RANK FUSION**

741
742 **Retrieval Strategy** For *sparse* retrieval, we use TF-IDF (Salton & Buckley, 1988) and BM25 (Robertson
743 & Zaragoza, 2009), indexing 3-grams over Hangul Jamo-decomposed text. For *dense* retrieval, we evaluate
744 MiniLM-L6⁶, KR-SBERT (Park & Shin, 2021), Qwen3-emb (Zhang et al., 2025), and BGE-m3 (Chen et al.,
745 2024a).

746 We also assess advanced strategies, including Hypothetical Document Embeddings (HyDE) (Gao et al., 2023),
747 which generates a synthetic document from the query and uses its embedding for retrieval. Additionally, we
748 evaluate *hybrid* methods that combine sparse and dense results via Reciprocal Rank Fusion (RRF) (Cormack
749 et al., 2009). Alongside the standard formulation, we test a weighted RRF (1:9 sparse-to-dense ratio) to better
750 reflect observed real-world query distributions (see Appendix D).

751
752 ⁶<https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

752 **Weighted Reciprocal Rank Fusion** To integrate results from both sparse and dense retrievers, we adopt
 753 *Reciprocal Rank Fusion (RRF)* (Cormack et al., 2009), a simple yet effective method for combining ranked
 754 lists from multiple retrieval models. RRF is attractive because it avoids dependence on the raw similarity
 755 scores of individual systems, which are often not directly comparable across models. Instead, it relies only
 756 on rank positions, making it robust across heterogeneous retrieval methods. Formally, given a query q , a
 757 candidate document d , and a set of retrieval models M , the RRF score is defined as:

$$758 \quad 759 \quad 760 \quad RRF(q, d, M) = \sum_{m \in M} \frac{1}{k + \pi^m(q, d)}, \quad (1)$$

761 where $\pi^m(q, d)$ denotes the rank of d under model m . The constant k is a smoothing parameter that reduces
 762 the dominance of very highly ranked documents from any single model. By construction, RRF ensures that
 763 a document ranked moderately well by multiple systems can receive a higher fused score than a document
 764 ranked extremely high by only one system.

765 While RRF offers a simple and robust mechanism for combining heterogeneous retrieval models, it treats all
 766 models equally regardless of their effectiveness for a given task. This uniform treatment can be suboptimal in
 767 domains where the relative utility of sparse and dense retrievers varies significantly across query types. To
 768 address this limitation, we propose *Weighted Reciprocal Rank Fusion (wRRF)*, a novel extension of RRF that
 769 assigns an explicit weight w_m to each model $m \in M$:

$$770 \quad 771 \quad 772 \quad wRRF(q, d, M) = \sum_{m \in M} w_m \cdot \frac{1}{k + \pi^m(q, d)}, \quad \text{subject to } \sum_{m \in M} w_m = 1, w_m \geq 0. \quad (2)$$

773 By explicitly controlling the contribution of each model, WRRF enables a more flexible and task-aware
 774 integration of sparse and dense retrievers, while preserving the robustness of the original RRF formulation.
 775

776 **Hyperparameter Choices** WRRF introduces two key hyperparameters: the smoothing constant k and
 777 the model weights w_m . Unlike prior work, which commonly fixes $k = 60$, we empirically found that a
 778 smaller constant provides more stable performance in our domain-specific evaluation. Large values of k
 779 down-weighted top ranks too heavily, leading to less discriminative results. We therefore set $k = 5$ for all
 780 experiments, which emphasizes the contribution of top-ranked items while still maintaining balance across
 781 models. This choice was especially effective in the legal domain, where queries often correspond to highly
 782 specific information needs and relevant documents are typically concentrated at the top of each retriever's
 783 ranking.

784 For the model weights, we relied on the query type distribution analyzed in Appendix B. Our analysis shows
 785 that roughly 15% of queries explicitly mention statutes or legal provisions, while the remaining majority
 786 require semantic reasoning over legal texts without explicit references. Based on this distribution, we adopted
 787 a 1:9 weighting scheme between sparse and dense retrievers, assigning $w_{\text{sparse}} = 0.1$ and $w_{\text{dense}} = 0.9$. This
 788 configuration reflects the empirical query composition, preserving the strength of sparse retrieval for explicit
 789 law mentions while relying primarily on dense retrieval for the majority of queries. By combining a smaller k
 790 with task-informed weighting, WRRF captures the complementary strengths of sparse and dense retrievers
 791 and improves robustness in real-world open-ended QA scenarios.

