
SOFTWARE Open Access

Storing and analyzing a genome on a
blockchain
Gamze Gürsoy1,2,3,4, Charlotte M. Brannon1,2,5, Eric Ni1,2, Sarah Wagner6, Amol Khanna7,8 and Mark Gerstein1,2,6*

†Gamze Gürsoy and Charlotte M.
Brannon contributed equally to this
study.

* Correspondence: mark@
gersteinlab.org
1Program in Computational Biology
and Bioinformatics, Yale University,
Whitney Avenue, New Haven, CT
06520, USA
Full list of author information is
available at the end of the article

Abstract

There are major efforts underway to make genome sequencing a routine part of
clinical practice. A critical barrier to these is achieving practical solutions for data
ownership and integrity. Blockchain provides solutions to these challenges in other
realms, such as finance. However, its use in genomics is stymied due to the difficulty
in storing large-scale data on-chain, slow transaction speeds, and limitations on
querying. To overcome these roadblocks, we developed a private blockchain
network to store genomic variants and reference-aligned reads on-chain. It uses
nested database indexing with an accompanying tool suite to rapidly access and
analyze the data.

Keywords: Blockchain, Multichain, Personal genome, Blockchain database

Background
Modern advances in personalized medicine have resulted in an increasing number of in-

dividuals willing to sequence their own genome for disease-risk predictions and ancestry

analysis, which has brought us closer to an era of genomic data-driven healthcare and

biomedical research. Given the widespread interest in understanding one’s own genomic

data, and the promise of genomic data for advancing biomedical research, it is almost in-

evitable that genome sequencing will become part of routine clinical care in the future

and that the number of sequenced human genomes will continue to grow [1].

The increase in genetic testing in medical settings and through direct-to-consumer com-

panies has raised questions related to data ownership. Data ownership is the possession

and the responsibility of the information in the data, which implies both power and con-

trol. The control of the information is defined as the ability to access, create, modify, pack-

age, derive benefit from, sell, or remove the data and also the right to assign these access

privileges to others [2]. For example, when an individual purchases a sequencing service

from a company such as 23andMe, they are often giving that company the right to

monetize their genomic data by selling it to pharmaceutical companies [3]. Ideally, individ-

uals would retain ownership and be able to benefit from their own data. This enables them

to control the right to share (privacy) and how to share (security) their own genetic data

[4]. Yet, the storage and analysis infrastructure to achieve this goal is lacking. As a result,

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Gürsoy et al. Genome Biology (2022) 23:134
https://doi.org/10.1186/s13059-022-02699-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02699-7&domain=pdf
http://orcid.org/0000-0002-9746-3719
mailto:mark@gersteinlab.org
mailto:mark@gersteinlab.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

there is no technical solution to achieve the provenance and security of this highly sensi-

tive, private, personal data such that data owners are empowered to contribute to science

and medicine while keeping their data safe. Moreover, data ownership issues are not re-

stricted to individual-level genomic data. There is an increase in human-derived functional

genomic datasets, requiring attention in terms of who owns and controls these datasets.

There is increasing interest in blockchain technologies and their capabilities. On-

going discussions have centered on how blockchain technology could change the

currency of the world by addressing many challenges in the current financial sys-

tems at once (e.g., transaction speed, security, and removal of middle man). For ex-

ample, non-fungible tokens (NFTs) are increasingly being used as a way to deploy

valuable assets on public or hybrid blockchains. Moreover, blockchain technology

is being used in many industries from supply chain management to the media and

entertainment business. Naturally, there is interest in the capabilities of this tech-

nology in genomics as blockchain technology can establish verified and public

proof of data ownership [5, 6]. However, no one has yet figured out how to store

a large amount of data, such as the read stack observed in genome sequencing, in

a blockchain. This is due to technical roadblocks posed by blockchain for large-

scale data storage and analysis. In this study, for the first time, we implement an

approach to store and analyze a genome in a blockchain.

Note, many up and coming biotech companies offer blockchain-based solutions for

genomic data sharing (see Additional file 1 for more about these companies and block-

chain technology). Because of the technical challenges related to storing genomes in a

blockchain infrastructure, many blockchain genomics companies store the genomic

data elsewhere, such as in Blockstack or the InterPlanetary File System (IPFS) [7, 8]

and use blockchains as a log-keeping infrastructure (see Additional file 1 for more

about the difference). In particular, IPFS is a decentralized file system that uses a dis-

tributed hash table for easy access to the shared files in an effort to create a resilient

system for file storage and sharing.

The storage space and computational power required by blockchain is greater than a

centralized database application due to the redundancy of storage and network verifica-

tion protocols. The decentralized system also creates a higher latency (delay in data com-

munication) during storage and retrieval of data. Additionally, transactions in the

blockchain network require a cryptographic consensus verification, which makes them

slow to publish data to the chain [9]. We propose that a carefully crafted private block-

chain network can alleviate the problems related to both data ownership and control and

technical difficulties. Moreover, it can maintain security and integrity of the data. As gen-

omic data becomes increasingly integral to our understanding of human health and dis-

ease, its integrity and security must be a priority when providing solutions to storage and

analysis. Corruption, change, or loss of personal genomes could create problems in patient

care and research integrity in the future. An ideal implementation of personal genomic

data storage would (1) protect from loss and manipulation, (2) provide appropriate access

to clinicians and biomedical researchers, and (3) allow individuals control over their own

genomic data. Private blockchains lack mathematical guarantees at the validation level,

but still utilize the cryptographic safeguards and blockchain-specific data structures (e.g.,

Merkle trees) to make sure non-valid transactions are not added to the chain. Although

proof-of-work is not used, transactions are verified using other consensus mechanisms.

Gürsoy et al. Genome Biology (2022) 23:134 Page 2 of 22

Private blockchain networks may be compared to distributed databases to illustrate their

utility. Blockchain architecture has several advantages, as outlined by Kuo et al. [10].

Briefly, blockchain excels in decentralized database management, immutability (provided

by the hash of a new block containing the information of the blocks that come before it),

data provenance, robustness, security, and privacy. Additionally, a private blockchain may

be converted into a consortium blockchain, in which consensus is controlled by a pre-

selected set of nodes (i.e., proof of work in a limited way), further boosting its security.

In this study, we present the first open-source, proof-of-concept private blockchain net-

work, which allows efficient storage and retrieval of personal genetic variants [often stored

as variant call format (VCF) files] and raw genomic reads [often stored as sequence align-

ment map (SAM) files] [11, 12]. To overcome the challenges described above, we devel-

oped novel data structures based on nested database indexing, file-format modifications,

and compression techniques with the open-source blockchain API MultiChain. We made

use of their “data stream” feature, which allows users to create multiple key-value, time-

series, or identity databases that can be used for data sharing, time-stamping, and

encrypted archiving (see Additional file 1). We provide two modules. The first module is

a lightweight software that allows users to efficiently store (VCFChain) and query

(VCFtool) VCF files. The second module is more resource intensive and allows users to

create a chain and insert SAM data into it (SAMchain) and perform a selection of func-

tions (SCtools) such as querying, depth analysis, pile-ups for variant calling, and re-

creating SAM files and their derivatives (such as BAM and CRAM files).

