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ABSTRACT

Self-supervised learning is a central component in many recent approaches to deep
multi-view clustering (MVC). However, we find large variations in the motivation
and design of self-supervision-based methods for deep MVC. To address this,
we present DeepMVC, a new, unified framework for deep MVC. Crucially, we
show that many recent methods can be regarded as instances of our framework
– allowing us to implement recent methods in a unified and consistent manner.
We make key observations about the effect of self-supervision, and in particular,
drawbacks of representation alignment. Motivated by these insights, we develop
several new DeepMVC instances, with new forms of self-supervision. We conduct
extensive experiments, and find that (i) the popular contrastive alignment degrades
performance when the number of views becomes large; (ii) all methods benefit from
some form of self-supervision; and (iii) our new instances outperform previous
methods on several datasets. Based on our findings, we suggest several promising
directions for future research. To enhance the openness of the field, we provide
an open-source implementation of DeepMVC, including recent models and our
new instances. Our implementation includes a consistent evaluation protocol,
facilitating fair and accurate evaluation of methods and components.

1 INTRODUCTION

Multi-view clustering (MVC) generalizes the standard clustering task to data where the instances to
be clustered are observed through multiple views, or by multiple modalities. In recent years, deep
learning architectures have seen widespread adoption in MVC, resulting in the deep MVC subfield.
Methods developed within this subfield have shown state-of-the-art clustering performance on several
multi-view datasets (Zhou and Shen, 2020; Trosten et al., 2021; Xu et al., 2021a; Mao et al., 2021;
Wang et al., 2022a;b), largely outperforming traditional, non-deep-learning-based methods (Zhou
and Shen, 2020).

Despite these promising developments, we identify significant drawbacks with the current state of
the field. Self-supervised learning (SSL) is a crucial component in many recent methods for deep
MVC (Zhou and Shen, 2020; Trosten et al., 2021; Xu et al., 2021a; Mao et al., 2021; Wang et al.,
2022a;b). However, the large number of methods, all with unique components and arguments about
how they work, makes it challenging to identify clear directions and trends in the development of
new components and methods. Methodological research in deep MVC thus lacks foundation and
consistent directions for future advancements. This effect is amplified by the large variations in the
implementation and evaluation of new methods. Network architectures, data preprocessing and data
splits, hyperparameter search strategies, evaluation metrics, and model selection strategies all vary
greatly across publications, making it difficult to properly compare methods from different papers.

To address these challenges, we present a unified framework for deep MVC, coupled with a rigorous
and consistent evaluation protocol, and an open-source implementation. Our 4 main contributions are
summarized as follows:
(1) DeepMVC framework. Despite the variations in the development of new methods, we recognize
that the majority of recent methods for deep MVC can be decomposed into the following fixed set
of components: (i) view-specific encoders; (ii) single-view SSL; (iii) multi-view SSL; (iv) fusion;
and (v) clustering module. The DeepMVC framework (Figure 1) is obtained by organizing these
components into a unified deep MVC model. Methods from previous work can thus be regarded as
instances of DeepMVC.
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(2) New instances of DeepMVC. Inspired by initial findings from the DeepMVC framework we
develop 6 new instances of DeepMVC, which outperform current state-of-the-art methods on several
multi-view datasets. The new instances include both novel and well-known types of self-supervision,
fusion and clustering modules.
(3) Open-source implementation
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Figure 1: Overview of the DeepMVC framework for a two-
view dataset. Different colors denote different components.
The framework is generalizable to an arbitrary number of
views by adding more view specific encoders (f ) and SV-
SSL blocks.

of DeepMVC and evaluation pro-
tocol. We provide an open-source1

implementation of DeepMVC, includ-
ing several recent methods, and our
new instances. The implementation
includes a shared evaluation protocol
for all methods, and all datasets used
in the experimental evaluation. By
making the datasets and all parts of
our implementation openly available,
we aim to facilitate simpler develop-
ment of new methods, as well as rig-
orous and accurate comparisons be-
tween methods and components.
(4) Evaluation of methods and components. We use the implementation of DeepMVC to evaluate
and compare several recent state-of-the-art methods and SSL components – both against each other,
and against our new instances. In our experiments, we both provide a consistent evaluation of
methods in deep MVC, and systematically analyze several SSL-based components – revealing how
they behave under different experimental settings.
The main findings from our work are:

• We discover a previously unknown drawback of contrastive alignment. Contrastive alignment of
view-specific representations works well for datasets with few views, but significantly degrades
performance when the number of views increases. Conversely, we find that maximization of mutual
information performs well on datasets with many views, while not being as strong on datasets with
fewer views.

• All methods included in our experiments benefit from at least one form of SSL. In addition to
contrastive alignment for few views and mutual information maximization for many views, we find
that autoencoder-style reconstruction improves overall performance of methods.

• Properties of the datasets, such as class (im)balance and the number of views, heavily impact the
performance of current MVC approaches. There is thus not a single “state-of-the-art” – it instead
depends on the datasets considered.

• Results reported by the original authors differ significantly from the performance of our re-
implementation for some baseline methods, illustrating the necessity of a unified framework
with a consistent evaluation protocol.

2 DEEPMVC FRAMEWORK

In this section we present the DeepMVC framework, its components and their purpose, and how
they fit together. This allows us to, in the next section, summarize recent work on deep MVC, and
illustrate that the majority of recent methods can be regarded as instances of our unified DeepMVC
framework.

Suppose we have a multi-view dataset consisting of n instances and V views, and let x(v)
i be the

observation of instance i through view v. The task of the DeepMVC framework is then to cluster the
instances into k clusters, and produce cluster membership indicators αic ∈ [0, 1], c = 1, . . . , k. The
framework is illustrated in Figure 1. It consists of the following components.
View-specific encoders. The framework is equipped with V deep neural network encoders
f (1), . . . , f (V ), one for each view. Their task is to produce the view-specific representations
z
(v)
i = f (v)(x

(v)
i ) from the input data.

Single-view self-supervised learning (SV-SSL). The SV-SSL component consists of a set of pretext
tasks (auxiliary objectives) that are designed to aid the optimization of the view-specific encoders.
Specifically, the tasks should be designed to help the encoders learn representations that simplify

1The implementation is available in the supplementary, and will be made publicly available upon publication.
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the clustering task. Each pretext task is specific to its designated view, and is isolated from all other
views.
Multi-view self-supervised learning (MV-SSL). MV-SSL is similar to SV-SSL – they are both
self-supervised modules whose goals are to help the encoders learn representations that are suitable
for clustering. However, MV-SSL leverages all views simultaneously in the pretext tasks, allowing
the model to exploit information from all views simultaneously to learn better features.
Fusion. The fusion component combines view-specific representations into a shared representation
for all views. Fusion is typically done using a (weighted) average (Li et al., 2019; Trosten et al.,
2021), or by concatenation (Huang et al., 2019a; Xin et al., 2021; Xu et al., 2021a). However, more
complex fusion modules using e.g. attention mechanisms (Zhou and Shen, 2020), are also possible.
Clustering module (CM). The CM is responsible for determining the cluster memberships based
on either the view-specific or fused representations. The CM can consist of a traditional clustering
method, such as k-means (MacQueen, 1967) or Spectral Clustering (Shi and Malik, 2000). These
CMs are applied to the fused representations after the other components have been trained, resulting
in a two-stage method that first learns fused representations, and then applies a clustering algorithm
to these representations.

Alternatively, the CM can be integrated into the model (Zhou and Shen, 2020; Trosten et al., 2021),
allowing it to be trained alongside the other components, possibly resulting in fused representations
that are better suited for clustering.
Loss functions and training. The loss functions for the models are specified by the SV-SSL,
MV-SSL, and CM components. To train the model, the terms arising from the different components
can be minimized simultaneously or they can be minimized in an alternating fashion. It is also
possible with pre-training/fine-tuning setups where the model is pre-trained with one subset of the
losses and fine-tuned with another subset of the losses.

We note that DeepMVC is a conceptual framework, and that a model is not necessarily completely
described by a list of its DeepMVC components. Consequently, it is possible for two models
with similar DeepMVC components to have slightly different implementations. This illustrates the
importance of our open-source implementation of DeepMVC, which allows the implementation of a
model to be completely transparent.

