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Abstract

Offline reinforcement learning (RL) focuses on learning a good policy from a fixed dataset.
The dataset is generated by an unknown behavior policy through interactions with the
environment and contains only a subset of the state-action spaces. Standard off-policy
algorithms often perform poorly in this setting, suffering from errorneously optimistic values
incurred by the out-of-distribution (OOD) actions not present in the dataset. The optimisim
cannot be corrected as no further interaction with the environment is possible. Imposing
divergence regularization and in-sample constraints are among the most popular methods to
overcoming the issue by ensuring that the learned policy stays close to the behavior policy
to minimize the occurrence of OOD actions. This paper proposes Tsallis regularization
for offline RL, which aligns the induced sparsemax policies to the in-sample constraint.
Sparsemax interpolates existing methods utilizing hard-max and softmax policies, in that
only a subset of actions contributes non-zero action probability as compared to softmax (all
actions) and hard-max (single action). We leverage this property to model the behavior
policy and show that under several assumptions the learned sparsemax policies may have
sparsity-conditional KL divergence to the behavior policy, making Tsallis regularization
especially suitable for the Behavior Cloning methods. We propose a novel actor-critic
algorithm: Tsallis Advantage Weighted Actor-Critic (Tsallis AWAC) generalizing AWAC
(Nair et al., 2021) and analyze its performance in standard Mujoco environments. Our code
is available at https://github.com/lingweizhu/tsallis_regularization.

1 Introduction

Reinforcement learning (RL) has achieved impressive successes in various domains through learning from
online interactions with the environment (Mnih et al., 2015; Silver et al., 2017; Andrychowicz et al., 2020).
However, online RL is often less suited to real-world domains, especially when acting unconstrained in an
environment can be expensive or dangerous. Offline RL instead addresses the problem of learning good
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policies completely from a given dataset generated following unknown policies. The goal of offline RL is to
learn policies which outperform—or at least match—the policies used to generate the dataset.

However, many of the difficulties of offline RL stem from not using online interaction. Standard off-policy RL
algorithms tend to perform poorly, due to the well-known extrapolation error or out-of-distribution (OOD)
action problem: improving the learned policy beyond the level of behavior policy requires estimating values of
state-action pairs not present in the dataset. Optimistic estimates will bias the agent into favoring the absent
actions in the policy improvement stage, leading to a vicious loop (Fujimoto et al., 2019; Kostrikov et al.,
2022). Since no further interactions with the environment is allowed, the agent may be increasingly prone to
choose actions with delusively high values It is worth noting the extrapolation problem does not occur in the
tabular case but rather is the result of function approximators (Gulcehre et al., 2021; Dadashi et al., 2021).

A popular branch of offline RL is behavior cloning (BC) (Pomerleau, 1988), referred to as imitation-based
methods in (Xu et al., 2022). BC based methods enforce the learned policy to stay close to or reproduce
the behavior policy (Dadashi et al., 2021; Ghasemipour et al., 2021; Nair et al., 2021; Siegel et al., 2020;
Wang et al., 2020; Wu et al., 2022; 2020). This is often achieved in two ways: (1) by using divergence
regularization D(πt(·|s)||πD(·|s)) when updating policy to penalize large deviation from the learned policy
πt to the behavior policy πD (Brandfonbrener et al., 2021; Jaques et al., 2020; Kostrikov et al., 2021; Wu
et al., 2020; Osa et al., 2023), usually D is chosen to be the KL divergence but other divergences such as
MMD (Kumar et al., 2019), Fisher’s divergence (Kostrikov et al., 2021) or Shannon entropy (Xiao et al.,
2023) have also been used; (2) imposing an in-sample constraint to the updates (Fujimoto et al., 2019;
Kostrikov et al., 2022; Xiao et al., 2023) where the target hard max operator maxa Q(s, a) in Q-learning is
replaced to the in-sample maximum maxa:πD(a|s)>0 Q(s, a). This scheme has been recently extended to the
in-sample log-sum-exp ln

∑
a:πD(a|s)>0 e

Q(s,a) (Xiao et al., 2023).

In this paper, we propose to use a general but less studied class of regularizers that interpolates softmax and
hard-max−−the Tsallis regularizers, specifically, Tsallis entropy and Tsallis KL divergence−−as the choice
of D. While Tsallis entropy and Tsallis KL divergence have recently been investigated in online RL (Lee
et al., 2018; 2020; Pacchiano et al., 2021; Zhan et al., 2023; Zhu et al., 2023), they have never been utilized
in the offline RL context. Tsallis entropy (resp. Tsallis KL) is a strict generalization of Shannon entropy
(resp. KL). Different from the softmax policy induced by Shannon entropy and KL that has full support
(Azar et al., 2012; Kozuno et al., 2019; Vieillard et al., 2020), Tsallis regularization induces the sparsemax
policy that truncates actions with low values, i.e. setting their probability to zero. We link action truncation
to the in-sample constraint πD(a|s) > 0, arriving at the assumption that the behavior policy is within the
sparsemax policy class and collects in the offline dataset a subset of actions with high values. Intuitively, the
assumption suggests to learn a policy that shrinks the support of the behavior policy, which renders Tsallis
regularization especially suited to BC or imitation-based methods. We formalize this intuition in Section 4
by showing that the KL divergence between πD and the learned policy πt, all within the sparsemax class,
may be upper bounded depending on the Tsallis entropic index controlling the sparsity.

By combining in-sample constraint and Tsallis regularization, we propose two actor-critic algorithms: Tsallis
advantage weighted actor-critic (Tsallis AWAC) based on Tsallis KL divergence; and Tsallis In-sample
Actor-Critic (Tsallis InAC), based on Tsallis entropy. Both methods extend their base algorithms to the
q > 1 domain. With the introduced sparsity by q-exp, Tsallis AWAC is among the best performers among
the compared methods, while Tsallis InAC is less stable and only competes favorably for expert datasets.

2 Background

We model our problem as a Markov decision process (MDP) expressed by the tuple (S,A, P, r, γ). S is
the set of states, A is the set of actions. P (·|s, a) denotes transition probability over the state space given
state-action pair (s, a), and r(s, a) defines the reward associated with that transition. γ ∈ [0, 1) is the discount
factor. A policy π(·|s) is a mapping from the state space to distributions over actions. The state-action value
function starting from (s, a) following policy π is defined as Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a].
In this paper we consider entropy-regularized formulation Eπ [Q∗(s, a) − Ω(π(·|s))], where Ω(π(·|s)) ∈ R|S| is
the regularizer convex in π. Popular choices for Ω include the negative Shannon entropy −τH (π(·|s)) :=
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Figure 1: (From left to right) q-logarithm, q-exponential, Tsallis entropy and Tsallis KL divergence of Gaussian
policies. Note that q = 0 is shown here only for an illustration purpose. We consider q > 0 in this paper for
theoretically sound regularizers. When q = 1, the above functions recover their standard counterparts.

τ
∑

a π(a|s) ln π(a|s), which encourages the policy to be uniform with τ weighting the effect. KL divergence
DKL(π(·|s) ||µ(·|s)) :=

∑
a π(a|s) ln π(a|s)

µ(a|s) penalizing large deviation from the reference policy µ is another
popular choice (Azar et al., 2012; Vieillard et al., 2020; Chan et al., 2022; Zhu & Matsubara, 2023).

It is worth noting that offline RL problems often have continuous action spaces, while many existing methods
were derived based on a discrete footing. Approximation is usually necessary, e.g., in evaluating policies
(Fujimoto et al., 2019; Xiao et al., 2023). Similar to (Xiao et al., 2023), our method is positioned in the
entropy-regularized literature and established based on the discrete action setting (Vieillard et al., 2020).
When applied to continuous action problems, our method also necessitates approximation in policy evaluation,
as detailed in Section 5. While such approximation may affect the performance, its use is justified in the
following sense: (1) evaluating the continuous policy exactly is generally intractable; (2) the approximate
policy is still an exp/q-exp function which retains some desired properties. Developing theories in the
continuous action setting is left as an interesting future work.