Because the process of pushing the data into a blockchain is done once but querying

and analyzing the data is a continuous process, we focused on optimizing the data stor-

age towards faster querying/analysis with multiple levels of indexing schemes. This is

different than the current blockchain genomic data storage options introduced in pri-

vate industry, where the data storage is optimized, hence providing no option for

querying and analyzing the data.

Results
Private blockchain networks can help with control of data

We envisioned a network of sequencers, owners, clinicians, and researchers, each

syncing VCFchain or SAMchain (Fig. 1a). The owner node initializes a VCFchain

or SAMchain, including the data streams that store the VCF or SAM data. The se-

quencer node generates the VCF/SAM data and requests access to the data owner’s

VCFchain or SAMchain. The owner grants access, allowing the sequencer to push

the owner’s data to their chain. The clinician and researcher nodes, upon making

contact with the owner through other means, may also request access to the

owner’s VCFchain or SAMchain and make use of the VCFtools or SCtools modules

to analyze the data. In this scheme, the owner may change the permissions of

VCFchain or SAMchain at any time. MultiChain, the technology that SAMChain is

built upon, provides access control, in which the owner of the blockchain network

can grant permission to a user and make the user part of the blockchain network.

It also provides the option of granting only partial access to the chain. Moreover,

every time a user subscribes to the network and pushes data to the network, it is

recorded in the blockchain with precise timestamps.

Gürsoy et al. Genome Biology (2022) 23:134 Page 3 of 22

Fig. 1 SAMchain design and implementation. a Overview of the SAMchain network ecosystem. The
network consists of owner, sequencer, clinician, and researcher nodes. The owner node builds the
SAMchain and the sequencer node accesses the chain and inserts SAM data into it. The clinician and
researcher nodes access the SAMchain and analyze the on-chain SAM data. b Details of data storage in
SAMchain. A read is typically stored in a SAM file containing several features. Our data structure is organized
by genomic location. A single stream, named metaData, contains all of the header data and other chain
info. Many other streams serve as bins by genomic location and hold the SAM feature data and
MODCIGAR. A FLANK feature is used to indicate whether a read’s position spans two consecutive bins.
Stream items correspond to a single read. A single stream, named unmappedANDcontigs stores unmapped
reads and contigs. c Overview of the query process. Upon querying a genomic location, our algorithm
searches through the binned streams to obtain the SAM data and MODCIGAR features corresponding to
the specified location. These data, in combination with a reference genome, yield a complete SAM read.
Our algorithms and stream-based data structures are built on top of MultiChain, which provides the
underlying blockchain, stream design, and network configuration

Gürsoy et al. Genome Biology (2022) 23:134 Page 4 of 22

SAMchain’s design provides advantages over traditional blockchain data storage methods

Next, we considered how best to configure data storage in SAMchain. The naive way to

store data in a bitcoin-like blockchain would be to append small amounts of data to each

transaction using OP_RETURN, a script opcode allowing the sender to send a small

amount of data (which varies between platforms) with their transaction. The OP_RETURN

data are mined into a block along with the rest of the transaction. The data that are pushed

using OP_RETURN are indexed in a transaction with a unique identifier, often called “ref”

in a transaction. Each transaction can hold data around ~ 80 bytes, which means genomic

data must be stored within numerous transactions. The unique identifiers must be stored

somewhere separately, as one can retrieve data only with ref. As one can imagine, querying

the genome with a specific position, or doing a pile-up analysis with OP_RETURN, is ex-

tremely difficult and inefficient due to the lack of required data structures [13]. In addition

to storing the data embedded in the transactions, MultiChain offers another data structure

to store the data on the chain, called “data streams.” Each stream item is represented by a

blockchain transaction, which is mined and validated by every node like any other transac-

tion (please see MultiChain white paper for details at https://www.multichain.com/

download/MultiChain-White-Paper.pdf [last access June, 2022]). The embedded key:value

property of the streams allows for efficient retrieval of the data on the chain, because when

a node in a MultiChain network subscribes to a stream, it indexes the stream’s content in

real time in order to enable efficient retrieval by the keys (see https://www.multichain.com/

developers/data-streams/ for details [last access June, 2022]). Note that blocks are created

and sealed based on the transaction (e.g., data storage) timestamps. Depending on the

timestamp that the data was pushed to the chain, a single data stream can be stored over

multiple blocks or a single block might store multiple data streams.

The naive way to store data in a MultiChain stream would be to push all the data to

a single stream, and then query from it. However, the query algorithm must check each

item to determine if it matches the queried position or range of positions. Were each

genomic read defined by a single point position, we would not have this problem; we

would simply store point positions as keys. However, because a read is defined by a

range of positions, with overlap between reads, our query algorithm must check that a

given read overlaps with the range or point queried. This is not possible in a traditional

key:value-stored dictionary (i.e., streams in MultiChain). To achieve this kind of query

with efficiency, we created streams binned by genomic location (Fig. 1b,c). This in-

creases the time it takes to create a SAMchain (which is only done once), as many

streams must be created, but significantly decreases the query time, making SAMchain

a viable way of storing raw genomic reads on a blockchain. In Table 1, we summarize

the contributions of MultiChain to our methods vs. those of SAMchain itself.

SAMchain provides a platform for storing next-generation sequencing (NGS) data in blockchain

It is notoriously difficult to store large amounts of data in a blockchain, due to network

latency and storage redundancy [10]. Thus, to store raw genomic data on-chain, we

first needed to manipulate the information content for efficient storage. Whereas a

SAM file stores a read’s sequence and the quality string of the read, SAMchain stores

only the difference between a read and a reference genome. This design was inspired

by the CRAM file format, in which a genomic reference file is optionally used to

Gürsoy et al. Genome Biology (2022) 23:134 Page 5 of 22

https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/developers/data-streams/
https://www.multichain.com/developers/data-streams/

describe the difference between the aligned sequence and the reference sequence [14].

However, CRAM is a columnar file format composed of containers whereas SAMchain

stores data in plain text. Our manipulation consists of storing a new data field that we

refer to as the “modcigar,” a string containing the sequence data that differ from the

reference (e.g., insertions). We show that there is a ~ 2-fold reduction in the storage

with this manipulation (Fig. 2a). Figure 2b shows how adding nodes to the SAMchain

private network affects the amount of data needed to be stored. Next, we designed the

SAMchain data structure using MultiChain streams. As defined by MultiChain, streams

are ordered lists of items, each with a publisher (who digitally signed the item), a set of

keys (to be used for retrieval), some data (which are embedded on-chain in a transac-

tion), and some meta data (about the transaction and block corresponding to the item).

As we discuss in the section above and show in Fig. 3b, querying data by genomic pos-

ition from a single stream would be very time-inefficient. To address this problem, our

code creates several streams binned by genomic position based on an input bin size.

For example, the length of human chromosome 1 (build GRCh38) is 248,956,422 base

pairs. If the user were to set the bin size to one million base pairs, then 248,956,422/

1,000,000 = 249 streams would be created for chromosome 1, named chr1stream{j},

where j ranges from 1 to 249. In these streams, we stored the SAM features in the data

field, and a feature called “flank” in the key field, which indicates whether a read’s coor-

dinates span one stream (flank = 0) or two (flank = 1) (see Additional file 1: Fig. S1).

