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Reproducibility Summary1

Scope of Reproducibility2

In this work, we study the reproducibility of the paper Counterfactual Generative Networks (CGN) by Sauer and Geiger3

to verify their main claims, which state that (i) their proposed model can reliably generate high-quality counterfactual4

images by disentangling the shape, texture and background of the image into independent mechanisms, (ii) each5

independent mechanism has to be considered, and jointly optimizing all of them end-to-end is needed for high-quality6

images, and (iii) despite being synthetic, these counterfactual images can improve out-of-distribution performance of7

classifiers by making them invariant to spurious signals.8

Methodology9

The authors of the paper provide the implementation of CGN training in PyTorch. However, they did not provide code10

for all experiments. Consequently, we re-implemented the code for most experiments, and run each experiment on 108011

Ti GPUs. Our reproducibility study comes at a total computational cost of 112 GPU hours.12

Results13

We find that the main claims of the paper of (i) generating high-quality counterfactuals, (ii) utilizing appropriate14

inductive biases, and (iii) using them to instil invariance in classifiers, do largely hold. However, we found certain15

experiments that were not directly reproducible due to either inconsistency between the paper and code, or incomplete16

specification of the necessary hyperparameters. Further, we were unable to reproduce a subset of experiments on a17

large-scale dataset due to resource constraints, for which we compensate by performing those on a smaller version of18

the same dataset with our results supporting the general performance trend.19

What was easy20

The original paper provides an extensive appendix with implementation details and hyperparameters. Beyond that, the21

original code implementation was publicly accessible and well structured. As such, getting started with the experiments22

proved to be quite straightforward. The implementation included configuration files, download scripts for the pretrained23

weights and datasets, and clear instructions on how to get started with the framework.24

What was difficult25

Some of the experiments required severe modifications to the provided code. Additionally, some details required for the26

implementation are not specified in the paper or inconsistent with the specifications in the code. Lastly, in evaluating27

out-of-distribution robustness, getting the baseline model to work and obtaining numbers similar to those reported in28

the respective papers was challenging, partly due to baseline model inconsistencies within the literature.29

Communication with original authors30

We have reached out to the original authors to get clarifications regarding the setup of some of the experiments, but31

unfortunately, we received a late response and only a subset of our questions was answered.32
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1 INTRODUCTION33

Despite the considerable popularity of deep learning models within the field of artificial intelligence, recent literature34

suggests that these networks have a tendency of learning simple correlations that perform well on a benchmark dataset,35

instead of more complex relations that generalize better [1, 17, 21]. This phenomenon, which is referred to as shortcut36

learning by Geirhos et al. [10], makes these models more sensitive to input perturbation and unseen input contexts.37

In order to enhance the robustness and interpretability of classifiers, Sauer and Geiger [22] introduce the idea of a38

Counterfactual Generative Network (CGN). Using appropriate inductive biases to disentangle separate components39

within the input images, such as object shape, object texture, and background, this model is capable of augmenting40

training data with generated counterfactual images. The authors claim that, using this model, they were able to improve41

out-of-distribution (OOD) robustness with only a marginal performance decrease for the original classification task.42

In this work, we aim to reproduce their findings, verify their claims, and perform additional experimental results to43

provide further evidence to support their claims. In summary, this work makes the following contributions:44

• We reproduce the main experiments conducted by Sauer and Geiger [22] to identify which parts of the45

experimental results supporting their claims can be reproduced, and at what cost in terms of resources (e.g.,46

computational cost, development effort, and communication with the authors).47

• We improve the performance consistency of the CGN during training.48

• We extend upon the work of Sauer and Geiger by empirically analyzing the decisions made by classifiers49

based on their proposed model. Based on this analysis, we propose a method to quantify the robustness of50

such classifiers against spurious correlations.51

1.1 Scope of Reproducibility52

Distinguishing between spurious and causal correlation is an active topic in causality research [15, 18]. One central53

principle in causal inference is the assumption of independent mechanisms (IMs), which states that a causal generative54

process is composed of autonomous modules that do not influence each other [19, 22, 24]. The CGN introduced in the55

original paper exploits this idea to decompose the image generation process into three IMs, each controlling one factor56

of variation (FoV), namely the shape, texture, and background. Using this, the authors take a step towards more robust57

and interpretable classifiers that explicitly expose the causal structure of the classification task. In this reproducibility58

study, our main goal is to verify the following claims of the original paper:59

• High-Quality Counterfactuals (HQC): By exploiting proper inductive biases, the CGN is able to reliably60

learn the independent mechanisms, which allow for the generation of high-quality counterfactual images by61

disentangling the shape, texture and background of the image.62

• Inductive Bias Requirements (IBR): Each independent mechanism has to be considered, and jointly optimiz-63

ing all of them end-to-end is needed for high-quality images.64

• Out-of-Distribution Robustness (ODR): Despite being synthetic, the counterfactual images can improve65

out-of-distribution performance of classifiers by making them invariant to spurious signals.66

