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ABSTRACT

To train a language model for a target domain with a limited amount of data (e.g.
math), the current paradigm is to pre-train on a vast amount of generic web text and
then fine-tune on the target data. Since standard fine-tuning uses a data schedule of
keeping all generic data before all target data, we ask how much we can improve
performance on the target domain via adding generic data to the end of training
or target data to the start. In a controlled pre-training environment, we first show
that simply replaying generic data while fine-tuning, though typically used to
reduce catastrophic forgetting of the generic domain, can surprisingly improve
performance on the target domain. We then merge the two stages of pre-training and
fine-tuning into a single learning rate schedule to establish a mid-training baseline
that better leverages the target data. Under this merged learning rate schedule,
we search over two stage data schedules that additionally move target data earlier
in training. After composing our three interventions, we estimate that standard
fine-tuning would need up to 15.86× more data to match the target performance
of our best data schedule. We test our findings at scale by showing how replay
improves performance for larger models on downstream tasks, improving agentic
web navigation success by 4.5% and Basque question-answering accuracy by 2%.

1 INTRODUCTION

To train a language model for a target domain with a limited amount of data (e.g. math, instruction
following), current practice often pre-trains a language model on a vast amount of generic web text
before fine-tuning on the target data (Hernandez et al., 2021; Ouyang et al., 2022). Since standard
fine-tuning uses a data schedule of keeping all generic data before all target data, we ask how much
we can improve performance on the target domain via mixing generic data at the end of training or
mixing target data at the start of training. In this work, we show evidence that both such interventions
can significantly improve performance on the target domain, better leveraging the limited data.

First, we explore whether introducing generic data at the end of training can actually improve
performance on the target domain (Section 3). We start our investigation in a controlled pre-training
environment with two pools of data: generic web pre-training data (i.e. C4) and target data from a
domain of interest (i.e. FineMath, StarCoder, and Flan instruction following). In this setting, we tune
a competitive standard fine-tuning baseline pre-training on solely generic data and fine-tuning on
solely target data according to common practice (e.g. separate learning rate schedules and optimizer
states). In this setting, generic data is sometimes mixed at the end of training to prevent catastrophic
forgetting of the generic domain. However, we surprisingly find that replay can improve performance
on the target domain even though the generic data pushes the training distribution at the end further
from the target domain, improving data efficiency by up to 1.49× for FineMath.

Next, we determine whether we can improve target performance by moving target data to the start of
training (Section 4). Since we are now allowed to change pre-training in service of the target domain,
we use a single learning rate schedule with Warmup-Stable-Decay (WSD) (Hu et al., 2024) following
practice in mid-training (Grattafiori et al., 2024; OLMo et al., 2025; Li et al., 2025). WSD does not
reset the optimizer state during training and only anneals learning rate once sharply at the end of
training. The mid-training baseline is already 6.37× more data efficient than standard fine-tuning for
FineMath, suggesting that model developers should release checkpoints prior to annealing to improve
adaptation with target data. After tuning mid-training, we consider two stage data schedules which,
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Figure 1: Improving data efficiency by changing the fine-tuning data schedule. Since pre-training
on generic data and fine-tuning on target data is the de facto data strategy to leverage target data, we
study whether we can improve upon its data schedule. We first find that by replaying generic data at
the end of training can surprisingly improve performance on the less relevant target domain. We then
turn to merging the optimization of both training stages by using a single WSD learning rate schedule.
Finally, we additionally introduce target data during stage 1. Combining these interventions results in
a 15.86× data efficiency improvement over standard fine-tuning for the target data.

in addition to replaying generic data, use target data earlier in training. Our best data schedule is up
to 15.86× more data efficient than standard fine-tuning. Interestingly, we find that increasing the
replay fraction is generally most important when there is no target data in the first stage.

We test whether our findings hold beyond our controlled experimental setting by utilizing replay
data when fine-tuning larger models (i.e. Llama 3 8B Base and Instruct) on real target tasks. Since
our two stage data schedule findings suggests that replay helps the most when target domains
that are underrepresented in pre-training, we test whether replay helps for such domains. We
find that replay improves performance on agent benchmarks with limited trajectories (increasing
web navigation success rate by 4.5%) and improves low-resource language learning from limited
documents (increasing Basque question-answering accuracy of Llama 3 8B Instruct by 2%).

2 CONTROLLED PRE-TRAINING SETUP

Our goal is to search for data schedules that outperform standard fine-tuning. However, pre-training
at the scale of frontier models is prohibitively expensive. Therefore, we study this question by
establishing a controlled pre-training setup with stylized simplifications that enable science at a
smaller scale. We stress test our conclusions at scale in Section 5.

2.1 DATA AND TRAINING

To model a natural fine-tuning setting, we build a pool of generic data representing standard internet
web text for pre-training and target data representing a domain of interest. In our experiments, we use
C4 for our generic domain and FineMath (math), StarCoder (coding), and Flan (instruction following)
for our target domains. In addition to representing unique downstream tasks, these domains abstractly
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Figure 2: Data scaling law for reference algorithm. We
run a reference training strategy with different target data
budgets. To estimate how effectively an algorithm is using
the data, we invert the reference strategy’s scaling law to
recover “effective data” for this loss and compare the data
efficiency improvement between two strategies.

reflect different levels of similarity with the generic data: StarCoder is furthest from the generic data
since C4 is filtered for code whereas Flan is closest since it contains the most natural language.

Since web data is abundant relative to target data, we do not constrain the amount of generic data
and instead constrain the total number of training steps to total 4 billion tokens for compute-matched
comparisons. We model a data constraint on the amount of target data, typically taken to be 4 million
tokens. We follow a strong existing recipe for pre-training a 150 million parameter Llama-style
language model (Grattafiori et al., 2024) with AdamW, with full training details in Appendix D.

2.2 EVALUATION

We are interested only in performance on the target domain, which we measure via loss on a held-out
validation set from the target distribution. We choose validation loss since it scales much more
smoothly than accuracy metrics for models at our scale and is known to correlate with downstream
performance (Thrush et al., 2025; Gadre et al., 2024; Chen et al., 2025c).