799
800

E FULL RETRIEVAL PERFORMANCE RESULTS

801
802

Table 11: Results on Real-World Open-Ended QA

Method	Recall@1	Recall@3	Recall@5	Recall@10	Recall@20	Recall@50	Recall@100	nDCG@1	nDCG@3	nDCG@5	nDCG@10	nDCG@20	nDCG@50	nDCG@100
TF-IDF	7.85	12.88	17.81	23.18	29.98	43.36	51.40	9.53	11.35	13.44	15.29	17.10	19.95	21.34
BM-25	8.90	13.76	17.39	22.65	29.11	40.04	48.33	10.81	12.37	13.95	15.70	17.46	19.78	21.23
MiniLM-L6	0.05	0.19	0.19	0.33	0.55	1.75	3.17	0.14	0.17	0.21	0.27	0.53	0.77	
KR-SBERT	4.67	8.47	10.70	16.12	23.40	34.72	46.90	6.12	7.53	8.45	10.24	12.11	14.47	16.57
Qwen3-emb	15.72	29.16	38.00	48.23	57.35	68.65	77.83	19.77	25.26	28.95	32.45	34.92	37.33	38.98
BGE-m3	19.54	33.95	42.52	53.00	62.53	73.07	80.65	23.76	29.60	33.27	36.81	39.42	41.71	43.07
RRF	13.03	29.34	37.57	49.67	59.30	71.86	79.70	16.07	23.69	27.21	31.28	33.91	36.68	38.08
wRRF	19.54	34.38	42.71	53.19	62.53	74.11	80.98	23.76	29.83	33.38	36.97	39.54	42.05	43.30

803

804
805
806
807

Table 12: Results on Synthetic Multi-Hop QA

Method	Recall@1	Recall@3	Recall@5	Recall@10	Recall@20	Recall@50	Recall@100	nDCG@1	nDCG@3	nDCG@5	nDCG@10	nDCG@20	nDCG@50	nDCG@100
TF-IDF	20.20	37.00	44.57	52.68	59.76	67.50	72.53	40.25	36.74	40.54	43.78	45.98	47.88	48.88
BM-25	26.20	41.79	47.49	53.78	59.70	65.69	69.93	52.16	43.35	46.24	48.75	50.59	52.05	52.89
Qwen3-emb	34.88	57.98	65.48	73.22	79.56	86.08	89.61	69.54	59.47	63.27	66.35	68.32	69.92	70.63
BGE-m3	35.82	57.73	65.24	72.85	79.00	85.52	89.40	71.34	59.73	63.53	66.57	68.49	70.10	70.87
RRF	34.56	57.45	65.94	73.25	79.24	85.36	88.96	68.79	58.87	63.16	66.08	67.94	69.45	70.17
wRRF	35.82	58.34	65.93	73.25	79.76	86.29	90.01	71.34	60.15	63.99	66.90	68.94	70.56	71.30

808

809

F THE USE OF LARGE LANGUAGE MODELS

810
811
812
813
814

In this research, Large Language Models (LLMs) tools were utilized to improve both the efficiency of dataset construction and the refinement of the manuscript. During data crawling, GPT-4.1-mini was employed to convert image-based content—such as mathematical formulas and tables—into accessible text format. In the dataset construction phase, GPT-4o was used to refine raw user-submitted questions, transforming them into grammatically correct and complete sentences to ensure clarity and precision. Throughout the writing process, LLMs tools also served as utilities for grammar and spell checking.

815

816

G EXAMPLES OF KOREA NATIONAL LAW INFORMATION CENTER

Figure 3: Examples of Korea National Law Information Center

831
832
833
834
835
836
837
838
839

The examples presented in Figure 3 illustrate the structure and content of legal texts retrieved from the Korea National Law Information Center. The left panel displays an excerpt from the *Act on Installation and*

846 *Management of Firefighting Systems* (Act No. 18522). This section encompasses Chapter 1, detailing the
847 legislative purpose (Article 1) to protect public safety and property through the management of firefighting
848 systems, and the definitions (Article 2) for key terms such as “firefighting systems,” “specific fire safety
849 objects,” and “performance-based design.”

850 The right panel demonstrates the hierarchical navigation within the *Enforcement Rule* of the same Act,
851 specifically highlighting [Annex 2] titled “Standards for Installation or Placement of Fire Extinguishers for
852 Vehicles.” The red arrows serve as a visual guide, tracing the relationship between the appendix directory
853 on the sidebar and the specific regulation text displayed in the main window. This regulation mandates that
854 all vehicles must be equipped with type-approved fire extinguishers. The detailed standards specify that
855 passenger cars must carry at least one extinguisher, while passenger vans are subject to stricter requirements
856 regarding the number and capacity of extinguishers based on their seating capacity (e.g., 15 or fewer, 16–35,
857 and 36 or more passengers).