The remainder of this work is structured as follows. In Section 2, we introduce the model proposed in the original paper67

to provide the reader with the required background knowledge. Section 3 then summarizes our approach to reproduce68

the original paper. Subsequently, Section 4 presents the replicated results and compares them to the original paper.69

Section 5 concludes this work by discussing our experience with reproducing the research by Sauer and Geiger [22].70

2 COUNTERFACTUAL GENERATIVE NETWORK71

The counterfactual generative network is a manifestation of a structural causal model (SCM) for the task of image72

classification [22]. It decomposes the image generation process into four IMs whose losses are jointly optimized in an73

end-to-end matter. An overview of the CGN architecture is shown in Appendix A.74

Shape mechanism: The shape mechanism fshape captures the shape as a binary mask m, where 1 corresponds to75

the object and 0 to the background. For this purpose, it first samples a pre-mask m̃ with exaggerated features from a76
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fine-tuned BigGAN [4], and extracts the binary mask using a pretrained U2-Net [20]. The shape loss Lshape comprises77

(1) the pixelwise binary entropy of the mask, and (2) the mask loss:78

Lmask(m) = Ep(u,y)

[
max

(
0, τ − 1

N

N∑
i=1

mi

)
+max

(
0,

1

N

N∑
i=1

mi − τ

)]
. (1)

The pixelwise binary entropy forces the output to be close to either 0 or 1, whereas the mask loss discourages trivial79

solutions that are outside the interval defined by τ .80

Texture mechanism: The texture mechanism ftext generates the texture of the object. For MNIST, Sauer and Geiger81

use an additional layer that divides its input into patches and randomly rearranges them. In contrast, for ImageNet, they82

sample patches from the regions where the mask values are the highest and concatenate them into a patch grid pg. This83

mechanism is optimized by minimizing the perceptual loss between the foreground f and the patch grid pg. As such,84

the background gradually transforms into object texture during training.85

Background mechanism: The background mechanism fbg models the background b of the image. It removes the86

object from the output of the BigGAN backbone and inpaints it using U2-Net by minimizing the predicted saliency.87

Because there is no need for a globally coherent background in the MNIST setting, the MNIST variant of the CGN88

includes a second texture mechanism rather than a dedicated background mechanism.89

Composer: The composer C combines the output of the aforementioned mechanisms into a single composite image90

xgen = C(m,f , b) = m⊙ f + (1−m)⊙ b, (2)

where m is the mask, f is the foreground, b is the background, and ⊙ is the Hadamard product. To optimize this91

mechanism, Sauer and Geiger use an external conditional GAN (cGAN) that generates pseudo-ground-truth images92

xgt from the same noise u and label y that is fed into the aforementioned mechanisms of the CGN. Using this, they93

minimize the reconstruction loss Lrec between the composite image xgen and the pseudo-ground-truth image xgt.94

During training, each independent mechanism learns a class-conditional distribution over shapes, textures, or back-95

grounds. It can then generate counterfactual images by randomizing the noise u and label input y for each mechanism.96

A more detailed explanation regarding the purpose of these counterfactual images and the connection with explainable97

artificial intelligence (XAI) can be found in Appendix B.98

In order to encode invariance to spurious correlations, Sauer and Geiger train classifiers on generated counterfactual99

data that retain the label from the shape with randomized texture and backgrounds. For MNISTs, they use a standard100

CNN feature extractor followed by a single classification head. For ImageNet on the other hand, they use a CNN101

backbone with three classifier heads: shape, texture, and background; each invariant to all but one factor of variation.102

The final prediction is obtained by averaging the individual head predictions.103

3 METHODOLOGY104

The original implementation of the CGN is publicly available [23], but most of the experiments conducted in the105

original paper to support their claims are not. Consequently, we use the authors’ code for the implementation of the106

CGN, and re-implement the experiments and relevant evaluation metrics based on the descriptions provided in the paper.107

Furthermore, we both improve and extend upon the work of Sauer and Geiger by providing additional experiments and108

results. Because a description of the GAN used in the original paper was not provided, we use a DCGAN [14].109

3.1 Datasets110

The experiments conducted in the original paper involve two tasks, namely generating counterfactual examples and111

training a classifier to be invariant to spurious correlations. We follow the paper and reproduce their evaluations on112

multiple datasets for each task. For both tasks, we present the relevant datasets and their main purpose in Table 1.113

Due to resource constraints, running all experiments on full ImageNet (IN-1k) is infeasible. As a compromise, we use114

ImageNet-mini (IN-Mini) [7], a small-scale variant of ImageNet. Although this dataset contains fewer samples, we115

found it to be sufficient to reproduce the main findings of the original paper and verify their claims. Moreover, this116

dataset includes the same classes as IN-1k and hence does not induce any decrease in difficulty of the classification task.117
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Table 1: Datasets overview. The datasets used for empirical evaluations across two tasks.
Task Datasets Number of samples Classes Description URL