To compare training strategies, we define “data efficiency” to capture how effectively a training
strategy is using the samples from the target domain. We formalize a training strategy S as accepting
D target tokens and producing a model with loss L(S(D)). To contextualize the importance of a
loss improvement, we first measure the loss of a fixed reference strategy Sref for different target data
budgets D. We then fit a scaling law that predicts the loss of the reference algorithm for D tokens as
L̂ref(D), as visualized in Figure 2. To evaluate a training strategy S, we can estimate the effective
target data the reference strategy would need to match the loss of S with D tokens as L̂−1

ref (L(S(D))).
To remove this quantity’s dependence on the data efficiency of the reference strategy, we report data

efficiency as a relative improvement of S2 over S1, or L̂−1
ref (L(S2(D)))

L̂−1
ref (L(S1(D)))

. Therefore, a data efficiency

improvement of k× can be interpreted as "S1 would require k times more target data to match the
loss of S2 at D tokens". We give more details on how we fit the scaling laws in Appendix H.

3 IMPROVING TARGET DATA EFFICIENCY OF FINE-TUNING

In this section, we study how much we can improve data efficiency by mixing generic data at the
end of training. We consider data schedules with two stages: Stage 1 constitutes pre-training on only
generic data and Stage 2 constitutes training on target data (potentially mixed with generic data).
After establishing a competitive standard fine-tuning baseline (Section 3.1), we make the surprising
observation that mixing generic data in Stage 2 improves target val loss (Section 3.2).

3.1 FINE-TUNING BASELINE

We first establish a competitive baseline to reflect standard fine-tuning. To define our data schedules,
suppose we train for a total of T steps, with γ fraction of the steps on the target data. Standard
fine-tuning corresponds to training on generic data with a cosine learning rate schedule for (1− γ)T
steps, followed by training on the target data for γT steps with a separate cosine learning rate schedule.
To match common practice for fine-tuning models, we reset the optimizer state (i.e. for AdamW, the
estimate of the first/second moments of the gradients) in between the stages. We tune the two main
choices for our baseline: learning rate and the target data epochs (exact procedure in Appendix G.1).
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Figure 3: Controlled fine-tuning visualization. We systematically explore the benefit of replaying
generic data while fine-tuning on the target data. On the right, we show standard fine-tuning for
T steps where γ fraction of the steps are on target data. On the left, we show fine-tuning with
replay fraction ρ (where we shorten pre-training to keep the total number of steps fixed). We use
(independently tuned) cosine learning rate schedules for each stage, with an optimizer state reset
between the stages to simulate standard practice for fine-tuning open-weight models.

We find that if we try to repeat the data past a certain epoch count, the validation loss increases, akin
to classical overfitting. This is not captured by the functional form of prior data-constrained scaling
laws, discussed in Appendix L.1. This setup defines 1× target data efficiency per domain.

3.2 REPLAY IMPROVES DATA EFFICIENCY

We introduce a simple strategy that improves loss on the target task: mix generic data while training
on the target data. Specifically, we introduce a replay fraction ρ for what fraction of training steps
during Stage 2 will be on generic data. When we increase this replay fraction, we decrease the
number of steps taken during Stage 1 steps to conserve the total number of training steps (Figure
3, right). In Figure 4, we show how the final model’s loss depends on the replay fraction. We find
that for each domain, a non-zero replay fraction minimizes the loss (indicated by the starred points),
achieving a data efficiency of 1.87× for Flan, 1.49× for FineMath, and 1.09× for StarCoder. We
observe that code, which C4 explicitly filters out, can tolerate less replay data than the higher overlap
domains of math and instruction following, though the loss improvements are similar across domains.

Though replay is a common method in continual learning, it is almost always used to prevent
catastrophic forgetting of old tasks (Rolnick et al., 2019; Parisi et al., 2019). Interestingly, we find that
replay improves performance on the new in-distribution training task, departing from the standard
intuition. We provide a more detailed discussion in Section 6.

4 IMPROVING TARGET DATA EFFICIENCY OF PRE-TRAINING

In the previous section, we limited ourself to using replay during Stage 2. In this section, we aim to
understand how much additional data efficiency we get by introducing target data during Stage 1,
controlling the data mixture for both stages of training. We first unify the optimization process of
pre-training and fine-tuning into a single learning rate schedule cycle with no optimizer state reset
(Section 4.1). We then search over possible data schedules by choosing a replay fraction for Stage 2
as well as how much of the target data is seen in Stage 2 vs Stage 1, defined in Section 4.2. This extra
flexibility allows us to quantify the benefit of introducing target data earlier in training during Stage 1
instead of reserving it all for the end during Stage 2. In Section 4.3, we show that mixing in target
data during Stage 1 can strongly alleviate the need for replay. However, for one of our three domains,
correctly tuned replay removes the need to introduce target data early during pre-training.
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Figure 4: Replay improves loss on target
data. We show that across our target do-
mains, the correct amount of replay (starred
points) beats the no replay baseline (dotted
line). Though data distributions closer to pre-
training (Flan) can tolerate more replay com-
pared to further domains (StarCoder), the loss
improvement is relatively constant across do-
mains.

4.1 MID-TRAINING BASELINE

Now that we are allowed to change pre-training, we establish a mid-training baseline that outperforms
standard fine-tuning. Similar to before, we tune the learning rate and epoch count (Appendix E.1.1).
However, we find that learning rate schedule is critical for target data efficiency. Default practice (i.e.
cosine, linear) is to slowly anneal to zero over the course of training. Recent work in mid-training
instead suggests using a warmup-stable-decay (WSD) learning rate schedule (Hu et al., 2024). This
consists of a short linear warmup, a stable training phase, and a sharp linear decay for a variable
fraction of training referred to as the cooldown period. Interestingly, during the learning rate decay,
the loss decreases at a much faster rate than the rest of training. This can be exploited to get stronger
performance on target data by placing it at the end of training (Grattafiori et al., 2024; OLMo et al.,
2025). We explain and visualize these benefits in more detail in Appendix I. In Figure 5, we show
that WSD offers a significant benefit over traditional schedules that decay the learning rate over all of
training. For our setting, we find it best to fix a cooldown period of 10% of training for all domains,
increasing data efficiency by 28.47× relative to the worst cooldown duration. We share more details
on the learning rate in Appendix E.1.2).

