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Abstract

Wasserstein distance is a powerful tool for com-
paring probability distributions and is widely
used for document classification and retrieval
tasks in NLP. In particular, it is known as the
word mover’s distance (WMD) in the NLP com-
munity. WMD exhibits excellent performance
for various NLP tasks; however, one of its lim-
itations is its computational cost and thus is
not useful for large-scale distribution compar-
isons. In this study, we propose a simple and
effective nearest neighbor search based on the
Wasserstein distance. Specifically, we employ
the L1 embedding method based on the tree-
based Wasserstein approximation and subse-
quently used the nearest neighbor search to ef-
ficiently find the k-nearest neighbors. Through
benchmark experiments, we demonstrate that
the proposed approximation has comparable
performance to the vanilla Wasserstein distance
and can be computed three orders of magnitude
faster than the vanilla Wasserstein distance.

1 Introduction

Information retrieval is the process of extracting
relevant information from large collections of data.
It has applications in search engines, recommen-
dation systems, and content analyses. An informa-
tion retrieval task can be formulated as a k-nearest
neighbor search problem. One major challenge in
k-nearest neighbor search is the scalability of doc-
ument retrieval tasks, where data can range from
millions to billions of documents.

The bag-of-words (BOW) model is a widely
used approach for document representation in natu-
ral language processing and information retrieval.
It represents a document as a vector of word fre-
quencies, disregarding the order and context of
the words. This approach is simple and efficient;
however, it suffers when two documents do not
share common words. This is because the BOW
model does not capture the semantic relationships
between words and their context in the document,

leading to poor retrieval performance when dealing
with documents that are dissimilar in content.

Word mover’s distance (WMD) (Kusner et al.,
2015) and its variants (Yokoi et al., 2020; Huang
et al., 2016) are document dissimilarity measures
that can handle overlapping problems arising in
the BOW model. WMD calculates the distance be-
tween two documents by measuring the minimum
cost of transforming the word embeddings of one
document into those of another (Kusner et al., 2015;
Sato et al., 2022). However, WMD and its variants
have a computational complexity of the cubic order,
making them slow and impractical for large-scale
information retrieval tasks involving millions or
billions of documents.

To decrease computational complexity, a
tree-based approximation of WMD known as
tree-Wasserstein distance (TWD) can be used.
QuadTree (Indyk and Thaper, 2003) and Clus-
terTree (Le et al., 2019) are techniques that enable
tree construction for TWD and can be computed in
linear time. Recently, Backurs et al. (2020) applied
QuadTree to large-scale nearest neighbor searches.
However, their performance is limited. Moreover,
Backurs et al. (2020) proposed FlowTree, an al-
gorithm that has improved performance but in-
creased computation time. Additionally, existing
approaches are based on pairwise comparisons and
cannot directly compute one-to-many distributions.
Hence, there is no optimal transport (OT) method
that can be used for practical large-scale nearest
neighbor search with high accuracy.

In this study, we introduce an OT-based near-
est neighbor search for large-scale problems.
Specifically, we combine three methods: the L1-
regularized technique for learning the weights of
the edges in a tree (Yamada et al., 2022), the sliced
variant of TWD (Le et al., 2019), and the nearest
neighbor search based on FAISS (Johnson et al.,
2019). This combination enable the construction of
a computationally efficient OT-based nearest neigh-



bor search that can be scaled to a large dataset.
Through benchmark experiments, we demonstrated
that the proposed framework can compute the near-
est neighbors three orders of magnitude faster than
the vanilla Wasserstein distance.
Contribution: The contribution of this paper is
summarized below:

• A large-scale nearest neighbor search method
based on OT is proposed.

• A simple yet memory-efficient representation
of L1 embedding is presented.

• The proposed algorithm is demonstrated to be
several orders of magnitude faster than WMD.

2 Proposed Framework

In this section, we propose the nearest neighbor
search method based on TWD (Indyk and Thaper,
2003; Le et al., 2019).