Train Test Total

Generating
counterfactual
samples

C-MNIST [2] 50k 10k 60k 10 Foreground colour as a spurious correlation Link

DC-MNIST 50k 10k 60k 10 Fore/background colour as spurious correlations NA1

W-MNIST 50k 10k 60k 10 In-the-wild background with texture colour NA1

IN-1k [6] 1M 100k 1.2M 1000 Large-scale evaluation Link

IN-mini [7] 35k 4k 39k 1000 Small-scale evaluation Link

Training
invariant
classifiers

MNISTs 50k 10k 60k 10 Test different granularities of invariance Link

Cue-conflict [8] NA 1280 1280 16 Tests shape-texture disentanglement Link

IN-9 variants [29] ∼45k ∼4k ∼50k 9 Tests background-invariance Link

3.2 Hyperparameters118

In order to match the original experiments as closely as possible, we used the same hyperparameters as the authors119

of the original paper whenever they were specified in the article. If the required hyperparameters for the experiments120

were not mentioned in the original paper, we relied on the default parameters given in the configuration files of the121

original implementation. In this case, we assume that these default parameters correspond to the parameters used for122

the described experiments.123

3.3 Experimental setup and evaluation metrics124

Our experimental setup is largely based on the description provided by Sauer and Geiger [22]. To that end, we will125

address claim HQC by performing a qualitative analysis on both MNIST and ImageNet. To verify claim IBR, we126

perform a loss ablation study in which we disable one loss at a time. Lastly, to address the main claim of the paper,127

namely ODR, we conduct a number of experiments on both MNIST and ImageNet to evaluate both out-of-distribution128

performance and spurious signal invariance of the invariant classifiers.129

To provide further evidence to support claim ODR, we conduct additional experiments to visually explain the decisions130

made by the invariant classifiers based on gradient-based localization. For this purpose, we use a PyTorch implementa-131

tion of GradCAM [11, 25], a class activation map method that weighs the 2D activations by the average gradient [25].132

This method allows us to visualize the salient features on which the invariant classifiers base their predictions.133

3.4 Computational requirements134

We perform all experiments on a cluster whose nodes are equipped with Nvidia GeForce GTX 1080 Ti GPUs. Due to135

constraints in resources, we run most experiments once. As such, our experiments are indicative and not conclusive.136

Our reproducibility study comes at a total computational cost of 112 GPU hours (see Appendix D for more details).137

4 EXPERIMENTAL RESULTS138

4.1 Reproducibility study139

Evaluating counterfactual samples To verify claim HQC, we qualitatively evaluate counterfactual (CF) samples140

generated using CGN models on each dataset. For all our reproducibility experiments, we use the available pretrained141

weights for CGN to generate CFs. We found inconsistencies while training the CGN from scratch and refer the reader142

to Section 4.2.1 for a deeper investigation. For both MNIST and ImageNet, our results indicate that the quality of143

the generated CFs matches with the quality of those reported in the original paper, as shown in Figure 1 and Figure 2144

respectively. For ImageNet, although we can easily recognize the FoVs in the generated CFs, they are highly unrealistic.145

1This variant of MNIST is generated by the authors themselves and can be generated using their repository.
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(a) Real images (b) Generated Counterfactual Images

Colored Double-Colored Wildlife Colored Double-Colored Wildlife

Figure 1: Qualitative Analysis MNIST. Left: Samples drawn from the different MNIST variations. Right: Counterfac-
tuals generated by the CGN on MNIST variants. Notice that the CGN generates varying shapes, colors, and textures.

Shape Racer Trench coat Turtle Vase Malinois Barrel

Texture Clock Cab Cauliflower Elephant Viper Piggy bank

Background Toucan Coral reef Mushroom Alp Spider Ibex

Figure 2: Qualitative analysis ImageNet. Counterfactuals generated by the CGN on ImageNet.

Evaluating loss ablation We attempt to reproduce the loss ablation study to verify claim IBR. The authors claim that146

a CGN can be trained from scratch within 12 hours on a GTX 1080Ti GPU. However, when running the experiments147

as described by the authors, the estimated training time exceeded 200 hours. Upon further inspection, we found an148

alternative configuration file containing the hyperparameters the authors used to train the CGN that was inconsistent149

with the default hyperparameters. Using these alternative hyperparameters, we managed to decrease the training time to150

approximately 20 hours. While the inception score magnitude directly depends on the number of generated images151

used for the calculation, the original paper did not specify the exact number of images used during the experiment. We152

empirically found that using 2000 images provides inception scores that resemble those reported in the original paper.153