The new mid-training baseline strategy increases data efficiency relative to the standard fine-tuning
baseline from Section 3.1 by 9.92× for Starcoder, 6.37× for FineMath, and 2.77× for Flan. This
is likely because the joint training doesn’t reset optimizer state and rewarmup the learning rate. As
such, we believe fine-tuning in practice would benefit from initializing at a pre-annealed pre-training
checkpoint instead of the final checkpoint. We call on model developers to release the model and
optimizer state before cooldown since this is more useful for downstream applications.

Figure 5: Tuning learning rate cooldown. We
tune how long we should cool down the learning
rate for WSD. The above plot shows the optimal
cooldown period is between 0.05 and 0.1; we use
0.1 for consistency across domains and being fair
to changing data schedules.
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Figure 6: Controlled mid-training visualization. We explore the space of data schedules when
training on T tokens where a γ fraction of the steps are on target data. A data schedule allocates an α
fraction to Stage 2 where Stage 2 has a replay fraction ρ. Standard fine-tuning puts all target data at
the end with no replay (α = 1, ρ = 0). We use a WSD learning rate schedule across both stages.

4.2 DATA SCHEDULE SPACE

Given our mid-training baseline, we are interested in how much we can improve data efficiency by
introducing target data at the start of training. Since it is too expensive to search over all possible
permutations, we instead consider data schedules where we control the fraction of target data for
each of two stages subject to the data constraint. This space now only has two degrees of freedom
with multiple parameterizations. We decide to use the earlier notion of replay fraction ρ (how much
generic data is replayed during Stage 2) and introduce target stage 2 allocation α (what fraction of
the total target data is allocated to Stage 2). We provide a more intuitive visualization in Figure 6.
The data schedule for standard fine-tuning and the mid-training baseline have a simple interpretation:
no replay data (ρ = 0) and allocating all target data to Stage 2 (α = 1). Finding the optimal two
stage data schedule now boils down to finding the best setting of ρ and α. We provide a detailed
discussion of the parameterization and equivalences in Appendix A.

4.3 SEARCHING OVER TWO STAGE DATA SCHEDULES

We sweep over replay fraction ρ and target stage 2 allocation α to find better data schedules. We are
interested in three strategies: the mid-training baseline with the fine-tuning data schedule (ρ = 0,
α = 1), replaying generic data in Stage 2 (α = 1), and the full space of modifications (all settings).
We show the full results of sweeping over replay fraction and Stage 2 allocation in Figure 7. Pure
fine-tuning is the top-right entry, fine-tuning with replay is the right column, and the full space of
modifications is the entire plot. By only introducing generic replay, we find that we get data efficiency
improvements over the mid-training baseline of 1.53× for StarCoder, 1.85× for FineMath, and
2.06× for Flan. When searching over data schedules that also introduce target data in Stage 1, we
find data efficiency improvements of 1.53×, 2.49×, and 4.80× over the same baseline.

4.3.1 REPLAY IS MORE HELPFUL FOR DISSIMILAR STAGES

We find that replay is most helpful when the data in Stage 2 is most dissimilar from Stage 1. We
first find that when the target data is unseen during Stage 1, replay is critical for improving loss
(example for Starcoder in Figure 8, blue). On the other hand, when we keep 75% of the target data
for pre-training, replay is no longer helpful (Figure 8, purple). Together, this indicates that replay
is more helpful when the data in Stage 2 would otherwise be dissimilar to the data in Stage 1. This
intuitively suggests that training benefits from a smooth transition when changing data distributions,
whether it comes from adding generic data to Stage 2 or target data to Stage 1.
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Figure 7: Full data schedule sweep. We sweep over data schedules, parameterized by their replay
fraction and fraction of target data allocated to Stage 2. Standard fine-tuning (no replay and all target
data in Stage 2, top right corner) achieves the worst loss for FineMath and Flan. This can be improved
by adding replay data (right column). This can also be solved by adding some target data to Stage 1,
in which case replay becomes less important.

4.3.2 DO WE NEED TO CHANGE PRE-TRAINING?

One natural question for applications is whether one needs to change pre-training (in this case, Stage
1) to maximally leverage task-relevant data. We find that for FineMath and Flan, we can not get the
full benefits of the optimal data schedule by only changing Stage 2 (achieving 67.4% of gains for
FineMath and 46.0% of the gains for Flan measured logarithmically with respect to the mid-training
baseline). On the other hand, for Starcoder, the optimal data schedule only requires adding replay
data to Stage 2. It is encouraging that we can get away with not using data early since it is prohibitive
or impossible to change pre-training for many applications.

5 SCALING UP FINDINGS FOR POST-TRAINING

Since our conclusions so far have been developed in our controlled environment, we test whether our
findings hold for larger language models under realistic training conditions. Following our analysis in
Section 3, we expect replay to help performance on target domains. Following our analysis in Section
4, we expect this benefit to hold when the target data is relatively underrepresented during pre-training.
Therefore, we test whether replay is helpful when fine-tuning strong language models (i.e. Llama 3)

Figure 8: Importance of replay fraction de-
pends on rarity. When all the target data is
seen during fine-tuning, tuning the replay frac-
tion becomes critical to improve loss (blue
line). When we change pre-training to see
some of the target data, tuning the replay frac-
tion is not important and can sometimes hurt
loss (purple line).
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Figure 9: Weblinx. We fine-tune Llama 3.1-
8B Instruct on Weblinx demonstrations. With-
out any replay data, we get 32.86% accuracy
following the original hyper-parameters. We
find that mixing generic instruction following
data (OpenHermes, UltraChat) improves ac-
curacy by up to 4.5%. This is even better than
replaying demonstrations from an alternative
web agent task (Mind2Web).

on target tasks such as web agent navigation (Section 5.1) and Basque language learning (Section
5.2). Though this sounds like a simple modification, this is rarely done while fine-tuning in practice
as it is commonly believed that fine-tuning is the correct way to leverage target data.

Setup. We set up fine-tuning to best mimic standard practice. Since the pre-trained model is often
fully annealed with no associated optimizer state, we follow the fine-tuning learning rate schedule
used in Section 3. Moreover, since we usually do not have access to the generic data distribution, we
have to pick an approximation of the data used in the previous training stage. We note that using a
replay fraction of ρ requires 1

1−ρ times as many training steps, which is generally permissible for
fine-tuning since it is rarely compute-constrained.