2.1 Tsallis Regularization and Sparsemax Policies

We consider a broad class of less studied entropic regularizers as Ω: Tsallis entropy and Tsallis KL divergence.
We can define these regularizers using q-logarithm in a similar manner to the standard logarithm. For
q ∈ R+, we define q-logarithm as lnqx = xq−1−1

q−1 and its unique inverse function q-exponential expqx =

[1 + (q − 1)x]
1

q−1
+ , where {·}+ = max{·, 0}, see Figure 1 for an illustration. As q gets larger, expq x becomes

more flat (second plot). Notice that expq is only invertible when x > − 1
q−1 . On the other hand, lnq x is more

peaked than the standard logarithm for input x > 1 and more flat otherwise (Ding & Vishwanathan, 2010).
Therefore, for 0 ≤ π ≤ 1, the Tsallis entropy component −π lnq π is more flat than the Shannon entropy
(third plot). Note that when q ≤ 0, Tsallis entropy becomes a convex function and Tsallis KL a concave
function, therefore they are not valid regularizers (Geist et al., 2019). We consider exclusively q > 0 in this
paper, and q = 0 is shown in Figure 1 only for an illustration purpose. We can define the Tsallis entropy using
q-logarithm (Tsallis, 2009): Sq(π(·|s)) = −k

∑
a π(a|s)lnqπ(a|s), k ∈ R. When q → 1, the q-logarithm (resp.

q-exponential) recovers the standard logarithm (resp. exponential) and hence Tsallis entropy degenerates to
Shannon entropy. When q = ∞, the regularizer vanishes. When k = 1

2 , q = 2, we arrive at the most important
non-trivial case: Tsallis sparse entropy S2(π(·|s)) := 1

2
∑

a π(a|s) (1 − π(a|s)) (Chow et al., 2018; Lee et al.,

2018). maxπ

∑
a π(a|s)Q(s, a) + τS2(π(·|s)) attains its maximum at τ

2
∑

a∈K(s)

(
Q(s,a)

τ

)2
− ψ̃

(
Q(s,·)

τ

)2
+ τ

2 .
The name sparse entropy comes from the fact that the regularizer leads to sparse support of the resulting
sparsemax policy (Blondel et al., 2020; Martins & Astudillo, 2016). We compare sparsemax against two other
commonly used policies argmax and softmax in Figure 2.

For q ̸= 1, 2,∞, the resulting policy does not have a closed-form expression. But we can apply Taylor’s
first-order expansion on the resulting q-exp function to obtain an approximate policy form: π(a|s) =

expq

(
Q(s,a)

τ − ψ
(

Q(s,·)
τ

))
, ψ

(
Q(s,·)

τ

)
.=
∑

a∈K(s)
Q(s,a)

τ −1
|K(s)| + q−2

q−1 (Zhu et al., 2023). In Table 2 we provide
a comparison on related literature to further clarify the notations used in this paper. We call this policy
sparsemax for all q ∈ R+ \ {1}, since they truncate actions by definition of q-exp. K(s) is the set of
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Figure 2: (Left) Comparison between argmax, softmax and sparsemax on the probability simplex. Argmax
produces a deterministic policy residing on the vertices, while a softmax policy lies inside the simplex. By
contrast, a sparsemax policy lives on the border. (Right) Sparsemax acting on a Gaussian policy by truncating
actions with value below the threshold ψ. Actions with value larger than ψ are collected in the set K(s).

highest-value actions satisfying 1+iQ(s,a(i))
τ >

∑i
j=1

Q(s,a(j))
τ , with a(j) denotes the action with j-th largest

value. Zhu et al. (2023) recently proved that Tsallis KL divergence regularization leads to a similar policy
functional π(a|s) = µ(a|s) expq

(
Q(s,a)

τ − ψ′
(

Q(s,·)
τ

))
, hence it is also a member of the sparsemax policy.

2.2 Offline Reinforcement Learning

We consider the problem of offline RL, where the agent cannot interact with the environment and instead
learn from a fixed dataset D = {(s, a, r, s′)1:N } collected by some unknown behavior policy πD. The dataset
D typically contains only a small subset of the S × A space. Standard off-policy algorithms are known to
suffer from extrapolation error referring to erroneously optimistic acation values for out-of-distribution actions
due to generalization capibility of function approximators. Unlike online RL, where the OOD actions can
lead to more sampling around the low sample region and eventually correction of the values, in offline RL the
correction is impossible since no further interaction with the environment is allowed.

We position our paper in the popular BC/imitation-based literature, where the goal of learning is to
reproduce the near-expert behavior policy πD (Dadashi et al., 2021; Fujimoto et al., 2019; Fujimoto &
Gu, 2021; Nair et al., 2021). In this conext, explicit or implicit constraints are usually used to enforce the
proximity between learned policies and πD to minimize the effect of OOD actions. Explicit constraints can be
implemented via density models (Ghasemipour et al., 2021; Wu et al., 2022) or in-sample constraints (Fujimoto
et al., 2019; Kostrikov et al., 2022; Xiao et al., 2023) to avoid querying OOD actions. Implicit constraints
are often achieved via a divergence regularizer D that is added to the objective of policy improvement:
maxπ Es∼D

[
Ea∼π(·|s) [Q(s, a)] − τD(π(·|s)||πD(·|s)

]
), where D is typically chosen as KL divergence. The

regularization leads to the policy form π(a|s) ∝ πD(a|s) exp
(
τ−1Q(s, a)

)
where the learned policy conditions

on the support of the behavior policy and weighted by exponential of action values (advantage) (Peng et al.,
2020; Siegel et al., 2020; Nair et al., 2021). However, as shown by (Rudner et al., 2021), KL regularization can
lead to pathologies of the learned policies such as vanishing variances and exploding gradients. In this paper,
we propose to use the Tsallis KL regularization which generalizes KL divergence and offers more flexibility
over the standard KL choice (e.g., AWAC). However, investigation of pathologies is beyond the scope and we
leave it to future work.
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3 Matching In-sample Constraint By Sparsemax Truncation

To alleviate the OOD error, Fujimoto et al. (2019) proposed the in-sample Bellman optimality equation that
modifies the Q-learning update target to only for the actions present in the dataset:

Q∗,πD (s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max

a′:πD(a′|s′)>0
Q∗,πD (s′, a′)

]
. (1)

This scheme was extended to the distributional RL setting by Kostrikov et al. (2022). Recently, Xiao et al.
(2023) proposed the in-sample softmax Bellman optimality equation:

Q∗,πD (s, a) = r(s, a) + γEs′∼P (·|s,a)

τ ln
∑

a′:πD(a′|s′)>0

exp
(
τ−1Q∗,πD (s′, a′)

) . (2)

In-sample softmax policy takes the form πsoftmax
∗,πD

(a|s) ∝ πD(a|s) exp
(

Q∗,πD (s,a)
τ − ln πD(a|s)

)
, the subtracted

term ln πD is to make sure not tightly follow the behavior policy when it is not good.

Let us consider regularization with τSq(π(·|s)). This change of regularizer embodies a fundamentally different
assumption: we can link the fact that the dataset contains only a subset of actions to sparsemax behavior
policies. Indeed, if we assume the dataset was generated by the behavior policy in a manner such that an
action is sampled with probability proportional to its value (Kostrikov et al., 2021), then we can model
the behavior policy by a sparsemax policy. This assumption is mild since softmax policy is a member of
sparsemax when q = 1. To formalize the idea, let us assume the behavior policy is within the sparsemax
policy class induced by Tsallis entropy πD(a|s) ∝ expq

(
QπD (s,a)

τD

)
,
∑

a∈KD(s) πD(a|s) = 1, where τD is an
unknown coefficient and KD(s) denotes the set of actions present in the dataset. Therefore, we can replace
the in-sample constraint a : πD(a|s) > 0 to the truncation criterion a ∈ KD(s):

Qt+1,πD (s, a) = r(s, a) + γEs′∼P (·|s,a)

max
π

∑
a′∈KD(s)

π(a′|s′) (Qt,πD (s′, a′) + τSq(π(·|s′)))

 .
πt+1,πD (a|s) ∝ expq

(
Qt,πD (s, a)

τ

)
,

∑
a∈KD(s)

πt+1,πD (a|s) = 1. (3)

This replacement hints at two potential benefits of applying in-sample Tsallis regularization: (i) suppose the
action values are fixed, then a sparsemax policy could extract a new subset of allowable actions from KD,
and this procedure could continue until there is only the highest-valued action in the set. (ii) Sparsemax
policies generated recursively from (i) may have finite KL divergence, which in turn implies that the KL
between the πt and πD may be bounded. We discuss (i) here and leave (ii) to next section.

