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Abstract

Physics informed neural network (PINN) based solution methods for differential equations
have recently shown success in a variety of scientific computing applications. Several authors
have reported difficulties, however, when using PINNs to solve equations with multiscale
features. The objective of the present work is to illustrate and explain the difficulty of
using standard PINNs for the particular case of elliptic partial differential equations (PDEs)
with oscillatory coefficients. We show that if the coefficient in the elliptic operator contains
frequencies on the order of 1/ε, then the Frobenius norm of the neural tangent kernel matrix
associated to the loss function grows as 1/ε2. This implies that as the separation of scales in
the problem increases, training the neural network with gradient descent based methods to
achieve an accurate approximation of the solution to the PDE becomes increasingly difficult.
Numerical examples illustrate the stiffness of the optimization problem.

1 Introduction

Recent developments in deep learning have shown great promise for advancing computational and applied
mathematics (Weinan, 2021). Physics informed neural networks (PINNs) have recently emerged as a popular
method for scientific computation. Building off earlier work Lagaris et al. (1998); Psichogios & Ungar (1992),
PINNs were introduced in Raissi et al. (2019) and seek to approximate the true solution of a differential
equation by a neural network u(x; θ) parameterized by weights and biases θ. Consider the following general
partial differential equation (PDE) defined on some Ω ⊂ Rn by a differential operator N

N [u](x) = f(x), x ∈ Ω
u(x) = g(x), x ∈ ∂Ω, (1)

where x and Ω represent some general space-time coordinate and domain, respectively. Here and throughout
this paper, the boundary conditions are taken to be of Dirichlet type. By the uniform approximation theorem
(Hornik et al., 1989; Leshno et al., 1993), given sufficient data, a neural network can uniformly approximate
classical smooth solutions to (1) whenever they exist.

In practice, the network parameters θ are determined by minimizing a loss function L that enforces (1) to
hold for a set of Nc collocation and Nb boundary points, {xi}Nc

i=1 ∈ Ω and {si}Nb
i=1 ∈ ∂Ω, respectively. The

loss is

L(θ) = 1
Nc

Nc∑
i=1

1
2

∣∣∣N [u](xi; θ)− f(xi)
∣∣∣2 + λ

Nb

Nb∑
i=1

1
2

∣∣∣u(si; θ)− g(si)
∣∣∣2, (2)

where λ is a tunable parameter that weighs the relative importance of the boundary conditions. We refer to
Karniadakis et al. (2021) for a review of this methodology applied in a wide range of contexts in scientific
computing.

Despite the success of PINNs in a wide variety of applications, numerous authors have reported difficulties
applying the technique to problems with multiscale features. Some examples include a scalar, nonlinear
hyperbolic equation from a model of two-phase immiscible fluid flow in porous media (Fuks & Tchelepi,

1



Under review as submission to TMLR

2020), which can support shock waves, and systems of ordinary differential equations governing chemical
kinetics (Ji et al., 2021), which exhibit stiff dynamics that evolve over a wide range of time scales. Difficulties
have also been reported for the Helmholtz equation (Wang et al., 2021a), as well as linear hyperbolic problems,
for example for example the one-dimensional advection equation (Krishnapriyan et al., 2021) and the wave
equation (Wang et al., 2021b).

The focus of the current work is to illustrate and explain the difficulty of using standard PINN solution
methods for linear elliptic boundary value problems (BVPs) of the form

−∇ ·
(
aε(x)∇uε(x)

)
= f(x), x ∈ Ω

uε(x) = g(x), x ∈ ∂Ω, (3)

where the bounded and coercive coefficient tensor aε : Rn → Rn is assumed to consist of entries that contain
frequencies on the order of ε−1 for 0 < ε � 1. The measure of the domain Ω ⊂ Rn is assumed to be O (1),
and hence, (3) is a multiscale problem that models, for example, steady-state heat conduction in a composite
material or porous media flow governed by Darcy’s law.

