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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
natural language processing tasks. Still, they are prone to generating hallucina-
tions—factually incorrect or fabricated content that can undermine their reliabil-
ity, especially in high-stakes domains such as healthcare and legal advisory. In
response to this challenge, we propose Delta, a novel inference-time approach that
leverages contrastive decoding to mitigate hallucinations without requiring model
retraining or additional training data. Delta works by randomly masking portions
of the input prompt, then contrasting the original and masked output distribution
generated by the model, effectively mitigating hallucinations through inference-
only computations. Delta was evaluated on context-rich QA benchmarks like
SQuAD v1.1 and v2, achieving around 3 and 6 percentage points of improve-
ment, respectively. It also showed gains of 7 and 2 percentage points on TriviaQA
and Natural Question under-sampling decoding. Delta improved SQuAD v2’s no-
answer exact match by over ten percentage points. These findings suggest that
Delta is particularly effective when hallucinations arise from contextual ambigu-
ity. Delta presents a computationally efficient and scalable solution for reducing
hallucinations in real-world LLM applications by focusing on inference-time en-
hancements.

1 INTRODUCTION

The rapid development of large language models (LLMs) Brown et al. (2020) has led to significant
advancements in text generation, natural language processing, and a wide range of real-world appli-
cations OpenAI et al. (2024). These models, powered by vast datasets and complex architectures,
have become essential tools for translation, summarization, and conversational AI tasks McKenna
et al. (2023). Despite these achievements, LLMs face a critical challenge: their probabilistic and
nondeterministic nature often generates ”hallucinated” content Xu et al. (2024). These hallucina-
tions manifest as text that may sound plausible but is factually incorrect or fabricated. This poses a
significant issue, particularly in high-stakes domains such as healthcare, legal advisory, and scientific
research, where the accuracy and reliability of the generated content are paramount.

Hallucinations in LLMs arise from their reliance on patterns learned during training, causing them to
occasionally generate outputs unsupported by the input data or real-world facts Huang et al. (2023).
Addressing this issue is crucial for improving the reliability and trustworthiness of LLMs, especially
as they are increasingly integrated into real-time systems and applications where incorrect informa-
tion can lead to severe consequences. In response to this challenge, we introduce Delta, a novel
approach designed to identify and mitigate text hallucinations on inference-time computation. Un-
like traditional methods Ji et al. (2023); Li et al. (2023b); Ouyang et al. (2022) focusing on retraining
models or requiring access to additional data, Delta operates solely at inference time, making it com-
putationally efficient and easily deployable in real-time systems. Delta’s core innovation lies in its
use of contrastive decoding Li et al. (2023a); Chuang et al. (2024), which leverages masked versions
of the input text to contrast plausible outputs against potentially hallucinated ones.

Delta builds upon previous work in vision-language models, particularly the method introduced in
Leng et al. (2024), which mitigates object hallucinations by applying Gaussian noise to the visual
input during contrastive decoding. However, adapting this approach to text is more challenging, as
directly applying noise to textual input is not feasible. To address this, Delta employs a masking
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strategy Wettig et al. (2023), where tokens in the input sequence are randomly masked to simulate
ambiguity. Delta can filter out hallucinated content more effectively during inference by comparing
the model’s predictions on masked versus unmasked inputs.

Our experimental results demonstrate the effectiveness of the Delta method, achieving notable im-
provements in question-answering accuracy. Specifically, Delta delivered gains of approximately 3
and 6 percentage points on SQuAD v1.1 and v2 Rajpurkar et al. (2016), respectively. It achieved a
14.53 percentage point improvement in the no-answer exact match score on SQuAD v2. For more
challenging QA datasets like TriviaQA Joshi et al. (2017) and Natural Questions Kwiatkowski et al.
(2019), Delta achieved enhancements of 7 and 2 percentage points under-sampling decoding com-
pared to the baseline. These results confirm Delta’s robustness and effectiveness in context-rich
datasets, showcasing its ability to mitigate hallucinations and enhance performance.