Sparsemax interpolates softmax and hard-max. Continuing the discussion of Eq. (3), let us define
K0,q(s) := KD(s) as our starting point. Then during learning, a new subset of allowable actions Kt,q(s)
depending on q and iteration t can be extracted from K0,q(s). Recursively, every Kt+1,q contains only a subset
of actions from the last set Kt,q, or mathematically speaking, K0,q ⪰ K1,q ⪰ K2,q ⪰ · · · ⪰ Kt,q ⪰ Kt+1,q,
where we used A ⪰ B to denote A is a subset of B. To be more concrete, let us consider q = 2 where the
q-maximum has an analytic solution. From Section 2.1 it is clear that:

Qt+1,πD (s, a) = r(s, a) + γEs′∼P (·|s,a)

τ
2

∑
a′∈Kt,2(s)

(
Qt,πD (s′, a′)

τ

)2
− ψ̃

(
Qt,πD (s′, ·)

τ

)2
+ τ

2

 . (4)

Notice the constraint under the summation was replaced from KD(s) in Eq. (3) to a′ ∈ Kt,2(s), due to the
aforementioned recursive extraction. However, it is worth noting that the recursive extraction may not hold
true as action values can change during updates.
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The above scheme regularizes both policy improvement and policy evaluation. Another possibility is to
regularize only policy improvement by choosing Tsallis KL divergence as the regularizer. We use the following
policy iteration schemes to help clarify the difference:

(a)
{
πt+1 = arg maxπ Eπ [Qt(s, a) + τ lnq π(a|s)]
Qt+1 = r(s, a) + γEP,π [Qt(s′, a′) + τ lnq πt+1(a′|s′)] ,

(b)
{
πt+1 = arg maxπ Eπ

[
Qt(s, a) − τ lnq

π(a|s)
πt(a|s)

]
Qt+1 = r(s, a) + γEP,π [Qt(s′, a′)] ,

(5)

where (a) corresponds to Tsallis entropy + regularize both and (b) Tsallis KL + policy improvement
only. It is worth noting that both schemes fall into the mirror descent policy iteration framework (Vieillard
et al., 2020, Eq.(1)). In the offline RL context, the first scheme (regularizing both policy improvement and
evaluation) is discussed in (Wu et al., 2020); and the second scheme is the basis of advantage weighted
actor-critic (AWAC) (Nair et al., 2021). We present in Section 5 implementation for both schemes. Tsallis
KL is chosen for the second scheme with the following reason: we notice that augmenting the value function
with divergence often results in unstable learning possibly due to the existence of policy ratios.

4 In-sample Sparsemax Policies Have q-bounded KL Divergence

A sparsemax policy can be expressed as a q-exponential policy. Therefore, existing theoretical results on
q-statistics (Yamano, 2002; Ding & Vishwanathan, 2010) may provide a clue to characterizing the similarity
between two sparsemax policies. We are especially interested in characterizing the KL divergence between
a learned policy and the behavior policy, which is particularly important for BC/imitation-based methods
(Fujimoto et al., 2019; Fujimoto & Gu, 2021; Wu et al., 2020; 2022). However, bounding potentially unbounded
KL divergence is in general a difficult task, if not impossible (McAllester & Stratos, 2020). Instead, we do
not seek to provide a general upper bound but rather aim at quantifying the dependency of KL divergence
on the intermediate variable q.

The following theorem states that the upper bound on KL divergence between learned/behavior policies
can be flexibly adjusted by changing q. Therefore, our prior knowledge regarding the quality of the dataset
may impact our choice of q: when we are confident that sufficient near-expert trajectories exist, it may be
preferable to choose a large q to encourage more similarity to πD; on the other hand, choosing q = 1 may be
more robust to a non-expert dataset.
Theorem 1. Suppose the dataset D is generated by sparsemax behavior policies such that for each state there
is at most one behavior policy of arbitrary entropic index q. Let Kt,q(s) ⪯ KD(s) denote the set of allowable
actions of the learned sparsemax policy at t-th iteration. Then the following q-conditional upper bound of KL
divergence can be derived for sparsemax policies πt and πD:

DKL(πt(·|s) ||πD(·|s)) ≤

{
|Kt,q(s)| ΠD,t,q, if πt ⪯ πD, 1 < q < ∞
∞, otherwise

(6)

where ΠD,t,q := πq
t (a|s) − πq−1

t (a|s) + πt(a|s) − q−3
q−1 + πq−2

D (a|s) − πq−1
D (a|s).

Proof. See Appendix B for the proof.

We may interpret the term πt(a|s) as a baseline having a fixed power πq=1
t (a|s). When q = 1, the upper

bound may be ∞. On the other hand, when q → ∞, the learned policy πt approaches the arg max (Lee et al.,
2020), and the upper bound approaches zero. Intuitively, when q = ∞, Kt,q(s) has only one action, which
corresponds to assuming the behavior policy is an arg max and it is identified by πt(a|s) = 1, therefore the
KL is zero when the their supports agree, or ∞ otherwise.

We can replace the reference policy πD in equation 6 to a learned policy πt−1 if the assumption of fixed
action values holds, since πt ⪯ πt−1. Therefore, the bound provides a means to understanding the distance
between sparsemax policies. For q = 1 (the in-sample softmax case) the bound is not useful and simply
states the KL divergence may be unbounded. On the other hand, choosing any q > 1 brings an upper

6
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bound of at most 4|Kt,q(s)|. When q = 2, the in-sample sparsemax has KL divergence to the behavior
policy bounded by |Kt,q(s)| (πt(a|s) − πD(a|s) + 2). In general, there is a trade-off between πq and |Kt,q(s)|:
Kt,q(s) tends to collect less actions when q → ∞. Again, we should note that the theorem holds only when
KD ⪰ K1,q ⪰ K2,q ⪰ · · · ⪰ Kt,q, as per the discussion for equation 4. It should also be noted that the bound
is only applicable to discrete action spaces. Moreover, staying close to the behavior policy may not always be
preferable, especially when the dataset contains too many poor trajectories.

5 In-sample Sparsemax Actor-Critic

We propose Tsallis Advantage Weighted Actor-Critic (Tsallis AWAC) based on the Tsallis KL divergence
regularization. We also discuss another new algorithm Tsallis In-Sample Actor-Critic (Tsallis InAC) based on
Tsallis entropy. However, as will be analyzed shortly, Tsallis InAC may not necessarily introduce sparsity and
does not enjoy straightforward policy evaluation. Nonetheless, we include it in analysis and experiments for
completeness.

To fulfill the in-sample constraint we leverage only those actions present in the offline dataset but not sampled
actions to learn the actor. The architecture is similar to soft actor-critic (Haarnoja et al., 2018): let θ denote
the parametrization of the critic Qθ, ϕ the actor πϕ and ζ the state value function Vζ . Another network ω is
trained by maximum likelihood −E(s,a)∼D [log πω(a|s)] to imitate the behavior policy πω ≈ πD.