The flank feature is necessary because the position of some reads will naturally span

two consecutive streams. This design allows our query algorithm to know exactly which

streams to search during a query, and to search through streams with fewer items. We

Table 1 Contributions of MultiChain vs. SAMchain. The novel method presented in this paper is
SAMchain, a tool that is built upon the functionality of the MultiChain blockchain platform/API.
Here we summarize how the contributions of SAMchain differ from those of MultiChain

Gürsoy et al. Genome Biology (2022) 23:134 Page 6 of 22

confirmed that the retrieval time in MultiChain is based only on the number of entries

in a given stream (and unaffected by other streams on-chain) (Fig. 3a). Our code also

creates a metaData stream to store the file header, and an unmappedANDcontigs

stream to store any unmapped reads and contigs in the case that they can be realigned

in the future (see Additional file 1: Table S1). The design of the SAMchain data struc-

ture is shown in Fig. 1b.

We measured the time, memory, and storage requirements of building a SAMchain.

All the tests described in the “Results” were completed using an alignment file curated

from the high-coverage whole-genome sequencing data of individual NA12878 from

the 1000 Genomes Project as input data. For speedy testing, we constructed a SAM file

with one disease-causing locus of roughly 1–5 million base pairs per chromosome. The

details of these loci are provided in Additional file 1: Table S2.

For a fixed bin size (1 million base pairs) and varying number of input reads, we evalu-

ated the time, storage, and memory requirements of building and inserting data into a

SAMchain. As shown in Fig. 2c, the storage required per node by SAMchain is

Fig. 2 SAMchain performance. a Before inserting SAM data to a SAMchain, we remove the sequence and
quality strings. In plain text, we measured the storage gain by removing these fields. b The total network
storage required for a SAMchain storing ~ 10 million reads. c Total time to insert data to SAMchain as a
function of number of reads when a different number of CPUs are used. d Storage (compared to a SAM file),
time (for a single CPU), and memory used to build a SAMchain

Gürsoy et al. Genome Biology (2022) 23:134 Page 7 of 22

approximately 5-fold greater than that required by a SAM file. For example, our input

SAM file containing ~ 10 million reads requires 5.5 GB. Building the corresponding SAM-

chain in a one-node network requires ~ 25GB. As shown in Fig. 2b, the storage

Fig. 3 SCtools performance. a Query time from a MultiChain stream depends only on the number of entries in
that stream, i.e., it is not affected by the number of reads stored in other streams in the chain. b In a single-node
SAMchain network, we measured the time performance of queryReads, queryDepth, queryDepth and MAPQ, and
pileup for 1-bp queries. Each module performs comparably, increasing linearly as the number of reads stored in
the chain increases. c We measured the performance of queryReads for a SAMchain storing ~ 10,000,000 reads at
different bin sizes. SAMchains with smaller bin sizes yield faster query times, but take longer to build. d We
measured the effect of the range queried on performance time. Larger ranges are shown to yield longer query
times. We showed the times of SAMchain (red) compared to a naive, single-stream implementation (blue). e We
checked the output of each SCtools module compared to the equivalent SAMtools module

Gürsoy et al. Genome Biology (2022) 23:134 Page 8 of 22

requirements of a SAMchain increase with increasing nodes in the network, as each node

stores redundant data. For a chain storing ~ 10 million reads, each additional node requires

7.4 GB. The node that inserts the SAM data into the chain requires the most storage be-

cause MultiChain keeps a “wallet” directory, which stores transaction data especially rele-

vant to the local node (see Additional file 1 details). In Fig. 2d, we measured the time and

memory it takes to build and insert data into a SAMchain as a function of the number of

reads in the input SAM file, which show linear and constant trends, respectively. To build

and insert 10,000,000 reads to a SAMchain, it takes ~ 55 h in a single node. However, keep

in mind that pushing data to SAMchain must only be done once.

Since each read in a SAM file is independent and the streams to store the reads are

automatically determined by our algorithm based on its coordinates, we can use multiple

nodes to push the data in a SAM file in a parallel fashion. To this end, we parallelized our

codebase and showed that we can improve data insertion time by 5-fold using 10 CPUs at

the same time (Fig. 2c). We also found that the 5-fold increase is the limit of the possible

speedup because of the transaction latency in the blockchain. (This latency is due to safe-

guards such as proof of authority.) As an illustration, we tried to push 100,000,000 reads

into the SAMchain, which took ~ 100 h using 10 CPUs. Note that there is a balance be-

tween how much data is stored and how quickly the data can be queried. As the data stor-

age is needed only once, our optimizations are geared towards efficient queries. This is

different than current blockchain genomic data storage options, where the data storage is

optimized and outsourced to other distributed systems such as IPFS; hence, there is no

option for querying and analyzing the data on the chain.

SCtools can query NGS properties directly from SAMchain

We developed SCtools to query reads and other NGS properties from a SAMchain. Spe-

cifically, we developed four modules: queryReads, queryDepth, pileup, and buildBAM.

queryReads queries a SAMchain based on one of four SAM features and outputs reads in

SAM format. queryDepth performs depth analysis and pileup performs pileup analysis on

an input range of genomic coordinates. buildBAM reconstructs a BAM file from a SAM-

chain. To evaluate the scalability and performance of these modules, we first showed that

the time to perform a point query depends only on the number of reads in the queried

stream and is not affected by reads stored in other on-chain streams (Fig. 3a). Next, we

measured the time requirements of each SCtools module as a function of the number of

reads stored in the queried stream (Fig. 3b). The modules show comparable time effi-

ciency, increasing linearly with the number of reads stored in the queried stream (Fig. 3b).

We also checked the effect of “AND” queries, that is, filtering a depth query by MAPQ

score (Fig. 3b, “+” icon). We found that this type of query performed just as well as the

other modules. In Fig. 3c, we investigated the impact of changing the SAMchain bin size

for a fixed number of reads stored (~ 10 million). We found that increasing the bin size

increases the query time, which we expected because a larger bin size also contains a

higher number of reads relative to a smaller bin size. However, increasing the bin size also

decreases the total number of streams, which reduces the time required to build the

SAMchain (Fig. 3c). In Fig. 3d, we measured query time for a SAMchain storing a fixed

number of reads (~ 10 million) as a function of the range of genomic coordinates queried.

We found that query time increases linearly with an increasing range queried. This shows

Gürsoy et al. Genome Biology (2022) 23:134 Page 9 of 22

that if we increase the bin sizes, we can reduce storage size by ~ 6% of the original storage

need (55.5 GB vs. 52.5 GB). On the other hand, the time to query data becomes ~ 40-fold

slower (10 s vs. 400 s). These trade-offs can help dictate whether a particular use case is

appropriate for SAMchain. In Fig. 3e, we show the output of each SCtools module com-

pared to that of the comparable SAMtools function. In Fig. 3f, we measured the time it

takes to build a BAM file from the read data stored in a SAMchain. The time increases

linearly with an increasing number of reads stored in the chain.