However, a fundamental limitation of Delta is its marginal effectiveness on tasks without explicit
contextual information. For instance, datasets like CommonsenseQA Talmor et al. (2019) and
MMLU, which rely heavily on general or implicit knowledge, showed minimal or no improvements,
indicating the method’s specific suitability for context-driven scenarios.

2 RELATED WORKS

Recent studies have focused on mitigating hallucinations in large language models (LLMs) and large
vision-language models (LVLMs) Hinck et al. (2024), where models tend to generate inaccurate or
irrelevant outputs. In vision-language models, such hallucinations often result from over-reliance on
language priors or biases embedded in the datasets. For example, in LVLMs, object hallucinations
occur when models predict objects not present in the image due to biased object co-occurrences in
the training data. Several approaches have been developed to address this, including Visual Con-
trastive Decoding (VCD) and Instruction Contrastive Decoding (ICD).

The Visual Contrastive Decoding (VCD) method aims to reduce object hallucinations by contrasting
the outputs generated from original and distorted visual inputs. This approach does not require
additional training or external pre-trained models, making it a computationally efficient solution. By
introducing visual uncertainty, such as Gaussian noise, the method identifies and mitigates instances
where the model overly relies on language priors or statistical biases from the training data, thereby
reducing hallucinations Leng et al. (2024).

Similarly, the Instruction Contrastive Decoding (ICD) technique is employed to tackle hallucina-
tions in multimodal tasks by incorporating instruction disturbances. This method manipulates the
confidence of multimodal alignment in the model’s visual and textual inputs, helping it differentiate
between hallucinated and relevant tokens. By applying contrastive penalties to tokens influenced by
instruction disturbances, ICD effectively reduces the generation of hallucinated outputs, especially
in complex visual contexts Leng et al. (2024).

In addition, the work context-aware decoding (CAD) has Shi et al. (2024) demonstrated a similar
outcome to our Delta method by adjusting the output probabilities of LMs, amplifying the differ-
ences between outputs generated with and without the given context. This contrastive approach
encourages models to prioritize contextual information during text generation. Notably, CAD can
be applied to pre-trained LMs without additional training. Unlike our Delta method, the method is
mainly based on context-driven datasets, making it less generalizable than the Delta method, which,
in theory, could apply to all textual inputs.

Both approaches are part of a growing body of work exploring contrastive mechanisms and fine-
grained multimodal alignment techniques to mitigate hallucinations in models that integrate vision
and language processing. Future research will likely explore more robust mechanisms further to
improve model reliability across different types of multimodal tasks.

3 METHOD

The work introduces Delta, a novel method that effectively mitigates hallucinations in text-based
large-language models. The core idea behind Delta is to address the issue of hallucinations by ma-
nipulating the inference process itself. Specifically, the method generates output tokens from the
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model using a standard inference procedure, as outlined in Equation 1. Building on hypotheses in-
spired by Leng et al. (2024), which suggest that incomplete prompting or missing information tends
to amplify hallucination effects, Delta aims to mitigate this by leveraging a contrastive decoding
approach.

Delta dynamically adjusts for incomplete information in this approach by comparing the outputs
generated from masked and unmasked input versions. The key concept behind Delta is as follows:
by randomly masking input tokens, the model generates outputs that are more likely to be filled with
hallucinated information. Then, by subtracting the hallucinated logits (generated from the masked
input) from the original logits, Delta extracts the ”clean” logits—those less influenced by halluci-
nated content. This process significantly reduces the likelihood of hallucinations, as demonstrated
in Figure 1, leading to more accurate and reliable outputs in context-dependent tasks.

Figure 1: Illustrating Delta method by contrastive decoding with masked input prompting

3.1 INFERENCE FROM LANGUAGE MODEL DECODER

In large language models (LLMs), the inference process involves predicting the next token in a
sequence based on the previously generated tokens. Given an input sequence x and generated tokens
y, we can have z = [x0, x1, . . . , xn−1, y1, . . . , yt−1] where n is the index of the sequence, the
conditional probability of the next token yt at time step t is modeled as:

Pθ(yt | z) = softmax (logitθ(yt | z)) (1)

In this equation, the model generates tokens sequentially, where the logits are computed using the
model’s parameters θ. This process is crucial for autoregressive tasks like text generation, where
each token is conditioned on all the tokens that came before it.