The results in Table 2 indicate that the inception scores follow a similar trend as reported by the authors (marked as154

x ). However, when disabling the texture loss, we found µmask to be 0.4, whereas the original paper reported a value155

of 0.9. This is a crucial difference, because the value of 0.9 of the original paper indicates a mask collapse, which156

the authors use to support claim IBR. Nonetheless, we were able to support this claim by performing an additional157

qualitative experiment. Specifically, if we look at some samples as shown in Appendix E, it is clear that the generated158

texture still includes some background. This indicates that the independent mechanisms for texture and background are159

no longer disentangled, which shows that the texture loss is indeed necessary.160

Evaluating invariant classifiers We perform a number of experiments to verify claim ODR. Specifically, we161

quantitatively evaluate the extent to which invariance is encoded in classifiers trained on CF data against those trained on162

original data. We also evaluate classifiers trained on vanilla GAN-generated data as a baseline. Since the vanilla GAN163

implementation was not provided in the released code, we implement it ourselves and refer the reader to Appendix F164

for details and generated samples.165

Table 2: Loss Ablation Study. We
turn off one loss at the time.

Lshape Ltext Lbg Lrec IS ⇑ µmask

✗ ✓ ✓ ✓ 100.8 | 85.9 0.3 | 0.2

✓ ✗ ✓ ✓ 186.5 | 198.4 0.4 | 0.9

✓ ✓ ✗ ✓ 200.9 | 195.6 0.1 | 0.1

✓ ✓ ✓ ✗ 19.3 | 38.4 0.4 | 0.3

✓ ✓ ✓ ✓ 156.1 | 130.2 0.3 | 0.3

BigGAN (Upper Bound) 202.9 -

Table 3: MNIST classification. In the test-set, the texture and back-
ground are randomized; only the digits shape corresponds to the class.

Setting C-MNIST DC-MNIST W-MNIST
Train ⇑ Test ⇑ Train ⇑ Test ⇑ Train ⇑ Test ⇑

O(riginal) 99.7 | 99.5 37.6 | 35.9 100 | 100 10.5 | 10.3 100 | 100 10.8 | 10.1

GAN 99.6 | 99.8 32.5 | 40.7 100 | 100 10.6 | 10.8 99.9 | 100 11.2 | 10.4

CGN 99.4 | 99.7 92.3 | 95.1 94.8 | 97.4 86.5 | 89.0 95.5 | 99.2 81.4 | 85.7

O + GAN 99.6 | 99.8 41.5 | 40.7 100 | 100 10.0 | 10.8 100 | 100 11.1 | 10.4

O + CGN 99.2 | 99.7 95.9 | 95.1 96.9 | 97.4 85.5 | 89.0 96.8 | 99.2 62.8 | 85.7
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On MNIST variants, we identify an inconsistency in the experimental setup stated in the paper and code. The paper166

seems to suggest using a combination of original and CF dataset, but the code only uses CF data. As reported in Table 3,167

we experiment with both and observe similar results for C-MNIST and DC-MNIST. Surprisingly, for CGN, adding168

original data hurts the performance for W-MNIST (62.9 vs. 81.4). Apart from that, the majority of our results are within169

5% variation from those reported in the paper (marked as x ), which supports the broader claim of better generalization170

even in the presence of spurious correlations (e.g., texture in case of colored MNIST).171

To evaluate the invariance in classifier heads on IN-mini, we first reproduce the experiment regarding shape bias from172

the original paper. The shape bias is defined as the fraction of test samples for which the predicted label matches the173

shape label of the input image [8]. In this case, we evaluate labels with predictions from each head. As reported in174

Table 4, our results are smaller in comparison to the IN-1k results reported in the original paper. Nonetheless, the175

overall trend does support claim ODR. Additionally, we replicate the experiment regarding the evaluation of background176

robustness. The paper uses the notion of BG-gap that measures classifiers’ reliance on background signal [28]. Our177

results, shown in Table 5, again slightly deviate from the original paper but the trend supports claim ODR.178

Table 4: Shape vs. texture. Evaluation of shape
biases of independent classifiers.

Trained on Shape Bias top-1 ⇑ top-5 ⇑
IN + GCN/Shape 54.8
IN + GCN/Text 16.7 74.0 91.7
IN + GCN/Bg 22.9
IN-mini + GCN/Shape 49.1
IN-mini + GCN/Text 20.5 56.2 79.1
IN-mini + GCN/Bg 25.7

Table 5: Backgrounds Challenge. Evaluation of robustness
against adversarially chosen backgrounds.