2.1 Nearest Neighbor Search with Tree
Wasserstein Distance

The TWD between the two discrete measures µ =∑Nleaf
i=1 aiδxi and ν =

∑Nleaf
j=1 bjδxj , with a⊤1 = 1

and b⊤1 = 1, can be expressed by L1 embedding
(Takezawa et al., 2021):

WT (µ, ν) = ∥ua − ub∥1,

where ua = diag(w)Ba and ub = diag(w)Bb.
w ∈ RN

+ is the edge weight of a tree, diag(w) ∈
RN×N
+ is the diagonal matrix whose diagonal el-

ements are w, and B ∈ {0, 1}N×Nleaf is a tree
parameter. If the node i is the ancestor node of the
leaf node j, [B]i,j = 1; othwerise, [B]i,j = 0. In
addition, N is the total number of nodes of a tree
and Nleaf is the number of leaf nodes.

Using TWD, the nearest neighbor search from
{µk}nk=1 with µk =

∑
i a

(k)
i δxi can be written as

k̂ = argmin
k∈{1,2,...,n}

∥ua − uak
∥1.

Hence, the nearest neighbor search using TWD
can be formulated as the nearest neighbor search
with a L1 distance. In this study, we proposed a
combination of the L1 embedding and the nearest
neighbor methods. Specifically, for an efficient
nearest neighbor search, we used the IndexFlat and
GPUIndexFlat functions in the FAISS package.

L1 embedding for TWD is a well-known result
in theoretical computer science (Indyk and Thaper,

2003). However, its performance is limited because
of poor approximation of the original Wasserstein
distance.

2.2 Word Mover’s Distance Approximation
with Tree

In this section, we explain how to approximate
WMD using a tree. Note that WMD is a Wasser-
stein distance that uses word vectors to compute
the distance d(x,x′).

The difference between WMD and TWD is
the distance metric. Specifically, WMD uses L2
distance d(x,x′) = ∥x − x′∥2, whereas TWD
uses a tree metric (Le et al., 2019; Yamada et al.,
2022). Thus, if d(x,x′) = dT (x,x

′), we can
approximate WMD with TWD (i.e., W1(µ, ν) =
WT (µ, ν)).

Proposition 1 (Yamada et al., 2022) We denote
B ∈ {0, 1}N×Nleaf = [b1, b2, . . . , bNleaf ] and bi ∈
{0, 1}N . The shortest path distance between leaves
i and j can be represented as

dT (xi,xj) = w⊤(bi + bj − 2bi ◦ bj). (1)

We stated the edge-weight estimation problem
using the closed-form expression in Proposition
1. Our approach assumed that the tree was con-
structed using tree construction algorithms, such
as QuadTree (Indyk and Thaper, 2003) and Clus-
terTree (Le et al., 2019), and we held the tree struc-
ture constant (fixed B). Subsequently, the weight
estimation problem can be expressed as (Yamada
et al., 2022)

ŵ :=argmin
w∈RN

+

∑
(i,j)∈Ω

(d(xi,xj)−w⊤zi,j)
2+λ∥w∥1,

where zi,j = bi+bj−2bi◦bj , and Ω denotes a set
of indices. In this study, we randomly subsampled
the indices to reduce computational cost.

2.3 TWD with efficient NN

In this study, we aimed to propose a large-scale
similarity search; however, a simple nearest neigh-
bor search method cannot effectively scale to large
datasets. Thus, we employed an off-the-shelf
efficient nearest neighbor search method called
FAISS1. Specifically, we proposed using the L1
version of the FAISS function, as TWD is defined
as the L1 distance. However, the dimensionality

1https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss


Figure 1: Illustration of a tree without leaf nodes.

of z is substantially high because the dimensional-
ity of the L1 embedding vector z depends on the
number of word vectors, which is large. Thus, di-
rectly using the tree embedding z = diag(w)Ba
is inefficient.