Theoretical analysis and numerical experiments presented below illustrate that, whenever standard PINN
architectures are used in conjunction with gradient descent based training for the multiscale problem (3), the
resulting optimization problem becomes increasingly difficult as the scale separation in the BVP increases, i.e.
as ε vanishes. After motivating the present study in Section 2, we show in Section 3 that the neural tangent
kernel matrix associated with the PINN approximation to (3) has a Frobenius norm that becomes unbounded
as ε ↓ 0. Numerical examples in Section 4 illustrate that during training, the ordinary differential equation
that governs the evolution of the BVP residuals indeed becomes increasingly stiff as ε ↓ 0, translating to
poor PINN performance for problems with a large separation of scales.

2 Motivation

The motivation for attempting to use physics informed neural network solutions to the oscillatory problem
(3) is to investigate whether a connection can be established between asymptotic homogenization theory and
the so-called “frequency principle” in deep learning.

Recall from mathematical homogenization theory (Bensoussan et al., 2011) that, under suitable conditions,
the solution to (3) is well approximated as ε ↓ 0 by the solution to a homogenized equation

−∇ ·
(
a(x)∇u(x)

)
= f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω.

Both the homogenized coefficients a and the solution u do not contain ε-scale oscillations; the latter approx-
imates the large-scale, low-frequency features of the oscillatory function uε.

Additionally, when neural networks learn a target function, they are known to learn the low frequency
components more rapidly than the large frequencies (Rahaman et al., 2019; Xu et al., 2020). This “frequency
principle” was shown to hold for gradient descent training in Luo et al. (2021); Markidis (2021); empirically
the result can be observed for PINNs applied to relatively simple problems (Wang et al., 2021b), even when
more widely used optimizers are used for training, e.g. Adam (Kingma & Ba, 2014). Consider as a brief
representative example the PINN solution to the one-dimensional Poisson BVP

− d2

dx2u(x) = sin(x) + sin(5x) + sin(15x) + sin(55x) =: f(x) (4)

for x ∈ (−π, π) with homogeneous Dirichlet boundary conditions u(−π) = u(π) = 0. For collocation points
{xi}Nc

i=1 ∈ (−π, π) the loss function becomes

L(θ) = 1
Nc

Nc∑
i=1

1
2

∣∣∣ d2

dx2u(xi; θ) + f(xi)
∣∣∣2 + 1

4λ
(∣∣u(−π; θ)

∣∣2 +
∣∣u(π; θ)

∣∣2) . (5)
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Figure 1 shows the evolution (as a function of training iteration) of the complex modulus of

êk = ûtrue − ûNN (6)

where utrue is the true solution to the BVP, uNN is the neural network approximation, and ·̂ denotes the
discrete Fourier transform. A rolling average is used to make the trajectories more legible. The PINN solution
is computed with a fully connected neural network with four hidden layers of sixty nodes each, Nc = 512
equispaced collocation points, and λ = 80; see Appendix A for a complete description of the training process
that generates the final neural network output. One can clearly observe the frequency principle in this simple
example; the low frequencies of the target BVP solution are more rapidly learned than the high frequencies.
See also Markidis (2021) for another example in a two-dimensional Poisson problem, as well as Wang et al.
(2021b) for mathematical analysis of this phenomenon for Poisson equations.
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Figure 1: A simple illustration of the frequency principle: evolution as a function of training iteration of the
magnitude of the discrete Fourier transform of the error (6) between the true solution to the BVP (4) and
the neural network approximation.

Given some evidence that PINNs can learn low frequency features of PDE solutions, it is reasonable to ask
if the homogenized solution ‘naturally’ arises when trying to learn solutions to the multiscale problem (3),
and, if not, for what reason? The homogenized solution itself is of course useful in a variety of applications;
it additionally could be used to construct coarse grid solutions for a multigrid solver of the full, oscillatory
problem as in Engquist & Luo (1997). The natural smoothing properties of standard iterative solvers, e.g.
the method of Gauss-Seidel or successive over-relaxation (Briggs et al., 2000), would then rapidly reduce the
error of high-frequency solution components that are not easily approximated by the neural networks; such
a ‘hybrid’ multigrid strategy was explored in Markidis (2021) for Poisson equations.