As can be seen in Fig. 3b, the time it takes to query a single genomic location using our

different query mechanisms in a network with 10 million reads divided into 10,000 reads/

stream is around 0.5 s. Note that as was shown in Fig. 3a, the query time depends on the

stream size; that is, if we have 10,000 reads per stream with 500 million reads, the query

still takes 0.5 s because of the nested indexing scheme. As a comparison, we ran various

queries with plaintext tool SAMtools [11] using a BAM file with ~ 60 million reads. We

found that pile up for a single location takes about 0.05 s; querying a depth of a single lo-

cation takes about 0.02 s; and querying the reads mapped to a single location takes about

0.08 s. This shows that SCtools, on average, is about 10 times slower than SAMtools due

to the added security. However, note that, in order to be able to perform these queries

with SAMtools, one needs to sort and index the BAM files first, which is known to be a

slow process. In SAMchain, reads are already stored in an indexed way based on their

genomic coordinates, and therefore, there is no need for such pre-processing. However,

one can think of sorting process as analogous to pushing the SAM data to the blockchain

network as both processes are slow, but done only once.

While we evaluated the performance using DNA sequencing data, SAMchain and

SCtools are compatible with any NGS data, including functional genomic data. For ex-

ample, SCtools can be utilized to query variants in a gene or the depth distribution of

exons of interest on raw RNA sequencing reads.

VCFChain and VCFquery modules provide faster options for direct query of genomic variants

There is significant value in storing and sharing aligned genomic reads, as opposed to just

the genomic variants called from the aligned reads. Access to raw reads is important be-

cause if a new reference genome build is available, the reads can be realigned and new vari-

ants may be observed, thereby maximizing the utility of the data. Thus, our primary goal

was to create a blockchain storage system for SAM files. However, practical applications of

SAMchain and SCtools can be limited due to the large data sizes originating from the re-

dundancy in blockchain. There can also be value in sharing variant data (VCF files). Thus,

we also developed VCFchain and a VCF query module. VCFchain stores data from a VCF

file on-chain, and VCF query can query variants from the chain by genomic position, along

with reference single-nucleotide polymorphism (SNP) ID (rsID) and/or genotype. To test

these modules, we used a VCF file from a consented individual in the ENCODE data por-

tal. We chose this VCF because it contains not only SNPs and small insertions and dele-

tions but also a full set of structural variants. In Fig. 4, we show the performance of

building VCFchain and VCFquery. As shown in Fig. 4a, the storage required for a one-

node network per node by a VCFchain storing ~ 6.5 million variants is approximately 40

GB. As more nodes are added to the network, the total storage increases. In this case, each

additional node requires 14 GB. In Fig. 4b, we measured the storage, time, and memory

Gürsoy et al. Genome Biology (2022) 23:134 Page 10 of 22

requirements of VCFquery in a one-node network with an increasing number of stored

variants. In Fig. 4c, we measured the time requirements of VCFquery for position queries,

along with position + rsID and position + rsID + genotype queries. Figure 4d shows the

output of VCFquery for a given read compared to that of BCFtools.

Our VCFchain infrastructure could also be used to store and share variants from a

cohort of individuals. For example, one could build upon our code base to create a

Fig. 4 VCFchain and query performance. a The total network storage used by a VCFchain (storing 6,458,146
variants) as a function of the number of nodes in the network. b The storage, time, and memory
requirements of building and inserting data to a VCFchain in a single-node network as a function of the
number of reads stored in the chain. Storage is compared to that used by a VCF file. c The time
requirements for VCFquery as a function of the number of reads stored in the chain, compared to the
retrieval time from a VCF file using BCFtools. d The output of VCFquery compared to that of BCFtools for a
given read

Gürsoy et al. Genome Biology (2022) 23:134 Page 11 of 22

VCFchain with the somatic variants of The Cancer Genome Atlas dataset stratified by

cancer type.

More technical details on SAMchain, Sctools, VCFchain, and VCFtools can be found

in Additional file 1.

SAMchain is the first proof-of-concept framework to store raw genomic reads on a

blockchain

In addition to comparing the performance of SAMchain and SCtools to that of SAM-

tools, we investigated the details of other genomic data storage platforms that use

blockchain. Because the role of blockchain in these platforms is qualitatively different

from that in SAMchain, we are not able to make quantitative comparisons. For ex-

ample, storing links in a blockchain while storing the data elsewhere is fundamentally

different than storing the data itself on-chain. Instead, we highlight the major differ-

ences between each platform and SAMchain in Table 2. Note that the information

about each platform is derived from the limited knowledge provided by the company

websites and whitepapers and is presented here to the best of our knowledge and their

implementation as of February 2022. We identified four companies and/or projects that

use blockchain in the context of genomic data storage: CrypDist, Zenome, Nebula Gen-

omics, and the Cancer Gene Trust. Another is Encrypgen/Gene-Chain, but their lim-

ited documentation prevents any comparison with SAMchain. While each of these four

platforms uses blockchain for some aspect of their network ecosystem, none uses it to

store raw genomic reads on-chain. CrypDist stores links to data, which are stored in

cloud buckets [15]. Zenome uses Ethereum Smart Contracts to facilitate transactions of

genomic data, but stores the data off-chain in a distributed file storage system [7, 16].

Nebula Genomics uses Ethereum Smart Contracts to facilitate communication between

nodes, and Blockstack to facilitate data storage, but Blockstack stores the data off-

chain, either on a local drive or in the cloud. Users are then able to access these files

using the bioinformatics analysis platform Arvados to analyze the data (Digital Ocean,

S3, Dropbox) [8, 17]. Finally, the Cancer Gene Trust stores data off-chain in the IPFS

and raw genomics data locally and uses Ethereum Smart Contracts to store references

to the data files [7, 8, 18]. To the best of our knowledge, SAMchain is the first proof-

of-concept framework to store raw genomic reads on a blockchain, on-chain. By em-

bedding the data in the chain, SAMchain aims to preserve the integrity of the data by

taking advantage of blockchain protocols designed to preserve the integrity of crypto-

currency transactions. Details of these platforms can be found in Additional file 1.

There are also non-blockchain infrastructures to store raw genomic data in a distrib-

uted and secure way. For example, IPFS is a distributed peer-to-peer network. Users in

the network can store a file by its content address, and other peers in the network can

find and request the file from any node using the distributed hash table implemented

in IPFS. Although blockchain and IPFS are based on similar decentralization concepts,

IPFS is a peer-to-peer file sharing system. By contrast, our SAMchain and SCTools are

designed for the purpose of securely accessing and analyzing the data in a granular

fashion, allowing users to index NGS data at the base-pair resolution. IPFS allows hash-

ing the data at the file level and one would have to download the entire SAM file to be

able to analyze and query base-pair resolution information. Another technology that

Gürsoy et al. Genome Biology (2022) 23:134 Page 12 of 22

allows sharing and analyzing of distributed genomic data is Arvados, which is an open-

source platform for large scientific and biomedical data. It allows spinning of cloud

computing instances using data that are decentralized to avoid expensive data transfers.

It is a bioinformatics platform, in which an application such as SAMchain and SCTools

can be implemented and run by instantiating cloud computing nodes. However, it is

designed for the use of scientists requiring execution of Common Workflow Language-

based scripting that might be difficult for clinicians and patients to adopt. Note that

IPFS and Arvados, blockchain, and SAMchain/SCtools are on different conceptual

layers hence they cannot fully substitute for each other. In particular, while IPFS and

Arvados are useful file systems and computing infrastructures that any application can

be built on top of, SAMchain and SCtools are applications that are built on top of

blockchain (Additional file 1: Fig. S9).