Before deriving the Tsallis AWAC loss functions, we recall the actor loss for AWAC:

LAWAC
actor(ϕ) = −E(s,a)∼D

[
exp

(
Qθ(s, a) − Vζ(s)

τ

)
ln πϕ(a|s)

]
, (7)

which is a common actor loss function for advantage-weighted regression methods (Wang et al., 2020; Siegel
et al., 2020; Nair et al., 2021; Xu et al., 2023; Garg et al., 2023). It can also be derived from the (b) scheme
in Eq. (5) by replacing Tsallis KL to standard KL. Intuitively, minimizing LAWAC

actor(ϕ) results in maximizing the
log-likelihood of actions in the dataset a ∼ D and implicitly minimizing the likelihood for these not in the
dataset, as the probabilities of all actions should sum to one. The degree of maximization is controlled by the
exponential advantage of an action exp

(
Qθ(s,a)−Vζ(s)

τ

)
: when an action has high Qθ(s, a) − Vζ(s), the policy

gets updated to increase its probability more, which may be problematic when the value estimates are poor.
By contrast, in-sample softmax (Xiao et al., 2023) compensates for this fact by subtracting a ln πD term
inside the exponential. For the proposed Tsallis methods, a crucial difference lies in how this exponential
advantage function is modified.

Tsallis AWAC (TAWAC). This scheme regularizes only the policy improvement step as can be seen from
Eq. (5). Given Qθ(s, a), we write the policy as π̂TAWAC

Qθ,πD
(a|s) ∝ πD(a|s) expq

( 1
τQθ(s, a)

)
. Repeating the KL

loss step, we have:

DKL

(
π̂TAWAC

Qθ,πD
(·|s) ||πϕ(·|s)

)
= Ea∼π̂TAWAC

Qθ,πD
(·|s)

[
ln π̂TAWAC

Qθ,πD
(a|s) − ln πϕ(a|s)

]
= Ea∼πD

[
expq

(
Qθ(s, a)

τ
− ψ

(
Qθ(s, ·)

τ

))(
ln π̂TAWAC

Qθ,πD
(a|s) − ln πϕ(a|s)

)]
.

The normalization function ψ poses a challenge to continuous-action problems. Inspired by (Xiao et al., 2023),
we propose to replace it with the state value function Vζ . We write the loss functions as:

LTAWAC
actor (ϕ) = −E(s,a)∼D

[
expq

(
Qθ(s, a) − Vζ(s)

τ

)
ln πϕ(a|s)

]
,

LTAWAC
critic (θ) = E(s,a,r,s′)∼D

[
(r + γVζ(s′) −Qθ(s, a))2

]
,

LTAWAC
baseline(ζ) = Es∼D,a∼πϕ(·|s)

[
(Vζ(s) −Qθ(s, a))2

]
.

(8)

Remark. Comparing LTAWAC
actor (ϕ) and LAWAC

actor(ϕ), it is clear that even though Tsallis AWAC is only different to
AWAC in the q-exponential function, it brings sparsity to the policy. To see this, we can write out LTAWAC

actor (ϕ)
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as the following:

−E(s,a)∼D

[
1

{[
1 + (q − 1)

(
Qθ(s, a) − Vζ

τ

)] 1
q−1

> 0
}

·

([
1 + (q − 1)

(
Qθ(s, a) − Vζ(s)

τ

)] 1
q−1
)

ln πϕ(a|s)
]
.

Since the root does not affect the sign, it can be seen that actions with values Qθ(s,a)−Vζ(s)
τ < − 1

q−1 will
be truncated: the actor loss for these actions becomes zero and TAWAC does not maximize its likelihood.
Another interesting observation is that by setting q = 2, LTAWAC

actor (ϕ) recovers the sparse Q-learning
objective in (Xu et al., 2023), which was derived from the α-divergence perspective. However, our loss is
more general since for all q > 0 LTAWAC

actor (ϕ) has a truncation effect. By contrast, all exponential advantage
weighted methods do not have sparsity and can maximize likelihood.

Tsallis In-Sample Actor-Critic (Tsallis InAC). Different from Tsallis AWAC that has a clean policy
form, Tsallis entropy regularization induces a much more complicated policy (see Appendix D):

π̂TInAC
Qθ,πD

(a|s) = πD(a|s)
(

expq

(
1
τ
Qθ(s, a) + lnq

1
πD(a|s)

)q−1
+ (q − 1)2 1

τ
Qθ(s, a) lnq

1
πD(a|s)

) 1
q−1

.

It can be seen that the Tsallis InAC policy cannot contain everything inside the q-exp function.
This can lead to numerical issues and more importantly, the loss of sparsity. We found that Tsallis InAC in
general underperforms Tsallis AWAC. Two potential reasons are identified. Firstly, the Tsallis InAC actor loss
in general does not lead to sparsity, since there is a Qθ(s,a) ln2

1
πω(a|s)

τ term outside the q-exponential function.
This term is very sensitive to the sign of Q and magnifies its value by the term ln2

1
π which is typically large.

Directly from this, the second point is that Tsallis InAC may be drastic in deciding good/bad actions simply
by its sign and can be minimizing likelihood of bad actions. This stands in sheer contrast to InAC and Tsallis
AWAC, which do not explicitly minimize likelihood. The drastic behavior of Tsallis InAC in general leads to
undesired performance, but with exception for expert datasets, see Appendix D.

6 Experiments

Below, we evaluate Tsallis AWAC against several offline reinforcement learning methods. The goal of the
experiments is to find when is teh proposed method best applied in offline RL, as well as gain insight into the
effect of the τ and q parameters (especially as we enter regimes where there aren’t closed form expressions for
the policies). Finally, we evaluate if the upper bound holds in the continuous action setting.

Domain Details. We compare the proposed method against a number of existing algorithms on standard
benchmark D4RL environments (Fu et al., 2020). Specifically, we use three datasets from the Mujoco suite
in D4RL. Trajectories in the offline datasets are collected by a SAC agent. The naming expert/medium
expert/medium replay reflects the level of the trained agent used to collect the transitions. The expert
dataset contains trajectories collected by a fully trained SAC agent; the medium dataset contains 1M samples
generated from an partially-trained SAC policy. Medium-expert combines the trajectories of the expert and
the medium. Medium-replay consists of samples in the replay buffer during training until the policy reaches
the medium level of performance.

Compared algorithms. We compare against a number of existing algorithms: InAC: in-sample softmax
actor-critic (Xiao et al., 2023). It is worth noting InAC can be seen as the specical case q = 1 of Tsallis
InAC. TD3 + BC (Fujimoto & Gu, 2021) augments the policy improvement step of TD3 with an additional
behavior cloning (BC) term (π(s) − a)2 as indicated by (Xiao et al., 2023). This term can be seen as a KL
regularization under the Gaussian policy parametrization. IQL: implicit Q-learning (Kostrikov et al., 2022)
employed in-sample hard max Eq. (1). AWAC: advantage-weighted actor-critic (Nair et al., 2021), it can be
as a special case of Tsallis AWAC when q = 1. For all the compared algorithms except InAC, we followed the
published settings of the compared agents. Implementation details can be found in Appendix C.
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Figure 3: Comparison between Tsallis AWAC and AWAC. Normalized policy evaluation scores on Mujoco
Medium Replay dataset over one million steps. Results are the average over 5 runs with ribbon denoting the
standard error. y-axis: scores; x-axis: number of iterations.

