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Abstract

Driven by encouraging results on a wide range001
of tasks, the field of NLP is experiencing an ac-002
celerated race to develop bigger language mod-003
els. This race for bigger models has also under-004
scored the need to continue the pursuit of prac-005
tical distillation approaches that can leverage006
the knowledge acquired by these big models in007
a compute-efficient manner. Having this goal008
in mind, we build on recent work to propose009
a hallucination-free framework for sequence010
tagging that is especially suited for distillation.011
We show empirical results of new state-of-the-012
art performance across multiple sequence la-013
belling datasets and validate the usefulness of014
this framework for distilling a large model in a015
few-shot learning scenario.016

1 Introduction017

Sequence labelling (SL) can be defined as the task018

of assigning a label to a span in the input text. Some019

examples of SL tasks are: i) named entity recog-020

nition (NER), where these labelled spans refer to021

people, places, or organizations, and ii) slot-filling,022

where these spans or slots of interest refer to at-023

tributes relevant to complete a user command, such024

as song name and playlist in a dialogue system. In025

general, these spans vary semantically depending026

on the domain of the task.027

Despite the strong trend in NLP to explore the028

use of large language models (LLMs) there is still029

limited work evaluating prompting and decoding030

mechanisms for SL tasks. In this paper we propose031

and evaluate a new inference approach for SL that032

addresses two practical constraints:033

• Data scarcity: The lack of vast amounts of034

annotated, and sometimes even the lack of035

unlabelled data, in the domain/language of036

interest.037

• Restricted computing resources at infer-038

ence time: LLMs are very effective, but039

deploying them to production-level environ- 040

ments is expensive, especially in contexts with 041

latency constraints, such as in a live dialogue 042

system. 043

Data scarcity leads us to consider high- 044

performing encoder-decoder based LLMs. We ad- 045

dress deployment concerns by considering distil- 046

lation of such models into much smaller SL archi- 047

tectures, for instance Bi-Directional Long Short 048

Memory (BiLSTM) (Hochreiter and Schmidhuber, 049

1997) units, through the use of both labelled and 050

unlabelled data. 051

A standard distillation approach, knowledge dis- 052

tillation (KD) (Hinton et al., 2015), requires access 053

to the probability that the teacher network assigns 054

to each of the possible output tags. This proba- 055

bility distribution is typically unavailable at infer- 056

ence time for LLMs; thus, distillation of encoder- 057

decoder models needs to resort to pseudo-labels:1 058

the student is trained on the one-hot labels that 059

the teacher assigns to examples in an unlabelled 060

dataset. This prevents the student model from learn- 061

ing those relationships among the probabilities of 062

the incorrect classes that the teacher has learned. 063

Similar arguments apply to decoder-only models. 064

In this paper, we propose SenT′, a simple modifi- 065

cation of the Simplified Inside Sentinel+Tag (SenT) 066

format by Raman et al. (2022). We combine our tar- 067

get sequence format with a scoring mechanism for 068

decoding, which we collectively call SenTScore. 069

This combination results in an effective framework 070

that allows us to employ a language model to per- 071

form sequence labelling and knowledge distillation. 072

We show that SenTScore is an hallucination-free 073

decoding scheme, and that even with smaller mod- 074

1In this paper we refer to distillation with pseudo-labels as
the process by which a student model is trained on the one-hot
labels (and only those labels) generated by a teacher model on
an unlabeled dataset. We wish to distinguish this from KD, in
which the probability distribution over labels is also used. See
also Shleifer and Rush (2020).
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Original text

play wow by jon theodore

Encoder input for SenT′ format

<extra_id_0> play <extra_id_1> wow <extra_id_2> by <extra_id_3> jon <extra_id_4> theodore <extra_id_5>

Expected decoder output for SenT′ format

<extra_id_0> O <extra_id_1> TRACK <extra_id_2> O <extra_id_3> ARTIST <extra_id_4> I <extra_id_5>