SAMchain is user friendly and easy to use by users with no blockchain knowledge

The design of SAMChain and SCtools provides several user-friendly options to scientists

with no blockchain background. The modules in SAMchain and SCtools are developed in

Python and allows for storing and querying of data using a command line. This allows

users to combine the functionalities of our tools with commonly used command line bio-

informatics tools such as BEDtools (Additional file 1: Fig. S6). Our codebase also alerts

users about potential data storage issues: It regularly checks the remaining storage space

during the data storage process. If there is not enough space to add the next read to the

Table 2 Side-by-side comparison of existing blockchain genomics data storage platforms and
SAMchain. Importantly, SAMchain is the only platform that stores raw genomic data on-chain,
leading to high-integrity data storage

Gürsoy et al. Genome Biology (2022) 23:134 Page 13 of 22

chain, it seals the chain and returns a storage error with an indication where the chain has

failed. With this, users do not have to rebuild the chain but can continue adding to the

chain from where it failed after increasing the available storage (Additional file 1: Fig. S7).

Furthermore, our system works well in a high-performance computing (HPC) setting.

This means, as long as access is granted, scientists can easily install the MultiChain client

and SAMChain app and connect to an existing private blockchain network to analyze

genomics data by using their institutions’ existing HPC infrastructure.

Discussion
We envision a real-world scenario in which individuals create private blockchains to store

their personal genomes to share with their healthcare providers and biomedical re-

searchers. Simply with intrinsic access control and security properties, healthcare pro-

viders and geneticists can stream or query patients’ genomes. For example, every time a

piece of data is encrypted in a shared server or cloud, there is a potential for it to be cor-

rupted, especially if the data are extremely large such as genomic data. Moreover, trad-

itional access-control mechanisms such as dbGAP or EGA leave the research participant

or patient outside of the decision-making process. Our private blockchain network re-

duces not only the risk of data corruption, but also non-permissioned access to private

data and gives the control to the actual owner of the data. Blockchain provides immutabil-

ity such that the data cannot be altered, whether intentionally or accidentally. This is an

important aspect of the system not only for personal, private data but also for large-scale

open genomic data. Large-scale open data such as those from the 1,000 Genomes Project

or the Personal Genomes Project, especially in centralized data storage systems, are vul-

nerable to corruption and tampering. Moreover, our blockchain-based system can also be

combined with blockchain-based data access auditing solutions [5, 19] to provide further

control and auditing of access in a more efficient way.

Our framework is the first open-source application to allow querying and streaming of

genomic data from blockchain to the best of our knowledge. This is a substantial im-

provement over the current biomedical applications of blockchains. To address privacy

concerns, our framework may be extended to store encrypted data in the data streams.

For example, homomorphic encryption has recently been applied to many bioinformatics

problems [5, 17, 20–22]. It enables direct computations of encrypted data within the pub-

lic cloud or any other shared server, providing mathematical privacy guarantees. One

could even encrypt the data homomorphically, allowing direct computations on the

encrypted data. However, this would add further storage and computation overhead.

Please note that, in our study, each private blockchain network corresponds to a single

genome owned by the individual to which the genome belongs. In addition, a single gen-

ome will always have an approximately fixed size (for example, 30X whole-genome se-

quencing will always have 400–600 million reads based on the read length). That is,

genomes from millions of users translate into millions of private blockchain networks

such that each network must scale only to a fixed, single genome size. Therefore, we be-

lieve that neither storage nor the time to push the data (one time cost) will be an issue

moving forward if this technology is widely adopted. Moreover, researchers can subscribe

to multiple networks at once to query data in parallel from multiple genomes. To

summarize briefly, we think that the scalability will not be a problem moving forward, be-

cause (1) the genome is fixed in size and we showed that it can be stored on the

Gürsoy et al. Genome Biology (2022) 23:134 Page 14 of 22

blockchain with the current data storage options we have; (2) the cost of pushing data, al-

though seems high, is a one-time cost and is attainable, as we showed with our paralle-

lized system; (3) it is designed to hold a single human genome; (4) for storing many

genomes, we would create many SAMchains operated by the owner of the genomes.

While the main benefit of using blockchain for data storage is data security and integ-

rity, blockchain also makes it easy to append data to large data files. For example, in the

case of SAM files, if a user wishes to add to the data, one could create data streams for

these additions (since it is a private chain, only the owner and the permissioned users of

the chain would be allowed to make these changes). Thus, the data owner does not have

to deal with opening, modifying, and re-indexing large data files, which creates costly net-

work traffic. Searches by genomic location could also check the new data streams to de-

termine if the owner has appended any changes to the data. Furthermore, the stream

format lends itself well to storing reads; as discrete, independent items, ie., reads naturally

fit into stream format. To make the computation completely on-chain, one could adopt

SAMchain and SCtools for Ethereum. To demonstrate how this might be accomplished,

we provide a sample Smart Contract in our SAMchain code repository. As Ethereum be-

comes more and more suitable for database development, this will be an interesting future

direction. Another future direction is to create dictionaries from the SAM files, in addition

to reference-based compression techniques, compatible with blockchain querying mecha-

nisms in order to further reduce chain storage requirements.

There are other technologies such as IPFS and Arvados that allow for the storage,

movement, and computation of large-scale genomic data. IPFS hashing is done at the file

level compared to the read level indexing provided by SAMChain. Read level indexing al-

lows more granular queries and analysis of the data (such as variant calling) while the data

is still on the blockchain. Arvados provides a platform for bioinformatics analysis that al-

lows for access and audit control through recorded logs, data integrity through hash-

based identifiers, privacy through encryption of data at rest, and transmission security

through encryption of data in transit. Although its security guarantees are not at the level

of what a blockchain provides (e.g., immutability of the data), it has high potential to

transform data sharing and analysis in a research setting. However, it is designed for use

by scientists and therefore can be difficult for patients and clinicians to adopt.

Our blockchain solution can be generalized to other large-scale data storage and

querying problems beyond genome sequencing data. For example, functional genomics

assays are generating an unprecedented amount of data from different modalities. Stud-

ies have shown that privacy concerns will lead to a large fraction of these data being si-

loed behind a firewall. Therefore, we recently proposed privacy-preserving BAMs

(pBAMs) as an alternative approach to the current controlled-access functional genom-

ics data sharing mechanisms [23]. pBAMs, which have the same structure as SAM/

BAM files, allow for the public sharing of read alignments of functional genomics data

while protecting sensitive information and minimizing the amount of private data that

requires special access and storage. Because genetic variants are often unnecessary for

most downstream calculations, the public component (pBAM files) and the private

component (.diff files) of the aligned reads are differentiated and only the private files

are stored behind a firewall. We envision that one can further optimize the data storage

in SAMchain by storing only the .diff component on-chain. That is, only the private in-

formation (i.e., the genetic variants) per read could be stored on-chain, while the rest of

Gürsoy et al. Genome Biology (2022) 23:134 Page 15 of 22

the information of the reads (i.e., the pBAM files) could be stored off-chain (Fig. 5).

Data including but not limited to functional genomics data, VCF files from multiple in-

dividuals, and somatic mutation datasets from cancer patients can be stored in block-

chain using our indexing schemes, allowing for rapid and partial retrieval of the data.

Note that our system is based on the existing reference genome-based file formats.

However, we envision that these file formats might be modified or replaced by other

formats that use graph genomes and pan-genomes as references [24–26]. This will

likely change the indexing and querying mechanisms that we propose in this study.