Dataset BC UAWAC AWAC TD3BC IQL InAC Tsallis InAC Tsallis AWAC
walker2d-E 106.7 ± 0.2 108.4 ± 0.4 110.2 ± 0.03 79.4 ± 1.0 102.9 ± 0.6 110.6 ± 0.1 108.7 ± 0.00 113.2 ± 0.00

walker2d-ME 90.1 ± 13.2 96.5 ± 9.1 51.2 ± 1.3 89.7 ± 0.6 96.0 ± 0.4 109.0 ± 0.1 0.85 ± 0.02 101.1 ± 0.02
walker2d-MR 20.3 ± 9.8 23.6 ± 6.9 77.4 ± 0.3 17.2 ± 0.4 66.3 ± 0.5 69.8 ± 0.6 0.74 ± 0.01 80.4 ± 0.01
halfcheetah-E 91.8 ± 1.5 92.9 ± 0.6 10.0 ± 0.1 92.1 ± 0.03 91.5 ± 0.2 93.6 ± 0.04 93.1 ± 0.00 92.7 ± 0.00

halfcheetah-ME 44.0 ± 1.6 42.7 ± 0.3 38.5 ± 0.3 54.1 ± 0.4 83.4 ± 0.5 83.5 ± 0.4 50.2 ± 0.01 84.5 ± 0.01
halfcheetah-MR 37.6 ± 2.1 35.9 ± 3.7 44.8 ± 0.01 35.0 ± 0.2 45.0 ± 0.03 44.3 ± 0.02 37.9 ± 0.01 44.9 ± 0.00

hopper-E 107.7 ± 0.7 110.5 ± 0.5 45.0 ± 0.1 78.9 ± 0.9 89.4 ± 0.7 103.4 ± 0.4 110.3 ± 0.00 109.9 ± 0.00
hopper-ME 53.9 ± 4.7 44.9 ± 8.1 23.3 ± 0.4 50.8 ± 0.3 61.8 ± 1.0 93.8 ± 0.7 63.4 ± 0.03 101.2 ± 0.02
hopper-MR 16.6 ± 4.8 25.3 ± 1.7 71.2 ± 0.1 20.3 ± 0.2 60.3 ± 0.5 92.1 ± 0.4 26.7 ± 0.00 86.4 ± 0.02

ant-E - - 100.6 ± 0.9 93.3 ± 1.0 118.8 ± 0.5 128.4 ± 0.4 125.4 ± 0.01 125.2 ± 0.01
ant-ME - - 97.8 ± 1.6 88.7 ± 0.9 121.0 ± 0.6 120.9 ± 0.6 114.2 ± 0.00 130.2 ± 0.01
ant-MR - - 65.0 ± 1.2 59.2 ± 0.4 89.3 ± 0.4 88.4 ± 0.6 68.7 ± 0.00 96.0 ± 0.01

Table 1: Final performance of compared algorithms, E: expert; ME: medium expert; MR: medium replay.
Scores are reproduced from (Xiao et al., 2023) and (Lyu et al., 2022). Tsallis AWAC and InAC perform
favorably across various datasets, while Tsallis InAC is mostly competitive in expert-level datasets only.
Notice that both Tsallis InAC and Tsallis AWAC tend to be stable by having negligible standard deviation.

6.1 Comparison Against the Existing Methods

Since Tsallis AWAC generalizes AWAC, we first compare the generalizations in Figure 3, and leave the
comparison against all methods to Figure 4 and Table 1.

Tsallis AWAC against AWAC. From Figure 3 it is visible Tsallis AWAC outperforms AWAC by a large
margin on Expert and Medium-Expert datasets and the performance remains stable across all datasets. The
poor performance of AWAC has been discussed a lot in the literature (Xiao et al., 2023; Xu et al., 2023):
the exponential term in LAWAC

actor can cause unstable gradients and is also more vulnerable to hyperparameter
choices. On the other hand, the favorable performance of Tsallis AWAC confirms the discussion given by
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Figure 4: Additional comparison against TD3BC and Implicit Q-learning. Normalized policy evaluation
scores over one million steps and are the average over 5 runs, with ribbon denoting the standard error. y-axis:
scores; x-axis: number of iterations.

the remark after equation 7: the sparsity-inducing learning objective LTAWAC
actor (ϕ) is more robust against both

transition/suboptimality noises and numerical errors than the exponential function (Xu et al., 2023).

Against all methods. From Figure 4 it is visible that Tsallis InAC and TD3BC are the best performers
on expert level datasets—in terms of convergence speed and the final score. By the analysis for Tsallis InAC,
the term lnq

1
πD

may dominate the actor and render Tsallis InAC behave like a BC method even without
an explicit BC term. This is especially apparent on HalfCheetah-expert and Hopper-expert where Tsallis
InAC learned even faster than TD3BC. Both TD3BC and Tsallis InAC drastically degrade for Medium
Expert and Medium Replay datasets. Tsallis AWAC outperforms IQL on almost all non-expert datasets,
which matches the observation of (Xiao et al., 2023): IQL may perform poorly when the data distribution is
skewed towards suboptimal actions in some states, pulling down the expectile regression targets.

To confirm our conclusion, we show in Table 1 the final performance of all the compared algorithms. We
also add behavior cloning (BC) and Uncertainty AWAC (UAWAC) (Wu et al., 2021) for further comparison.
Scores of the BC and UAWAC are quoted from (Lyu et al., 2022). It is visible that Tsallis AWAC and InAC
are the top performers across datasets, with Tsallis AWAC achieving the best scores on 8 out of 12 datasets.
This result is encouraging and testifies to the power of sparsity brought by the q-exp formulation, since Tsallis
AWAC differs from other AWAC-based methods mostly in the exponential function. By contrast, Tsallis InAC
is only competitive on expert-level datasets. Upon examining Table 1 it is visible that in medium datasets
BC, TD3BC and Tsallis InAC perform poorly, which echoes the findings in (Kumar et al., 2022). On the
other hand, Tsallis AWAC performs stably across datasets thanks to the introduced sparsity. Investigating
Tsallis AWAC beyond the current setting is therefore an interesting future direction.

6.2 The Importance of q and τ

Entropic index q and regularization coefficient τ determine the degree of sparsity. Therefore, they are related
to performance and the q-conditional distance to the behavior policy as shown by equation 6. We evaluate
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Figure 5: (Upper) Heatmap of average normalized score of Tsallis AWAC with different q, evaluated over
first 500K steps of training. (Lower) Normalized score learning curves of Tsallis AWAC with different q.

different (q, τ) combinations of Tsallis AWAC in Figure 5. Performance is evaluated after 5 × 105 steps
of training. It is visible from the color maps that for the first half of learning, Tsallis AWAC on both
environments exhibited preference to larger q: they tend to learn quicker and are relatively insensitive to τ ;
while smaller q such as q = 2 prefers larger τ . Consider fixed τ , by definition of the Tsallis AWAC policy

πD(a|s) expq

(
Qθ(s,a)−Vζ(s)

τ

)
= πD(a|s)

[
1 + (q − 1) Qθ(s,a)−Vζ(s)

τ

] 1
q−1

+
, the difference Qθ(s, a) −Vζ(s) becomes

less significant with under power function with larger power 1
q−1 (imagine softmax with a large τ) and the

truncation threshold − 1
q−1 . Comparing to q = 2 where expq is linear in its argument, higher q truncates

more, especially for actions that Qθ(s, a) − Vζ(s) < 0. Let us in turn consider fixed q. Larger τ results in
|Kt,q|. Similar to the softmax case (Haarnoja et al., 2017), it is advocated that choosing a larger τ at the
beginning and gradually annealed towards zero. Therefore, when the dataset contains sufficient (near) expert
trajectories, choosing a large (q, τ) may accelerate learning at the early stage. In Figure 6 it is visible that on
the expert level environments all Tsallis agents seem to be robust and converged to policies of similar level.

6.3 KL divergence to the Behavior Policy

Though higher similarity to the behavior policy does not necessarily imply better performance, we quanti-
tatively evaluate it in support of our theory Eq. (6). We plot in Figure 7 DKL(πω(·|s) ||πϕ(·|s)) for Tsallis
AWAC with different q and Tsallis InAC throughout training. Since the KL divergence can be written as
Ea∼πω(·|s) [ln πω(a|s) − ln πϕ(a|s)], and πω is imitating πD, we replace the sampling part to a ∼ πD(·|s) to
allow for random sampling actions from the dataset to compute the log-policy difference. Though in the
continuous action setting Kt,q is uncountable and the upper bound on KL is no longer valid, we can empirically
investigate it. On Hopper-expert Tsallis AWAC for all q converged to 0, and Tsallis InAC remains stable
around 1; different q did not seem to affect the KL divergence. On the other hand, on Walker2d-expert
a clear stratification was displayed: larger q resulted in lower divergence value. Theoretically, the RHS of
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Figure 6: Sensitivity of Tsallis AWAC to τ . Normalized scores averaged over the final 500k steps of training.
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Figure 7: DKL(πω(·|s) ||πϕ(·|s)) throughout training for different q with best τ .