5.1 WEB AGENTS

Recently, language models have been trained to perform agentic tasks, requiring capabilities such
as web navigation can be learned from an expensive and limited number of human trajectories.
We study this by following the supervised agent training strategy and evaluation established in
Weblinx (Lù et al., 2024) when fine-tuning Llama 3.1 8B Instruct on a fixed number of target
demonstrations. For the replay data, we use OpenHermes (Teknium, 2023) or UltraChat (Ding et al.,
2023) instruction-following data to approximate the data distribution of the previous training stage.

We find that when training on web agents data under the hyperparameters from the original paper,
there is a consistent advantage to replaying instruction following data under their offline scoring
procedure. In Figure 9, we show that replaying instruction following data improves accuracy by up to
4.5%. We provide additional details/experiments in Appendix J.

5.2 BASQUE

Basque is a low-resource language constituting only 0.035% of Common Crawl (Etxaniz et al., 2024).
However, thanks to a thriving NLP research community, there is a large amount of additional Basque
data available through the Latxa corpus (Etxaniz et al., 2024). We are interested in how to continually
pre-train Llama 3.1 8B with access to a limited number of Basque tokens (i.e. 200M). For replay
data, we use the SlimPajama replication (Soboleva et al., 2023; Weber et al., 2024) as a proxy for the
unreleased Llama pre-training data. For evaluation, we measure accuracy on a professional Basque
translation (Baucells et al., 2025) of the commonsense reasoning benchmark COPA (Gordon et al.,
2012; Ponti et al., 2020) supported on lm-eval-harness (Gao et al., 2024).

We find that when training on Basque data, there is a consistent advantage to replaying pre-training-
like data. In Figure 10, we show that the model achieves higher accuracy on the Basque evaluation
task. We provide more details and experiments in Appendix K.

6 RELATED WORK

We discuss additional related work in Appendix L.
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Figure 10: Basque. We fine-tune Llama 3.1-8B on 200M
Basque tokens from the Latxa training corpus and measure
accuracy on Basque COPA. We find that replaying generic
pre-training data from SlimPajama improves accuracy by up
to 2%.

Mid-training. Many recent language models augment pre-training with a mid-training phase that
anneals the learning rate while training on high-quality data OLMo et al. (2025); Grattafiori et al.
(2024); Li et al. (2025); Nvidia et al. (2024). There has been some initial work on characterizing the
benefit of putting target data at the end of training (Aryabumi et al., 2024; Blakeney et al., 2024) or
annealing the learning rate (Hu et al., 2024). In addition to prior knowledge, we conduct experiments
on changing the pre-training in conjunction with mid-training. Moreover, we show new experiments
at maximal repetition count, as well as for various ablation factors such as model size.

Optimizing data mixtures. Prior work has proposed algorithms to optimize the data mixture
(Chen et al., 2023; Xie et al., 2023; Jiang et al., 2024a; Fan et al., 2024). Most such algorithms fall
under an online optimization framework (Chen et al., 2025b), where the algorithm estimates which
components it should upweight. However, such online algorithms are insufficiently myopic and miss
that better data should be at the end. Instead, such algorithms greedily upweight the best data at the
start since they do not factor in constraints on the number of available data points. Moreover, they do
not account for the optimization challenges that arise when changing data distributions.

Continual learning. There has been a lot of work on continual learning for new tasks (Rolnick
et al., 2019; Parisi et al., 2019). Such works have traditionally focused on reducing catastrophic
forgetting (Kirkpatrick et al., 2017) instead of improving target task performance (Gupta et al., 2023;
Ibrahim et al., 2024; Kotha et al., 2024; Çağatay Yıldız et al., 2025; Chen et al., 2025a; Springer
et al., 2025). There has also been work on methods and evaluation for teaching models new facts
(Meng et al., 2023; Yang et al., 2024b; Ghosal et al., 2024; Gekhman et al., 2024; Chang et al., 2024).
Our two-stage framework helps build intuition for when pretraining is necessary, as well as shows
better ways to teach models new facts. However, answering further questions about capability and
knowledge will require using more refined metrics and data distributions.

7 DISCUSSION

Hypotheses for inefficiency of fine-tuning. In this paper, we thoroughly characterize the failure
of fine-tuning. We share two hypotheses for why fine-tuning underperforms replay data. We first
identify a training instability that occurs for a few steps of fine-tuning which replay slightly mitigates
(experiments and discussion in Appendix B.1). However, even with perfect optimization, we identify
a statistical barrier due to a tendency to overfit to small samples. In Appendix B.2, we detail a toy
model where failure arises due to a small number of noisy data points, leveraging classical intuition
from the double-descent literature. Another reasonable hypothesis is that this is an artifact of our
current training scale. To control for this, we ablate model size in Appendix B.3. Interestingly, the
benefit of replay seems to persist across model scale, decreasing support for this hypothesis.

Limitations. We make a number of necessary simplifications for our controlled setting. For
example, we assume two distributions, where as in practice, pre-training is a multi-task learning
problem with much higher diversity. The simplicity of our data schedules, though a feature, preclude
us from studying more complicated methods such as continuous annealing of the distribution, sample-
level orderings, and more advanced fine-tuning methods. Furthermore, we use validation loss, which
might not perfectly correlate with downstream metrics. In practice, replay comes at the cost of
increased compute, which might be a limiting factor outside of standard fine-tuning settings.
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7.1 ETHICS STATEMENT

We hope our work can be used to improve the data efficiency of language models, especially for low
resource domains that receive relatively less attention. We acknowledge our work may increase the
compute used in language model training. We believe most other harms associated with our work are
generally applicable to most language modeling research.