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

893 **H PROMPTS FOR SYNTHETIC QA GENERATION**
894895 This section details the prompts used with GPT-4o to generate the synthetic Single-Hop and Multi-Hop QA
896 datasets.
897898 Table 13: Prompt Template for Multi-Hop QA Generation (Section 4).
899

```

900
901     ## Task Instructions
902     You are tasked with creating a Multiple Choice Question & Answer (MCQA)
903     ↳ set based on the two provided Korean legal documents below. The
904     ↳ primary goal is to design this QA set specifically for evaluating a
905     ↳ Retrieval-Augmented Generation (RAG) system.
906
907     ### Core Dependency Logic & Constraints
908     * **Dependency:** The question's answerability must strictly follow the
909     ↳ dependency: **'Document A -> unanswerable; Document A + Document B ->
910     ↳ answerable'**
911     * **Question Style:** The question must be phrased naturally, without
912     ↳ explicitly citing law or article numbers.
913     * **Answer:** You can freely set the correct answer number among the
914     ↳ options.
915
916     ### Required Output Format
917     1. [Query]
918     2. [Options]
919     3. [Answer]
920     4. [Explanation] (Explaining both the unanswerable and answerable
921     ↳ scenarios)
922
923     **Language Instruction:** Your entire response must be **in Korean**.
924     ***
925     ## Provided Context Documents
926
927     ### Document A:
928     {document_a}
929
930
931     ### Document B:
932     {document_b}
933     ***
934
935
936
937
938
939

```

931 **I PROMPTS FOR OPEN-ENDED QA EVALUATION (LLM-AS-JUDGE)**
932933 This section details the prompts used for the LLM-as-Judge metrics (Binary Factuality and Win-Rate) in the
934 Open-Ended QA experiments (Section 5).
935

940 Table 14: Prompt Template for Single-Hop QA Generation (Section 4).
941
942

```

943 # INSTRUCTIONS
944 You are an expert in creating educational quizzes from legal documents.
945 ↳ Your task is to generate **three distinct Yes/No questions** based on
946 ↳ the legal document provided below.
947
948 1. Each question must test a key condition or rule from the text.
949 2. Each question must be answerable with a simple "Yes" or "No".
950 3. You **must write the entire output in Korean (한국어)**.
951
952 Follow this numbered format exactly for each of the three questions:
953 1. 질문: [Question 1 in Korean]
954 1. 정답: [Answer 1 in Korean: 예 or 아니오]
955 1. 해설: [Explanation 1 in Korean]
956 2. 질문: [Question 2 in Korean]
957 2. 정답: [Answer 2 in Korean: 예 or 아니오]
958 2. 해설: [Explanation 2 in Korean]
959 3. 질문: [Question 3 in Korean]
960 3. 정답: [Answer 3 in Korean: 예 or 아니오]
961 3. 해설: [Explanation 3 in Korean]
962
963 # LEGAL DOCUMENT
964 **title: {title}**
965 content: {document_text}
966
967 # GENERATE OUTPUT
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

```

966 Table 15: Prompt for LLM-as-Judge (Binary Factuality Evaluation).
967
968

```

969
970 System Prompt: You are an expert grader. Return ONLY a single character: '1' (if the model answer
971 is factually correct and sufficiently comprehensive relative to the gold answer) or '0' (otherwise). No
972 explanation, no punctuation.
973 User Prompt:
974
975
976
977
978
979
980
981
982
983
984
985
986

```

987
988
989
990
991
992
993
994
995
996
997
998

Table 16: Prompt for LLM-as-Judge (Pairwise Comparison/Win-Rate).

System Prompt: You are an expert grader. Reply with a single character: A or B.