Eq. (6) approaches |Kt,q(s)|
(
πt(a|s) − q−3

q−1

)
as q gets larger, which is indeed tighter than q = 2. Therefore,

the upperbound may still be in effect even in the continuous action setting.

7 Limitations of The Proposed Method

We recognize that the paper has some limitations. Firstly, the upper bound in Theorem 1 was only q-
conditional, and it necessitated the assumption that the ordering between action values remained unchanged.
Deriving a generally applicable upper bound on KL divergence is difficult, if not impossible (McAllester &
Stratos, 2020). Utilizing other tools instead of q-statistics for derivation is an interesting future direction.

Secondly, as seen in Section 5, Tsallis InAC induced by Tsallis entropy had a very complicated policy form
that failed to contain everything inside the q-exp function. As a result, Tsallis InAC could have numerical
issues and lose the sparsity by q-exp, as compared to Tsallis AWAC. The experimental results confirmed
that Tsallis InAC indeed performed poorly especially on non-expert datasets. How to leverage q-statistics
literature to address these problems remains an open question.

8 Discussion and Conclusion

Tsallis regularizers have been less popular in RL due to the action truncation of its regularized optimal policy.
The truncation often leads to underperformance in online problems resulting from limited exploration. This
paper is the first work that introduces Tsallis regularizers to offline RL, where no exploration is required.
Tsallis regularizers bring close two popular offline RL methods avoiding producing erronesouly optimistic
out-of-distribution actions: divergence regularization and in-sample constraint. Tsallis regularization induces
sparsemax policies that truncate actions with low action values, which we exploited to link to the fact that
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offline datasets contain only a subset of actions: we assumed the dataset was generated by a sparsemax
behavior policy. As such, the in-sample constraint can be replaced by the truncation criterion. We showed
two interesting facts given the assumption: (1) sparsemax policies interpolate hardmax and softmax, and
when action values are fixed, consecutive sparsemax policies are within or equal to the support of the last
sparsemax policy. (2) the KL divergence between a two sparsemax policies has a q-conditional upper bound.

We proposed Tsallis Advantage-Weighted Actor-Critic (Tsallis AWAC) that generalizes AWAC to the domain
of q. AWAC is an important offline RL algorithm: its actor loss has been used in many state-of-the-art
methods and can be derived from the perspective of KL regularization. This generalization is non-trivial:
unlike AWAC that only considers maximizing log-likelihood of actions in the dataset, Tsallis AWAC introduced
sparsity: it can set the loss for bad actions to zero thanks to property of the q-exponential formulation.
Sparsity has been very recently investigated to be crucial for superior performance. Leveraging the properties
of q-statistics, we established a q-conditional upper bound on the KL divergence between learned policies and
the behavior policy. We also discussed another possibility of generalization by Tsallis entropy, leading to
another new algorithm Tsallis InAC. We evaluated Tsallis AWAC and Tsallis InAC on the standard D4RL
benchmark problem. We found that Tsallis InAC was sensitive to expert datasets on which it was among the
best performer but quickly degraded on non-expert datasets. By contrast, Tsallis AWAC was more stable
and outperformed AWAC by a large margin on almost every dataset, thanks to the sparsity introduced by
the q-exponential policy. In fact, Tsallis AWAC was among the best performers in the compared algorithms.

Several interesting future directions concerning Tsallis regularization for offline RL exist. Theoretically, a
probabilistic upper bound for the KL divergence of sparsemax policies and guarantees of policy improvement
should be derived to deeply investigate the benefit of sparsity. Practically, it is important to improve Tsallis
InAC on non-expert datasets. This could be potentially achieved by referring to Tsallis statistics literature to
transform q-exponential. Moreover, examining the pattern of environment/dataset-specific optimal entropic
index is another interesting topic.
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Appendix

The Appendix is organized into the following sections. We first discuss related work that helps position this
paper, followed by the missing proof of Theorem 1. Lastly, implementation details and further results on
Tsallis InAC are included.

A Related Work

B Proof of Theorem 1

C Implementation Details

D Details and further results of Tsallis InAC

A Related Work

A.1 Entropy Regularization

It is a classic result that there exists a deterministic, stationary optimal policy that maximizes the cumu-
lative return with a fixed point Q∗(s, a) satisfying the Bellman optimality equation Q∗(s, a) = r(s, a) +
γEs′∼P (·|s,a)[maxa′ Q∗(s′, a′)] (Puterman, 1994). The optimal policy π∗ can then be extracted by simply
acting greedily with respect to the optimal action value function. In this case, π∗ = arg maxπ Eπ [Q∗(s, a)] ,∀s
is a deterministic policy.

In this paper we consider stochastic, entropy-regularized policies as a solution of the problem
Eπ [Q(s, a) − Ω(π(·|s))], where Ω(π(·|s)) ∈ R|S| is a proper, lower semi-continuous, strictly con-
vex function in π. Popular choices for Ω include the negative Shannon entropy −τH (π(·|s)) :=
τ
∑

a π(a|s) ln π(a|s), which encourages the policy to be uniform with τ weighting the effect. The max-
imum of the problem maxπ

∑
a π(a|s)Q(s, a) + τH (π(·|s)) is attained at the well-known log-partition

function τ ln
∑

a exp
(
τ−1Q(s, a)

)
when the policy is the Boltzmann softmax distribution π(a|s) ∝

exp
(
τ−1Q(s, a)

)
, where ∝ denotes proportional to up to a constant not depending on actions. KL di-

vergence DKL(π(·|s) ||µ(·|s)) :=
∑

a π(a|s) ln π(a|s)
µ(a|s) is another popular choice where µ is some reference

policy (Azar et al., 2012; Vieillard et al., 2020; Chan et al., 2022; Zhu & Matsubara, 2023). Using KL
divergence as Ω penalizes large deviation from µ. By choosing µ to be the uniform distribution, KL di-
vergence recovers the negative Shannon entropy case. The KL-regularized optimal policy takes the form
π(a|s) ∝ µ(a|s) exp

(
τ−1Q(s, a)

)
, where we overloaded the coefficient τ for Shannon entropy.

A.2 More on Tsallis Regularization

Sparsemax policies can be obtained as a result of Tsallis regularization. Recall the sparsemax policies are

written as π(a|s) = expq

(
Q(s,a)

τ − ψ
(

Q(s,·)
τ

))
, ψ
(

Q(s,·)
τ

)
.=
∑

a∈K(s)
Q(s,a)

τ −1
|K(s)| + q−2

q−1 . Intuitively, the policy
first sorts actions a(1), . . . , a(|A|) and then compute the threshold ψ. Suppose Q(s, a(j+1)) < ψ < Q(s, a(j)),
then a(j+1), . . . , a(|A|) are truncated and have zero probability of being selected. The actions a(1), . . . , a(j)
are called allowable actions and collected in the set K(s). The degree of truncation can be controlled by
either q or τ . As q gets larger, by definition of expq the truncation becomes stronger, as all x < − 1

q−1 will be
truncated; when τ becomes larger, more actions are collected in K(s).