3 PREVIOUS METHODS AS INSTANCES OF DEEPMVC

Table 1 shows selected recent methods for deep MVC (the full table can be found in the supple-
mentary), categorized by its DeepMVC components, allowing for systematic comparisons between
models.
View-specific encoders. As can be seen in Table 1, all models use view-specific encoders to encode
views into view-specific embeddings. Multi-layer perceptrons (MLPs) are usually used for vector
data, while convolutional neural networks (CNNs) are used for image data.
SV-SSL and MV-SSL. Alongside the encoder network, many methods use decoders to reconstruct
the original views from either the view-specific representations or the fused representation. The
reconstruction task is the most common self-supervised pretext task, both for SV-SSL and for MV-
SSL. In SV-SSL, the views are reconstructed from their respective view-specific representations,
without any influence from the other views (Wang et al., 2015; Abavisani and Patel, 2018; Tang
et al., 2018; Sun et al., 2019; Zhang et al., 2020a;b; Zong et al., 2020; Xu et al., 2021b). In MV-SSL,
it is common to either do (i) cross view reconstruction, where all views are reconstructed from all
view-specific representations (Zhu et al., 2019); or (ii) fused view reconstruction, where all views are
reconstructed from the fused representation (Zhu et al., 2019; Li et al., 2019; Yin et al., 2020; Wang
et al., 2022a).

Aligning distributions of view-specific representations is another MV-SSL pretext task that has been
shown to produce representations suitable for clustering (Zhou and Shen, 2020). However, Trosten
et al. (2021) demonstrate that the alignment of representation distributions can be detrimental to the
clustering performance – especially in the presence of noisy or non-informative views. To avoid these
drawbacks, they propose Simple MVC (SiMVC) and Contrastive MVC (CoMVC). In the former, the
alignment is dropped altogether, whereas the latter includes a contrastive learning module that aligns
the view-specific representations at the instance level, rather than at the distribution level.
Clustering modules. Many deep MVC methods use subspace-based clustering modules (Abavisani
and Patel, 2018; Zhu et al., 2019; Sun et al., 2019; Wang et al., 2022b). These methods assume
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Table 1: Overview of selected methods from previous work (top) and proposed new instances
(bottom), and their DeepMVC components. The complete table of previous methods is included in
Supplementary Section B.
Model Ref Pub. Enc. SV-SSL MV-SSL Fusion CM
DCCAE Wang et al. (2015) ICML MLP Reconstruction CCA 1st view SC
DMSC Abavisani and Patel

(2018)
J. STSP CNN Reconstruction – Affinity

fusion SR, SC

MvSCN Huang et al. (2019a) IJCAI MLP Sp. Emb. MSE Al. Concat. k-means
DAMC Li et al. (2019) IJCAI MLP – Reconstruction Average DEC
SGLR-MVC Yin et al. (2020) AAAI MLP Variational

Reconstruction
Variational
Reconstruction

Weighted
sum GMM

EAMC Zhou and Shen (2020) CVPR MLP – Distribution Al.,
Kernel Al. Attention DDC

SiMVC Trosten et al. (2021) CVPR MLP/
CNN – – Weighted

sum DDC

CoMVC Trosten et al. (2021) CVPR MLP/
CNN – Contrastive Al. Weighted

sum DDC

Multi-VAE Xu et al. (2021a) ICCV CNN – Variational
Reconstruction Concat. Gumbel,

k-means
DMIM Mao et al. (2021) IJCAI MLP Min. superflous

information
Max. shared
information ? Encoder

output

Model Category Pub. Enc. SV-SSL MV-SSL Fusion CM
AE–KM Simple Ours MLP/

CNN Reconstruction – Concat. k-means

AE–DDC Simple Ours MLP/
CNN Reconstruction – Weighted

sum DDC

AECoKM Contrastive Al. Ours MLP/
CNN Reconstruction Contrastive Al. Concat. k-means

AECoDDC Contrastive Al. Ours MLP/
CNN Reconstruction Contrastive Al. Weighted

sum DDC

InfoDDC Mutual
information Ours MLP/

CNN – Max. mutual
information

Weighted
sum DDC

MV-IIC Mutual
information Ours MLP/

CNN – IIC Over-
clustering – IIC,

k-means

Abbreviations: “–” = Not included, “?” = Not specified, Al. = Alignment, Concat. = Concatenate, CCA =
Canonical correlation analysis, DDC = Deep divergence-based clustering, DEC = Deep embedded clustering,
SC = Spectral clustering, Sp. Emb. = Spectral Embedding, SR = Self-representation,

that representations, either view-specific or fused, can be decomposed into linear combinations of
each other. Once determined, the self-representation matrix containing the coefficients for these
linear combinations is used to compute an affinity matrix, which in turn is used as input to spectral
clustering. This requires the full n × n self-representation matrix available in memory, which is
computationally prohibitive for datasets with a large number of instances.

Other clustering modules have also been adapted to deep MVC. The clustering module from Deep
Embedded Clustering (DEC) (Xie et al., 2016), for instance, is used in several models (Li et al.,
2019; Du et al., 2021; Xin et al., 2021; Xu et al., 2021b; Wang et al., 2022a). Recently, the Deep
Divergence-Based Clustering (DDC) (Kampffmeyer et al., 2019) clustering module has been used in
several state-of-the-art deep MVC models (Zhou and Shen, 2020; Trosten et al., 2021). In addition,
some methods treat either the encoder output or the fused representation as cluster membership
vectors (Zhang et al., 2020b; Mao et al., 2021).

Lastly, some methods adopt a two-stage approach, where they first use the SSL components to
learn representations, and then apply a traditional clustering method, such as k-means (Huang et al.,
2019b;a; Zhang et al., 2020a; Zong et al., 2020; Xu et al., 2021a), a Gaussian mixture model (Yin
et al., 2020), or spectral clustering (Wang et al., 2015), on the trained representations.

4 SSL AND CONTRASTIVE ALIGNMENT – DRAWBACKS AND ADVANTAGES

The DeepMVC framework allows us to accurately examine the effect of different components across
models and datasets. In this section we briefly present initial experimental results with previous
methods – obtained with our open-source implementation of DeepMVC – related to self-supervision
and contrastive alignment. This will motivate the new instances presented in Section 5, and guide the
full experimental evaluation presented in Section 6.
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Table 2: Clustering accuracies from ablation study
with SSL components.

NoisyMNIST Caltech7
Model w/o SSL w/ SSL w/o SSL w/ SSL

DMSC 0.54 0.66 (+0.12) 0.35 0.50 (+0.15)
EAMC 1.00 0.83 (−0.17) 0.36 0.44 (+0.08)
Multi-VAE 0.52 0.98 (+0.46) 0.31 0.47 (+0.15)
CoMVC 1.00 1.00 (0.00) 0.41 0.38 (−0.02)

Table 3: Clustering accuracies on datasets with varying
number of views. Standard deviations are shown in
parentheses.

EdgeMNIST Caltech7 PatchedMNIST
(2 views) (6 views) (12 views)

SiMVC 0.89 (0.06) 0.41 (0.02) 0.84 (0.04)
CoMVC 0.97 (0.08) 0.38 (0.01) 0.73 (0.12)

2 3 4 5 6
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0.5

Number of views
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C
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Figure 2: Clustering accuracy when the
number of views in Caltech7 is increased
from 2 to 6.

Advantage of self-supervision. Table 2 shows the results of an ablation study with the SV-SSL and
MV-SSL components, conducted with 4 models from previous work. We observe that self-supervision
is beneficial for the performance of the model in most cases. The additional supervisory signal from
the SSL components prevents representation collapse, and helps the model learn clustered represen-
tations. Interestingly, EAMC on NoisyMNIST performs best without any form of self-supervision.
This is likely because the distribution alignment in EAMC attempts to align representations from the
noisy view to those from the noise-free view, resulting in representations that are less separable. We
discuss this phenomenon further in the following paragraph.

Performance of contrastive alignment-based models. We experiment with SiMVC and
CoMVC (Trosten et al., 2021) – where the former is a simple baseline model, and the latter is
the same model with an additional contrastive learning module. The simplicity of these models allows
us to accurately assess the effect of the contrastive learning component. The results in Table 3 show
that contrastive learning (CoMVC) outperforms the baseline (SiMVC) when the number of views
is low, but when the number of views increases, CoMVC is outperformed by the non-contrastive-
learning-based SiMVC. The same trend can be seen in Figure 2, where the models are trained on
Caltech7 with an increasing number of views. CoMVC performs best with only 3 views, whereas
SiMVC performs best when all views are included. We argue that this is related to an issue with
contrastive alignment, where a dataset with many views is more likely to have less informative
views, where some clusters are inseparable from each other. Aligning representations will then cause
view-specific representations to be aligned to the least informative view(s), resulting in clusters that
are harder to separate in the representation space. For completeness, we provide a more thorough
explanation of this phenomenon in Supplementary Section C.