Table 1: An example of how an original input text (from the SNIPS dataset) is transformed into the SenT′ input for
the model, and the format for the expected output. We use the explicit form of the special token strings used by T5.
The addition of the extra token at the end of the input differentiates SenT′ from SentT. Notice the modified BIO
scheme (sBIO) that we use for our experiments: a unique I tag is used for each of the output tags, so if the original
tag set is T the tags generated by the model are T ≡ T ∪ {I,O}.

els it outperforms the original SenT format across075

a variety of standard SL datasets.076

Our proposed SenTScore method defines a se-077

quence of scores over the output tags that can be078

aligned with those generated by the sequence tag-079

ging student network, making KD possible. We080

find an advantage in terms of performance in using081

KD as opposed to just pseudo-labels as a distilla-082

tion objective, especially for smaller distillation083

datasets.084

In sum, our contributions are:085

• A new, hallucination-free, inference algorithm086

for sequence labelling with encoder-decoder087

(and possibly decoder only) transformer mod-088

els, SenTScore, that achieves new state-of-089

the-art results on multiple English datasets.090

• Empirical evidence showing an advantage091

of SenTScore when distilling into a smaller092

student model. This approach is particu-093

larly promising in the few-shot setting, which094

makes it even more appealing and practical.095

2 Related work096

Using LLMs to perform sequence tagging is dis-097

cussed by Athiwaratkun et al. (2020); Yan et al.098

(2021); Paolini et al. (2021); Qin and Joty (2021);099

Xue et al. (2022) and Raman et al. (2022). While100

these previous works have minor differences in the101

prompting format of the models, all but the last one102

include input tokens as part of the target sequence.103

Different from our work, all previous models are104

prone to hallucinate.105

Distillation refers to training a small student106

model from scratch using supervision from a large107

pretrained model (Bucilua et al., 2006; Hinton et al.,108

2015). Distillation of transformer-based models for109

different NLP tasks is typically discussed in the110

context of encoder-only models (e.g. Tang et al.,111

2019; Mukherjee and Hassan Awadallah, 2020;112

Jiao et al., 2020), with a few exceptions looking at 113

distillation of decoder-only models (e.g. Artetxe 114

et al., 2021). 115

In this paper we will discuss two approaches to 116

distillation: pseudo-labels and knowledge distilla- 117

tion (KD). In the first approach the student model is 118

trained on the hard labels generated by the teacher 119

on some (unlabelled) dataset. In the second ap- 120

proach additional soft information provided by the 121

teacher is used: typically the probability distribu- 122

tion the teacher assigns to the labels. 123

In the context of sequence labelling, using 124

pseudo-labels allows us to perform distillation on 125

any teacher-student architecture pair. KD, on the 126

other hand, requires access to the teacher’s proba- 127

bility distribution over the output tags. These are 128

not usually available in language models for which 129

the output distribution is over the whole vocabulary 130

of tokens. We are not aware of other works which 131

modify the decoder inference algorithm to generate 132

such probabilities. However, there is recent work 133

distilling internal representations of the teacher 134

model, with the most closely related work to us 135

being Mukherjee and Hassan Awadallah (2020). In 136

that work the authors distill a multilingual encoder- 137

only model into a BiLSTM architecture using a 138

two-stage training process. This two-stage process, 139

however, assumes a large unlabelled set for dis- 140

tilling internal model representations, embedding 141

space, and teacher logits, and another significant 142

amount of labelled data for directly training the 143

student model using cross-entropy loss. 144

3 Datasets 145

We select seven English datasets that have been 146

used in recent work on slot labelling: ATIS 147

(Hemphill et al., 1990), SNIPS (Coucke et al., 148

2018), MIT corpora (Movie, MovieTrivia, and 149
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Datasets # tags # train # dev # test
ATIS 83 4478 500 893
SNIPS 39 13084 700 700
MovieTrivia 12 7005 811 1953
Movie 12 8722 1053 2443
Restaurant 8 6845 815 1521
mTOP (en) 75 15667 2235 4386
mTOD (en) 16 30521 4181 8621

Table 2: Number of examples per partition and number
of unique tags in the SL datasets we used.