To address this issue, we proposed the use of the
ClusterTree (Le et al., 2019) and disregard the leaf
nodes (see Figure 1). This implies using only the
internal nodes and is independent of the number of
leaf nodes (i.e., the number of word vectors). For
example, if we use ClusterTree with K classes and
depth D, the maximum number of internal nodes
is K +K2 + . . . +KD. As a rule of thumb, we
can set K ∈ {3, 4, 5, 6} and D ∈ {3, 4, 5, 6}.

Using only the internal nodes can significantly
reduce the number of dimensions z. However, the
representation power is significantly reduced. To
address this issue, we proposed the use of multi-
ple trees. Specifically, let B̄t denote a ClusterTree
parameter without leaf nodes; the sliced L1 embed-
ding is expressed as

z̄ =


diag(w̄1)B̄1a
diag(w̄2)B̄2a

...
diag(w̄L)B̄La

 ,

where the weight for the t-th sliced weight w̄t is
trained as follows:

w̄t :=argmin
w∈RN̄

+

∑
(i,j)∈Ω

(d(xi,xj)−w⊤z̄
(t)
i,j )

2+λ∥w∥1,

and z̄
(t)
i,j = b̄

(t)
i + b̄

(t)
j − 2(b̄

(t)
i ◦ b̄(t)j ) ∈ RN̄t with

N̄t = K +K2 + . . .+KD. This modification can
significantly reduce the training time.

3 Experiments

In this section, we assess the effectiveness of our
proposed method using Twitter, BBCSport, Ama-
zon, and Classic datasets.

3.1 Setup

We evaluated our proposed method for document
classification tasks using the k-nearest neighbors
(kNN) search. Our primary objective is to assess
the accuracy and computation time of the tree-
based method and compare them with those of
the Wasserstein distance method. To calculate the
Wasserstein distance, we used the Python optimal
transport package2 and considered the resulting ac-
curacy and computation time as baselines. The
bag-of-words (BOW) results are given for compar-
ison.

We specifically evaluated the ClusterTree ap-
proach (Le et al., 2019) for the tree-based meth-
ods. The number of clusters and the maximum
depth for all experiments were set to K = 5 and
D = 6, respectively. Our initial step involved
constructing a tree using an entire word embedding
(word2vec) vector X , followed by the computation
of the Wasserstein distance with the tree. We set the
regularization parameter to λ = 10−2 and explored
different numbers of slices T ∈ {1, 3, 5, 10}. To
solve the Lasso-based regression problem asso-
ciated with the weight estimation problem, the
SPAMS library3 was used. In addition, the weight
of the leaf nodes was set to zero for the leafless
tree method (ll-TWD). For your reference, we con-
ducted an additional evaluation using the QuadTree
approach, and you can find the corresponding re-
sults in the appendix.

To compare the performance of all methods,
we used the kNN search for varying values of
k ∈ {1, 5, 10, 15} and used GPU FAISS index
with the L1 metric for the tree-based methods. By
changing the random seed, the datasets were split
five times into training and testing subsets such that
70% of each dataset was used for training. Twitter,

2https://pythonot.github.io/index.html
3http://thoth.inrialpes.fr/people/mairal/spams

https://pythonot.github.io/index.html
http://thoth.inrialpes.fr/people/mairal/spams


Twitter BBCSport Amazon Classic
Methods 1 5 10 1 5 10 1 5 10 1 5 10
WMD 248.7 250.2 250.9 283.9 275.5 267.5 5382.8 5380.3 5380.5 5093.1 5079.4 5097.9
BOW 0.036 0.036 0.036 0.011 0.011 0.010 0.695 0.692 0.692 0.324 0.321 0.322

Faiss TWD 0.042 0.043 0.043 0.011 0.011 0.011 0.784 0.779 0.779 0.390 0.389 0.389
Faiss ll-TWD

n_slice=1 0.020 0.020 0.020 0.006 0.006 0.006 0.104 0.101 0.101 0.083 0.081 0.082

Faiss ll-TWD
n_slice=3 0.032 0.033 0.033 0.008 0.008 0.008 0.244 0.239 0.239 0.171 0.167 0.167

Faiss ll-TWD
n_slice=5 0.044 0.044 0.045 0.010 0.010 0.010 0.378 0.370 0.370 0.264 0.257 0.258

Faiss ll-TWD
n_slice=10 0.075 0.072 0.071 0.017 0.017 0.017 0.752 0.745 0.748 0.493 0.486 0.486

Table 1: Average testing time of the datasets used in the experiments for k ∈ {1, 5, 10}.
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Figure 2: Average accuracy of the datasets used in the experiments.