5 NEW INSTANCES OF DEEPMVC

The above findings, as well as the overview in Table 1, indicate that SV-SSL and MV-SSL are central
components in recent methods for deep MVC. With our new instances of DeepMVC, we aim to
further investigate the effect of different SSL components, as well as to address the many-views-issue
with contrastive alignment highlighted above. In addition to alignment of view-specific representa-
tions (Zhou and Shen, 2020; Du et al., 2021; Trosten et al., 2021), we identify reconstruction (Wang
et al., 2015; Abavisani and Patel, 2018; Li et al., 2019) and mutual information maximization (Ji
et al., 2019; Wang et al., 2022b) to be promising directions for the new instances. Furthermore, we
recognize that simple baselines with few or no SSL components – exemplified by SiMVC (Trosten
et al., 2021) – might perform similarly to more complicated methods, while being significantly easier
to implement and faster to train. It is therefore crucial to include such methods in an experimental
evaluation, in order to properly determine whether additional SSL-based components are beneficial
for the models’ performance. Finally, our overview of recent work shows that both traditional cluster-
ing modules (e.g. k-means) and deep learning-based clustering modules (e.g. DDC) are commonly
used in deep MVC.
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In total, we develop 6 new DeepMVC instances in 3 categories. Evaluating these instances and
several methods from recent work, allows us to accurately evaluate methods and components, and
investigate how they behave for datasets with varying characteristics.
Simple baselines: AE–KM has view-specific autoencoders (AEs) with a mean-squared-error (MSE)
loss as its SV-SSL task. The views are fused by concatenation and the concatenated representations are
clustered using k-means after the view-specific autoencoders have been trained. AE–DDC uses view-
specific autoencoders with an MSE loss as its SV-SSL task. The views are fused using a weighted
sum and the fused representations are clustered using the DDC clustering module (Kampffmeyer
et al., 2019).
Contrastive alignment-based: AECoKM extends AE–KM with a contrastive loss on the view-
specific representations. We use the multi-view generalization of the NT-Xent (contrastive) loss
by Trosten et al. (2021), without the “other clusters” negative sampling. AECoDDC extends AE–
DDC using the same generalized NT-Xent contrastive loss on the view-specific representations.
Mutual information-based: InfoDDC maximizes the mutual information (MI) between the view-
specific representations, using the MI loss from Invariant Information Clustering (IIC) (Ji et al., 2019).
The MI maximization is regularized by also maximizing the entropy of view-specific representations.
The view-specific representations are fused using a weighted sum, and the fused representations are
clustered using DDC (Kampffmeyer et al., 2019). MV-IIC is a multi-view generalization of IIC (Ji
et al., 2019), where cluster assignments are computed for each of the view-specific representations.
The MI between pairs of these view-specific cluster assignments is then maximized using the
information maximization loss from IIC. In order to get a final shared cluster assignment for all views,
the view-specific cluster assignments are concatenated and clustered using k-means. As in IIC, this
model includes 5 over-clustering heads as its MV-SSL task.

The new instances are also summarized in Table 1. Further details, including the exact loss functions,
are provided in Supplementary Section D.

6 EXPERIMENTS

In this section we provide a rigorous evaluation of methods and their DeepMVC components. Inspired
by the initial findings in Section 4, we focus mainly on the SSL and CM components in our evaluation.
We found these components to be most influential on the methods’ performance. For completeness,
we also include experiments with different fusion types in Supplementary Section E.

6.1 SETUP

Baselines. In addition to the new instances presented in Section 5, we include 6 baseline models
from previous work in our experiments. The following baseline models were selected to include a
diverse set of framework components in the evaluation: (i) Deep Multimodal Subspace Clustering
(DMSC) (Abavisani and Patel, 2018); (ii) Multi-view Spectral Clustering Network (MvSCN) (Huang
et al., 2019a); (iii) End-to-end Adversarial-attention Multimodal Clustering (EAMC) (Zhou and
Shen, 2020); (iv) Simple Multi-View Clustering (SiMVC) (Trosten et al., 2021); (v) Contrastive
Multi-View Clustering (CoMVC) (Trosten et al., 2021); (vi) Multi-view Variational Autoencoder
(Multi-VAE) (Xu et al., 2021a).

As can be seen in Table 1, this collection of models includes both reconstruction-based and alignment-
based SSL, as well as traditional (k-means and spectral) and deep learning-based clustering modules.
They also include several fusion strategies and encoder networks. Section 6.3 includes an ablation
study that examines the influence of SSL components in these models.
Datasets. We evaluate the baselines and new instances on 8 different multi-view datasets, prioritizing
datasets that were also used in the original publications for the selected baselines. Not only does this
result in a diverse collection of datasets common in deep MVC – it also allows us to compare the
performance of our implementations to what was reported by the original authors. The results of this
comparison are given in Supplementary Section E.

The following datasets are used for evaluation: (i) NoisyMNIST / NoisyFashion: A version of
MNIST (Lecun et al., 1998) / FashionMNIST (Xiao et al., 2017) where the first view contains the
original image, and the second view contains an image sampled from the same class as the first
image, with added Gaussian noise (σ = 0.2). (ii) EdgeMNIST / EdgeFashion: Another version
of MNIST / FashionMNIST where the first view contains the original image, and the second view
contains an edge-detected version of the same image. (iii) COIL-20: The original COIL-20 (Nene
et al., 1996) dataset, where we randomly group the images of each object into groups of size 3,
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Table 4: Aggregated evaluation results for the dataset groups. Models are sorted from lowest to
highest by average Z-score for each group. Higher Z-scores indicate better clusterings. Our new
instances are underlined.

(a) All datasets (b) Random pairings (c) Many views (d) Balanced vs. imbalanced
Model BL Z̄ Model CA Z̄ Model MI CA Z̄ Model DDC Z̄bal Z̄imb

MvSCN ✘ −2.23 MvSCN ✘ −2.49 MvSCN ✘ ✘ −1.78 MvSCN ✘ −2.41 −1.78
AECoKM ✘ −0.32 DMSC ✘ −0.54 AECoKM ✘ ✓ −0.83 DMSC ✘ −0.39 0.45
EAMC ✘ −0.22 InfoDDC ✘ −0.41 EAMC ✘ ✘ −0.75 InfoDDC ✓ −0.13 1.18
DMSC ✘ −0.11 EAMC ✘ −0.17 AE–DDC ✘ ✘ −0.36 EAMC ✓ 0.00 −0.75
AE–KM ✓ 0.16 MV-IIC ✘ 0.05 CoMVC ✘ ✓ −0.33 MV-IIC ✘ 0.01 1.06
InfoDDC ✘ 0.20 AE–KM ✘ 0.11 SiMVC ✘ ✘ −0.12 AE–KM ✘ 0.03 0.56
AE–DDC ✓ 0.26 Multi-VAE ✘ 0.32 AE–KM ✘ ✘ 0.23 AECoKM ✘ 0.08 −1.54
SiMVC ✓ 0.27 SiMVC ✘ 0.35 AECoDDC ✘ ✓ 0.28 CoMVC ✓ 0.30 0.25
MV-IIC ✘ 0.27 AE–DDC ✘ 0.56 Multi-VAE ✘ ✘ 0.38 SiMVC ✓ 0.31 0.16
CoMVC ✘ 0.29 AECoKM ✓ 0.59 DMSC ✘ ✘ 0.45 AE–DDC ✓ 0.33 0.06
Multi-VAE ✘ 0.43 CoMVC ✓ 0.63 MV-IIC ✓ ✘ 0.98 Multi-VAE ✘ 0.42 0.47
AECoDDC ✘ 0.65 AECoDDC ✓ 0.82 InfoDDC ✓ ✘ 1.15 AECoDDC ✓ 0.92 −0.13

Abbreviations: BL = Simple baseline, CA = Contrastive alignment, DDC = Deep divergence-based clustering
MI = Mutual information, Z̄ = Average Z-score for group.

resulting in a 3-view dataset. (iv) Caltech7 / Caltech20: A subset of the Caltech101 (Fei-Fei et al.,
2007) dataset including 7 / 20 classes. We use the 6 different features extracted by Li et al. (Li et al.,
2015), resulting in a 6-view dataset2. (v) PatchedMNIST: A subset of MNIST containing the first
three digits, where views are extracted as 7× 7 non-overlapping patches of the original image. The
corner patches are dropped as they often contain little information about the digit, resulting in a
dataset with 12 views. Each patch is resized to 28× 28.