Trained on IN-9 ⇑ Mixed-Same ⇑ Mixed-Rand ⇑ BG-Gap ⇓
IN 95.6 86.2 78.9 7.3
SIN 89.2 73.1 63.7 9.4
IN + SIN 94.7 85.9 78.5 7.4
Mixed-Rand 73.3 71.5 71.3 0.2
IN + CGN 94.2 83.4 80.1 3.3
IN-mini + CGN 86.8 73.2 68.3 4.9

To evaluate the effect of using more counterfactual datapoints or generating more counterfactual images per sampled179

noise, Sauer and Geiger performed an MNIST Ablation Study in the original paper. Our reproduction for this experiment,180

along with a more detailed description regarding the experiment and results, can be found in Appendix G.181

4.2 Results beyond original paper182

4.2.1 Improving CGN training on MNISTs183

While training the CGN on the MNIST, we encountered an issue that was not mentioned in the original paper. During184

the training process, we observed that the digit masks had a tendency of collapsing to an erroneous state, from where185

the digits would no longer improve during training. For this reason, it was not possible for us to reproduce the CGN186

training on the MNIST data using the default configuration. Therefore, we have proposed a solution that makes the187

CGN training on the MNIST datasets more consistent. Details regarding our solution can be found in Appendix C.188

4.2.2 Explainability analysis for invariant classifiers189

While the reproduced experiments for the original paper provide some support for claim ODR, these results primarily190

show the effect of using counterfactuals on test accuracy performance. However, it is not directly clear from these191

quantitative experiments if the performance increase is actually due to the fact that the use of counterfactuals ensures192

that the classifier focuses on the right correlations (e.g., shape) and not spurious ones (e.g., background). To further193

verify the validity of claim ODR, we provide two additional analyses that combine qualitative and quantitative measures194

to evaluate the behaviour of the counterfactual classifiers.195

What does the latent feature space look like? First, we visualize learnt classifier features using t-SNE for a subset196

of the test set of original and counterfactual (CF) data for C-MNIST. Figure 3(a) shows that a classifier trained on CF197

data is indeed invariant to spurious correlations (e.g. digit color). Figure 3(b) shows that a classifier trained on CF data198

is also better at representing OOD samples (e.g. counterfactuals). Interestingly, the latter figure also shows that the199

CF-trained classifier tends to group the clusters for 4-7-9 and 3-5-8 close to each other, which was not the case for the200

classifier trained on original data. These digits are also close in shape in reality, which suggests that the model is rightly201

focusing on the shape while ignoring texture. The results for other MNIST variants are consistent with this finding.202
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(a) Feature for original samples (b) Features for CF samples

Figure 3: Feature visualization. Feature space of a CNN classifier trained on original/CF data for colored MNIST.

What features does the model focus on? Second, we perform an experiment to visualize a spatial heatmap of areas203

that the model focuses on to make a prediction. Based on claims ODR and IBR, we would expect the different heads to204

operate separately from one another, while being completely invariant to the other FoVs. In order to generate the spatial205

heatmaps we use GradCAM. Some qualitative samples are shown in Figure 4. In addition to the qualitative analyses,206

using GradCAM provides the opportunity to formulate another quantitative measure to validate claims ODR and IBR.207

This quantitative analysis aims to measure if CF-trained models focus on shape more than those trained on original data.208

To this end, we compute the mean Intersection of Union (IoU) between GradCAM heatmaps and binarized digit masks209

on the test set. We note that a classifier trained on CF data is consistently outperforms the classifier on original data.210

Trained on original Trained on CF Trained on original Trained on CF Trained on original Trained on CF

C-MNIST DC-MNIST W-MNIST

Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

IO
U

IoU between GradCAM heatmap & GT

Original Counterfactual

(a) C-MNIST (b) DC-MNIST (c) W-MNIST (d) Mean IoU

Figure 4: Explainability analysis: (a) to (c): Visualization of GradCAM heatmaps for samples from each of the
MNIST datasets. (d): Mean IoU between GradCAM heatmaps and ground truth binarized digit masks.

While the quantitative results using the IoU metric cannot be performed on the ImageNet data, due to the lack of ground211

truth binary object maps, it is possible to evaluate the qualitative performance of the independent mechanisms using212

GradCAM. As shown in Appendix H, the individual classifier heads tend to focus on meaningful aspects.213

4.2.3 OOD generalization for invariant classifiers214

In order to provide further evidence for the claim ODR, we test the model performance on alternative ImageNet datasets,215

which are designed to evaluate out-of-distribution robustness. Specifically, we evaluate the performance on ImageNet-A216

(natural adversarial examples) [13], ImageNet-Sketch [27] and Stylized-ImageNet [9], and compare with a ResNet-50217

baseline that is pretrained on IN-1k. Surprisingly, we find that the finetuned CGN-based ensemble performs worse on218

all specified OOD-benchmarks, compared to the pretrained ResNet-50 baseline as shown in Table 6.219

Table 6: Comparison of top-1 accuracy of invariant classifier with pretrained ResNet on OOD benchmarks.