User Prompt:

```
### Question
{q}

### Relevant Documents
{ctx if ctx else '(None)'}

### Answer A
{A}

### Answer B
{B}

### Task
Assess which answer is **more factually correct and comprehensive** given
→ the question and the documents.
Reply with *only* `A` or `B`.
```

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1034 **J PROMPTS FOR SYNTHETIC QA INFERENCE**
10351036 This section details the prompts used by the LLMs during inference for the Single-Hop and Multi-Hop QA
1037 experiments (Section 5). The original prompts were in Korean and have been translated into English here.
10381039 Table 17: Prompts for Multi-Hop QA Inference.
1040
10411042 **System Prompt (Zero-shot):** You are an evaluator answering the given multiple-choice question.
1043 Read the question and options carefully and select the most appropriate answer. Your response must
1044 be only the number corresponding to the correct option (e.g., 1, 2, 3, 4, or 5). Do not include any
1045 other explanations.
10461047 **System Prompt (Context-based: Partial/Full Context):** You are an evaluator answering the
1048 multiple-choice question based on the provided context (documents). Your answer must be based
1049 solely on the content of the provided context. **Important Instruction:** If the answer to the ques-
1050 tion cannot be found within the provided context, you must select the option indicating that the
1051 information is unknown or cannot be determined (e.g., 'Cannot determine', 'No information'). Your
1052 response must be only the number corresponding to the correct option (e.g., 1, 2, 3, 4, or 5). Do not
1053 include any other explanations.1054 **User Prompt Template:**
10551056 {context_section}
1057 [Question]
1058 {question}
1059
1060 [Options]
1061 {options_text}
1062
1063 [Your Answer (Number only)]1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097

Table 18: Prompts for Single-Hop QA Inference.

1098

1099 **System Prompt (Zero-shot):** You are an evaluator who answers the given question with only
 1100 'Yes' or 'No'. Read the question carefully and respond only with 'Yes' or 'No', without any other
 1101 explanation.

1102

1103 **System Prompt (Oracle RAG):** You are an evaluator who answers the question based on the
 1104 provided context (document) with only 'Yes' or 'No'. Your answer must be based solely on the
 1105 content of the provided context. Respond only with 'Yes' or 'No', without any other explanation.

1106

1107 **User Prompt Template:**

1108 {context_section}
 1109 [Question]
 1110 {question}
 1111 [Your Answer ('Yes' or 'No' only)]

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128 K QUALITATIVE ANALYSIS
11291130 While the quantitative evaluation demonstrates a high overall agreement of 88.30% between the LLM-as-a-
1131 Judge and human evaluators, an investigation of the remaining discrepancies reveals critical insights into the
1132 model’s behavior. In this section, we present a qualitative analysis of representative examples corresponding to
1133 the four quadrants of the confusion matrix (Table 5). Table 19 details these cases, focusing on the underlying
1134 causes of disagreement that metrics alone fail to capture.1135 Specifically, we examine the raw Korean texts alongside English translations to diagnose distinct failure
1136 modes. Despite strong inter-rater agreement ($\kappa = 0.88$) validating the human ground truth, the automated
1137 judge exhibited a tendency toward stringency, resulting in a False Negative (FN) rate of 10.80%.

1138 Our analysis highlights two primary error types:

1139
1140

- **Overestimation (False Positive):** Generic answers lacking necessary domain-specific entities (e.g., *Min-*
1141 *istry of National Defense*) were frequently rated as valid by the LLM, whereas human evaluators penalized
1142 the lack of precision.
- **Underestimation (False Negative):** This error type predominantly occurred when the official reference
1143 answers (NFA) were concise. Since the LLM judge treats the official answer as the absolute gold standard,
1144 it tended to penalize model responses that provided more specific details than the reference. This structural
1145 bias suggests that future iterations may require prompt diversification or an ensemble of evaluator models
1146 beyond GPT-4o to mitigate strictness regarding specificity.

11471148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Table 19: Qualitative Analysis with Full Text. English translations are provided below each text block.