Recent theoretical results in Shin et al. (2020) guarantee that as the number of collocation Nc and boundary
Nb points tend to infinity, the sequence of minimizers to a “Hölder regularized” version of the loss function
(2) will converge to classical solutions of elliptic and parabolic PDEs (whenever they exist) in the limit
of infinite learning data. Nevertheless, the authors in both Han & Lee (2023) and Leung et al. (2022)
reported difficulties training neural networks to achieve such minimizers of the loss function associated to
the multiscale problem (3). The purpose of the current work is to characterize the reason why optimization
is difficult with both theory and numerical examples.
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The theoretical results presented below describe the neural tangent kernel matrix of the PINN solution to
the BVP (3); this matrix appears in the ordinary differential equation that, under gradient descent training
dynamics, governs the evolution of the PDE and boundary residuals that define the PINN loss function.
Under a few technical assumptions, we show that the matrix Frobenius norm becomes unbounded as ε ↓ 0.
This result, along with numerical evidence presented in Section 4, suggests that as that as the scale separation
in the differential operator in (3) increases, the optimization problem that determines the neural network
approximation to the PDE solution becomes increasingly stiff.

3 Neural tangent kernel matrix theory

We now describe the neural tangent kernel (NTK) matrix for the physics informed neural network approx-
imation to the multiscale elliptic equation (3) before showing that it can grow arbitrarily large in norm as
ε ↓ 0. See Jacot et al. (2018) for the original development of the NTK theory for least-squares regression
problems, as well as Wang et al. (2021b) and Wang et al. (2022) for an extension of the theory to PINNs.

For the presentation below it will be useful to define the linear multiscale differential operator

Lεϕ := −∇ ·
(
aε∇ϕ

)
,

where ϕ is some suitably regular function. The multiscale elliptic boundary value problem (3) then becomes

Lεuε = f Ω
uε = g ∂Ω. (7)

For simplicity, we assume throughout that the entries of the coefficient tensor aε are at least once continuously
differentiable, and hence bounded on any compact domain Ω.

Given some neural network u(x; θ) parameterized by Np weights and biases θ, as well as collocation {xi}Nc
i=1 ∈

Ω and boundary points {si}Nb
i=1 ∈ ∂Ω, the loss function associated to (7) becomes

Lε(θ) := 1
Nc

Nc∑
i=1

1
2

∣∣∣Lεu(xi; θ)− f(xi)
∣∣∣2 + λ

Nb

Nb∑
i=1

1
2

∣∣∣u(si; θ)− g(si)
∣∣∣2. (8)

If the residual values
rpde(xi; θ) := Lεu(xi; θ)− f(xi), i = 1, . . . , Nc (9)

and
rb(si; θ) := u(si; θ)− g(si), i = 1, . . . , Nb (10)

are grouped together into a single vector y(θ), and if the parameters θ evolve according to the gradient flow

dθ

dt
= −∇θLε, (11)

then y(θ(t)) will evolve according to an initial value problem of the form

d

dt
y(t) = −Kε(y(t)) y(t), (12)

where Kε is called the neural tangent kernel matrix. Note here that both θ and y implicitly depend on ε;
however, the dependence is not explicitly marked.