Model Pretrained Finetuned IN-mini ⇑ IN-A ⇑ IN-Sketch ⇑ IN-Stylized ⇑

ResNet-50 IN-1k - 75.580 3.400 24.092 19.218
CGN Ensemble IN-1k IN-mini + CF 56.793 1.387 11.775 17.188
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5 DISCUSSION220

Throughout this work, we have conducted several experiments to reproduce the main results from the research by221

Sauer and Geiger [22]. The results of our reproducibility study provide support for their claims, as we were largely222

able to reproduce the original results. Specifically, our results showed that the test accuracy for the MNIST classifiers223

greatly improved when using generated counterfactual datasets. Then, we were able to use the ImageNet-mini dataset224

to achieve similar performance trends compared to the original paper in terms of shape versus texture bias evaluation,225

and the background robustness evaluation. However, based on the qualitative analyses for claim HQC, it is clear that226

the quality of the generated counterfactual images could still be improved. Specifically, we have observed some distinct227

failure cases regarding the quality of generated counterfactual images, which are described in Appendix I.228

Interestingly, while the loss ablation study provided similar results to what the authors reported in the original paper,229

we did obtain different results for the experimental run without texture loss. As the authors used this study to provide230

evidence for claim IBR, this difference is quite significant. Nonetheless, qualitative analysis of the images that were231

generated without texture loss revealed that the quality of the generated images indeed reduced when the texture loss232

was omitted. Although this does provide support for claim IBR, it also shows that the IS and µmask metrics used by233

the authors in the loss ablation study may not be sufficient to support their claims. Since the loss ablation study is234

therefore not conclusive, further research is required to investigate if the inductive biases introduced by the authors are235

indeed ‘appropriate’. The results from our additional experiments provide further evidence that counterfactual images236

generated with the proposed CGN architecture can be used to train classifiers that are more robust against spurious237

signals. Using GradCAM, we were able to visualize this behaviour and formulate a quantitative performance metric.238

Overall, the experiments from the original paper were largely reproducible, and their main claims seem reasonably sub-239

stantiated but could benefit from additional evidence in future research. The code implementation of our reproducibility240

study is publicly available 1.241

Limitations Unfortunately, we did encounter some difficulties during the reproduction process. First, since our model242

was trained on IN-mini, we were not able to reproduce the exact same results as the original paper. However, despite243

the slightly deviating results, the overall trends in the results seem to correspond well with the original results. Second,244

as some experimental setup information was missing from the original paper, we had to rely on the default parameter245

configuration files that were provided in the original code implementation, even though we can not be completely246

certain that these parameters were used for the original experiments.247

5.1 Reflection: What was easy, and what was difficult?248

The original paper provides an extensive appendix with implementation details and hyperparameters. Beyond that, the249

original code implementation was publicly accessible and well structured. As such, getting started with the experiments250

proved to be quite straightforward. The implementation included configuration files, download scripts for the pretrained251

weights and datasets, and clear instructions on how to get started with the framework.252

Nonetheless, reproducing the original results turned out to be far from trivial as the setup of some of the experiments253

required severe modifications to the provided code. Additionally, some details required for the implementation are not254

specified in the paper or inconsistent with the specifications in the code (e.g., the GAN as mentioned in Section 3).255

Lastly, in evaluating robustness to OOD, getting the baseline model to work and obtaining numbers similar to those256

reported in the respective papers was challenging, partly due to baseline model inconsistencies within the literature.257

5.2 Communication with original authors258

We have reached out to the original authors to get clarifications regarding the setup of some of the experiments. For259

example, we asked the authors if they could share pretrained weights from the classifiers that were trained on full260

ImageNet, and which type of GAN architecture was used for the MNIST experiments. Unfortunately, we received a261

late response and only a subset of our questions was answered, and as a result we were not able to fully verify whether262

our design choices were consistent with those of the original paper.263

1https://github.com/anonymous-user-256/mlrc-cgn
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A Counterfactual Generative Network Architecture322

In Figure 5, we provide an overview of the architecture of the CGN as provided in the paper. It illustrates how the323

CGN is split into four mechanism: the shape mechanism, the texture mechanism, the background mechanism, and324

the composer. Each mechanism takes a noise vector u and a label y as input. To generate a counterfactual image, we325

sample u and then sample a separate y for each mechanism Sauer and Geiger [22].326

cGAN

CGN

BigGAN

BigGAN

BigGAN

BigGAN U2-Net

U2-Net

Figure 5: CGN architecture. Components with trainable parameters are blue, components with fixed parameters are
green [22]. The dotted lines indicate that the cGAN is only used for training [22].