Conclusions
Blockchain is an exciting new technology that has provided solutions to ownership and in-

tegrity challenges in other realms (e.g., finance and art). However, its use in genomics is sty-

mied by the fact that storing large-scale data on a blockchain can be challenging. Here, we

provide a solution to overcome these roadblocks. We developed a novel private blockchain

network to store personal genomic variants and reference-aligned next-generation sequen-

cing reads on-chain using nested database indexing. We also developed tools for rapidly

accessing and analyzing the on-chain data. We addressed the challenges of on-chain data

storage by minimizing the data inserted to the chain using reference-based data compres-

sion and indexing techniques. Moreover, our tools provide open-source blockchain-based

storage and access for advanced genomic analyses such as variant calling.

Methods
MultiChain API

We designed SAMchain as a layer on top of MultiChain (Additional file 1: Fig.

S8). MultiChain data streams make it possible for a blockchain to be used as a

general purpose database. The data published in every stream is stored by all nodes

in the network. Each data stream on a MultiChain blockchain consists of a list of

Fig. 5 Schematic of storing .diff files in our blockchain implementation and the differences between the
various implementations introduced in this study

Gürsoy et al. Genome Biology (2022) 23:134 Page 16 of 22

items. Each item in the stream contains the following information, as a JSON ob-

ject: A publisher (string), key:value pairs (from 1 to 256 ASCII characters, exclud-

ing whitespace and single/double quotes) (string), data (hex string), a transaction

ID (string), blocktime (integer), and confirmations (integer). When data need to be

queried or streamed, they can be retrieved by searches using the key:value pairs.

Publishing a stream item to a data stream constitutes a transaction. When a node

subscribes to a stream, it indexes the stream items in different ways to enable fast

retrieval, and the index entry points to the transaction ID. Because of the peer-to-

peer network architecture, stream items can arrive at different nodes in the net-

work in different orders. For more details please see MultiChain whitepaper

at https://www.multichain.com/download/MultiChain-White-Paper.pdf (referred as

Greenspan 2015 throughout methods section [last access June, 2022]).

MultiChain in a blockchain network

MultiChain permits the user to set a network ordering parameter to be local or global

(the default is global, used for SAMchain). Global ordering means that once the chain

has reached consensus, all nodes see the same order in their streams. Transactions sub-

mitted to the network are time stamped via the Linux timestamp. When a transaction

occurs, it is held in the memory pool. After mining of the transaction is complete, the

transaction is added to a block. Each block has a maximum transaction size, i.e., after a

block reaches its maximum size or the time to create a block reaches its limit, the block

is sealed and appended to the chain. This means that a data stream in MultiChain can

span multiple blocks based on the time of the transaction (i.e., the time of publishing

the data to the blockchain). New blocks are created according to the “target-block-

time”, a parameter set upon initializing a chain.

Multichain and blockchain mining

For "target-block-time", we used the default value, which is 15 s. We also used the de-

fault consensus mechanism, which is a round-robin schedule of miners (Greenspan

2015). Users can also turn on proof-of-work mining if they desire, but the security of

MultiChain does not depend on the proof-of-work scheme. As outlined in the Multi-

Chain whitepaper (Greenspan 2015, pg. 3), problems can arise if proof-of-work mining

(used in the public Bitcoin blockchain, for example) is applied to a private or “institu-

tional” setting, such as the “51% attack,” in which over half of the permissioned partici-

pants collude to alter the chain. To resolve this issue, MultiChain makes use of a

“mining diversity” parameter, which controls the number of blocks that may be created

by a given user within a set time window. Tuning this parameter changes the propor-

tion of the network that would need to collude in order to undermine the network (de-

tailed on pg. 7–8 of Greenspan 2015). Therefore, even though MultiChain is a private

network, immutability is achieved.

We designed SAMchain, SCtools, VCFchain, and VCFquery using MultiChain version

2.0.3 and Python version 2.7.16. Together, the SAMchain and SCtools repositories con-

tain six modules: buildChain, insertData, buildBAM, queryReads, queryDepth, and

pileup. VCFchain and VCFquery contain three modules: buildChain, queryPosition, and

queryGT-RSID.

Gürsoy et al. Genome Biology (2022) 23:134 Page 17 of 22

https://www.multichain.com/download/MultiChain-White-Paper.pdf

SAMchain design overview

We took an approach to maximize the efficiency of storing and querying data. Our goal

was to store minimal data while indexing it in a creative way to allow rapid retrieval,

thereby reducing the time and memory cost of analysis and increasing the utility of the

stored data (Fig. 1a). To achieve this goal, we manipulated (a) data structures in data

streams and (b) data to be stored in SAM files. For (a), we first separated mapped and un-

mapped reads from a SAM file. First, we created a data stream called metaData to store

the header data and general information (bin size, number of streams, etc.) about the

chain. We then created N streams (called chr_i-bin_j). Each of these N streams represents

a bin of genomic coordinates. Based on the location of a read mapped on the human ref-

erence genome, we logged the read names as data in chr_i-bin_j stream. Some reads span

two bins. In that case, we stored the read in the bin to which the beginning of the read

maps. We then added a boolean key to the chr_i-bin_j stream that we call FLANK (Add-

itional file 1: Fig. S1). FLANK = 0 indicates that the entire read is in that bin (Additional

file 1: Fig. S1). FLANK = 1 indicates that the read coordinates span two consecutive

streams. The FLANK value tells our retrieval algorithm to search for a particular read in

two chr_i-bin_j streams. Our query algorithm can retrieve the data in the chr_i-bin_j

stream based on the queried location. Our code base allows developers to bin the data ac-

cording to a desired feature that might be queried by users such as read names, mapping

qualities, or alignment scores; these are the features stored as keys in the binned streams.

Our implementation uses binning by genomic location, as it is the most commonly quer-

ied property for depth analysis or variant calling. Unmapped reads are stored in a separate

stream called unmappedANDcontigs, but not in the chr_i-bin_j streams. For (b), we were

inspired by the data compression techniques in CRAM files (Hsi-Yang Fritz et al. 2011,

Gursoy et al. 2019) and stored the difference between the read and the reference sequence

in the chain instead of the sequences themselves to reduce the size of the data stored on-

chain With this approach, our implementation is able to regenerate the sequence of a read

by using the reference genome and other features stored in the chain.

SCtools design overview

We developed SCtools to extract information from SAMchain for downstream analysis.

We provide a code base that has the ability to query on a blockchain. The key:value

property of the data streams in MultiChain2.0 together with the ability to query on

multiple keys provides an opportunity to extract data from the blockchain without the

need for costly calculations. Our query module can retrieve data from a chain based on

the position in the reference genome (Fig. 1c).

If a user queries the chain for reads mapped to a genomic region, our query module

first finds the correct streams/bins containing that region. From the bins, it extracts the

SAM data and MODCIGAR and uses an input reference file to return the results. This

approach reduces the query time significantly for the following reason: Data streams do

not allow range searches. If the data were kept in a single stream, then the query would

have to iterate over the location range for every single stream item. With binned

streams, the query is only done on the streams containing the relevant data.

Below, we describe the functionality of each SAMchain, SCtools, VCFchain, and

VCFtools module.