All views are individually normalized so that the values lie in [0, 1]. Following recent work on deep
MVC, we train and evaluate on the full datasets (Zhou and Shen, 2020; Trosten et al., 2021; Xu et al.,
2021a; Mao et al., 2021). More dataset details are provided in Supplementary Section E.
Hyperparameters. The baselines use the hyperparameters reported by the original authors, because
(i) it is not feasible for us to tune hyperparameters individually for each model on each dataset; and
(ii) it is difficult to tune hyperparameters in a realistic clustering setting due to the lack of labeled
validation data.

New instances use the same hyperparameters as for the baselines wherever possible3. Otherwise, we
set hyperparameters such that loss terms have the same order of magnitude, and such that the training
converges. We refrain from any hyperparameter tuning that includes the dataset labels to keep the
evaluation fair and unsupervised. We include a hyperparameter sweep in the supplementary, in order
to assess the new instances’ sensitivity to changes in their hyperparameter. However, we emphasize
that the results of this sweep were not used to select hyperparameters for the new instances. All models
use the same encoder architectures and are trained for 100 epochs with the Adam optimizer (Kingma
and Ba, 2015).
Evaluation protocol. We train each model from 5 different initializations. Then we select the
run that resulted in the lowest value of the loss and report the performance metrics from that run,
following (Kampffmeyer et al., 2019; Trosten et al., 2021). This evaluation protocol is both fully
unsupervised, and is not as impacted by poorly performing runs, as for instance the mean performance
of all runs. The uncertainty of the performance metric under this model selection protocol is estimated
using bootstrapping4. We measure clustering performance with the accuracy (ACC) and normalized
mutual information (NMI). Both metrics are bounded in [0, 1], and higher values correspond to better
performing models, with respect to the ground truth labels.

6.2 EVALUATION RESULTS

To emphasize the findings from our experiments, we compute the average Z-score for each model, for
4 groups of datasets5. Z-scores are calculated by subtracting the mean and dividing by the standard
deviation of results, per dataset and per metric. Table 4 shows Z-scores for the groups: (i) All datasets.

2The list of classes and feature types is included in Supplementary Section E.
3Hyperparameters for all models are listed in Supplementary Section E.
4Details on the computations of metrics and uncertainty are included in Supplementary Section E.
5A complete table with metrics and uncertainties is included in Supplementary Section E.
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(ii) Random pairings: Datasets generated by randomly pairing within-class instances to synthesize
multiple views (NoisyMNIST, NoisyFashion, COIL-20). (iii) Many views: Datasets with many
views (Caltech7, Caltech20, PatchedMNIST). (iv) Balanced vs. imbalanced: Datasets with balanced
classes (NoisyMNIST, NoisyFashion, EdgeMNIST, EdgeFashion, COIL-20, PatchedMNIST) vs.
datasets with imbalanced classes (Caltech7, Caltech20). Our main experimental findings are:

Dataset properties significantly impact the performance of methods. We observe that the ranking
of methods varies significantly based on dataset properties, such as the number of views (Table 4c)
and class (im)balance (Table 4d). Hence, there is not a single “state-of-the-art” for all datasets.

Our new instances outperform previous methods. In Table 4a we see that the simple baselines
perform remarkably well, when compared to the other, more complex methods. This highlights the
importance of including simple baselines like these in the evaluation. Table 4a shows that AECoDDC
overall outperforms the other methods, and on datasets with many views (Table 4c) we find that
InfoDDC and MV-IIC outperform the others by a large margin.

Maximization of mutual information outperforms contrastive

2 3 4 5 6

0.2

0.3

0.4

0.5

Number of views

AECoDDC
AE–DDC

Figure 3: Accuracies on Cal-
tech7 when the number of
views is increased from 2
to 6. contrastive alignment-
based models perform worse
on many views, in contrast to
simple baselines.

alignment on datasets with many views. Contrastive alignment-
based methods show good overall performance, but they struggle
when the number of views becomes large (Table 4c). This holds
for both baseline methods (as observed in Section 4), and the new
instances. As in Section 4, we hypothesize that this is due to issues
with representation alignment, where the presence of less informative
views is more likely when the number of views becomes large. Con-
trastive alignment attempts to align view-specific representations to
this less informative view, resulting in clusters that are harder to sepa-
rate in the representation space6. This is further verified in Figures 2
and 3, illustrating a decrease in performance on Caltech7 for con-
trastive alignment-based models with 5 or 6 views. Models based on
maximization of mutual information do not have the same problem.
We hypothesize that this is because maximizing mutual information
still allows the view-specific representations to be different, avoiding
the above issues with alignment. The MI-based models also include
regularization terms that maximize the entropy of view-specific repre-
sentations, preventing the representations from collapsing to a single
value.

Contrastive alignment works particularly well on datasets consisting of random pairings
(Table 4b). In these datasets, the class label is the only thing the views have in common. Contrastive
alignment, i.e. learning a shared representation for all pairs within a class, thus asymptotically
amounts to learning a unique representation for each class, making it easier for the clustering module
to separate between classes.

The DDC clustering module performs better than the other clustering modules on balanced
datasets. With the DDC clustering module, the models are end-to-end trainable – jointly optimizing
all components in the model. The view-specific representations can thus be adapted to suit the
clustering module, potentially improving the clustering result. DDC also has an inherent bias towards
balanced clusters (Kampffmeyer et al., 2019), which helps produce better clusterings when the ground
truth classes are balanced.

Reproducibility of original results. During our experiments we encountered issues with repro-
ducibility with several of the methods from previous work. In Supplementary Section E, we include a
comparison between our results and those reported by the original authors of the methods from previ-
ous work. We find that most methods use different network architectures and evaluation protocols in
the original publications, making it difficult to accurately compare performance between methods
and their implementations. This illustrates the difficulty of reproducing and comparing results in
deep MVC, highlighting the need for a unified framework with a consistent evaluation protocol and
an open-source implementation.

6A thorough explanation of the issues of alignment and many views is given in Supplementary Section C.
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Table 5: Accuracies from ablation studies with SSL components.
(a) SV-SSL

NoisyMNIST Caltech7
Model w/o

SV-SSL
w/

SV-SSL
w/o

SV-SSL
w/

SV-SSL

DMSC 0.54 0.66 (+0.12) 0.35 0.50 (+0.15)
AE–DDC 1.00 1.00 (0.00) 0.41 0.40 (0.00)
AE–KM 0.67 0.74 (+0.07) 0.39 0.44 (+0.05)
AECoDDC 1.00 1.00 (0.00) 0.38 0.36 (−0.02)
AECoKM 0.56 1.00 (+0.44) 0.22 0.20 (−0.02)

(b) MV-SSL

NoisyMNIST Caltech7
Model w/o

MV-SSL
w/

MV-SSL
w/o

MV-SSL
w/

MV-SSL

EAMC 1.00 0.83 (−0.17) 0.36 0.44 (+0.08)
Multi-VAE 0.52 0.98 (+0.46) 0.31 0.47 (+0.15)
CoMVC 1.00 1.00 (0.00) 0.41 0.38 (−0.02)
AECoDDC 1.00 1.00 (0.00) 0.40 0.36 (−0.04)
AECoKM 0.74 1.00 (+0.26) 0.44 0.20 (−0.24)
InfoDDC 1.00 0.90 (−0.10) 0.41 0.51 (+0.10)
MV-IIC 0.52 0.52 (0.00) 0.53 0.53 (0.00)

6.3 EFFECT OF SSL COMPONENTS

Table 5 shows the results of ablation studies with the SV-SSL and MV-SSL components7. As we
observed in Section 4, these results show that having at least one form of SSL is beneficial for
the performance of all models, with the exception being AE–DDC/AECoDDC, which on Caltech7
performs best without any self-supervision. We suspect that this particular result is due to the issues
with many views and class imbalance discussed in Section 6.2. Further, we observe that having
both forms of SSL is not always necessary. For instance is there no difference with and without
SV-SSL for AECoDDC and AECoKM, both of which include contrastive alignment-based MV-SSL.
Lastly, we note that contrastive alignment-based MV-SSL decreases performance on Caltech7 for
most models. This is consistent with the results in Section 6.2 and in Figures 2 and 3, illustrating that
contrastive alignment is not suitable for datasets with a large number of views.