3.2 EFFECT OF FUZZIFIED (MASKED) TEXT ON HALLUCINATIONS

Masking portions of input text in large language models can exacerbate hallucinations. For instance,
consider the sentence: ”There is a moldy banana on the table. The color of the banana is ””. If the
word ”moldy” is masked and replaced with the token ”MASK,” the sentence becomes ”There is a
MASK banana on the table. The color of the banana is.” In this case, a model that relies heavily
on its pre-trained knowledge may output a high logit value for ”yellow,” a common association for
bananas, even though ”brown” would be the more accurate color based on the original context. This
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behavior highlights how the model might default to its prior associations when deprived of important
contextual cues, leading to an output that is factually incorrect or ”hallucinated.”

The issue stems from the model’s tendency to draw upon its pre-trained knowledge to fill the missing
context. Without access to specific context or visual input, the model resorts to typical patterns
learned during pre-training, such as associating bananas with the color ”yellow,” a more frequently
seen context in training data. This reliance on default associations can result in outputs that are
not grounded in the given input but instead reflect generalized patterns, which may not always be
accurate. As illustrated in Figure 1, this effect occurs when the masking introduces ambiguity or
removes essential information, leading the model to generate plausible yet erroneous answers that
fail to account for the specific context of the prompt.

3.3 TEXT SEQUENCE MASKING

In this process, we introduce ambiguity by randomly masking a portion of tokens within the input
sequence. Given an input sequence x = [x0, x1, . . . , xn−1], where n is the length of the sequence,
several tokens are replaced according to a predefined masking ratio. Specifically, the tokens to
be masked are selected randomly, and the total number of masked tokens is determined by m =
⌊rmask · n⌋, where rmask ∈ [0, 1] represents the masking ratio. The indices of the masked tokens are
randomly selected and gathered into the set Imask = {i0, i1, . . . , im}.

The masked sequence is formalized in the following equation:

mask(x) =
[
x′
0, x

′
1, . . . , x

′
n−1

]
, x′

i =

{
MASK if i ∈ Imask

xi otherwise
(2)

The MASK token replaces the original tokens at the selected positions in this new sequence. The
remaining tokens in the sequence remain unchanged. When such masked sequences are processed
by large language models (LLMs), the model tends to predict tokens based on incomplete or missing
context. This often leads to generating hallucinated words—words that are statistically likely based
on the model’s training data but not necessarily aligned with the original context.

3.4 CONTRASTIVE DECODING

The Delta method leverages contrastive decoding to enhance inference accuracy and reduce halluci-
nations in generated outputs. The key idea is to compare the predictions from masked and unmasked
input sequence versions during token generation. At each time step t, the model generates the next
token yt by conditioning on the unmasked sequence z = [x0, . . . , xn−1, y1, . . . , yt−1] as well as its
masked counterpart mask(z) where the n is the index of the sequence x. The contrastive decoding
process can be formalized in equation 3.

Pdelta(yt | z) = softmax [(1 + α) · logitθ(yt | z)− α · logitθ(yt | mask(z))] (3)

In this equation, α ∈ [0, 1] (logit ratio) is a tunable hyperparameter that adjusts the relative sig-
nificance of the masked logits. By subtracting the masked logits, which tend to induce stronger
hallucinations, the method effectively reduces the influence of hallucinated token values in the orig-
inal logits. The non-hallucinated tokens increase through (1 + α) · logitθ(yt | z). As the model
prioritizes more plausible predictions from the unmasked context, this incrementation of probabil-
ities for non-hallucinated tokens leads to a more accurate and reliable output. This implies that a
higher α value can filter higher levels of hallucinations and amplify the level of non-hallucinated
tokens.