Type	Full Comparison (Question / Official / Model)	Rationale
TP (True Positive) 61.20%	<p>[Question] 운동시설 영업장 내부에 바닥에서 반자 내부 천장까지 준불연재료로 구획하고 불연문으로 설치한 복도, 화장실, 계단은 수용 인원 산정 시 바닥 면적에서 제외되는지, 아니면 제외되지 않는지 알 수 있을까요? In a sports facility business, are corridors, restrooms, and stairs that are partitioned from floor to ceiling with semi-non-combustible materials and installed with non-combustible doors excluded from the floor area calculation when determining occupancy capacity?</p> <p>[Official Answer] 「소방시설 설치 및 관리에 관한 법률 시행령」별표 7 비고 제1호에 따라 운동시설의 바닥 면적 중 「건축법 시행령」 제2조제11호에 따른 준불연재료 이상의 것을 사용하여 바닥에서 천장까지 벽으로 구획한 복도와 화장실, 계단의 면적은 수용인원 계산시 바닥면적에서 제외할 수 있다고 판단됩니다. According to Note 1 of Table 7 in the 「Enforcement Decree of the Act on Installation and Management of Firefighting Systems」, it is judged that the area of corridors, restrooms, and stairs in sports facilities, partitioned from floor to ceiling using materials equal to or higher than semi-non-combustible materials pursuant to Article 2, Item 11 of the 「Enforcement Decree of the Building Act」, can be excluded from the floor area when calculating occupancy capacity.</p> <p>[Model Answer] 운동시설 영업장 내부에 바닥에서 반자 내부 천장까지 준불연재료로 구획하고 불연문으로 설치한 복도, 화장실, 계단은 수용 인원 산정 시 바닥 면적에서 제외됩니다. 이는 소방 시설 설치 및 관리에 관한 법률 시행령 별표 7의 비고 1에 따라, 준불연재료 이상의 것을 사용하여 바닥에서 천장까지 벽으로 구획한 복도, 계단 및 화장실의 바닥면적은 포함하지 않기 때문입니다. Corridors, restrooms, and stairs inside a sports facility business that are partitioned from floor to ceiling with semi-non-combustible materials and installed with non-combustible doors are excluded from the floor area calculation when determining occupancy capacity. This is because, according to Note 1 of Table 7 of the Enforcement Decree of the Act on Installation and Management of Firefighting Systems, the floor area of corridors, stairs, and restrooms partitioned from floor to ceiling using materials equal to or higher than semi-non-combustible materials is not included.</p>	Accurate Legal Reasoning: The model correctly identified that the area is excluded. It accurately cited the relevant regulation ("Enforcement Decree Table 7, Note 1") and matched the official interpretation perfectly. Both the LLM-judge and human evaluator marked this as correct.

Continued on next page

Table 19 – continued from previous page

Type	Full Comparison (Question / Official / Model)	Rationale
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256	<p>[Question] 건축물의 건축 행위로 소방시설을 설치할 경우, 소방시설법 제22조 제2항 제1호에 따라 건축물 사용승인일로부터 60일 이내에 최초 점검을 해야 합니다. 그러나 군부대의 경우, 여러 사유로 인해 건축물대장에 사용승인일이 기재되어 있지 않거나 사용승인일을 알 수 없는 경우에는 최초 점검을 언제 해야 하나요?</p> <p>When installing firefighting systems due to construction acts, an initial inspection must be conducted within 60 days of the usage approval date pursuant to Article 22, Paragraph 2, Item 1 of the Firefighting Systems Act. However, in the case of military units, if the usage approval date is not recorded in the building ledger or is unknown for various reasons, when should the initial inspection be conducted?</p> <p>FP (False Positive) 0.90%</p> <p>[Official Answer] 최초점검은 「소방시설 설치 및 관리에 관한 법률」 제22조 제1항 제 1호에서 「건축법」 제22조에 따라 건축물을 사용할 수 있게 된 날부터 60일 이내 최초점검을 반드시 규정하고 있습니다. - 군부대의 경우 건축물 사용승인 관련 일자를 국방부에 문의하여 확인하시기 바랍니다.</p> <p>The initial inspection is required to be conducted within 60 days from the date the building becomes available for use pursuant to Article 22 of the 「Building Act」, as stipulated in Article 22, Paragraph 1, Item 1 of the 「Act on Installation and Management of Firefighting Systems」. - In the case of military units, please inquire with the Ministry of National Defense to confirm the dates related to building usage approval.</p> <p>[Model Answer] 군부대의 경우 ... (중략) ... 구체적인 점검 시기는 행정안전부령에 따르므로, 관련 규정을 확인하거나 소방본부장 또는 소방서장에게 문의하여 지침을 받는 것이 필요합니다. ... (후략) In the case of military units, if the usage approval date is unknown... (omitted) ... As the specific inspection timing follows the Ordinance of the Ministry of the Interior and Safety, it is necessary to check relevant regulations or inquire with the Fire Headquarters or Fire Station Chief for guidance. ... (omitted)</p>	<p>Judge Overestimation: The model correctly identified a legislative silence regarding specific inspection timelines for military units lacking usage approval dates. Given that no explicit provision exists in the standard Firefighting Systems Act for this edge case, the model's recommendation to inquire with administrative authorities represents a procedurally sound solution.</p> <p>However, the LLM Judge overestimated the significance of the lexical deviation. By fixating on the absence of the specific keyword "Ministry of National Defense," the evaluator failed to recognize that the model's advice is the functionally equivalent and correct course of action in the absence of codified regulations.</p>
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268		Continued on next page