7 CONCLUSION

We investigate the role of self-supervised learning (SSL) in deep MVC. To properly evaluate models
and components, we develop DeepMVC – a new unified framework for deep MVC, including
the majority of recent methods as instances. By leveraging the new insight from our framework,
we develop 6 new DeepMVC instances with several promising forms of SSL, which perform
remarkably well compared to previous methods. We conduct a thorough experimental evaluation
of our new instances, previous methods, and their DeepMVC components – and find that SSL is a
crucial component in state-of-the-art methods for deep MVC. However, we observe that the popular
contrastive alignment worsens performance when the number of views becomes large. Further, we
find that performance of methods depends heavily on dataset characteristics, such as number of views,
and class imbalance. Developing methods that are robust towards changes in these properties can
thus result in methods that perform well over a wide range of multi-view clustering problems. To this
end, we make the following recommendations for future work in deep MVC:

Improving contrastive alignment or maximization of mutual information to handle both few
and many views. Addressing the pitfalls of alignment to improve contrastive alignment-based
methods on many views, is certainly a promising direction for future research. Similarly, we believe
that improving the methods based on maximization of mutual information on few views, will result
in better performing models.

Developing end-to-end trainable clustering modules that are not biased towards balanced
clusters. The performance of the DDC clustering module illustrates the potential of end-to-end
trainable clustering modules, which are capable of adapting the representations to produce better
clusterings. Mitigating the bias towards balanced clusters thus has the potential to produce models
that perform well, both on balanced and imbalanced datasets.

Proper evaluation and open-source implementations. Finally, we emphasize the importance
of evaluating new methods on a representative collection of datasets, e.g. many views and few
views, paired, imbalanced, etc. Also, in the reproducibility study (Supplementary Section E), we
find that original results can be difficult to reproduce. We therefore encourage others to use the
open-source implementation of DeepMVC, as open code and datasets, and consistent evaluation
protocols, are crucial to properly evaluate models and facilitate further development of new methods
and components.

7We found the SSL components to be most influential on performance, and therefore include the ablation
results here. Ablation results for the fusion and CM components are given in the Supplementary Section E.
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REPRODUCIBILITY STATEMENT

Reproducibility is one of the focus areas of our work. We found that some previous methods lacked
crucial details in their publications, making it difficult to reproduce their respective results. This is a
significant drawback of the deep MVC field. To address this issue, we re-implemented several recent
methods, along with our new instances, in order to provide reproducible results and fair comparisons.
To further facilitate reproducibility in future work, the supplementary includes our implementation of
the baseline methods, the new instances, and all other code required to reproduce our experiments.
The code, along with training-ready datasets will be made publicly available for download upon
publication.
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SUPPLEMENTARY MATERIAL
A INTRODUCTION

Here, we provide additional details on the proposed new instances of DeepMVC; the datasets used for
evaluation; the hyperparameters used by baselines and new instances; and the computation of metrics
and uncertainties used in our evaluation protocol. We also include the full list of recent methods and
their DeepMVC components, the complete table of results from the experimental evaluation. Finally,
we include additional experiments and analyses of reproducibility, hyperparameters, and the Fusion
and CM components.

In the supplementary archive includes a directory named code/, which includes our implementation
of the DeepMVC framework, as well as the datasets and the evaluation protocol used in our experi-
ments. See code/README.md for more details about the implementation, and how to reproduce
our results. The implementation will be made publicly available upon publication of our paper.

B PREVIOUS METHODS AS INSTANCES OF DEEPMVC

The full list of recent methods and their DeepMVC components is given in Table 6. We observe that
all but one model includes at least one form of SSL, but the type of SSL, and also fusion and CM,
vary significantly for the different models. This illustrates the importance of the SSL components
in deep MVC, as well as the need for a unified framework with a consistent evaluation protocol, in
order to properly compare and evaluate methods.

C CONTRASTIVE ALIGNMENT AND MANY VIEWS

Trosten et al. (2021) highlight three issues with aligning distributions of view-specific representations
in deep MVC:

1. View prioritization: When view-specific representations from different views are identical,
it is not possible for the CM to prioritize between them to find the best possible clustering.
Put differently, it is not possible for the CM to put un-equal emphasis on different views.

2. Overlapping clusters in less informative views: Some views might not contain the required
information to separate between subsets of clusters in the datasets. When other, more
informative views are aligned to these less informative views, the non-separability of clusters
will be propagated from the less informative views to the view-specific representations of all
views.

3. Mis-aligned label distributions: When the alignment focuses only on distributions (and
not on aligning representations on the instance level), it can result in mis-aligned label
distributions in the representation space. This means that a cluster from one view can be
aligned to a different cluster from another view, which results in clusters that are harder to
separate for the CM.

Trosten et al. (2021) only consider drawbacks of aligning distributions of representations. However,
we emphasize that issues 1 and 2 above also apply to contrastive alignment as they are consequences
of making the view-specific representations identical for a given instance.

In the following, we will focus on contrastive alignment and issue 2, since it is the one with the
largest potential impact on the models’ performance. An essential cause for this issue is the mapping
performed by the view-specific encoders. Suppose we have a two-view dataset with two clusters.
In view 1, the clusters are nicely separated, but in view 2 they are inseparable. In this case, the
view specific encoder for view 2 will not be able to produce representations where the clusters are
separated, because they are inseparable in the input space. However, despite the clusters being
separable in view 1, the view-specific encoder for view 1 is able to produce representations where the
clusters are merged. Hence, if we now force the representations from view-specific encoders 1 and
2 to be aligned, the only solution is to merge the clusters in the representation space, despite them
being separable in view 1.

We hypothesize that this issue becomes more prominent when the number of clusters increases, and
more importantly when the number of views becomes large. Specifically, when the number of views
increases, it becomes increasingly likely that a subset of the views will be less informative. This is
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Table 6: Full overview of methods from previous work and their DeepMVC components.

Model Ref. Pub. Enc. SV-SSL MV-SSL Fusion CM
DCCAE Wang et al.

(2015)
ICML MLP Reconstruction CCA 1st view SC

DMSC Abavisani
and Patel
(2018)

J. STSP CNN Reconstruction – Affinity
fusion SR, SC

DMVSSC Tang et al.
(2018)

ICNCC CNN Reconstruction – – Sparse SR,
SC

MvSN Huang et al.
(2019b)

T. CSS MLP Sp. Emb. – Weighted
sum k-means

MvSCN Huang et al.
(2019a)

IJCAI MLP Sp. Emb. MSE Al. Concat. k-means

MvDSCN Zhu et al.
(2019)

arXiv CNN – Reconstruction Shared
network SR, SC

DAMC Li et al.
(2019)

IJCAI MLP – Reconstruction Average DEC

S2DMVSC Sun et al.
(2019)

ACML MLP Reconstruction – MLP SR, SC

DCMR Zhang et al.
(2020a)

PAKDD MLP Variational
Reconstruction

Variational
Reconstruction MLP k-means

DMMC Zhang et al.
(2020b)

ICME MLP Reconstruction – MLP Fusion
output

DCUMC Zong et al.
(2020)

ICIKM MLP Reconstruction Commonness
uniqueness MLP k-means

SGLR-MVC Yin et al.
(2020)

AAAI MLP – Variational
Reconstruction

Weighted
sum GMM

EAMC Zhou and
Shen (2020)

CVPR MLP – Distribution Al.,
Kernel Al. Attention DDC

MVC-MAE Du et al.
(2021)

DSE MLP Reconstruction,
Ngh. preserv. Contrastive Al. – DEC

SDC-MVC Xin et al.
(2021)

IJCNN MLP – CCA Concat. DEC

DEMVC Xu et al.
(2021b)

Inf. Sci. CNN Reconstruction – – DEC

SiMVC Trosten et al.
(2021)

CVPR MLP/
CNN – – Weighted

sum DDC

CoMVC Trosten et al.
(2021)

CVPR MLP/
CNN – Contrastive Al. Weighted

sum DDC

Multi-VAE Xu et al.
(2021a)

ICCV CNN – Variational
Reconstruction Concat. Gumbel,

k-means

DMIM Mao et al.
(2021)

IJCAI MLP Min. superflous
information

Max. shared
information ? Encoder

output

AMvC Wang et al.
(2022a)

TNNLS MLP – Reconstruction Weighted
sum DEC

SIB-MSC Wang et al.
(2022b)

arXiv CNN – Reconstruction,
Inf. Bottleneck

Affinity
fusion SR, SC

Abbreviations: “–” = Not included, “?” = Not specified, Al. = Alignment, Concat. = Concatenate, CCA =
Canonical correlation analysis, DDC = Deep divergence-based clustering, DEC = Deep embedded clustering,
Inf. Bottleneck = Information bottleneck, Ngh. preserv. = Neighborhood preservation, SC = Spectral clustering,
Sp. Emb. = Spectral Embedding, SR = Self-representation, Sparse SR = Sparse self-representation,
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supported by the plots in Figures 2 and 3, where adding views beyond a certain number decreases the
performance of contrastive alignment-based models.