7.2 REPRODUCIBILITY STATEMENT

We make strong efforts to ensure reproducibility of our results. We will open-source all of our training
and evaluation code. In addition, we will provide a WandB report and project page with access to all
1935 runs for different data orders and hyper-parameters.
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A DATA SCHEDULE EQUIVALENCES

As discussed in Section 4.2, data schedules have two degrees of freedom. However, they can be
described with many intuitive variables, each a few equations away from each other. We can use the
following variables to describe the data schedule:

• Total training steps T : the total number of training steps.
• Target step fraction γ: the fraction of training steps that are target, after deciding the repetition

count.
• Replay fraction ρ: the fraction of pre-training data that is replayed.
• Target stage 2 allocation α: the fraction of the total target data that is allocated to Stage 2.
• Stage 2 duration δ: the fraction of training that is in Stage 2.
• Stage 1 target weight w1: the weight of the target data in Stage 1.
• Stage 2 target weight w2: the weight of the target data in Stage 2.

If there are 7 variables, why are there only 2 degrees of freedom? The first two variables are set by
problem setting and we do not control them (besides the repetition count, which we treat as fixed
for this section). For the rest of this section, without loss of generality, we set T = 1. We claim that
given the next 2 variables, you can derive the other 3.

If the replay fraction is ρ, then the Stage 2 target weight is automatically fixed as w2 = 1− ρ. If the
Stage 2 allocation is α, then we know that the number of target steps in Stage 2 is αγ. This means
that the number of total steps in Stage 2 is αγ

1−ρ , giving the Stage 2 duration δ. Now that we know
δ, it suffices to determine the Stage 1 target weight. We know that there are γ(1 − α) target steps
in Stage 1, as well as 1 − δ total steps. This means that the Stage 1 target weight is w1 = γ(1−α)

1−δ .
Therefore, we’ve recovered all 7 variables from the 2 degrees of freedom. You can confirm that with
these choices of w1, w2 that w1(1− δ) + w2δ = γ.

B POTENTIAL FAILURE MODES OF FINE-TUNING

We discuss potential conceptual failure modes of fine-tuning here, using a mix of experiments and
toy models for intuition.

B.1 INSTABILITY OF FINE-TUNING

We notice that at the start of fine-tuning, there is a pretty large loss spike (Figure 11). This is especially
true at higher learning rates. However, after some steps of training, the loss goes below where it
started. In fact, it is still correct to use higher learning rates even though they make the spike larger
because you end up with a lower loss.

One relatively vague hypothesis is that the loss spike is the reason fine-tuning underperforms replay.
This can happen in at least two concrete ways

1. When there is replay data, there is less distribution shift between Stage 1 and Stage 2.
Therefore, the loss spike is less pronounced, and there is less steps spent recovering from it.

2. There seems to be a minimum number of steps before one recovers from the loss spike.
Since replay increases the number of steps in Stage 2, it can perhaps give more time to
recover from the loss spike.

We believe further experimentation is necessary to fully understand the nature of this spike, specifically
whether it is harmful for model performance and at what data regime it matters the most in.

B.2 OVERFITTING TO TARGET DATA

It is known that a fixed un-regularized model has a tendency to overfit to small sample counts.
Therefore, it’s possible that fine-tuning suffers from this problem. To model this, we set up a simple
linear regression toy model.
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Figure 11: Train loss spike. We notice a large loss spike during the first few steps of training across
our settings. This represents one barrier to training with a limited number of samples. Replay might
help either because (1) there is less distribution shift between Stage 1 and Stage 2 or (2) there is more
time to recover from the spike.

We construct a data distribution in 400 dimensions, governed by a pre-training θPT ∼ N (0, I) and
a fine-tuning θFT ∼ N (θPT, 0.1I). We then construct a dataset of N pre-training points and n
fine-tuning points. Each point is generated as (x, θ⊤x+ ϵ) for x ∼ N (0, I) and ϵ ∼ N (0, 1).

Our training algorithm first "pre-trains" by performing OLS on the pre-training points. For sufficiently
large N >> d, this will easily fit the pre-training vector θPT. However, our goal is to learn the
fine-tuning vector θFT. We do this by performing OLS on the residuals of the pre-training fit and
the true labels for the fine-tuning points. The fine-tuning now benefits from the pre-training fit
bringing the parameters closer to the true fine-tuning vector. When we are in the over-parameterized
regime, we use min-norm least squares regression, as double-descent literature has shown this is
known to generalize better and is reflective of deep learning inductive bias (Belkin et al., 2019; Hastie
et al., 2020). We then measure error as mean squared error between the learned parameter and true
fine-tuning parameter. We visualize these results in Figure 12, purple line. We see that for n < d, the
model overfits to the noise in the fine-tuning data, resulting in higher error than random guessing. We
plot the gray line to track the best possible error achievable by the model for a given n by using any
sample count up to n.

We now introduce replay: mix in some pre-training data for the fine-tuning OLS. The replay
significantly reduces the overfitting as we see the in the other lines.

In this setting, it is known that the Bayes-optimal estimator involves appropriately tuning the ridge
regularization parameter. We visualize differing values of the ridge parameter in Figure 13, orange
line. We see that the optimal ridge parameter is non-zero. Moreover, the best ridge parameter achieves
much better loss than tuned replay count. If this intuition holds, real language model training should
benefit from finding the correct notion of regularization. One might expect the natural analogue of
ridge regression for language models is weight decay. As discussed in E.1.3, weight decay does not
significantly improve the loss and under-performs optimal replay. This tells us we need to rethink
how we regularize fine-tuning to extract the full value of target data points.

B.3 MODEL SIZE

One concern is that the necessity of replay is due to the model size. To see whether any explanation
related to model size holds ground, we see whether changing model size changes the necessity of
replay. To measure this, we take our joint training setting with a fixed learning rate schedule and
α = 1.0 (all target data in Stage 2) and vary the model size. When we increase model size, we
decrease the learning rate inversely proportionally to the width of the hidden dimension, following

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 12: Linear regression with replay. We plot the loss of a linear regression model as a function
of the number of fine-tuning points n for different values of the replay fraction ρ. We see that for
n < d, the model overfits to the noise in the fine-tuning data, resulting in higher error than random
guessing. We plot the gray line to track the best possible error achievable by the model for a given n
by using any sample count up to n. Replay significantly reduces the overfitting, resulting in better
MSE than random guessing. We track the best possible error as a function of n for the best ρ as
the red line. For a regime of some but not too many target points, replay improves over standard
fine-tuning.