Restaurant)2, and the English parts of mTOP (Li150

et al., 2021) and of mTOD (Schuster et al., 2019).151

Some statistics about the datasets are shown in152

Table 2. Some of these datasets (ATIS, SNIPS,153

mTOP, and mTOD) come from dialogue-related154

tasks, while the MIT ones have been used for NER.155

We use the original training, development, and156

test sets of the SNIPS, mTOP, and mTOD datasets.157

For the ATIS dataset we use the splits established158

in the literature by Goo et al. (2018), in which a159

part of the original training set is used as the dev160

set. Similarly, we follow Raman et al. (2022)3 to161

obtain a dev set out of the original training set for162

each of the MIT datasets.163

We notice that all datasets with the exception164

of MovieTrivia contain some duplicates. Among165

these, all apart from Restaurant contain examples in166

the test set that are also duplicated in the train and167

dev sets. This happens for fewer than 30 instances,168

with the exception of mTOD (en) where more than169

20% of the test set examples are also found in170

the train and dev sets. How these duplicates are171

handled varies across the literature; we choose not172

remove any duplicates.173

In addition to covering different domains, there174

are noticeable differences across the datasets in175

terms of the number of tags and the number of176

labelled examples for evaluation and testing, as177

can be seen in Table 2. This set of seven datasets178

allows us to gather robust empirical evidence for179

the proposed work that we present in what follows.180

4 Score-based sequence labelling181

Using LLMs for sequence tagging requires refram-182

ing the problem as a sequence-to-sequence task. In183

Raman et al. (2022), the strategy that proved the184

most effective, at least when applied to the mT5185

2The MIT datasets were downloaded from: https://
groups.csail.mit.edu/sls/

3Private communication with authors

encoder-decoder architecture, was the Simplified 186

Inside Sentinel+Tag (SenT in this paper). In this 187

format (see Table 1), the original text is first tok- 188

enized according to some pretokenization strategy 189

(white space splitting for all the datasets consid- 190

ered), and each of the tokens is prepended with 191

one of the extra token strings provided by mT5 192

(the sentinel tokens). The resulting concatenation 193

is then tokenized using the mT5 tokenizer and fed 194

to the encoder-decoder model. The output that the 195

decoder is expected to generate is the same input 196

sequence of special token strings, which are now al- 197

ternated with the tags corresponding to the original 198

tokens. 199

Given the set T of string labels to be used to an- 200

notate a span of text, the scheme used to associate 201

tags across tokens is a modification of the standard 202

BIO scheme: we use t ∈ T for any token that starts 203

a labelled span, a single tag I for each token that 204

continues a labelled span, and O to tag tokens that 205

do not belong to labelled spans. We refer to this 206

scheme as Simplified Inside BIO (sBIO), and we 207

indicate with T ≡ T ∪{I,O} the tag set associated 208

to it. 209

Raman et al. (2022) argue that the success of 210

SenT can be attributed to two factors: 1) on the one 211

hand the use of sentinel tokens mimics the denois- 212

ing objective that is used to pretrain mT5; 2) on 213

the other hand, when compared to other decoding 214

strategies, SenT does not require the decoder to 215

copy parts of the input sentences and also produces 216

shorter outputs. Both these facts supposedly make 217

the task easier to learn and reduce the number of 218

errors from the decoder (hallucinations, as they are 219

often referred to in the literature). 220

We remark however that any output format 221

among those described in the literature can be made 222

completely free of hallucinations by constraining 223

decoding (either greedy or beam search based) 224

through a finite state machine enforcing the desired 225

output format (see for instance De Cao et al., 2020). 226

In what follows we describe our proposed decoding 227

approach that builds on this previous work. 228

4.1 SenTScore 229

Regardless of possible constraints imposed during 230

generation, both SenT and the other algorithms 231

described in Raman et al. (2022) use the decoder 232

autoregressively at inference time to generate the 233

target sequence. Since generation proceeds token 234

by token and the textual representation of a tag is 235

a variable length sequence of tokens, it is nontriv- 236
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ial to extract the scores and probabilities that the237