D NEW INSTANCES OF DEEPMVC

In this section we provide details on loss functions and training for our new instances. The loss
functions used to train the new instances are on the form

LTotal = wSVLSV + wMVLMV + wCMLCM (1)

where LSV, LMV, and LCM denote the losses from the SV-SSL, MV-SSL, and CM components,
respectively. (wSV, wMV, wCM) are optional weights for the respective losses. The weights are all set
to 1, unless specified otherwise.
Reconstruction loss. We use the mean squared error (MSE) loss, given by

LSV
Reconstruction =

1

nV

n∑
i=1

V∑
v=1

||x(v)
i − x̂

(v)
i ||2 (2)

where x̂
(v)
i is the reconstruction of x(v)

i , i.e. the decoder output for the view-specific representation
z
(v)
i .

Contrastive loss. For models with contrastive alignment-based MV-SSL, we use the multi-view
generalization of the NT-Xent loss (Trosten et al., 2021), given by

LMV
Contrastive =

1

nV (V − 1)

n∑
i=1

V∑
v=1

V∑
u=1

1{u ̸=v} ℓ
(uv)
i (3)

where

ℓ
(uv)
i = − log

exp(s
(uv)
ii )∑

s′∈Neg(z(u)
i ,z

(v)
i )

exp(s′)
(4)

and

s
(uv)
ij =

1

τ

zu
i · z(v)

j

||zu
i || · ||z

(v)
j ||

(5)

denotes the cosine similarity between zu
i and zv

j . The set Neg(z(u)
i , z

(v)
i ) is the set of similarities

of negative pairs for the positive pair (z(u)
i , z

(v)
i ), which consists of s(uv)ij , s(uu)ij , and s

(vv)
ij , for all

j ̸= i. τ is a hyperparameter, which we set to 0.1 for all experiments.
Mutual information loss. To maximize the mutual information between views, we minimize the
following multi-view generalization of the IIC loss (Ji et al., 2019)

LMV
MI =

2

V (V − 1)

V−1∑
u=1

V∑
v=u+1

−

I(Z(u),Z(v))︸ ︷︷ ︸
mutual information

+(λ− 1) (H(Z(u)) +H(Z(v)))︸ ︷︷ ︸
entropy regularization

 (6)

where the summands are computed as

I(Z(u),Z(v)) + (λ− 1)(H(Z(u)) +H(Z(v))) = −
D∑

a=1

D∑
b=1

P uv
ab log

P
(uv)
ab

(P (u)
a P

(v)
b )λ

, (7)

where D denotes the dimensionality of the view-specific representations. λ is a hyperparameter that
controls the strength of the entropy regularization. We set λ = 10 for InfoDDC, and λ = 1.5 for
MV-IIC. The joint distribution P (uv) is estimated by first computing

P̃
uv

=
1

n

n∑
i=1

z
(u)
i (z

(v)
i )⊤ (8)

14



and then symmetrizing it

P (uv) =
1

2
(P̃

(uv)
+ (P̃

(uv)
)⊤). (9)

We assume that each view-specific representation is normalized such that its elements sum to one,
and are all non-negative. The marginals P (u) and P (v) are obtained by summing over the rows and
columns of P (uv), respectively.
Weighted sum fusion As Trosten et al. (2021), we implement the weighted sum fusion as

zi =

V∑
v=1

w(v)z
(v)
i , (10)

where the weights w(1), . . . , w(V ) are non-negative and sum to 1. These constraints are implemented
by keeping a vector of trainable, un-normalized weights, from which w(1), . . . , w(V ) can be computed
by applying the softmax function.
DDC clustering module. The DDC (Kampffmeyer et al., 2019) clustering module consists of two
fully-connected layers. The first layer calculates the hidden representation hi ∈ RDDDC from the
fused representation zi. The dimensionality of the hidden representation, DDDC is a hyperparameter
set to 100 for all models. The second layer computes the cluster membership vector αi ∈ Rk from
the hidden representation.

DDC’s loss function consists of three terms

LCM
DDC = LDDC, 1 + LDDC, 2 + LDDC, 3. (11)

The three terms encourage (i) separable and compact clusters in the hidden space; (ii) orthogonal clus-
ter membership vectors; and (iii) cluster membership vectors close to simplex corners, respectively.

The first term maximizes the pairwise Cauchy-Schwarz divergence (Jenssen et al., 2006) between
clusters (represented as probability densities) in the space of hidden representations

LDDC, 1 =

(
k

2

)−1 k−1∑
a=1

k∑
b=a

n∑
i=1

n∑
j=1

αiaκijαjb√
n∑

i=1

n∑
j=1

αiaκijαja

n∑
i=1

n∑
j=1

αibκijαjb

(12)

where κij = exp
(
− ||hi−hj ||2

2σ2

)
and σ is a hyperparameter. Following Kampffmeyer et al. (2019),

we set σ to 15% of the median pairwise difference between the hidden representations.

The second term minimizes the pairwise inner product between cluster membership vectors

LDDC, 2 =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

αiα
⊤
j . (13)

The third term encourages cluster membership vectors to be close to the corners of the probability
simplex in Rk

LDDC, 3 =

(
k

2

)−1 k−1∑
a=1

k∑
b=a

n∑
i=1

n∑
j=1

miaκijmjb√
n∑

i=1

n∑
j=1

miaκijmja

n∑
i=1

n∑
j=1

mibκijmjb

(14)

where mia = exp(−||αi − ea||2), and ea is the a-th simplex corner.

E EXPERIMENTS

E.1 DATASETS

Dataset details are listed in Table 7. The supplementary archive includes pre-processed Caltech7 and
Caltech20 datasets in code/data/processed/caltech{7|20}_train.npz. The other
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Table 7: Dataset details.

Dataset n v k nsmall nbig Dim. Licence

NoisyMNIST (Lecun et al., 1998) 70000 2 10 6313 7877 (28× 28)2 CC BY-SA 3.0
NoisyFashion (Xiao et al., 2017) 70000 2 10 7000 7000 (28× 28)2 MIT
EdgeMNIST (Lecun et al., 1998) 70000 2 10 6313 7877 (28× 28)2 CC BY-SA 3.0
EdgeFashion (Xiao et al., 2017) 70000 2 10 7000 7000 (28× 28)2 MIT
COIL-20 (Nene et al., 1996) 480 3 20 24 24 (64× 64)3 None
Caltech7 (Fei-Fei et al., 2007) 1474 6 7 34 798 48, 40, 254, 1984, 512, 928 CC BY 4.0
Caltech20 (Fei-Fei et al., 2007) 2386 6 20 33 798 48, 40, 254, 1984, 512, 928 CC BY 4.0
PatchedMNIST (Lecun et al., 1998) 21770 12 3 6903 7877 (28× 28)12 CC BY-SA 3.0

n = number of instances, v = number of views, k = number of classes/clusters, nsmall = number of instances in
smallest class, nbig = number of instances in largest class, Dim. = view dimensions.

Table 8: Network architectures

CNN encoder CNN decoder MLP encoder MLP decoder

Conv(64× 3× 3) UpSample(2× 2) Dense(1024) Dense(256)
ReLU TransposeConv(64× 3× 3) BatchNorm BatchNorm
Conv(64× 3× 3) ReLU ReLU ReLU
BatchNorm TransposeConv(64× 3× 3) Dense(1024) Dense(1024)
ReLU BatchNorm BatchNorm BatchNorm
MaxPool(2× 2) ReLU ReLU ReLU
Conv(64× 3× 3) UpSample(2× 2) Dense(1024) Dense(1024)
ReLU TransposeConv(64× 3× 3) BatchNorm BatchNorm
Conv(64× 3× 3) ReLU ReLU ReLU
BatchNorm TransposeConv(1× 3× 3) Dense(1024) Dense(1024)
ReLU Sigmoid BatchNorm BatchNorm
MaxPool(2× 2) ReLU ReLU

Dense(256) Dense(input dim)
Sigmoid

datasets can be generated by following the instructions in code/README.md (these could not be
included in the archive due to limitations on space).
Caltech details. We use the same features and subsets of the Caltech101 (Fei-Fei et al., 2007) dataset
as Huang et al. (2019a).