BBCSport, Amazon, and Classic4 datasets used for
the evaluation are presented in Table 2.

3.2 Results

The document classification experiments aimed to
evaluate the effectiveness of tree-based methods
in reducing the time required to classify data. To
this end, we used four datasets and performed five
different train-test splits on each dataset. For each
split, we constructed a tree for the TWD-based
methods and measured the accuracy and time re-
quired to classify the data from the testing set. The
process of constructing a tree is a one-time task
that enables the handling of all queries. The aver-
age time required to construct the tree using each
method is shown in Figure 4.

The results of the experiments are presented in
Table 1, Figure 2 and Figure 3. Table 1 shows the
average time required to classify 30% of the data
from each dataset for the k-nearest neighbors for
k ∈ {1, 5, 10}, and Figure 2 illustrates the corre-
sponding average accuracy. For information, we
conducted an analysis of speed performance us-

4https://github.com/gaohuang/S-WMD

ing the CPU FAISS index, and you can review the
results in Table 3 located in the appendix. For
m ∈ {1, 5}, Figure 3 gives the proportion of the m
first nearest neighbors of a given method that are
actually the m first nearest neighbors when using
WMD. WMD is considered as a ground truth. As
an illustration, within the Classic database, 46%
of the data points from the testing set have the
tree Wasserstein method with leaf nodes (faiss
TWD method) sharing the same nearest neighbor
as WMD.

For both Figures 2 and 3, the results presented
are for Amazon and Classic datasets. A compre-
hensive overview of outcomes across all datasets is
available in the appendix. The average time and ac-
curacy and the top-m score were calculated based
on the five-time split for each dataset.

We observed that tree-based methods can reduce
the classification time by a factor of 103 compared
to the WMD method. The fastest method is ll-
TWD with n_slice = 1, with the time required
increasing with n_slice. The faiss TWD method
is faster than the leafless method when n_slice be-
comes large. In contrast, the accuracy improves

https://github.com/gaohuang/S-WMD
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Figure 3: Top-1 and Top-5 neighbors scores, with WMD as a ground truth, for the datasets used in the experiments.

for the leafless-tree methods when n_slice is large,
as well as the top-m score. For example, we ob-
served that the fastest method among all the tested
methods is ll-TWD with n_slice = 1. However, it
exhibits the lowest accuracy among all the methods
presented in Figure 2, and the lowest top-m score
in Figure 3, BOW apart. As a result, a trade-off
between test time and accuracy must be achieved.

In our experiments, the ll-TWD method with
n_slice = 3 balances between test time and accu-
racy. Consequently, it offers a suitable trade-off
solution for classification tasks. Overall, our exper-
iment demonstrates the effectiveness of tree-based
methods in reducing the classification time while
maintaining an acceptable level of accuracy.

4 Conclusion

In this study, we introduced a methodological im-
provement aimed at enhancing the computational
speed of the Wasserstein distance approximation
with trees. Specifically, we combined the L1-
regularized technique to learn the weights of the
edges in a tree (Yamada et al., 2022), the sliced-
TWD (Le et al., 2019), and the efficient nearest
neighbor search (Johnson et al., 2019). To further
reduce the computational time, we disregarded the
leaf nodes of the trees, as they can significantly
reduce the dimensions of the L1 embedding vec-
tors. The sliced TWD allowed us to deal with the
decrease in representation power resulting from
the leaf loss. Through benchmark experiments, we
demonstrated that the proposed method can reduce
computation time over 103 times compared with
the WMD method while maintaining a reasonable
level of accuracy.