model assigns to individual tags.238

We propose a different approach to inference,239

one in which the decoder is used to score sequences240

of tags. For this purpose, we consider a sequence241

tagging task with a label set T , and the associated242

sBIO tag set T . Given an input sentence S, we use243

a pre-tokenizer (such as whitespace splitting) to244

turn S into a sequence of token strings x1 . . . xL,245

of size L. The SenT format is obtained by inter-246

leaving these tokens with special token strings to247

obtain the input string Sin = s0x1s1 . . . xL. We248

use juxtaposition to indicate string concatenation.249

In what follows, we will work with SenT′, a modifi-250

cation of SenT in which an additional special token251

is appended at the end, Sin ← SinsL. The reason252

for doing this will become clear in what follows.253

The valid output strings that can be generated by254

the decoder are the |T |L sequences of the form255

Sout = s0t1s1 . . . tLsL ∈ O where t ∈ T ≡256

T ∪ {I,O} consistent with the sBIO scheme con-257

vention. The encoder-decoder model can be used to258

calculate the log-likelihood of each of such strings259

logLθ(Sout;Sin), where θ represents the model pa-260

rameters, and the best output will be:261

S∗
out = argmax

S∈O
logL(S;Sin)262

Exact inference is infeasible but can be approx-263

imated using beam search as described in Algo-264

rithm 1. The outputs of the algorithm are the top-K265

output strings and the score distribution associated266

with each of the output tags. As is evident from267

Table 1, it is simple to map back the final output268

string S∗ to the sequence of output tags and la-269

belled spans.270

At the decoding time the output string is initial-271

ized with the first sentinel token s0. At the i-th272

step, SenTScore uses the model likelihood to score273

each of the |T | possible continuations of the output274

sequence275

t si with t ∈ T , (1)276

picks the highest scoring one, and keeps track of277

the score distribution. si in Eq. 1, the next sen-278

tinel token, plays the crucial role of an EOS to-279

ken at each step. This is needed to normalize280

the probability distribution: the likelihood of the281

string s0t1 . . . sk−1t
′
k is always bounded by that282

of the string s0t1 . . . sk−1tk if t is a prefix of t′,283

and we would never predict t′ as a continuation of284

s0t1 . . . sk−1. This explains why we prefer using285

SenT′ over SenT.286

Algorithm 1 SenTScore beam search
Require: Encoder-decoder parameters θ, input Sin with L

tokens, sBIO tag set T , beam size K
Ensure: Approximate top-K output sequences Btext and their

sBIO tag scores, Bscores
Btext ← [ s0 ]i=1...K

Bscores ← [ [ ] ]i=1...K

for i = 1 to L do
H ← [ z t si ]z∈Btext, t∈T ▷ Generate hypotheses
S ← [ logLθ(h;Sin) ]h∈H ▷ Score hypotheses
Π← K-argsortS ▷ top-K args
Btext ← TAKE(H; Π) ▷ Update text beam
S̃ ← RESHAPE(S;K, |T |); ▷ Reshape scores
for k = 0 to K − 1 do ▷ Update score beam