• Features: Gabor, Wavelet Moments, CENsus TRansform hISTogram (CENTRIST), Histogram of
Oriented Gradients (HOG), GIST, and Local Binary Patterns (LBP).

• Caltech7 classes: Face, Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign, Windsor-Chair.

• Caltech20 classes: Face, Leopards, Motorbikes, Binocular, Brain, Camera,Car-Side, Dolla-Bill,
Ferry, Garfield, Hedgehog, Pagoda, Rhino, Snoopy, Stapler, Stop-Sign, Water-Lilly, WindsorChair,
Wrench, Yin-yang.

E.2 HYPERPARAMETERS

Network architectures. The encoder and decoder architectures are listed in Table 8. MLP en-
coders/decoders are used for Caltech7 and Caltech20 as these contain vector data. The other datasets
contain images, so CNN encoders and decoders are used for them.
Other hyperparameters. Table 9 lists other hyperparameters used for the baselines and new
instances.

E.3 COMPUTATIONAL RESOURCES

We run our experiments on a Kubernetes cluster, where jobs are allocated to nodes with Intel(R)
Xeon(R) E5-2623 v4 or Intel(R) Xeon(R) Silver 4210 CPUs (2 cores allocated per job); and Nvidia
GeForce GTX 1080 Ti or Nvidia GeForce RTX 2080 Ti GPUs. Each job has 16 GB RAM available.

With this setup, 5 training runs on NoisyMNIST, NoisyFashion, EdgeMNIST, and EdgeFashion take
approximately 24 hours. Training times for the other datasets are approximately between 1 and 3
hours.

The Dockerfile used to build our docker image can be found in code/docker/.
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Table 9: Hyperparameters used to train the models.

Model Batch size Learning rate wSV wMV wCM Pre-train Gradient clip

DMSC 100 10−3 1.0 – – ✓ 10
MvSCN 512 10−4 0.999 0.001 – ✘ 10
EAMC 100 † – 1.0 1.0 ✘ 10
SiMVC 100 10−3 – – 1.0 ✘ 10
CoMVC 100 10−3 – 0.1 1.0 ✘ 10
Multi-VAE 64 5 · 10−4 – 1.0 – ✓ 10
AE–DDC 100 10−3 1.0 – 1.0 ✓ 10
AECoDDC 100 10−3 1.0 0.1 1.0 ✓ 10
AE–KM 100 10−3 1.0 – – ✘ 10
AECoKM 100 10−3 1.0 0.1 – ✘ 10
InfoDDC 256 10−3 – 0.1 1.0 ✘ 10
MV-IIC 256 10−3 – 0.01 1.0 ✘ 10

† = EAMC (Zhou and Shen, 2020) has different learning rates for the different components, namely 10−5 for
the encoders and clustering module, and 10−4 for the attention module and discriminator.

E.4 EVALUATION PROTOCOL

Metrics. We measure performance using the accuracy

ACC = max
m∈M

∑n
i=1 δ(m(ŷi)− yi)

n
(15)

where δ(·) is the Kronecker-delta, ŷi is the predicted cluster of instance i, and yi is the ground truth
label of instance i. The maximum runs over M, which is the set of all bijective mappings from
{1, . . . , k} to itself.

We also compute the normalized mutual information

NMI =
MI(ŷ,y)

1
2 (H(ŷ) +H(y))

(16)

where ŷ = [ŷ1, . . . , ŷn], y = [y1, . . . , yn], MI(·, ·) and H(·) denotes the mutual information and
entropy, respectively.
Uncertainty estimation. The uncertainty of our performance statistic can be estimated using
bootstrapping. Suppose the R training runs result in the R tuples

(L1,M1), . . . , (LR,MR) (17)

where Li is the final loss of run i, and Mi is resulting performance metric for run i. We then sample
B bootstrap samples uniformly from the original results

(Lb
j ,M

b
j ) ∼ Uniform{(L1,M1), . . . , (LR,MR)}, j = 1, . . . , R, b = 1, . . . B. (18)

The performance statistic for bootstrap sample b is then given by

M b
⋆ = M b

jb⋆
, jb⋆ = arg min

j=1,...,R
{Lb

j}. (19)

We then estimate the uncertainty of the performance statistic by computing the standard deviation of
the bootstrap statistics M1

⋆ , . . .M
B
⋆

σ̂M⋆
=

√∑B
b=1(M

b
⋆ − M̄⋆)2

B − 1
, where M̄⋆ =

∑B
b=1 M

⋆
b

B
. (20)

E.5 RESULTS

Evaluation results. The complete evaluation results are given in Table 10.
Ablation study – Fusion and Clustering module. Table 11 shows the results of ablation studies with
the fusion and clustering module (CM) components. Since these components can not be completely
removed, we instead replace more complicated components, with the simplest possible component.
Thus, we replace weighted sum with concatenate for the fusion component, and DDC with k-means
for the CM component.
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Table 10: Clustering results. Standard deviations (obtained by bootstrapping) are shown in parenthe-
ses.

NoisyMNIST NoisyFashion EdgeMNIST EdgeFashion
ACC NMI ACC NMI ACC NMI ACC NMI

DMSC 0.66 (0.02) 0.67 (0.01) 0.49 (0.05) 0.48 (0.03) 0.51 (0.02) 0.47 (0.02) 0.52 (0.01) 0.47 (0.00)
MvSCN 0.15 (0.00) 0.02 (0.00) 0.14 (0.00) 0.01 (0.00) 0.14 (0.00) 0.01 (0.01) 0.12 (0.00) 0.03 (0.00)
EAMC 0.83 (0.04) 0.90 (0.02) 0.61 (0.02) 0.71 (0.02) 0.76 (0.05) 0.79 (0.03) 0.51 (0.03) 0.47 (0.01)
SiMVC 1.00 (0.02) 1.00 (0.02) 0.52 (0.02) 0.51 (0.02) 0.89 (0.06) 0.90 (0.04) 0.61 (0.01) 0.56 (0.02)
CoMVC 1.00 (0.00) 1.00 (0.00) 0.67 (0.03) 0.68 (0.03) 0.97 (0.08) 0.94 (0.07) 0.56 (0.03) 0.52 (0.01)
Multi-VAE 0.98 (0.05) 0.96 (0.02) 0.62 (0.02) 0.60 (0.01) 0.85 (0.01) 0.76 (0.01) 0.58 (0.01) 0.64 (0.00)
AE–KM 0.74 (0.03) 0.71 (0.00) 0.58 (0.02) 0.59 (0.01) 0.60 (0.00) 0.57 (0.00) 0.54 (0.00) 0.58 (0.00)
AE–DDC 1.00 (0.04) 1.00 (0.03) 0.69 (0.06) 0.65 (0.05) 0.88 (0.11) 0.88 (0.09) 0.60 (0.01) 0.58 (0.01)
AECoKM 1.00 (0.00) 0.99 (0.00) 0.63 (0.07) 0.73 (0.03) 0.38 (0.03) 0.31 (0.02) 0.39 (0.04) 0.34 (0.02)
AECoDDC 1.00 (0.00) 0.99 (0.00) 0.80 (0.02) 0.77 (0.01) 0.89 (0.10) 0.90 (0.09) 0.67 (0.09) 0.62 (0.06)
InfoDDC 0.90 (0.05) 0.92 (0.04) 0.54 (0.03) 0.52 (0.04) 0.62 (0.04) 0.52 (0.06) 0.43 (0.01) 0.43 (0.03)
MV-IIC 0.52 (0.04) 0.79 (0.02) 0.52 (0.07) 0.74 (0.02) 0.31 (0.04) 0.21 (0.05) 0.52 (0.04) 0.59 (0.04)

COIL-20 Caltech7 Caltech20 PatchedMNIST
ACC NMI ACC NMI ACC NMI ACC NMI

DMSC −† (−) −† (−) 0.50 (0.03) 0.50 (0.02) 0.35 (0.01) 0.55 (0.00) −† (−) −† (−)

MvSCN 0.21 (0.00) 0.23 (0.01) 0.29 (0.02) 0.02 (0.00) 0.13 (0.01) 0.09 (0.01) −† (−) −† (−)