Figure 13: Linear regression with ridge regularization. We follow the same setup as in Figure 12,
but instead of tuning replay fraction, we tune the ridge regularization parameter λ. We see that the
optimal ridge parameter is non-zero and that the best ridge parameter achieves much better loss than
tuned replay count.
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Figure 14: Model scaling. We take our standard 4B token training setup and scale the parameter
count to 4x parameter count. For a given size, we sweep for the optimal replay fraction ρ while
reserving all the target data for Stage 2 (α = 1.0). We find that larger models still require replay data
to get lower loss.

folklore scaling practices (Everett et al., 2024). We visualize the results in Figure 14. We see that
across all sizes, the model benefits from replay. Furthermore, the benefit of replay is relatively
consistent across model sizes.

One interesting implication of this finding is that one can determine the optimal data schedule for
a large model by tuning on a small model. This resembles µP style arguments (Yang et al., 2022;
2024a) for setting layer-wise learning rates at small model counts.

C NOTE ON TUNING APPENDICES

This project has spanned a lot of experiments. The order these were conducted in does not reflect the
order in which they are presented. At a high level, most of the mid-training/pre-training experiments
were done first, giving intuition for what the results would look like for supervised fine-tuning. This
means the experiments are more comprehensive for mid-training as it was when there was a worse
understanding of the relationship between problem parameters. As the project developed, we were
able to reduce search spaces by good priors on what hyperparameters worked (though we always
certified they were correct as shared in the plots).

We believe it is more instructive to read the guide for how to set mid-training hyperparameters.
We believe the literature lacks rigorous experiments (mostly deciding random hypers on the fly).
However, this stage can give large data efficiency gains if done correctly.

D GENERAL TRAINING SETTINGS

We train a 150 million parameter Llama-style language model with context length 4096 for 4B tokens.
This is close to Chinchilla optimal scaling (Hoffmann et al., 2022) which prescribes 20x tokens per
parameter. We train with batch size 1024 for 1024 steps with weight decay 0.1. We use the Adam
optimizer with default parameters. When we tune learning rate, we search for the nearest power of 3
assuming the final loss is convex in the learning rate. For the other models, we scale the learning rate
inversely with the model width following the reccomendations of (Everett et al., 2024) (see Table 1).

For our generic data, we use C4 (Raffel et al., 2023) since it is filtered but relatively uncurated. For
example, C4 filters out all code data by removing documents with curly braces. For our target data,
we have domains representing math (FineMath (Allal et al., 2025)), coding (StarCoder (Li et al.,
2023)), and instruction following (Flan (Longpre et al., 2023)). Our validation datasets are always
the same distribution as our training data.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

D.1 MODEL CONFIGURATIONS

Parameter 150M 300M 600M 1.9B
Context Length 4096 4096 4096 4096
Hidden Dimension 512 768 1024 2048
Intermediate Dimension 1792 2688 3584 7168
Attention Heads 8 12 16 16
KV Heads 8 12 8 8
Layers 6 12 24 24

Learning rate 3e-3 2e-3 1.5e-3 7.5e-4

Table 1: Model architecture configurations for different model sizes. All models use the Llama
architecture with a standardized context length of 4096 tokens. We default to the 150M model if not
specified.

D.2 MAGIC NUMBER JUSTIFICATIONS

Selecting a training regime requires setting some arbitrary numbers. We give justification for some
here.

• Target data fraction: Pre-training token counts are on the order of 10 trillion while domains are
on the order of 10 billion tokens, motivating our choice of ≈ 0.1%. We actually use a target
data fraction of 1

1024 ; this better interacts with our block-deterministic data scheduler which
draws/shuffles 2048 sequences at a time.

• Replay fractions and target data allocations: In early experiments we quickly realized that the
dependence on these parameters scaled nicely when the replay fractions are spaced out by log(1−x).
Therefore, we equally spaced out values. In plots, we round all values to two decimals. In
actuality, our replay fractions were 0.25, 0.5, 0.75, 0.875 and our target data allocations were
1.0, 0.5, 0.25, 0.125. The power of 2 scaling similarly interacts nicely with our block-deterministic
data scheduler.

• Model size: 150M reflects a model scale that is large enough to be represantative and scale nicely.
It also enabled quicker iteration than larger scale models. During the course of this project, we
sanity checked our results held at larger scales, increasing our confidence in using smaller scale
models.

E MID-TRAINING EXPERIMENTS

E.1 FINE-TUNING BASELINE

E.1.1 REPETITIONS

We try varying the number of repetitions of the target data during mid-training. For this tuning, since
we do not know the learning rate and schedule yet, we tune across the two most promising learning
rates of 1e-3 and 3e-3 with no learning rate cooldown (as this is closer to our final learning rate
schedule than full decay). We visualize the best of both in Figure 15. We find that we can tolerate up
to 32 repetitions of the target data before overfitting across all domains.

E.1.2 LEARNING RATE COOLDOWN

We vary the cooldown duration of a standard WSD learning rate schedule with 10 step warmup while
fixing all 32 repetitions of the target data to appear at the end of training. We also vary the learning
rate to be 1e-3, 3e-3, and 1e-2. For all training runs, 3e-3 did best and 1e-2 always diverged, so we
can safely only look at WSD with learning rate 3e-3. We visualize the final result in Figure 5. We
find it critical to have a cooldown period as opposed to the more conventional long cooldown period
(cooldown duration 0.99).
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Figure 15: Mid-training tuning repetitions. We show that across our mid-training domains, we can
tolerate maximum 32 repetitions of the original data before overfitting to the target data. Note that
the x-axis is more comprehensive compared to 18.

Figure 16: Tuning weight decay. We tune the
weight decay for the fine-tuning baseline fixed
to our above repetition count and learning rate
cooldown. The effect is small and noisy, so
we default to 0.1, at the upper range of weight
decays used in the literature.

E.1.3 TUNING WEIGHT DECAY

We try tuning the weight decay for the fine-tuning baseline fixed to our above repetition count and
learning rate cooldown. We visualize the results in Figure 16. We find that weight decay does give
minimal but noisy effect on loss. Due to this variance, we decide to stay closer to the range of weight
decays used in the literature which are usually around 0.05 (for example, Table 10 and 11 in the
appendix of Li et al. (2025)) However, since there does seem to be a benefit of slightly higher weight
decay, we use 0.1 for all of our mid-training experiments. We also carry this choice to our pre-training
experiments.