A nuance arises since the literature has considered different notations. We provide a comparison below in
Table 2 to clarify the notations and standard used in this paper. It can be seen that this paper follows
the convention of prior RL papers (Lee et al., 2020) but adopts the Taylor’s first-order approximate policy
from (Zhu et al., 2023). The pioneering work (Lee et al., 2018; Chow et al., 2018) can be recovered from
our formulation by setting q = 2. Suyari & Tsukada (2005); Lee et al. (2020) did not give a computable
normalization function.
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Literature Policy Functional General Normalization Physics/RL

Lee et al. (2018); Chow et al. (2018)
[
Q(s, a) − ψ̃(Q(s, ·))

]
+

ψ̃ :=
∑

a∈K(s)
Q(s,a)

τ
−1

|K(s)| RL

Lee et al. (2020) [1 + (q − 1) (Q(s, a) − ψ(Q(s, ·)))]
1

q−1
+ N/A RL

Suyari & Tsukada (2005); Tsallis (2009) [1 + (1 − q) (Q(s, a) − ψ(Q(s, ·)))]
1

1−q

+ N/A Physics

Zhu et al. (2023)
[
1 + (1 − q)

(
Q(s, a) − ψ̂(Q(s, ·))

)] 1
1−q

+
ψ̂ :=

∑
a∈K(s)

Q(s,a)
τ

−1

|K(s)| + q−2
q−1 RL

This paper
[
1 + (q − 1)

(
Q(s, a) − ψ̂(Q(s, ·))

)] 1
q−1
+

ψ̂ RL

Table 2: Comparison of existing work. Physics/RL indicates the category of the cited papers. Our work
follows the Taylor’s first-order approximate policy of (Zhu et al., 2023), but with a change of variable 2 − q to
more consistently follow the RL literature.

A.3 Other Regularizers and Sparse Policies

Recently, there has seen a growing body of BC/imitation-based methods featuring a variety of divergences. Ke
et al. (2019) discussed imitation learning via the lens of f -divergence minimization and proposed variational
solutions. Xu et al. (2023) proposed a framework based on the α-divergence (Belousov & Peters, 2019)
and showed that standard KL can be recovered as a special case. In the same context, they showed that
Conservative Q-learning (Kumar et al., 2020) corresponds to the χ2 regularization. In this paper, we consider
regularization by Tsallis KL divergence and Tsallis entropy, inducing a general class of sparsemax policies.
Offline RL with sparsity has also been discussed very recently: Xu et al. (2022; 2023) showed that α-divergence
with α = −1 also leads to sparsity. By contrast, we consider general sparsemax policies induced by Tsallis
regularizers for all q > 1. Li et al. (2023) proposed to use q-Gaussian distribution (Suyari & Tsukada, 2005)
which is a special case of the q-exponential policy. In this paper we do not specify the functional form of
policies, but investigating the benefits of specific q-exponential policy parametrizations is an interesting future
direction.

B Proof of Theorem 1

To prove Theorem 1, we decompose KL divergence as:
DKL(πt(·|s) ||πD(·|s)) = Ea∼πt(·|s) [ln πt(a|s) − ln πD(a|s)]

= Ea∼πt(·|s)

ln πt(a|s) − lnq πt(a|s)︸ ︷︷ ︸
(i)

+ lnq πt(a|s) − lnq πD(a|s)︸ ︷︷ ︸
(ii)

+ lnq πD(a|s) − ln πD(a|s)︸ ︷︷ ︸
(iii)

 . (9)

Therefore, bounding respectively the three terms allows us to provide a q-conditional bound on the KL
divergence. To bound these log/q-log differences, we prove the following fact:

ln x− lnq x = (q − 1)
[
d

dq
lnq x− ln x lnq x

]
.

We can verify this is true by working on the right-hand side:

(q − 1)
[
d

dq
lnq x− ln x lnq x

]
= (q − 1)

[
d

dq

xq−1 − 1
q − 1 − ln x lnq x

]
= (q − 1)

[
(xq−1 − 1)′(q − 1) − (xq−1 − 1)(q − 1)′

(q − 1)2 − ln x lnq x

]
= (q − 1)

[
(q − 1)xq−1 ln x− (xq−1 − 1)

(q − 1)2 − ln x lnq x

]
= xq−1 ln x− lnq x− (q − 1) ln x lnq x = ((q − 1) lnq x+ 1) ln x− lnq x− (q − 1) ln x lnq x

= ln x− lnq x.
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Now to bound the log/q-log differences, we assume that both the learned policy and the behavior policy are
sparsemax:

(i) : ln πt(a|s) − lnq πt(a|s) = (q − 1)
[
d

dq
lnq πt(a|s) − lnq πt(a|s) ln πt(a|s)

]
= πq−1

t (a|s) ln πt(a|s) − lnq πt(a|s) (1 + (q − 1) ln πt(a|s))

≤ πq−1
t (a|s) ln πt(a|s) + 1

q − 1 + ln πt(a|s)

≤
(
πq

t (a|s) − πq−1
t (a|s)

)
+ πt(a|s) − q − 2

q − 1 ,

(10)

where we leveraged the monotonicity of q-logarithm; and ln x ≤ x − 1, lnq expq(x) = x when x > 0.
Considering the policy is a q-exponential policy πt(a|s) = expq

(
Qt−1(s,a)

τ − ψ
(

Qt−1(s,·)
τ

))
and expq(x) =

[1 + (q − 1)x]
1

q−1
+ , we must have πt(a|s) > 0 ⇔ a ∈ Kt−1,q(s) ⇔ − 1

q−1 ≤ Qt−1(s,a)
τ − ψ

(
Qt−1(s,·)

τ

)
≤ 0 (Ding

& Vishwanathan, 2010). If a /∈ Kt−1,q(s), then ln πt(a|s) = −∞ and the KL term is unbounded.
The same fact is exploited to yield an upper bound 1

q−1 for (ii). Note that the same holds true for the
Tsallis KL policy πt(a|s) = µ(a|s) expq

(
Qt−1(s,a)

τ − ψ
(

Qt−1(s,·)
τ

))
. Since lnq x is monotonically increasing, we

have that − 1
q−1 ≤ lnq µ(a|s) expq

(
Qt−1(s,a)

τ − ψ
(

Qt−1(s,·)
τ

))
≤ lnq expq

(
Qt−1(s,a)

τ − ψ
(

Qt−1(s,·)
τ

))
. Same

by monotonicity, we can bound (iii) depending on q by:

(iii) : lnq πD(a|s) − ln πD(a|s) = −(q − 1)
[
d

dq
lnq πD(a|s) − lnq πD(a|s) ln πD(a|s)

]
≤ −πq−1

D (a|s) ln πD(a|s) ≤ −πq−1
D (a|s)

(
1 − 1

πD(a|s)

)
= πq−2

D (a|s) − πq−1
D (a|s).

(11)

Putting all terms together, we arrive at the following q-dependent upper bound:

DKL(πt(·|s) ||πD(·|s)) ≤

{
|Kt,q(s)| ΠD,t,q, if πt ⪯ πD, 1 < q < ∞
∞, otherwise

(12)

where ΠD,t,q := πq
t (a|s) − πq−1

t (a|s) + πt(a|s) − q−3
q−1 + πq−2

D (a|s) − πq−1
D (a|s), and the leading term |Kt,q(s)|

came from upper bounding the expectation Ea∼πt(·|s) with all allowable actions in the set Kt,q(s).

C Implementation Details

We fine-tune Tsallis InAC, Tsallis AWAC and InAC since they share a same set of hyperparameters. All the
algorithms used a shared set of hyperparameters found in Table 3.

A grid search was done for Tsallis InAC, Tsallis AWAC, InAC according to the same protocol as (Xiao et al.,
2023). In addition, we also added a larger learning rate (0.001), which seemed to improve InAC, Tsallis
AWAC, and Tsallis InAC slightly on some domains. Other methods use performance data shared by (Xiao
et al., 2023). The best hyperparameters are reported in Table 4. In the grid search, we used the final 50%
of evaluation tests of the normalized return to select the best hyperparameter shown. All hyperparameter
settings were evaluated across 5 independent runs.

The agents train from the specified datasets, and are evaluated every 10k steps on the corresponding Mujoco
environments. Normalized scores are calculated according to the min and max values provided as a part of
the benchmarks (Fu et al., 2020). Finally, results are over 5 runs unless otherwise specified.