Gürsoy et al. Genome Biology (2022) 23:134 Page 18 of 22

buildChain (owner node)

buildChain initializes a MultiChain blockchain and creates streams that define the

SAMchain. Three types of streams exist in a SAMchain: (1) metaData, (2) unmappe-

dANDcontigs, and (3) binned streams. metaData is a single stream that stores SAM-

chain settings (bin length, read length, and number of bins) and eventually stores the

header from an input SAM file. unmappedANDcontigs is a single stream that stores

the features from the input SAM file, except for the sequence and quality string, for un-

mapped reads and contigs. When parsing an input SAM file, the insertData module

uses the FLAG feature to determine whether to put a read into the unmappedANDcon-

tigs stream or a binned stream. Binned streams are a series of streams that map to a

range of positions in the genome. buildChain divides each chromosome into N kb in-

tervals (N is set by the developer) and creates a stream for each interval. We made this

design choice to improve query efficiency. A user’s query leads to a specific binned

stream (or set of streams), rather than to all the data. See Additional file 1: Fig. S2 for

the flowchart of this module.

insertData (sequencer node)

insertData pushes data from an input SAM file to the relevant streams in an initialized

SAMchain. First, insertData uses PySAM to extract the header data from an input SAM

file and pushes the header, line-by-line, to the metaData stream. Next, it uses PySAM to

extract the features of the reads in the SAM file, one at a time, and checks the read’s flag

feature to determine whether it belongs in the unmappedANDcontigs stream, or to a

binned stream. It then pushes the read features to the appropriate stream as the data field

of a single stream item. It checks whether the read’s position spans two streams. If it does,

it stores that read in the stream mapping to its start position and stores “FLANK = 1” as a

key. If it does not, it stores “FLANK = 0” as a key.

queryReads (clinician/researcher node)

queryReads searches a SAMchain for reads that match an input region of interest

in the genome. It first pulls information from the metaData stream about how the

reads were binned during buildChain and uses it to obtain the names of the

stream(s) that correspond to the input genomic location. If the first stream in this

list is not the first stream of a chromosome, it adds the stream name just up-

stream, in the case that a FLANK = 1 read is present in that stream. Given these

stream names, it uses the built-in MultiChain commands liststreamitems and list-

streamkeyitems to retrieve the items from those streams and check whether they

match the region queried. Then, using the modcigar, it extracts the correct se-

quence from the reference genome and returns the results. See Additional file 1:

Fig. S3 for the flowchart of this module.

queryDepth (clinician/researcher node)

SCtools provides a useful function to determine the sequencing depth for a queried lo-

cation or all of the locations in the genome. queryDepth follows a similar algorithm as

queryReads. However, after obtaining the read data, queryDepth must check the cigar

values for each read in order to calculate depth, taking into account information about

Gürsoy et al. Genome Biology (2022) 23:134 Page 19 of 22

insertions and deletions (for example, if a deletion occurs at a location queried in one

of the reads, this should contribute + 0 to the depth at that location). After calculating

the depth values, queryDepth returns the results. See Additional file 1: Fig. S3 for the

flowchart of this module.

pileup (clinician/researcher node)

SCtools provides a useful function to determine the pile-ups for a queried location

or all of the locations in the genome. Pile-up files contain the number of reads

that mapped to a location, the reference allele for that location, and the sequenced

nucleotide in each read for that location. This allows users to visualize the genetic

variation and calculate allele frequencies for the variants. pileup follows a similar

algorithm as queryReads. However, after obtaining the read data, pileup must check

the cigar values for each read in order to output pileup, taking into account infor-

mation about insertions and deletions. After doing so, pileup returns the results.

See Additional file 1: Fig. S3 for the flowchart of this module.

buildBAM (clinician/researcher node)

buildBAM rebuilds a BAM file from the data stored in a SAMchain. It first retrieves

the header data from the metaData stream. Next, it retrieves the data from the binned

streams and converts it to a tab-separated format. Using PySAM, it extracts from an in-

put reference file the sequence string and alters it based on the cigar. Finally, it uses

PySAM to write the read entry to an output BAM file. See Additional file 1: Fig. S4 for

the flowchart of this module.

Additional file 1: Fig. S5 summarizes the overall structure of the SAMchain and

Sctools.

VCFchain and VCFquery

buildChain

buildChain initializes a MultiChain blockchain and creates streams that define the

VCFchain. Two streams exist in VCFchain: (1) metaData and (2) allVariantData. meta-

Data eventually stores the header from an input SAM file. allVariantData stores the fea-

tures from the input VCF file, with genomic position, genotype, and rsID as the keys.

All variants are inserted to the allVariantData stream.

queryAND

Because positions in a VCF file are unique, queryAND retrieves VCF feature entries

from the allVariantData stream using input genomic position as the key. It can filter

data based on an input genotype and/or variant ID.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-022-02699-7.

Additional file 1: Supplementary Information. This files includes all the supplementary text, figures and tables
cited in the main text.

Additional file 2. Review History.

Acknowledgements
We thank Dr. Mihali Felipe for help with setting up the servers to run SAMChain in a multi-node environment.

Gürsoy et al. Genome Biology (2022) 23:134 Page 20 of 22

https://doi.org/10.1186/s13059-022-02699-7

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Disclosure declaration
None.

Authors’ contributions
GG and MG conceived of the study and participated in its design and coordination. GG, CMB designed the algorithms.
GG, CMB, EN, SW wrote the code. GG, CMB, EN, AK benchmarked the software. GG and CMB analyzed the results. GG,
CMB, MG wrote the manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by grants from the NIH (R01 HG010749 to M.G. and R00 HG010909 to G.G.).

Availability of data and materials
SAMChain and SCTools can be found at https://github.com/gersteinlab/SAMChain and DOI:10.5281/zenodo.6573999
under MIT Licence [27]. The Ethereum smart contract and VCFChain code can also be found at the github page. The
SAM file (BAM) used in this manuscript can be found at http://files.gersteinlab.org/public-docs/2022/02.23/HG00114.
loci.bam. The VCF file used can be accessed at https://www.encodeproject.org/files/ENCFF907ASL/ [28].

Competing interests
The authors declare that they have no competing interests.

Author details
1Program in Computational Biology and Bioinformatics, Yale University, Whitney Avenue, New Haven, CT 06520, USA.
2Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue, New Haven, CT 06520, USA.
3Current Address: Department of Biomedical Informatics, Columbia University, New York, NY, USA. 4Current Address:
New York Genome Center, New York, NY, USA. 5Current Address: Stanford University, Stanford, CA, USA. 6Department
of Computer Science, Yale University, Prospect Street, New Haven, CT 06520, USA. 7Department of Biomedical
Engineering, Johns Hopkins University, Baltimore, MD, USA. 8Department of Applied Mathematics, Johns Hopkins
University, Baltimore, MD, USA.