EAMC 0.39 (0.15) 0.52 (0.22) 0.44 (0.02) 0.23 (0.03) 0.22 (0.04) 0.23 (0.02) −‡ (−) −‡ (−)
SiMVC 0.90 (0.04) 0.96 (0.02) 0.41 (0.02) 0.51 (0.09) 0.34 (0.02) 0.52 (0.01) 0.84 (0.04) 0.64 (0.11)
CoMVC 0.87 (0.03) 0.96 (0.02) 0.38 (0.01) 0.55 (0.02) 0.34 (0.01) 0.59 (0.02) 0.73 (0.12) 0.57 (0.19)
Multi-VAE 0.74 (0.02) 0.84 (0.01) 0.47 (0.02) 0.47 (0.01) 0.40 (0.01) 0.57 (0.01) 0.94 (0.00) 0.77 (0.00)
AE–KM 0.88 (0.04) 0.92 (0.01) 0.44 (0.03) 0.52 (0.01) 0.45 (0.02) 0.57 (0.01) 0.87 (0.00) 0.68 (0.01)
AE–DDC 0.80 (0.04) 0.93 (0.02) 0.40 (0.01) 0.54 (0.07) 0.34 (0.01) 0.44 (0.03) 0.77 (0.10) 0.59 (0.17)
AECoKM 0.84 (0.04) 0.94 (0.02) 0.20 (0.01) 0.05 (0.00) 0.22 (0.02) 0.27 (0.02) 0.96 (0.00) 0.85 (0.00)
AECoDDC 0.87 (0.01) 0.96 (0.00) 0.36 (0.01) 0.43 (0.03) 0.31 (0.02) 0.51 (0.02) 0.99 (0.00) 0.97 (0.00)
InfoDDC 0.25 (0.04) 0.54 (0.03) 0.51 (0.01) 0.60 (0.04) 0.58 (0.07) 0.63 (0.03) 0.99 (0.00) 0.96 (0.00)
MV-IIC 0.83 (0.05) 0.94 (0.02) 0.53 (0.00) 0.63 (0.04) 0.49 (0.01) 0.61 (0.01) 0.97 (0.00) 0.90 (0.01)

† = training ran out of memory, ‡ = training resulted in NaN loss.

Table 11: Accuracies from ablation studies with the Fusion and CM components.
(a) Fusion

NoisyMNIST Caltech7
Model Concat. Weighted Concat. Weighted

SiMVC 1.00 1.00 (0.00) 0.36 0.41 (+0.04)
CoMVC 1.00 1.00 (0.00) 0.42 0.38 (−0.04)
AE–DDC 1.00 1.00 (0.00) 0.36 0.40 (+0.04)
AECoDDC 1.00 1.00 (0.00) 0.39 0.36 (−0.03)
InfoDDC 0.93 0.90 (−0.03) 0.36 0.51 (+0.15)

(b) CM

NoisyMNIST Caltech7
Model k-means DDC k-means DDC

SiMVC 0.67 1.00 (+0.33) 0.39 0.41 (+0.01)
CoMVC 0.56 1.00 (+0.44) 0.22 0.38 (+0.16)
AE–DDC 0.74 1.00 (+0.26) 0.44 0.40 (−0.04)
AECoDDC 1.00 1.00 (0.00) 0.20 0.36 (+0.16)
InfoDDC 0.14 0.90 (+0.76) 0.59 0.51 (−0.08)
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Table 12: Accuracies from our experiment vs. accuracies reported by the original authors. † = method
is originally evaluated on a slightly different dataset.

Model Dataset Orig. Ours

N-MNIST 0.99 0.15 (−0.84)MvSCN Caltech20 0.59 0.13 (−0.46)
EAMC E-MNIST 0.67 0.76 (+0.09)

E-MNIST 0.86 0.89 (+0.03)
E-Fashion 0.57 0.61 (+0.04)SiMVC
COIL-20 0.78 0.90 (+0.12)
E-MNIST 0.96 0.97 (+0.01)
E-Fashion 0.60 0.56 (−0.04)CoMVC
COIL-20 0.89 0.87 (−0.02)

N-MNIST† 1.00 0.98 (−0.02)

N-Fashion† 0.91 0.62 (−0.29)Multi-VAE
COIL-20 0.98 0.74 (−0.24)

For the fusion component, we see that the weighted sum tends to improve over the concatenation. For
the CM, we observe that the performance is better with DDC than with k-means on NoisyMNIST, but
the improvement more varied on Caltech7. This is consistent with what we observed in the evaluation
results in the main paper.
Reproducibility of original results. Table 12 compares the results of our re-implementation of the
baselines, to the results reported by the original authors. The comparison shows large differences in
performance for several methods, and the differences are particularly large for MvSCN and Multi-
VAE. For MvSCN, we do not use the same autoencoder preprocessing of the data. We also had
difficulties getting the Cholesky decomposition to converge during training. For MultiVAE, we note
that NoisyMNIST and NoisyFashion are generated without noise in the original paper, possibly
resulting in datasets that are simpler to cluster. We were however not able to determine the reason for
the difference in performance on COIL-20.

Additionally, all methods use different network architectures and evaluation protocols in the original
publications, making it difficult to accurately compare performance between methods and their
implementations. This illustrates the difficulty of reproducing and comparing results in deep MVC,
highlighting the need for a unified framework with a consistent evaluation protocol and an open-source
implementation.
Sensitivity to hyperparameters Table 13 shows the results of hyperparameter sweeps for the
following hyperparameters:

• Weight of reconstruction loss (wSV).
• Weight of contrastive loss (wMV).
• Temperature in contrastive loss (τ ).
• Weight of entropy regularization (λ).

We emphasize that these results were not used to tune hyperparameters for the new instances. Rather,
they are included to investigate how robust these methods are towards changes in the hyperparameter
configuration. The results show that the new instances are mostly insensitive to changes in their
hyperparameters. We however observe two cases where the hyperparameter configurations can have
significant impact on the model performance. First, AECoDDC shows a drop in performance when
the weight of the contrastive loss is set to high on Caltech7 (Table 13b). This is consistent with
our observations regarding contrastive alignment on datasets with many views. Second, InfoDDC
and MV-IIC performs worse when the entropy regularization weight is set too low, indicating that
sufficient regularization is required for these models to perform well.
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Table 13: Results (NMI) of hyperparameter sweeps for the new instances.

(a) Weight of reconstruction loss (wSV).

NoisyMNIST Caltech7
Rec. weight 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0

AE–DDC 1.00 (0.03) 0.94 (0.03) 1.00 (0.03) 0.94 (0.01) 0.41 (0.01) 0.41 (0.03) 0.44 (0.02) 0.45 (0.02)
AECoDDC 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.40 (0.05) 0.33 (0.02) 0.34 (0.03) 0.49 (0.04)
AECoKM 0.74 (0.02) 0.70 (0.04) 0.74 (0.03) 0.93 (0.02) 0.07 (0.01) 0.05 (0.00) 0.04 (0.01) 0.04 (0.02)

(b) Weight of contrastive loss (wMV).

NoisyMNIST Caltech7
Con. weight 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0

AECoDDC 1.00 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.46 (0.02) 0.40 (0.05) 0.19 (0.03) 0.09 (0.01)
AECoKM 0.89 (0.01) 0.73 (0.03) 0.77 (0.01) 0.67 (0.02) 0.04 (0.02) 0.04 (0.01) 0.06 (0.01) 0.05 (0.00)

(c) Temperature in the contrastive loss (τ ).

NoisyMNIST Caltech7
τ 0.01 0.07 0.1 1.0 0.01 0.07 0.1 1.0

AECoDDC 0.99 (0.00) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.31 (0.03) 0.39 (0.01) 0.35 (0.02) 0.48 (0.01)
AECoKM 0.99 (0.00) 0.91 (0.02) 0.74 (0.02) 0.78 (0.05) 0.34 (0.01) 0.05 (0.01) 0.06 (0.01) 0.46 (0.01)

(d) Weight of the entropy regularization (λ).

NoisyMNIST Caltech7
λ 0.5 1.5 5.0 10.0 0.5 1.5 5.0 10.0

MV-IIC 0.03 (0.01) 0.81 (0.01) 0.82 (0.00) 0.82 (0.00) 0.04 (0.01) 0.64 (0.04) 0.60 (0.01) 0.52 (0.01)
InfoDDC 0.21 (0.02) 0.37 (0.02) 0.84 (0.04) 0.94 (0.07) 0.60 (0.06) 0.60 (0.02) 0.57 (0.01) 0.51 (0.01)
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