3.5 ADAPTIVE PLAUSIBILITY CONSTRAINTS

To prevent the language model from generating imbalanced or semantically incorrect sequences.
The work applied Adaptive Plausibility Constraints (APC) based on the Li et al. (2023a). The goal
is to construct a set Vhead such that the logit with probability higher than the particular threshold,
which is determined by the β, is not selected to the set Vhead.
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Vhead(x<t) =
{
xt ∈ V : Pθ(xt | x<t) ≥ β ·max

w
Pθ(w | x<t)

}
(4)

Applying to APC, the language model could generate meaningful and semantically correct sentences
even with the Delta method.

3.6 COMPUTING DELTA FOR CONTRASTIVE DECODING

Finally, the Delta method is computed during contrastive decoding. The core idea involves adjusting
the logits for token generation by contrasting predictions from unmasked and masked versions of
the input sequence. The following conditional equation defines how tokens are sampled at each time
step t, represented by yt:

yt ∼ softmax [(1 + α) · logitθ(y | z)− α · logitθ(y | mask(z))] , subject to yt ∈ Vhead(z<t) (5)

Here, the sequence z, which includes previously generated tokens, is checked against a set of plau-
sible sequences Vhead(x<i). If z is deemed plausible, the model generates a token using modified
logits, where the contribution of the unmasked sequence is amplified by a factor of (1 + α), and the
contribution of the masked sequence is penalized by a factor of α. The resulting logits are passed
through a softmax function to produce a probability distribution over the next possible tokens. If z
does not belong to Vhead(x<i), the probability of generating a token is set to zero. This contrastive
decoding mechanism enhances the model’s ability to reduce hallucinations by favoring contextually
relevant token predictions over potentially misleading ones.

4 EXPERIMENTATION DESIGN

The experiment with the Delta method is conducted on a range of question-answering datasets and
common-sense answering evaluations to assess its ability to mitigate hallucinations. Furthermore,
the study presents several empirical observations to explore the characteristics of the Delta method
when applied to the model used in this work.

4.1 EVALUATION DATASETS

To evaluate our method comprehensively, we selected diverse datasets that target various aspects
of language model performance. These datasets are categorized based on their inclusion of con-
text, question types, and the challenges they pose, providing a robust foundation for assessing the
effectiveness of our approach.

The Stanford Question Answering Dataset (SQuAD) Rajpurkar et al. (2016) is widely used for train-
ing and evaluating machine reading comprehension models. SQuAD v1.1 contains over 100,000
question-answer pairs, with answers found directly in the text, while SQuAD v2 introduces over
50,000 unanswerable questions. This additional challenge makes SQuAD v2 particularly valuable
for hallucination testing. Unanswerable questions allow us to assess if a model can correctly avoid
generating answers when no relevant information is present.

TriviaQA is a large-scale question-answering dataset comprising over 650,000 question-answer
pairs from trivia quizzes Joshi et al. (2017). It is more challenging than SQuAD because the an-
swers can be spread across long and complex documents, including Wikipedia articles and web
documents. The dataset evaluates models’ ability to retrieve answers from longer, less structured
texts. Google’s Natural Questions (NQ) dataset Kwiatkowski et al. (2019) contains questions that
users naturally ask in Google search queries. The answers are retrieved from long Wikipedia docu-
ments, and only a tiny portion of the document is directly relevant to the answer. This dataset tests
models on open-domain question answering, requiring retrieval and comprehension of long papers
with minimal direct context.

The four datasets mentioned above all include contextual information, and our method is expected
to demonstrate significant improvements in them. In contrast, we also prepared two standard
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question-answering datasets without context, where we anticipate limited performance gains from
our method.

CommonsenseQA Talmor et al. (2019) is a dataset that evaluates a model’s ability to answer ques-
tions requiring commonsense answering. It consists of multiple-choice questions, each testing the
model’s understanding of basic commonsense knowledge that cannot be easily derived from the text
alone, requiring inference beyond surface-level information. MMLU (Massive Multitask Language
Understanding) Hendrycks et al. (2021) is a comprehensive benchmark covering 57 subjects across
various domains, such as humanities, STEM, social sciences, and more. MMLU is designed to as-
sess a language model’s knowledge across multiple disciplines, making it a robust test of general
and subject-specific understanding of language models.