B Counterfactual images and explainability in artificial intelligence327

One of the primary contributions of the work by Sauer and Geiger [22] is the proposed method to create high-quality328

‘counterfactual’ images, which can be used to make a classifier more robust to spurious signals. As the concept of329

counterfactual explanations is closely related to the idea of explainable artificial intelligence (XAI) but is never explicitly330

mentioned in the paper, we first want to place the article in a broader context to achieve a deeper understanding of how331

the considered work relates to other developments within this field of research [3].332

Based on the review by Verma et al. [26], approaches for explainability in machine learning can be roughly divided333

into one of two categories: (i) methods that use inherently interpretable and transparent models, and (ii) methods that334

generate post-hoc explanations for opaque models. The idea of counterfactual explanations belongs to the example-335

based approaches within the category of post-hoc explanations, that seek to offer explanations by either providing336

datapoints that receive the same prediction label as the observed datapoint, or by providing datapoints whose prediction337

label is different from the observed datapoint.338

Consider the example where a classifier is trained to distinguish images from polar bears and American black bears.339

Given an image that has been classified by the model as a black bear, we could attempt to provide a post-hoc explanation340

for the model’s prediction using a visual counterfactual explanation (i.e., a modified version of the input image that341

would be classified as a polar bear instead). These explanations can, for example, be generated using techniques such as342

StylEx [16]. A reasonable visual counterfactual explanation could consist of the input image, modified such that the fur343

of the black bear is now colored white. However, as most images of polar bears have a snow-background, and most344

images of American black bears likely do not, it is possible that the suggested visual counterfactual explanation still345

contains a black bear, but now on a snowy background.346

In this case, one could argue that the background-explanation that is captured by the model is a spurious signal. That is,347

the classifier ‘falsely’ makes predictions on the background, even though the background, in reality, does not affect348

the actual object itself. Although this spurious signal might seem innocent within the context of this example, other349

spurious signals can play a role in a variety of high stake deep learning applications, such as AI in medical-imaging350

[5] and networks trained for military purposes [12]. While counterfactual explanations are thus capable of revealing351

such spurious signals, the proposed method using counterfactual images by Sauer and Geiger provides an approach to352

mitigate this effect.353
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C Improved CGN Training for MNIST354

While training the CGN on the MNIST, we encountered an issue that was not mentioned in the original paper. During355

the training process, we observed that while some digits were captured almost perfectly by the model, other digit masks356

seemed to collapse to a state where there was a black circular shape in the center of the image with a surrounding357

white border (see Figure 6). When using the generated counterfactual datasets from these imperfect models to train358

a classifier, we then observed that the number of ‘correct’ (i.e., non-collapsed) images correlated strongly with the359

classifier performance.360

Any attempt to remedy this issue using adjusted hyperparameter configurations proved to be ineffective, because the361

hyperparameter names in the provided default configuration-files did not directly correspond to the descriptions given362

in the original paper. This observation inspired a solution where we add an extra loss term to the training objective,363

which penalizes mask-pixels at the borders of the image. Specifically, if we define the edge region E as the set of pixels364

that are within s pixels from the edge, the edge loss function can be defined as the sum of all pixel values mi within the365

specified edge region:366

Ledge(m) = Ep(u,y)

[
1

N

N∑
i=1

mi · [i ∈ E ]
]
, (3)

where N denotes the number of pixels in mask m, and [·] denotes the Iverson bracket. As the original MNIST images367

in the training and test datasets often contain almost no pixels at the borders, this loss function returns values close to 0368

for all ground truth MNIST images. During our experiments, we used a border size of 3 pixels, as this configuration369

seems to perform well to mitigate the mask-collapse issue, while still giving loss values close to 0 for the original370

MNIST images. By using this extra loss function, the training process became much more consistent and lead to an371

average classifier test accuracy of 89.8% for the Colored MNIST dataset, which is close to what was reported in the372

original paper.373

(a) Original training (b) Improved training

Masks Generated Masks Generated

Figure 6: Qualitative edge loss evaluation. Adding the edge loss significantly improves CGN training on colored
MNIST.

In Figure 10, we show that our modified training formulation improves the quality of generated images. In particular,374

we notice that incorporating Ledge in the mask loss, on average, noticeably decreases the number of non-broken images.375
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Figure 7: Quantitative edge loss evaluation. The fraction of experiment runs for each number of ‘correct’ digits.

D Computational Cost Taxonomy376

Table 7: Cost taxonomy. Overview of the computational cost associated with each experiment.
Experiment type Experiment name Support of Claim Section Computational Cost (GPU Hours)

Reproducibility Study

Evaluating counterfactual samples HQC 4.1 0.0

Required Inductive Biases IBR 4.1 84.0

Evaluating invariant classifiers: MNIST ODR 4.1 6.0

Evaluating invariant classifiers: IN-Mini ODR 4.1 8.0

Ablation study (Appendix G) ODR 4.1 14.0

Additional results
Improved CGN Training HQC 4.2.1 48.0

Explainability analysis: MNIST ODR 4.2.2 < 1.0

Explainability analysis: IN-Mini ODR 4.2.2 < 1.0

OOD generalization evaluation ODR 4.2.3 < 1.0

E Qualitative Analysis of Loss Ablation Study377

(a) No shape loss (b) No texture loss

Figure 8: Qualitative Loss Ablation. Comparison between IM outputs when excluding the shape loss and texture loss.
From left to right: m, m̃, f , b, xgen as described in Section 2.
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F GAN-based Baseline for MNISTs378

We follow the ConvNet-based architecture for the generator inspired by PyTorch DCGAN tutorial and retain the linear379

discriminator as is used by Sauer and Geiger [22]. We only use binary cross entropy loss for adversarial training of both380

G and D. All necessary hyperparameters are same as for the CGN training. These along with pretrained weights can be381

found in our code repository.382

(a) C-MNIST (b) DC-MNIST (c) W-MNIST

Figure 9: GAN samples. Samples generated by a GAN baseline on MNIST variants.