k̃ ← Π[k] mod K

Bscores[k]← APPEND(Bscores[k̃];S[k̃])
end for

end for
return Btext, Bscores

Finally, while SenTScore changes the inference 287

algorithm, the finetuning objective we use through- 288

out is still the original language modelling one. 289

4.2 Distillation 290

The main advantage of SenTScore is in the distilla- 291

tion setting. At each inference step, the algorithm 292

assigns a likelihood to each sBIO tag. This distri- 293

bution can be used to train the student network by 294

aligning it to the teacher’s pre-softmax logits, in a 295

standard knowledge distillation setup. 296

In detail, given an input sequence Sin, let 297

(y∗
i )i=1...L be the sequence of sBIO output tags 298

(as |T |-dimensional one-hot vectors) as inferred 299

by the teacher model, and let (u∗
i )i=1...L (also |T |- 300

dim. vectors) be the associated sequence of log- 301

likelihoods. We indicate with p∗
i the probability 302

obtained by softmaxing u∗
i and by qi the output of 303

the softmax layer from the student. The contribu- 304

tion of each of the tags to the distillation objective 305

that we use to train the student sequence tagger is 306

−
∑
k

(y∗i )k log (p
∗
i )k + λKLKL(p∗

i ||qi) . (2) 307

The first term is the standard cross-entropy contri- 308

bution from the pseudo-labels, while the second is 309

the knowledge distillation term, implemented with 310

a KL divergence with λKL its associated positive 311

weight. 312

We stress that we are allowed to write the second 313

term only because SenTScore provides us with 314

the tag scores. This is not the case for any of the 315

formats proposed in Raman et al. (2022) or, as far 316

as we know, elsewhere.4 317

4Strictly speaking the student defines p(·|t∗1 . . . t∗i−1;Sin)
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5 Experimental settings318

We evaluate the models by computing the F1 score319

on the test set of each dataset. F1 is calculated320

following the CoNLL convention as defined by321

Tjong Kim Sang and De Meulder (2003), where an322

entity is considered correct iff the entity is predicted323

exactly as it appears in the gold data. We show324

micro-averaged F1 scores.325

The first set of experiments we performed326

are intended to investigate whether our proposed327

SentTScore approach is competitive with respect328

to recent results on the same datasets (Table 3).329

Our SentTScore model is a pretrained T5-base330

model (220M parameters) finetuned on each of the331

datasets.5 We trained each model for 20 epochs,332

with patience 5, learning rate of 10−3, and batch333

size 32. We also want to know how the proposed334

framework compares against the following strong335

baselines:336

BiLSTM: Our first baseline is a BiLSTM tagger337

(Lample et al., 2016).6 The BiLSTM has a hidden338

dimension of size 200. Its input is the concate-339

nation of 100d pretrained GloVE6B embeddings340

(Pennington et al., 2014) from StanfordNLP with341

the 50d hidden state of a custom character BiL-342

STM. We trained each model for 100 epochs, with343

patience 25, learning rate of 10−3, and batch size344

16.345

BERT: We finetune a pretrained BERT-base cased346

model (Devlin et al., 2019) (110M parameters)347

for the SL task and report results for each of the348

seven datasets. While we consider BERT a base-349

line model, we note that this pretrained architecture350

continues to show good performance across a wide351

range of NLP tasks, and for models in this size352

range BERT is still a reasonable choice. In pre-353

liminary experiments we compared results from354

the case and uncased versions of BERT and we355

found negligible differences. We decided to use the356

cased version for all experiments reported here. We357

trained each model for 30 epochs, with patience 10,358

learning rate of 5× 10−5, and batch size 64.359

SentT′: The pretrained model is the same as that360

used for SentTScore. The goal of this baseline361

(star means predicted) while qi corresponds to
p(s0t

∗
1 . . . t

∗
i−1si−1 · |Sin). This discrepancy is resolved by

the invariance of the softmax under constant shifts of its
arguments.

5All our results are in the greedy setting. We find very
small differences in performance by using beam search, while
inference time grows considerably.

6We do not include a CRF layer.