4.2 EXPERIMENTATION SET-UP

We utilize the Llama 3.1 8B Instruct model with 4-bit quantization as the baseline configuration
Dettmers et al. (2023). The same model setup is applied for the Delta method, with parameters
fixed at rmask = 0.7, α = 0.3, and β = 0.1 for all experiments. All experiments utilize the
end-of-sequence (eos) token as the MASK token.

The experiments are divided into two categories: with sampling and without sampling. For the
sampling experiments, the temperature is set to 1 to observe the impact of sampling on the Delta
method’s performance compared to non-sampling configurations.

Dataset Sample Name Exact Match F1 HasAns EM NoAns EM

SQuAD v1.1

w/o Baseline 58.81741 72.37654 - -
w/o Delta 61.81646 73.37708 - -
w/ Baseline 57.51183 71.74116 - -
w/ Delta 61.94891 73.39019 - -

SQuAD v2

w/o Baseline 41.32907 47.55297 59.07557 23.63331
w/o Delta 47.80595 52.94927 57.47301 38.16653
w/ Baseline 40.09096 46.47858 58.21525 22.01850
w/ Delta 46.20568 51.54408 58.62011 33.82675

TriviaQA

w/o Baseline 48.27240 - - -
w/o Delta 48.12751 - - -
w/ Baseline 35.38787 - - -
w/ Delta 43.22893 - - -

Natural Question

w/o Baseline 14.87535 - - -
w/o Delta 14.57064 - - -
w/ Baseline 9.25208 - - -
w/ Delta 11.80155 - - -

Table 1: Performance comparison between Baseline and Delta across various datasets.

5 RESULTS

To evaluate the effectiveness of the Delta method, we conducted comprehensive experiments on
diverse QA datasets, including SQuAD versions 1.1 and 2, TriviaQA, and Natural Questions. The
results, summarized in Table 1, highlight the performance improvements achieved by Delta across
these benchmarks.

5.1 SQUAD V1.1 AND SQUAD V2

In SQuAD v1.1, the Delta method demonstrated its ability to enhance performance significantly,
achieving exact match scores of 61.95 and 61.82 in experiments with and without sampling, re-
spectively. These scores represent improvements of 4.44 and 3 percentage points over the baseline,
underscoring the method’s potential for refining model accuracy in extracting precise answers from
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contextual data. In addition to exact match scores, F1 scores showed noticeable enhancements, fur-
ther emphasizing the Delta method’s robustness in handling contextual environments and reducing
hallucinations.

Similarly, in SQuAD v2, which introduces a more challenging setting with unanswerable questions,
the Delta method exhibited superior performance. The exact match scores surpassed the baseline by
approximately six percentage points in both sampling and non-sampling scenarios, demonstrating
the method’s adaptability to different configurations. A particularly noteworthy result was observed
in the “no answer” category, where the Delta method achieved remarkable improvements. For the
exact match score of “no answer,” the technique recorded increases of 14.53 and 11.81 percentage
points for sampling and non-sampling setups, respectively. This indicates that the Delta method
is especially effective when the context does not support a valid answer, highlighting its ability to
mitigate hallucinations and prevent the generation of misleading information.

5.2 TRIVIAQA AND NATURAL QUESTIONS

The Delta method was evaluated on the TriviaQA and Natural Questions benchmarks to assess its ef-
fectiveness in context-aware question answering. The results demonstrated that increasing the sam-
pling temperature significantly enhanced both baseline and Delta’s performance, with improvements
of 7.84 percent on TriviaQA and 2.55 percent on Natural Questions. However, Delta’s progress was
marginal without sampling, reflecting the datasets’ complexity, such as multi-paragraph answer ex-
traction in TriviaQA. The study suggests these results occur because sampling, by nature, is more
prone to generating hallucinations due to the higher likelihood of sampling lower logit tokens. Since
Delta reduces the logits of hallucinated tokens, it helps prevent them from being sampled, leading to
better performance in tasks requiring more context-aware reasoning. This is why Delta shows more
significant improvements in generation with sampling decoding.