F CHARACTERIZING FORGETTING

In addition to characterizing loss for the target domain, we also measure the loss on the generic
domain to quantify how different data schedules result in different amounts of forgetting. In Figure
17, we show how the loss changes across data schedules, similar to Figure 7. We find that both
introducing replay data and target data early significantly mitigate forgetting.

G POST-TRAINING EXPERIMENTS

G.1 FINE-TUNING BASELINE

G.1.1 REPETITIONS

We try varying the number of repetitions of the target data during fine-tuning. We visualize the loss
for different repetition counts in 18. We find that we can tolerate up to 64 repetitions of the target
data before overfitting across all domains.

G.1.2 LEARNING RATE

For the model pre-trained on C4, we tried different learning rates for 1000 training steps and picked
the model with the best C4 loss. This ended up being 1e-3 (which acheived 4.12 loss, relative to 3e-3
which achieved 4.22 and 3e-4 which achieved 4.66). This learning rate was used across all pre-trained
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Figure 17: Full data schedule sweep for forgetting. We take the same data schedules in 7 and
instead plot loss on the generic domain (C4) instead of loss on the target domain, quantifying the
amount of forgetting. We find that replay and introducing target data early both significantly reduce
forgetting.

Figure 18: Fine-tuning repetitions. We show that across our fine-tuning domains, we can tolerate 64
repetitions of the original data before overfitting to the target data.

models, which ranged from 512 to 992 steps. Note that the optimal learning rate is different for this
setting compared to the mid-training experiments because we’re using a different learning rate.

H DATA EFFICIENCY

It is important to compare how well two training algorithms leverage the same amount of fixed
samples. Though we can compare the direct loss, this gives a misleading impression of how what the
actual improvement is. To bring this into a human-friendly metric, we introduce the data efficiency
multiplier. We use the following procedure:

1. Fix a reference training algorithm. To enable comparison across a broad suite of possible
training strategies without having to refit scaling laws, we first fix a reference training
algorithm Sref that characterizes one natural usage of the training data. We detail our choice
of reference algorithm below.

2. Build a power law. We now build a reference scaling law to characterize the loss of the
reference algorithm as a function of the number of target tokens it gets to see. Since the
model size is fixed, we fit a power law from number of data points seen to loss (more details
below).
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Figure 19: Power law fit. We fit a power law to the loss of the reference algorithm (uniform mixing)
as it receives more target data. We note that we use these laws in the interpolation regime since we
train models with hypothetically 16× more data than we actually train with.

3. Effective data points. For any given strategy S, we can find it’s loss. With this loss, we can
see how many data points D(S) it would take for the reference algorithm to match the loss
of S. If this number is high, then S is very data efficient.

4. Normalize for reference. However, our current metric strongly depends on the choice
of reference algorithm. To make this metric useful regardless of the reference algorithm,
we always report a data efficiency improvement. Specifically, we only use this metric to
compare the data efficiency of two strategies S1 and S2. We then report the data efficiency
improvement of S2 over S1 as D(S2)

D(S1)
. A large improvement means that S2 is much more

data efficient than S1.

We now go into details about how we fit the power law.

H.1 POWER LAW FORMULATION

We fix the model size and total number of tokens. We then fit a power law from number of target data
points given to loss. Our power law has the form L(D) = aDb + c for loss L, number of target data
points D, and free variables a, b, c. We use scipy.optimize.curve_fit to fit the scaling law.

H.2 TRAINING RUNS

We fix learning rate schedule to be cosine and tune learning rate to be 0.003. When tuning epoch
count, we found that the model could not tolerate more than 32 epochs of target data at larger target
data fractions. Therefore, we fix this epoch count. We also mix data uniformly throughout training
instead of using a dedicated data schedule. We train for a total of 4B tokens and vary the number of
target tokens to be 4M, 8M, 16M, 32M, 64M tokens. Since we train for 32 repetitions, our largest
target data run trains on target tokens for 50% of training.

There is some extra noise in these fits compared to our other experiments since we can not control for
data order when we change the target fraction. However, we note that the best training runs for the
reference algorithm with extra data outperform the best data orders for the low data fraction we fix
throughout the paper. Fortunately, this keeps us within the interpolation regime of the scaling law
and it doesn’t matter whether this scaling law extrapolates past the data fractions we train with. We
plot the fit in Figure 19.

I WSD TUTORIAL

It turns out that the correct learning rate schedule is critical for improving target data efficiency.
Though annealing-based learning rate schedules give the largest benefit for data ordering, we have
relatively little intuitive/empirical understanding of how to properly use them. We will provide a
quick introduction to how they work in the un-ordered setting, and then show how to use them in the
ordered setting.
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Figure 20: Learning rate schedule. This figure shows
the shape of a WSD learning rate schedule in contrast to
a cosine learning rate schedule (both without warmup).
Figure is taken from Schaipp et al. (2025), Figure 2 left.

Figure 21: Loss curves. This figure shows the loss
curves for a WSD learning rate schedule and a cosine
learning rate schedule. Note that the loss of a WSD
schedule initially makes slower progress than a cosine
schedule and then makes up for it with much faster loss
improvement at the end. Figure is taken from Schaipp
et al. (2025), Figure 1 left.

I.1 WHAT IS WSD?

Warmup-Stable-Decay (WSD) is a learning rate schedule with three phases:

1. Warmup: The learning rate is increased linearly from 0 to a peak value.
2. Stable: The learning rate is held constant at the peak value.
3. Decay: The learning rate is decayed linearly from the peak value to 0.

We visually depict this learning rate schedule (without warmup) in Figure 20, left.

I.2 STANDARD TRAINING (RANDOM ORDER)

Though warmup is important, the exact duration of the warmup is not critical. In contrast, the decay
period is critical to the final loss. We visualize the loss curves for a WSD learning rate schedule and a
cosine learning rate schedule in Figure 21, right. Notably, as soon as the learning rate starts decaying,
the loss improvement is much faster. This is contrast to cosine learning rate schedules where the
loss improvement actually slows down at the end of training (with a characteristic curl up). These
different rates of decrease have historically been really important details: for example, fitting the
scaling laws to intermediate checkpoints gives incorrect scaling laws since the models have been
annealed for different durations (Hoffmann et al., 2022).