Limitation

The proposed approach is based on the approxima-
tion of the Wasserstein distance; the performance is
generally lower than that of the vanilla Wasserstein
distance. Furthermore, while we have focused on
improving WMD’s computational efficiency, we
acknowledge that there are contexts where WMD
may not be the most suitable measure. Our aim
in this work has been to offer a more efficient ap-
proach for computing WMD, especially in appli-
cations that prioritize vocabulary associations over
syntactic structure, like content-based recommen-
dation systems, plagiarism detection, and informa-
tion retrieval. Eventually, the potential scalability
of our method relies on both the scalability of the
tree embedding technique and the chosen nearest
neighbor package. One limitation in the major-
ity of NN packages is a lack of support for sparse
formats. Given that our tree embedding produces
highly sparse vectors, addressing this limitation is
crucial for handling larger datasets.

Ethics/Broader impact

This is the first practical approach for nearest neigh-
bor search using Wasserstein distance. Thus, by
replacing a simple NN-based vector search with
the proposed method, we can achieve a significant
gain over simple vector-based NN methods. Thus,
notwithstanding the simplicity of the approach, it
can improve many NLP applications based on near-
est neighbor search. There are no ethical issues
associated with this study.

Acknowledgement

Makoto Yamada was supported by MEXT KAK-
ENHI Grant Number 20H04243.



References
Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razen-

shteyn, and Tal Wagner. 2020. Scalable nearest neigh-
bor search for optimal transport. In ICML.

Jon Louis Bentley. 1975. Multidimensional binary
search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In NIPS.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S Mirrokni. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceed-
ings of the twentieth annual symposium on Computa-
tional geometry, pages 253–262.

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei
Sha, and Kilian Q Weinberger. 2016. Supervised
word mover’s distance. NIPS.

Piotr Indyk and Nitin Thaper. 2003. Fast image retrieval
via embeddings. In 3rd international workshop on
statistical and computational theories of vision, vol-
ume 2, page 5. Nice, France.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

L Kantorovich. 1942. On the transfer of masses (in
russian). In Doklady Akademii Nauk, volume 37,
pages 227–229.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. 2015. From word embeddings to document
distances. In ICML.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco
Cuturi. 2019. Tree-sliced approximation of wasser-
stein distances. NeurIPS.

Gaspard Monge. 1781. Mémoire sur la théorie des
déblais et des remblais. Mem. Math. Phys. Acad.
Royale Sci., pages 666–704.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport. Foundations and Trends®
in Machine Learning, 11(5-6):355–607.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima.
2022. Re-evaluating word mover’s distance. ICML.

Yuki Takezawa, Ryoma Sato, and Makoto Yamada.
2021. Supervised tree-wasserstein distance. In
ICML.

Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han
Bao, Zornitsa Kozareva, and Sujith Ravi. 2022.
Approximating 1-wasserstein distance with trees.
TMLR.

Sho Yokoi, Ryo Takahashi, Reina Akama, Jun Suzuki,
and Kentaro Inui. 2020. Word rotator’s distance.
EMNLP.

A Related work

In this study, we considered an optimal transport-
based nearest neighbor search for a large-scale
dataset. Thus, we described the optimal transport
(Wasserstein distance) and the nearest neighbor
search (NN).
Optimal transport and Wasserstein distance:
Optimal transport is widely used in machine learn-
ing, computer vision, and natural language process-
ing tasks. The Monge formulation was originally
proposed (Monge, 1781), in which it moves mass
from one place to another. In NLP communities,
the Kantorovich formulation is more widely used
than the Monge formulation (Kantorovich, 1942;
Peyré et al., 2019). In this study, we will focus on
the Kantorovich formulations.