is to assess improvements attributed to our pro- 362

posed decoding mechanism. This model is also the 363

closest model to prior art. The main difference be- 364

tween our results and those in Raman et al. (2022) 365

is the pretrained model. They used a multilingual 366

T5 model (Xue et al., 2021) with 580M parame- 367

ters, whereas we use a smaller monolingual version 368

(Raffel et al., 2020). 369

All the above models were trained with the 370

AdamW optimizer (Loshchilov and Hutter, 2017). 371

The best checkpoint for each training job was se- 372

lected based on highest micro-F1 score on the vali- 373

dation set. All pretrained transformer models are 374

downloaded from Huggingface. 375

5.1 Distillation experiment 376

We apply SentTScore and the loss function de- 377

scribed in Section 4.2, to distill a finetuned T5 378

model into a BiLSTM architecture to perform se- 379

quence tagging. To mimic a low-resource setting, 380

we randomly downsample the train/dev splits of all 381

the datasets. We consider two sets of sizes for these 382

gold train/dev splits: a 100/50 split and a 300/150 383

one. In both settings the remainder of the original 384

training set is used for the distillation component 385

using pseudo-labels. 386

We then finetune T5 using the SenT′ format 387

on each of these two gold splits. The resulting 388

model is used as the teacher in a distillation set- 389

ting in which the student is a BiLSTM. The BiL- 390

STM student is trained on the full training set by 391

using the downsampled gold labels, but pseudo- 392

labels and scores generated by the T5 teacher using 393

SenTScore with K = 1 in the rest of the training 394

data. We use a temperature parameter τ to rescale 395

the distribution SenTScore defines over T . We use 396

τ = 10 in all the distillation experiments. 397

The training schedule we follow is the same we 398

use to train the BiLSTM baseline model, with the 399

only exception that the best checkpoint is selected 400

on the reduced dev set. 401

6 Results 402

The comparisons between baselines, SenT′, and 403

SenTScore are shown in Table 3. SenTScore is 404

used with a K = 1 beam size. Larger beams re- 405

sult in very similar performance and a considerable 406

slowdown of inference time. SenTScore consis- 407

tently outperforms SenT′ with constrained decod- 408

ing, and all other baselines. Our intuition is that one 409

advantage of SenTScore comes from the fact that 410
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Dataset
BiLSTM BERT T5 (SenT′) T5 (SenTScore) mT5 (SenT)

Perfect F1 Perfect F1 Perfect F1 Perfect F1 Perfect F1
ATIS 89.06 95.56 88.57 95.27 86.56 94.77 89.81 95.99 90.07 95.96
SNIPS 87.24 95.02 89.71 95.47 89.86 95.43 91.00 96.07 89.81 95.53
MovieTrivia 32.41 69.81 36.2 69.15 36.35 70.76 39.58 71.99 39.85 73.01
Movie 69.79 86.72 69.46 85.83 71.88 87.53 74.29 88.35 72.74 87.56
Restaurant 58.32 77.39 58.97 77.69 58.65 78.77 63.77 80.91 62.93 80.39
mTOP (en) 81.10 88.94 84.4 90.98 84.18 90.64 86.66 92.29 86.56 92.28
mTOD (en) 91.70 95.62 92.35 95.83 92.24 96.04 92.94 96.24 93.19 96.42

Table 3: Our results comparing BERT-base and a BiLSTM against a T5-base model using SenT′ and SenTScore
on different SL datasets are shown in the first 4 columns. Results from Raman et al. (2022) are copied in the last
column. Bold scores represent our best results, underlined scores in the last column highlight those cases in which
Raman et al. (2022) outperforms us.

Dataset - F1 BiLSTM BERT T5 BiLSTM
(distilled)

ATIS 79.93 79.43 85.01 86.75
SNIPS 51.63 52.16 54.33 57.18
MovieTrivia 48.26 50.26 55.74 57.85
Movie 60.82 61.80 67.09 70.51
Restaurant 47.26 53.17 56.87 61.13
mTOP (en) 43.12 46.08 51.94 54.77
mTOD (en) 68.68 76.95 79.43 82.26

(a) Gold train/dev split of size 100/50

Dataset - F1 BiLSTM BERT T5 BiLSTM
(distilled)

ATIS 86.43 84.95 89.33 90.25
SNIPS 69.19 72.77 76.34 79.84
MovieTrivia 57.64 58.41 63.60 65.34
Movie 73.54 73.76 77.39 79.20
Restaurant 61.62 62.97 68.52 68.62
mTOP (en) 57.22 63.28 67.73 69.62
mTOD (en) 83.46 85.51 88.68 89.82

(b) Gold train/dev split of size 300/150

Table 4: Distillation results and comparisons with baselines. The distillation results use the full objective function in
Eq. 2 with λKL = 1.