D Details and Further Results of Tsallis InAC

Tsallis InAC Loss Functions. We follow in-sample softmax (Xiao et al., 2023) but replaces the Shannon
entropy to Tsallis entropy. In order to fulfill the in-sample constraint, a step similar to (Xiao et al., 2023) is
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Name Value
Number of steps 1000000
Logging interval 10000

Hidden Units 256
Batch Size 256

Target Network Update Rate 1
Polyak Constant 0.995

Discount (γ) 0.99
Learning Rate swept

Regularization coefficient (τ) swept

Name Swetp Values
Learning Rate [0.00003, 0.0001, 0.0003, 0.001]

τ [0.01, 0.1, 0.33, 0.5, 1.0]

Table 3: (Left) Shared hyperparameters. (Right) Swept hyperparameters.

Environment Dataset Parameter Tsallis InAC Tsallis AWAC

Ant

Expert lr 0.01 0.01
τ 0.5 1.0

Medium Expert lr 0.0003 0.001
τ 0.1 1.0

Medium Replay lr 0.0003 0.001
τ 0.01 0.5

HalfCheetah

Expert lr 0.001 0.001
τ 0.33 1.0

Medium Expert lr 0.001 0.001
τ 0.5 1.0

Medium Replay lr 0.001 0.001
τ 1.0 0.01

Hopper

Expert lr 0.001 0.001
τ 0.01 1.0

Medium Expert lr 0.0001 0.001
τ 0.01 0.5

Medium Replay lr 0.001 0.001
τ 0.01 0.5

Walker

Expert lr 0.001 0.001
τ 0.1 1.0

Medium Expert lr 0.0003 0.001
τ 0.01 0.01

Medium Replay lr 0.001 0.001
τ 0.01 0.5

Table 4: Best learning rate (lr) and regularization coefficient τ for the proposed method.

made to extract πD from the Tsallis entropy regularized policy for the actor loss:

π̂TInAC
Qθ,πD

(a|s) ∝ 1{a : πD(a|s) > 0} · expq

(
1
τ
Qθ(s, a)

)
= πD(a|s)πD(a|s)−1 expq

(
1
τ
Qθ(s, a)

)
= πD(a|s) expq

(
lnq

1
πD(a|s)

)
expq

(
1
τ
Qθ(s, a)

)

= πD(a|s)
(

expq

(
1
τ
Qθ(s, a) + lnq

1
πD(a|s)

)q−1
+ (q − 1)2 1

τ
Qθ(s, a) lnq

1
πD(a|s)

) 1
q−1

.

(13)

where we assumed that 0
0 = 0. This can happen when Qθ(s, a) = 0 and πD = 0. In this case, the entire

Eq. (13) should be 0 due to conditional on πD.
(
expqx · expqy

)q−1= expq(x+ y)q−1 + (q − 1)2xy (Yamano,
2002). Following (Haarnoja et al., 2018), we update towards this policy by minimizing the KL divergence

20



Published in Transactions on Machine Learning Research (05/2024)

between π̂TInAC
Qθ,πD

and πϕ. When used as the first argument of KL loss, the leading πD allows us to compute
the loss using only actions from the dataset:

DKL

(
π̂TInAC

Qθ,πD
(·|s) ||πϕ(·|s)

)
= Ea∼π̂TInAC

Qθ,πD
(·|s)

[
ln π̂TInAC

Qθ,πD
(a|s) − ln πϕ(a|s)

]
=Ea∼πD(·|s)

(expq

(
Qθ(s, a)

τ
+ lnq

1
πω(a|s)

)q−1
+ (q − 1)2

Qθ(s, a) lnq
1

πω(a|s)

τ

) 1
q−1(

ln π̂TInAC
Qθ,πD

(a|s) − ln πϕ(a|s)
).

Notice the term ln π̂TInAC
Qθ,πD

(a|s) does not depend on πϕ and hence can be removed from the actor loss. We
observed that for Tsallis entropy regularization, adding normalization tends to underperform, therefore we
propose to remove the normalization. We write out our losses for q = 2 :

LTInAC
actor (ϕ) = −Es,a∼D

[(
exp2

(
Qθ(s, a)

τ
+ ln2

1
πω(a|s)

)
+
Qθ(s, a) ln2

1
πω(a|s)

τ

)
ln πϕ(a|s)

]
,

LTInAC
critic (θ) = Es,a,r,s′∼D

[
(r + γVζ(s′) −Qθ(s, a))2

]
,

LTInAC
baseline(ζ) = Es∼D,a∼πϕ(·|s)

[
(Vζ(s) − (Qθ(s, a) − τ ln2 πϕ(a|s)))2

]
.

. (14)

The term 1
πω(a|s) in LTInAC

actor (ϕ) is likely to cause numerical issues. To avoid it, we clip the range of πω by
max{ϵ, πω(a|s)}, with ϵ = 10−8. However, since lnq x is proportional to the q-th power, we are unable to
sweep over larger q due to numerical problems even with clipping. Therefore, in the experiments we sweep
different q for the Tsallis KL implementation only.
Remark. Let us focus on LTInAC

actor (ϕ) and define the term in the bracket before ln πϕ as C:

C := exp2

(
Qθ(s, a)

τ
+ ln2

1
πω(a|s)

)
+
Qθ(s, a) ln2

1
πω(a|s)

τ
,

then LTInAC
actor (ϕ) = −Es,a∼D [C ln πϕ(a|s)]. Notice that exp2

(
Qθ(s,a)

τ + ln2
1

πω(a|s)

)
can be written as

1

{
1 + Qθ(s, a)

τ
+ ln2

1
πω(a|s) > 0

}
·
(

1 + Qθ(s, a)
τ

+ ln2
1

πω(a|s)

)
,

therefore, it must be non-negative and the sign of C depends on Qθ(s,a) ln2
1

πω(a|s)
τ . However, since

ln2
1

πω(a|s) > 0, the sign actually depends on Qθ(s, a) only. If this term is negative and
∣∣∣∣Qθ(s,a) ln2

1
πω(a|s)

τ

∣∣∣∣ >
exp2

(
Qθ(s,a)

τ + ln2
1

πω(a|s)

)
, then we will be minimizing the loss Es,a∼D [|C| ln πϕ(a|s)], which corresponds to

thinking an action a is bad (since Qθ(s, a) is highly negative) and explicitly minimizing its log-likelihood;
otherwise, we will be maximizing its likelihood. By contrast, all exponential-based methods (exponential
advantage weighted regression algorithms like AWAC) do not minimize likelihood for actions in the dataset
explicitly, since exp is always positive. Moreover, this suggests that the behavior of Tsallis InAC may be more
extreme with larger q, since by equation 13, (q − 1)2 Qθ(s,a) ln2

1
πω(a|s)

τ will have a large negative value when q
is large even with slightly negative Qθ(s, a). As a summary, Tsallis InAC may behave drastically: it may
perform either very well or very bad depending on whether the dataset contains a majority of near-expert
trajectories.

Tsallis InAC against InAC. From Figure 8 it is clear that Tsallis InAC competes favorably against
InAC only on the Expert dataset, and degrades significantly with the increase of non-expert trajectories in
the dataset. In fact, Tsallis InAC behaves like a behavior cloning method and learns very fast on Expert
HalfCheetah and Hopper. As analyzed in the remark after equation 14, the difference between InAC and
AWAC policies lies in the term − ln πD in the policy πInAC(a|s) ∝ πD(a|s) exp

(
Qθ(s,a)

τ − ln πD(a|s)
)

. This
term can correct the bias introduced by suboptimal data distributions: a poor action with high πD(a|s)
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Figure 8: Comparison between Tsallis InAC and InAC. Normalized policy evaluation scores on Mujoco Expert
and Medium Expert datasets over one million steps. Results are the average over 5 runs with ribbon denoting
the standard error. y-axis: scores; x-axis: number of iterations.

does not necessarily lead to high πInAC(a|s) since it is weighted down inside the exponential by − ln πD(a|s).
While Tsallis InAC follows this design choice, in general lnq

1
πD(a|s) ≫ ln 1

πD(a|s) . In fact, since lnq
1

πD(a|s) is
proportional to the q-th power of 1

πD(a|s) ≥ 1, this term is likely to dominate the entire LTInAC
actor , suggesting

Tsallis InAC is very sensitive to the level of behavior policy like a BC method.
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