Kusner et al. (2015) proposed the word mover’s
distance (WMD) for NLP tasks. WMD is given as

W1(µ, ν) = min
Π∈U(a,a′)

m∑
i=1

m′∑
j=1

πijd(xi,x
′
j),

where µ =
∑

i aiδxi and ν =
∑

j a
′
jδx′

j
, a⊤1 = 1

and a′⊤1 = 1. In addition, x ∈ Rd is a word
vector, Π is a transport plan, and U denotes a set
of joint probability distributions.

WMD is highly used in various natural language
processing tasks, including document classification
(Kusner et al., 2015; Sato et al., 2022), text gen-
eration, and machine translation. However, the
computation of WMD is cubic with respect to the
number of data points. Therefore, it cannot effec-
tively scale to large datasets.

To speed up the computation of WMD (or
Wasserstein distance), we can use the Sinkhorn
algorithm (Cuturi, 2013), which solves entropic
regularized optimal transport problems. Owing to
the Sinkhorn algorithm, WMD can be efficiently
solved in quadratic time.

To further speed up the computation of Wasser-
stein distance, Wasserstein distance on a tree is
useful (Indyk and Thaper, 2003). Specifically, it
first embeds data points in a tree and computes the
optimal transport on the tree. The advantage of
tree-based optimal transport is that the Wasserstein
distance can be obtained analytically and computed
in linear cost. Le et al. (2019) proposed a tree sliced
variants of Wasserstein distance and showed that
the performance significantly be improved by using
multiple trees. Moreover, TWD can be represented
by the L1 distance between two embedded vectors



(Takezawa et al., 2021). Thus, it can be efficiently
computed using GPUs. The tree-based method
is computationally efficient; however, it does not
approximate the Wasserstein distance using an ar-
bitrary metric. To solve this issue, Yamada et al.
(2022) recently proposed a regression-based ap-
proach to approximate Wasserstein distance using
TWD.
Nearest Neighbor Search: Nearest neighbor
search is a fundamental technique used in vari-
ous fields, including natural language processing
(NLP), machine learning, data mining, informa-
tion retrieval, and computer vision. The nearest
neighbor search is the key technique in document
retrieval, which is a typical application of NLP. It
is also used for image retrieval in computer vision
applications.

One of the key challenges of the nearest neighbor
search is the computational cost. Because the num-
ber of documents increases dramatically, a vanilla
nearest neighbor search is not applicable to such
large-scale data. To handle the scalability issue, an
approximate nearest neighbor search, which effi-
ciently finds the nearest neighbors by approximat-
ing the distance computation, is heavily used.

One standard approach is to use kd-tree to parti-
tion the space and quickly find nearest neighbors
(Bentley, 1975). The other techniques are based on
locality-sensitive hashing (Datar et al., 2004). Re-
cently, FAISS has been proposed for finding nearest
neighbors from billion-scale datasets using GPUs
(Johnson et al., 2019). Although approximate near-
est neighbor search algorithms are heuristic ap-
proaches, they can efficiently search for nearest
neighbors. Recently, several useful ANN packages
have been developed, including the FAISS5, AN-
NOY 6, and SCANN 7.

Number of
documents n

Number of unique
words Nleaf

Twitter 3108 4489
BBCsport 737 10103
Amazon 8000 30249
Classic 7093 18080

Table 2: Number of documents and unique words of the
datasets used for the experiments.

5https://github.com/facebookresearch/faiss
6https://github.com/spotify/annoy
7https://github.com/google-research/

google-research/tree/master/scann

B Additional results

Figure 4 shows the tree construction time that is
performed only once for each method. The smaller
the n_slice, the faster the construction time.
Table 3 gives the average time required to classify
30% of the data from each dataset for the k-nearest
neighbors for k ∈ {1, 5, 10} when using a CPU
FAISS index. The smaller the n_slice, the faster
the construction time.
The average accuracy for all datasets is presented
in Figure 5.
Figure 6 reports the results for all datasets of an-
other performance indicator : top-m neighbors
score. Top-m neighbors score, here for m ∈ {1, 5},
gives the proportion of the m first nearest neigh-
bors of a given method that are actually the m first
nearest neighbors when using WMD. WMD is con-
sidered as a ground truth.
Ultimately, Figures 7, 8 and Table 4 present the tree
construction time, the average accuracy and the av-
erage time required to classify 30% of the data
from each database generated using the QuadTree
approach. These results underscore that the Clus-
terTree approach for the tree construction gives
better performance.

https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann


Algorithm 1 Sliced weight estimation with trees.