Table 19 – continued from previous page

Type	Full Comparison (Question / Official / Model)	Rationale
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315	<p>[Question] 외기 개방구조 차량 램프 구간에 감지기를 설치하지 않아도 되는 장소가 있나요? Are there any locations within vehicle ramp sections with structures open to outside air where detectors do not need to be installed?</p> <p>[Official Answer] 해당 장소는 「자동차재탐지설비 및 시각경보장치의 화재안전기술기준(NFTC 203)」 2.4.5.2 '헛간 등 외부와 기류가 통하는 장소로서 감지기에 따라 화재 발생을 유효하게 감지할 수 없는 장소'에 해당할 수 있을 것으로 판단되며, 감지기 제외에 대한 세부적인 사항은 관할소방서와 협의하시기 바랍니다. It is judged that the location may fall under Section 2.4.5.2 of the 「National Fire Safety Technical Code for Automatic Fire Detection Systems and Visual Alarm Devices (NFTC 203)」, which refers to 'places such as barns where air flows with the outside, making it impossible for detectors to validly detect fire.' Details regarding detector exclusion should be discussed with the competent fire station.</p> <p>FN (False Negative) 10.80%</p> <p>[Model Answer] 외기 개방구조 차량 램프 구간에 감지기를 설치하지 않아도 되는 장소는 다음과 같습니다: 1. 천장 또는 반자의 높이가 20m 이상인 장소 ... 2. 협간 등 외부와 기류가 통하는 장소로서 ... 3. 부식성 가스가 체류하고 있는 장소. 4. 고온도 및 저온도로서 ... 5. 목욕실, 욕조나 샤워시설이 있는 화장실 ... 6. 파이프렉트 등 그 밖의 이와 비슷한 것 ... 7. 먼지, 가루 또는 수증기가 다량으로 체류하는 장소 ... 8. 프레스공장, 주조공장 등 화재 발생의 위험이 적은 장소 ... 이러한 장소들은 감지기를 설치하지 않아도 되는 예외적인 경우에 해당합니다. Locations ... where detectors do not need to be installed are as follows: 1. Places with ceiling height of 20m or more ... 2. Places like barns where air flows with the outside ... 3. Places with corrosive gas. 4. High or low temperature places ... (Items 5-8 omitted for brevity in translation, but present in Korean text) ... These locations correspond to exceptional cases.</p>	<p>Judge Underestimation: The official answer is cautious ("consult the fire station"), whereas the model provides the full technical list of exemptions from the relevant standard (NFTC 203). The Judge likely penalized the model for providing a list instead of the specific advice to "consult," while the human evaluator recognized the correctness and utility of the list.</p>

Continued on next page

Table 19 – continued from previous page

Type	Full Comparison (Question / Official / Model)	Rationale
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339	<p>[Question] 전기저장장치 설비의 송수구는 다른 설비의 송수구와 별도로 구분하여 설치해야 하나요, 아니면 스프링클러 송수구와 함께 사용해도 되나요? Should the water inlet for the Energy Storage System (ESS) be installed separately from the inlets of other systems, or can it be used together with the sprinkler inlet?</p> <p>[Official Answer] 「전기저장시설의 화재안전기술기준(NFTC 607)」2.2.1.7에 따라 전기저장장치 설비에 송수할 수 있는 송수구를 별도로 설치해야 한다고 판단됩니다. According to Section 2.2.1.7 of the 「National Fire Safety Technical Code for Energy Storage Facilities (NFTC 607)」, it is judged that a water inlet capable of supplying water to the ESS must be installed separately.</p> <p>[Model Answer] 전기저장장치 설비의 송수구는 스프링클러 설비의 화재안전기술기준(NFTC 103) 2.8에 따라 설치해야 합니다. 따라서 전기저장장치 설비의 송수구는 스프링클러 설비의 송수구와 함께 사용할 수 있습니다. 별도로 구분하여 설치할 필요는 없습니다. The water inlet for the ESS must be installed in accordance with NFTC 103 2.8. Therefore, the ESS water inlet can be used together with the sprinkler inlet. It is not necessary to install it separately.</p>	<p>Detection of Hallucination: The model incorrectly cited NFTC 103 (Sprinklers) instead of the specific ESS standard (NFTC 607), leading to the wrong conclusion (shared vs. separate). The Judge correctly identified this factual contradiction.</p>
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362		