decoding happens tag-wise as opposed to token-411

wise (as in pure beam search). The last column of412

Table 3 shows the performance of the SenT imple-413

mentation of Raman et al. (2022). Perfect scores414

are also reported for completeness. They are eval-415

uated at the sentence level and correspond to the416

fraction of perfectly predicted examples. However417

these results are not directly comparable: Raman418

et al. (2022) use a different and larger model (mT5-419

base with 580M parameters) and different optimiza-420

tion details. Nevertheless SenTScore achieves bet-421

ter performance in a majority of cases.422

6.1 Distillation results423

Tables 4a and 4b show the result of the distillation424

experiments with 100/50 and 300/150 train/dev425

gold splits, respectively. While a BiLSTM tag-426

ger trained on the gold data significantly underper-427

forms a finetuned T5-base model, once the BiL-428

STM is distilled on the silver data generated using429

SenTScore, it outperforms even the original teacher430

model. We notice that the difference between stu-431

dent and teacher decreases for larger gold set size,432

suggesting that the effect is related to regulariza-433

tion properties of the distillation process. A similar434

phenomenon has been observed elsewhere, for in- 435

stance in Furlanello et al. (2018) albeit with teacher 436

and student sharing the same architecture. 437

In order to isolate the benefits of training the 438

teacher model using KD as opposed to just pseudo- 439

labels, we perform a set of ablation studies. For 440

each dataset, we distill a BiLSTM student on a 441

training set T = G∪S , where G is the original gold 442

set and S is a random sample from the complement 443

of G. We choose |S| = 0, 250, 500. The student is 444

distilled using Eq. 2 with two choices of the loss 445

multipliers: λKL = 1 and λKL = 0. The first 446

setting is the same used in Tables 4a and 4b, while 447

the second drops the KD loss and only keeps the 448

pseudo-labels for distillation. Whenever pseudo- 449

labels and scores are used, they are generated by 450

the SenTScore algorithm. 451

The results are shown in Tables 5 and 6. We see a 452

consistent trend in which KD outperforms training 453

the student using only pseudo-labels. This in partic- 454

ular motivates SenTScore as an inference algorithm. 455

The results also show that for our choice of teacher 456

and student architectures, and datasets, the gap be- 457

tween KD and pseudo-labels is reduced when more 458

silver data are used. Figure 1 further explores the re- 459
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Dataset - F1
No silver 250 silver 500 silver

λKL = 0 λKL = 1 λKL = 0 λKL = 1 λKL = 0 λKL = 1

ATIS 79.93 (0.85) 82.35 (0.44) 83.09 (1.49) 84.42 (1.42) 83.75 (1.74) 85.10 (1.54)
SNIPS 51.63 (1.25) 55.65 (1.38) 54.34 (0.71) 56.02 (1.71) 55.66 (1.21) 57.00 (1.17)
MovieTrivia 48.26 (0.95) 51.86 (1.09) 53.11 (1.26) 55.19 (0.50) 53.97 (1.55) 56.00 (0.38)
Movie 60.82 (0.67) 64.20 (1.07) 67.04 (0.66) 69.41 (0.66) 67.73 (1.28) 70.12 (0.60)
Restaurant 47.26 (0.83) 50.19 (0.81) 54.24 (1.17) 56.20 (0.94) 56.29 (1.11) 57.95 (0.88)
mTOP (en) 43.12 (1.84) 46.43 (1.01) 46.68 (2.31) 49.08 (1.65) 49.57 (0.47) 50.33 (2.17)
mTOD (en) 68.68 (2.68) 70.40 (0.97) 76.12 (1.07) 77.86 (1.45) 77.86 (0.85) 79.77 (0.82)

Table 5: Distillation experiments with varying silver dataset size and ablation of the KD term in Eq. 2. The gold
data split is the same as in Table 4a, with a train/dev size given by 100/50. The numbers in parentheses represent the
standard deviation of the scores obtained by varying all the random seeds that appear at training time: BiLSTM
weight initialization, batch scheduling, and the choice of the silver data set.