Why does this happen? One nice intuitive picture is given by the river valley landscape explanation
in Wen et al. (2024). They posit that the loss landscape looks like a single river flowing down in the
middle of a valley (Figure 22). In this picture, you would like to both get to the bottom of the valley
and go far down the river. A standard learning rate schedule slowly descends the valley while also
making progress along the river direction. The paper’s central claim is that WSD instead stays at the
top of the valley but continues to make progress along the river direction. Then, when one anneals
the learning rate, it starts descending donw the valley, revealing the true progress made by the model
not captured by the loss. It is noted in the Edge of Stability literature (Cohen et al., 2022; 2024) that
staying at high learning rate is better for performance even though there is large oscillation in the loss.

Though this picture is helpful visually, there is an even simpler theoretical picture. The works Defazio
et al. (2024); Schaipp et al. (2025) show that the simple theoretical model of non-smooth convex
optimization predicts the shape of the loss curve. Specifically, the upper-bound on the loss from
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Figure 22: River valley landscape. This shows the intuitive
picture of the river valley landscape. WSD makes progress along
the river direction while making all the hill progress at the very
end. Figure is taken from Wen et al. (2024), Figure 2 left.

Figure 23: Weblinx weight decay ablation.
We fine-tune Llama 3.1-8B Instruct on We-
blinx demonstrations. We find that without
replay, tuning weight decay gives little gains,
improving by less than 2% over the baseline.

standard online convex optimization arguments applied to the last iterate of training matches the
"shape" of the WSD loss curve.

I.3 ORDERED TRAINING

Why does it matter that WSD decreases loss faster at the end of training? Intuitively, if the loss is
decreasing faster, placing high quality data at the end of training is more important. We algorithmically
leverage this intuition by placing the target data at the end of training with WSD. In some earlier
experiments, we found that when using a cosine learning rate schedule, it actually hurt to keep target
data at the end of training relative to placing it uniformly throughout training.

J WEB AGENTS

We train with the same hyperparameters as the original Weblinx paper on a subset of the demon-
strations from the original paper. We use the same evaluation protocol and metrics as the original
paper by combining the validation and in-distribution test set. We defer to the original paper for more
details on the data and evaluation. When we specify replay fraction, we are doing the replay on a
document level instead of a token level. This doesn’t have large implications since all peak at an
intermediate value and fine-tuning isn’t computationally intensive.

We provide an additional ablation on tuning weight decay while fine-tuning on web agents data. We
find that without replay, this gives little gains, improving by less than 2% over the baseline. We
provide the results in Figure 23.
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Figure 24: Basque training with different token counts. We try Basque training with 40M and
200M tokens to confirm that the gain in accuracy is real.

K BASQUE

We tune the learning rate to be 1e-5 for fine-tuning on Basque. We find the gain in accuracy to be real
across different token counts, displayed for 40M tokens and 200M tokens in Figure 24.

When tracking Basque loss, we find that there is a spike in loss at the start of training only if the
learning rate is sufficiently high. In practice, it is worth using training with this higher learning rate
for best Basque loss/accuracy. We find that the loss improvement of replay decreases as we increase
the total token count. However, there continues to be an accuracy gain as you increase the token
count, showing that replay may be even more important for evaluation metrics.

L DETAILED RELATED WORK

L.1 REPEATING DATA

Prior work on data-constrained scaling laws (Muennighoff et al., 2023; Goyal et al., 2024) predict
that as you continue to repeat data, loss improves at a diminishing rate. However, the specific decay
formulation predicts that it will asymptote at a particular value.

Specifically, the simplest decay formulation presented in both works estimates that when you see n
data points for the second time, it is like effectively training on nδ data points for decay factor δ. For
the k-th repetition, it is like training on nδk−1 data points. In the infinite data limit, these scaling
laws predict that the loss will asymptote at a particular value, specifically at the loss of seeing n

1−δ
fresh data points once.

In our experiments, we found this not to be the case. If we repeated a target domain too many
times, the loss would start going up. This is true whether it is fine-tuning or it is generic pre-training
data. This means we think more carefully about how to leverage target data. This observation is
corroborated in (Kim et al., 2025).

L.2 NECESSITY OF PRETRAINING

Many prior works argue that it is necessary to incorporate target skills during pretraining. For
example, (Allen-Zhu and Li, 2024; Jiang et al., 2024b) argue that instruction-tuning data needs to be
seen during pretraining. Moreover, many practitioners pretrain language models from scratch with
the belief that it is necessary to see this data during pretraining. Our work shows that this might not
be the case: for some tasks, data might not need to be seen during pretraining, as long as one follows
optimal training procedures for adaptation.

L.3 ROBUST FINE-TUNING

There is a rich literature on how to robustly fine-tune language models to maximize in-distribution
and out-of-distribution accuracy (Phang et al., 2019; Zhang et al., 2021; Kumar et al., 2022). Weight
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averaging has been one such technique to improve post-training performance (Wortsman et al., 2022;
Ilharco et al., 2023; Dang et al., 2025). Replay can be seen as qualitatively similar to weight averaging
where the averaging takes places in data distribution space instead of parameter space. In contrast to
prior work, we characterize the interaction between pre-training and fine-tuning, showing that the
optimal way to fine-tune depends on how much exposure the pre-trained model has to the target task.
Moreover, since the focus was primarily out-of-distribution performance, they under-focused on the
opportunity to improve in-distribution performance.

L.4 CURRICULUM LEARNING

Curriculum learning is concerned with proposing a sequence of training distributions from easy to
hard (Bengio et al., 2009). Theoretically, this can accelerate convergence by introducing tractable
intermediate tasks (Abbe et al., 2023; Panigrahi et al., 2024). Recent works have tried to design
curricula using reference models (Mindermann et al., 2022; Fan and Jaggi, 2023; Lin et al., 2025)
or structure over the data distribution (Chen et al., 2023). However, there is limited evidence that
changing data order improves the final performance of models on tasks in iid settings (Wu et al.,
2021). In contrast, our work focuses on the relevance of the data with respect to the target task, where
it is well known that changing data order improves performance (e.g. fine-tuning).
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