G Reproduced MNIST Ablation Study383

Figure 10 shows our reproduced results for the MNIST ablation study. Our results show that using more counterfactual384

datapoints generally improves the test accuracy, although this was not the case for the Colored MNIST dataset, where385

the test accuracy decreased when using 106 counterfactual datapoints instead of 105. However, the difference in386

performance is only minor. The differences in CF ratios do not seem to have a significant effect on the test accuracies.387

These results seem to support the claim from the original paper that using more counterfactual images always increases388

the test domain results for MNIST datasets, although there only seems to be a significant performance increase when389

using 105 datapoints instead of 104. Using even more datapoints does not seem to provide a significant increase in390

performance.391
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Figure 10: MNIST ablation study. We evaluate the impact of using more counterfactual data and generating more
counterfactuals per sampled noise on the measured test accuracy.

H GradCAM samples on ImageNet-mini392

A classifier trained jointly on original and CF data is expected to have encoded invariances for certain attributes and393

distinctiveness for others. Recall that the proposed classifier architecture for ImageNet is an ensemble with three heads394

for shape, texture and background. We pose the question: What spatial aspects of an image does each head focus on and395
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what prediction does it lead to? We answer this qualitatively by analyzing GradCAM heatmaps for outputs of each of396

the heads as well as the averaged ensemble output. In general, the individual heads tend to focus on meaningful aspects,397

as shown in Figure 11, background head focuses on background. Further, for original images, we observe that a correct398

prediction often relies on shape (e.g., puck in Figure 11a) or texture (e.g., goldfinch). In some cases, it correctly relies399

on background (e.g., castle). For counterfactuals, surprisingly, in most cases we found that the label predicted from400

shape, although correct, is dominated by incorrect label from background and texture. This may be a symptom of either401

insufficient counterfactual training data or the use of IN-mini instead of IN-1k. We further note that texture often drives402

the label decision for counterfactuals.403

(a) Original examples
Original (y = puck) Shape (ŷ = puck) Texture (ŷ = ski) Background (ŷ = puck) Average (ŷ = puck)

Original (y = submarine) Shape (ŷ = submarine) Texture (ŷ = abacus) Background (ŷ = Arabiancamel)Average (ŷ = lumbermill)

Original (y = castle) Shape (ŷ = platerack) Texture (ŷ = palace) Background (ŷ = castle) Average (ŷ = castle)

(b) Counterfactual examples
Original (y = goldfinch) Shape (ŷ = coucal) Texture (ŷ = goldfinch) Background (ŷ = housefinch) Average (ŷ = goldfinch)

Original (y = rainbarrel) Shape (ŷ = jack − o′ − lantern) Texture (ŷ = ambulance) Background (ŷ = beaver) Average (ŷ = weasel)

Original (y = waterbottle) Shape (ŷ = chainsaw) Texture (ŷ = banana) Background (ŷ = trimaran) Average (ŷ = banana)

Figure 11: Explainability Analysis ImageNet. GradCAM heatmaps visualized with respect to individual head outputs
for original and counterfactual samples. The coresponding ground truth labels and predictions are provided too.
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I Some failure modes in CGN-generated samples404

Since generation of high-quality counterfactuals is one of the main claims of the paper, we perform a deeper qualitative405

analysis to observe if there exist typical failure modes. Based on anecdotal evidence, we note the following observations.406

Texture-background entanglement for small objects For cases with small objects on a uniform background, such407

as the bird kite in sky, shown in Figure 12(a), or skiing on snow, shown in Figure 12(b), we see consistent408

entanglement between texture and background.409

Objects with complex texture We observe that objects with complicated texture, such as crossword puzzle,410

shown in Figure 12(c), result in poorly recovered texture by the CGN.411

Complex scenes As one would expect, the CGN approach does not generalize to complex scenes since it assumes a412

simplistic causal structure. We show an example of this in Figure 12(d).413

(a) Kite in sky
Shape Texture Background Counterfactual

(b) Skiing in snow
Shape Texture Background Counterfactual

(c) Crossword puzzle
Shape Texture Background Counterfactual

(d) Confectionery
Shape Texture Background Counterfactual

Figure 12: Failure modes. Cases highlighting some common failure modes in samples generated using CGN.
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