Dataset - F1
No silver 250 silver 500 silver

λKL = 0 λKL = 1 λKL = 0 λKL = 1 λKL = 0 λKL = 1

ATIS 86.43 (1.09) 88.42 (0.48) 89.15 (0.65) 89.39 (0.49) 89.73 (0.66) 89.98 (0.31)
SNIPS 69.19 (0.74) 73.06 (0.54) 72.11 (1.11) 75.02 (1.16) 73.99 (0.81) 75.73 (1.47)
MovieTrivia 57.64 (0.45) 60.30 (0.34) 60.25 (0.37) 62.11 (0.54) 61.38 (0.46) 62.89 (0.52)
Movie 73.54 (0.40) 76.30 (0.33) 75.88 (0.44) 76.96 (0.44) 76.52 (0.58) 77.58 (0.26)
Restaurant 61.62 (0.43) 63.78 (0.27) 64.33 (0.90) 65.33 (0.66) 65.20 (0.80) 66.24 (0.63)
mTOP (en) 57.22 (0.73) 60.36 (0.50) 60.81 (0.92) 62.70 (0.69) 62.02 (0.94) 64.37 (0.84)
mTOD (en) 83.46 (0.59) 85.52 (0.20) 86.35 (0.40) 87.08 (0.50) 86.82 (0.33) 87.89 (0.40)

Table 6: Distillation experiments with varying silver dataset size and ablation of the KD term in Eq. 2. The gold
data split is the same as in Table 4b, with a train/dev size given by 300/150. All experimental details are common
with Table 6.

lationship between amount of pseudo-labeled data460

and gains from KD with |S| = 0, 250, 500, 2000.461

The trend with more pseudo-labeled data remains462

unchanged.463

7 Limitations and future work464

A reasonable critique to our focus on real-world465

constraints is the simple fact the datasets we are us-466

ing are not real-world ones. From noise to tokeniza-467

tion choices, many issues arise when considering468

datasets outside of the academic domain. However,469

we believe our methods are simple enough to be470

applicable to real-world scenarios and our results471

to be independent of these various subtleties.472

Some issues that could be addressed in future473

work have to do with the exploration of even larger474

models and different architectures such as decoder-475

only ones (Radford et al., 2018, 2019; Brown et al.,476

2020; Zhang et al., 2022; Chowdhery et al., 2022;477

Black et al., 2021). We should note however that478

in all our experiments we finetune all the weights479

of the pretrained models we use. When using ex-480

tremely large models this becomes unpractical. Ex-481

ploring the pure few-shot scenario, or only finetun-482

ing a subnetwork, for instance by using adapters à483

la Houlsby et al., 2019, would be interesting. 484

8 Conclusion 485

Real-time systems need to find a trade-off between 486

performances and computing resources, the latter 487

constraint coming either from budget or some other 488

service requirement. Such trade-offs become par- 489

ticularly evident with large pretrained transformer 490

models, which achieve SOTA results on many NLP 491

tasks at the cost of being extremely hard and ex- 492

pensive to deploy in a real-world setting. 493

The standard solution for this is distillation. In 494

this paper we have revisited these issues for the 495

SL task, which is often the first crucial step in 496

many real-world NLP pipelines. We propose a 497

new inference algorithm, SenTScore, that allows 498

to leverage the performance of arbitrarily large 499

encoder-decoder transformer architectures by dis- 500

tilling them into simpler sequence taggers using 501

KD as opposed to just pseudo-labelling. 502

Ethical considerations 503

The intended use of our proposed approach is re- 504

lated to sequence labelling tasks where there are 505
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Figure 1: A graphical representation of the distillation results in Table 4a (100/50 gold train/dev split) as a function
of the size of the silver dataset. Knowledge distillation using SenTScore generated scores outperforms pseudo-labels.
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latency constraints and limited labelled data avail-506

able. While it is not impossible to identify potential507

misuses of this technology, it is not immediately508

clear what those malicious uses would be. On the509

contrary, this paper contributes to the body of work510

investigating efficient solutions for deployment of511

live systems.512

Computing infrastructure and computational513

budget514

All of our experiments were run on single V100515

GPU machines with 32GB. The most expensive516

experiments relate to fine-tuning a model, including517

best checkpoint selection. In this case, the running518

time is directly related to the dataset size. For the519

experiments using the full train/dev set, running520

time varies from 45 minutes (mATIS corpus) to521

a few hours (mTOD corpus) for a T5-base model.522

Training the model takes, on average, around 4523

iterations per second with batch size 32. For the524

generation of pseudo-labels, we did not implement525

batch processing and it takes around 0.15 seconds526

to annotate each sample.527
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