Received: 30 October 2021 Accepted: 4 June 2022

References
1. Khan R, Mittelman D. Consumer genomics will change your life, whether you get tested or not. Genome Biol. 2018;

19(1):120. https://doi.org/10.1186/s13059-018-1506-1.
2. Loshin D. Knowledge Integrity: Data Ownership. http://www.datawarehouse.com/article/?articleid=3052 (2002).
3. Rosenbaum E. Harvard genetics pioneer wants to monetize DNA with digital currency, and defeat 23andMe. CNBC

https://www.cnbc.com/2018/02/08/harvard-genetics-pioneer-will-monetize-dna-with-digital-currency.html (2018).
4. Milton S. Data Privacy vs. Data Security. In: Global Business Leadership Development for the Fourth Industrial Revolution

209–235: IGI Global; 2021.
5. Kuo T-T, Jiang X, Tang H, Wang XF, Bath T, Bu D, et al. iDASH secure genome analysis competition 2018: blockchain

genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med Genomics.
2020;13(S7):98. https://doi.org/10.1186/s12920-020-0715-0.

6. Grishin D, et al. Citizen-centered, auditable, and privacy-preserving population genomics. bioRxiv. 2019. https://doi.org/1
0.1101/799999.

7. Ozercan HI, Ileri AM, Ayday E, Alkan C. Realizing the potential of blockchain technologies in genomics. Genome Res.
2018;28(9):1255–63. https://doi.org/10.1101/gr.207464.116.

8. Glicksberg BS, Burns S, Currie R, Griffin A, Wang ZJ, Haussler D, Goldstein T, Collisson E. Blockchain-Authenticated
Sharing of Genomic and Clinical Outcomes Data of Patients With Cancer: A Prospective Cohort Study. J Med Intern Res.
2020;22(3):e16810. https://doi.org/10.2196/16810.

9. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2008.
10. Kuo T-T, Kim H-E, Ohno-Machado L. Blockchain distributed ledger technologies for biomedical and health care

applications. J Am Med Inform Assoc. 2017;24(6):1211–20. https://doi.org/10.1093/jamia/ocx068.
11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools.

Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
12. Genomic data toolkit. https://www.ga4gh.org/genomic-data-toolkit/. Accessed 1 June 2022.
13. Sward A, Vecna I, Stonedahl F. Data Insertion in Bitcoin’s Blockchain. Ledger. 2018;3. https://doi.org/10.5195/

ledger.2018.101.
14. Fritz MH, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput DNA sequencing data using reference-

based compression. Genome Res. 2011;21:734–40.
15. CrypDist. (Github).
16. Zenome Platform. (Github).
17. Mott R, Fischer C, Prins P, Davies RW. Private genomes and public SNPs: Homomorphic encryption of genotypes and

phenotypes for shared quantitative genetics. Genetics. 2020;215(2):359–72. https://doi.org/10.1534/genetics.120.303153.

Gürsoy et al. Genome Biology (2022) 23:134 Page 21 of 22

https://github.com/gersteinlab/SAMChain
http://files.gersteinlab.org/public-docs/2022/02.23/HG00114.loci.bam
http://files.gersteinlab.org/public-docs/2022/02.23/HG00114.loci.bam
https://www.encodeproject.org/files/ENCFF907ASL/
https://doi.org/10.1186/s13059-018-1506-1
http://www.datawarehouse.com/article/?articleid=3052
https://www.cnbc.com/2018/02/08/harvard-genetics-pioneer-will-monetize-dna-with-digital-currency.html
https://doi.org/10.1186/s12920-020-0715-0
https://doi.org/10.1101/799999
https://doi.org/10.1101/799999
https://doi.org/10.1101/gr.207464.116
https://doi.org/10.2196/16810
https://doi.org/10.1093/jamia/ocx068
https://doi.org/10.1093/bioinformatics/btp352
https://www.ga4gh.org/genomic-data-toolkit/
https://doi.org/10.5195/ledger.2018.101
https://doi.org/10.5195/ledger.2018.101
https://doi.org/10.1534/genetics.120.303153

18. DeFrancesco L, Klevecz A. Your DNA broker. Nat Biotechnol. 2019;37(8):842–7. https://doi.org/10.1038/s41587-019-0200-5.
19. Gürsoy G, Bjornson R, Green ME, Gerstein M. Using blockchain to log genome dataset access: efficient storage and

query. BMC Med Genomics. 2020;13(S7):78. https://doi.org/10.1186/s12920-020-0716-z.
20. Kim M, et al. Ultrafast homomorphic encryption models enable secure outsourcing of genotype imputation. Cell Syst.

2021;12:1108–20.e4.
21. Gürsoy G, Chielle E, Brannon CM, Maniatakos M, Gerstein M. Privacy-preserving genotype imputation with fully

homomorphic encryption. Cell Syst. 2022;13:173–82.e3.
22. Sarkar E, Chielle E, Gursoy G, Mazonka O, Gerstein M, Maniatakos M. Fast and scalable private genotype imputation

using Machine Learning and partially homomorphic encryption. IEEE Access. 2021;9:93097–110. https://doi.org/10.11
09/ACCESS.2021.3093005.

23. Gürsoy G, et al. Data sanitization to reduce private information leakage from functional genomics. Cell. 2020;183:905–17.e16.
24. Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G, et al. Pangenome graphs. Annu Rev Genomics

Hum Genet. 2020;21(1):139–62. https://doi.org/10.1146/annurev-genom-120219-080406.
25. Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21(4):243–54. https://doi.org/1

0.1038/s41576-020-0210-7.
26. Guarracino A, Heumos S, Nahnsen S, Prins P, Garrison E. ODGI: understanding pangenome graphs. Bioinformatics. 2022;

btac308. https://doi.org/10.1093/bioinformatics/btac308.
27. Gürsoy G, Brannon CM, Ni E, Wagner S, Khanna A, Gerstein M. Storing and analyzing a genome on a blockchain: Github;

2022. https://doi.org/10.5281/zenodo.6573999.
28. ENCODE Consortium. EN-TEx Dataset. www.encodeproject.org/files/ENCFF907ASL (2022)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gürsoy et al. Genome Biology (2022) 23:134 Page 22 of 22

https://doi.org/10.1038/s41587-019-0200-5
https://doi.org/10.1186/s12920-020-0716-z
https://doi.org/10.1109/ACCESS.2021.3093005
https://doi.org/10.1109/ACCESS.2021.3093005
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1038/s41576-020-0210-7
https://doi.org/10.1038/s41576-020-0210-7
https://doi.org/10.1093/bioinformatics/btac308
https://doi.org/10.5281/zenodo.6573999
http://www.encodeproject.org/files/ENCFF907ASL

	Abstract
	Background
	Results
	Private blockchain networks can help with control of data
	SAMchain’s design provides advantages over traditional blockchain data storage methods
	SAMchain provides a platform for storing next-generation sequencing (NGS) data in blockchain
	SCtools can query NGS properties directly from SAMchain
	VCFChain and VCFquery modules provide faster options for direct query of genomic variants
	SAMchain is the first proof-of-concept framework to store raw genomic reads on a blockchain
	SAMchain is user friendly and easy to use by users with no blockchain knowledge

	Discussion
	Conclusions
	Methods
	MultiChain API
	MultiChain in a blockchain network
	Multichain and blockchain mining
	SAMchain design overview
	SCtools design overview
	buildChain (owner node)
	insertData (sequencer node)
	queryReads (clinician/researcher node)
	queryDepth (clinician/researcher node)
	pileup (clinician/researcher node)
	buildBAM (clinician/researcher node)

	VCFchain and VCFquery
	buildChain
	queryAND

	Supplementary Information
	Acknowledgements
	Peer review information
	Review history
	Disclosure declaration
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