1: Input: The matrix X , the regularization parameter λ1 ≥ 0, and a set of indices Ω.
2: for t = 1, 2, . . . , T do
3: random.seed(i)
4: Bt := ClusterTree(X)
5: B̄t := RemoveLeaf(Bt)

6: Compute z
(t)
i,j from B̄t and d(xi,xj), (i, j) ∈ Ω

7: w̄t := argmin
w∈RN̄t

+

∑
(i,j)∈Ω(d(xi,xj)−w⊤z̄

(t)
i,j )

2 + λ∥w∥1.
8: end for
9: return {(B̄t, w̄t)}Tt=1
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Figure 4: One-time tree construction time (expressed in seconds) of the datasets used in the experiments.



Twitter BBCSport Amazon Classic
Methods 1 5 10 1 5 10 1 5 10 1 5 10

Faiss TWD 3.969 3.917 4.033 0.389 0.347 0.351 174.105 169.923 165.540 81.241 80.908 81.603
Faiss ll-TWD

n_slice=1 0.430 0.428 0.449 0.044 0.044 0.045 14.749 15.265 15.228 10.330 9.860 9.997

Faiss ll-TWD
n_slice=3 2.224 2.319 2.336 0.156 0.159 0.139 47.057 47.426 47.380 30.582 30.345 30.283

Faiss ll-TWD
n_slice=5 4.205 4.331 4.298 0.325 0.307 0.308 78.731 80.303 80.349 51.749 51.749 51.580

Faiss ll-TWD
n_slice=10 9.171 8.849 9.135 0.790 0.778 0.809 163.348 160.211 159.874 102.815 102.325 102.379

Table 3: Average testing time of the datasets used in the experiments for k ∈ {1, 5, 10} using a CPU faiss index.
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Figure 5: Average accuracy of the datasets used in the experiments.
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Figure 6: Top-1 and Top-5 neighbors scores, with WMD as a ground truth, for the datasets used in the experiments.
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Figure 7: One-time tree construction time (expressed in seconds) of the datasets used in the experiments for the
QuadTree approach.



Twitter BBCSport Amazon Classic
Methods 1 5 10 1 5 10 1 5 10 1 5 10
WMD 248.7 250.2 250.9 283.9 275.5 267.5 5382.8 5380.3 5380.5 5093.1 5079.4 5097.9
BOW 0.036 0.036 0.036 0.011 0.011 0.010 0.695 0.692 0.692 0.324 0.321 0.322

Faiss TWD 0.045 0.051 0.051 0.012 0.012 0.012 0.799 0.803 0.799 0.642 0.647 0.637
Faiss ll-TWD

n_slice=1 0.020 0.021 0.022 0.008 0.009 0.008 0.117 0.115 0.117 0.096 0.090 0.095

Faiss ll-TWD
n_slice=3 0.030 0.031 0.030 0.012 0.009 0.009 0.298 0.300 0.302 0.283 0.266 0.248

Faiss ll-TWD
n_slice=5 0.036 0.035 0.043 0.009 0.010 0.009 0.489 0.484 0.486 0.407 0.404 0.403

Faiss ll-TWD
n_slice=10 0.056 0.058 0.068 0.018 0.021 0.016 0.925 0.918 0.923 0.736 0.764 0.756

Table 4: Average testing time of the datasets used in the experiments for k ∈ {1, 5, 10} for the QuadTree approach.
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Figure 8: Average accuracy of the datasets used in the experiments for the QuadTree approach.