Name CommonsenseQA (Acc) MMLU (Acc)
Baseline 75.51188 65.93078
Delta 75.26618 65.63880

Table 2: Accuracy comparison between Baseline and Delta models on CommonsenseQA and
MMLU datasets.

(a) Exact Match Heatmap for SQuAD v1.1 (b) F1 Score Heatmap for SQuAD v1.1

Figure 2: Comparison of Exact Match and F1 Score Heatmaps for Delta Model on SQuAD v1.1

5.3 COMMONSENSE QUESTION-ANSWERING AND MMLU

CommonsenseQA and MMLU are two question-answering benchmarks that differ from context-rich
datasets in that they do not provide additional supporting context for the questions. Instead, models
must rely entirely on the knowledge trained during pre-training to generate answers. This difference
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limits the applicability of Delta’s random masking approach, which focuses on contrasting masked
contextual information to mitigate hallucinations.

As presented in Table 2, the evaluation results on these datasets show that Delta had marginal per-
formance declines of 0.25 percentage points on CommonsenseQA and 0.29 percentage points on
MMLU compared to the baseline. These small decreases indicate that Delta’s masking mechanism,
designed to work on context-dependent tasks, does not enhance performance when no external con-
text is provided.

The result underscores Delta’s vital limitation. While effective at reducing hallucinations and im-
proving accuracy in tasks where context is explicitly available, its impact is minimal in context-free
scenarios. This suggests that Delta is best suited for applications where contextual information is
critical in guiding the model’s predictions rather than tasks requiring innate knowledge or reasoning
purely from pre-trained parameters.

6 ABLATION STUDY

In the ablation study, we investigated the effects of varying masking ratios and logit ratios (α) on the
overall performance of our method. These experiments were conducted on the SQuAD v1.1 dataset
with sampling, using a temperature of 1 and β = 0.1 as the experimental setup. Masking ratios
were set at 0.3, 0.5, and 0.7, while logit ratios ranged from 0.1 to 0.5. The results are summarized
in heatmaps to provide a clear visualization of performance trends.

Figure 2 illustrates the heatmaps for exact match and F1 scores. The findings reveal minimal varia-
tion across different parameter settings, with standard deviations of 0.66 for exact match and 0.21 for
F1 score. Notably, all parameter configurations achieved results that exceeded the baseline scores of
57.51 for exact match and 71.74 for F1. This highlights the robustness of the Delta method, demon-
strating its ability to consistently perform well without requiring extensive hyperparameter tuning.
These results emphasize the method’s adaptability and reliability across various parameter values.

7 SUMMARY AND FUTURE WORKS

This study introduces Delta, an inference-time method designed to mitigate hallucinations in large
language models without requiring additional fine-tuning. Delta operates by randomly masking in-
put tokens to identify hallucination-prone logits and then subtracting these from the original logits,
effectively reducing the influence of hallucinations. Experimental results demonstrate Delta’s effec-
tiveness in context-rich question-answering tasks, achieving significant performance improvements
across datasets such as SQuAD, TriviaQA, and Natural Questions. However, its impact is limited in
context-free tasks like CommonsenseQA and MMLU, where the model relies solely on pre-trained
knowledge instead of external context. These findings position Delta as a powerful solution tailored
for context-dependent tasks, offering valuable insights for reducing hallucinations in real-world ap-
plications.

Delta employs a straightforward random masking method, which has proven effective but leaves
room for improvement. Future research will focus on developing advanced and adaptive masking
strategies. One promising direction is targeted masking, prioritizing critical tokens such as proper
nouns and key terms rather than applying masking uniformly. Additionally, leveraging techniques
like part-of-speech tagging to prioritize tokens of higher informational value, such as nouns and
verbs, could refine the method further. These approaches could enhance Delta’s adaptability, making
it more robust across diverse QA scenarios.
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