We next derive (12), noting again that similar results can be found in Wang et al. (2021b) and Wang et al.
(2022).
Lemma 3.1. For neural network parameters θ ∈ RNp , let y(θ) ∈ RNc+Nb be the vector of residual values

y(θ) =
(
rpde(x1; θ), . . . , rpde(xNc

; θ), rb(s1; θ), . . . , rb(sNb
; θ)
)T
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where the entries rpde and rb are defined by (9) and (10). Suppose that the parameters θ evolve from some
initial value θ0 according to the gradient flow (11). Then y(θ(t)) evolves from the initial condition y(θ0)
according to

d

dt
y(t) = −Kε(y(t)) y(t), (13)

where the explicit dependence on θ in (13) is dropped for convenience. The neural tangent kernel matrix is
given by

Kε(t) =
(
Kε
uu(t) Kε

ub(t)
Kε
bu(t) Kε

bb(t)

)
∈ R(Nc+Nb)×(Nc+Nb), (14)

where the subblocks have entries

(Kε
uu)ij(t) = 1

Nc

Np∑
l=1

∂

∂θl
Lεu(xi; θ(t))

∂

∂θl
Lεu(xj ; θ(t)), 1 ≤ i, j ≤ Nc,

(Kε
bb)ij(t) = λ

Nb

Np∑
l=1

∂

∂θl
u(si; θ(t))

∂

∂θl
u(sj ; θ(t)), 1 ≤ i, j ≤ Nb,

and

(Kε
ub)ij(t) = λ

Nb

Np∑
l=1

∂

∂θl
Lεu(xi; θ(t))

∂

∂θl
u(sj ; θ(t)), 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nb,

while Kε
bu is simply the scaled transpose of Kε

ub:

(Kε
bu)ij = Nb

λ

1
Nc

(Kε
ub)ji, 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nb.

The proof is a computation that follows from the chain rule from differential calculus; it can be found in
Appendix B.

Next we show that the NTK matrix (14) associated to the multiscale elliptic problem–in particular the Kε
uu,

Kε
ub and Kε

bu subblocks–can become arbitrarily large for vanishing ε. For simplicity we assume the problem
is one-dimensional (n = 1) and that the multiscale coefficient aε(x) = a(x/ε) is ε-periodic, but the result
ought to hold for more general classes of coefficients so long as aε contains O (1/ε) frequencies. After showing
the desired result for n = 1, we briefly sketch below an additional proof for the higher dimension case n > 1
under additional technical assumptions.

In dimension n = 1, (7) becomes

− d

dx

(
a(x/ε) d

dx
uε(x)

)
= f(x), x ∈ (a, b)

uε(a) = ua, uε(b) = ub. (15)

The loss function associated to (15) is equation (8) with Nb = 2 and elliptic operator Lε given by

Lεu(x; θ) = −
(
a(x/ε) d

2

dx2 u(x; θ) + 1
ε
a′(x/ε) d

dx
u(x; θ)

)
, (16)

where it is assumed the oscillatory function a is differentiable. The 1/ε factor in the second term will be the
source of the divergent behavior of the NTK as ε ↓ 0.

We first show the result for a neural network with one hidden layer before extending it to more general fully
connected networks.
Theorem 3.2. Let u : R→ R be a neural network with one hidden layer of width d and smooth activation
function σ, so that

u(x; θ) =
d∑
k=1

W
(1)
k σ

(
W

(0)
k x+ b

(0)
k

)
+ b(1), (17)

5



Under review as submission to TMLR

where b(1) ∈ R, W (1) ∈ R1×d, and W (0), b(0) ∈ Rd×1, and assume that ∀x ∈ R

0 < σ′(x) <∞. (18)

Let a(y) be a one-periodic, non-constant C1 function, and let aε(x) = a(x/ε). For a fixed number of collo-
cation points Nc, let Kε be the neural tangent kernel matrix (14) associated to the loss function (8) of the
boundary value problem (15), and suppose the network parameters θ evolve according to the gradient flow
(11) for 0 ≤ t ≤ T for some T > 0.

Suppose also that the parameters θ evolving according to (11) are bounded uniformly in both t and ε:

sup
0<ε<ε0

sup
0≤t≤T

‖θ(t)‖∞ < C (19)

for some ε0 > 0. Finally, let Υ be the set of t ∈ [0, T ] for which there exists at least one entry of W (0) that
is asymptotically larger than ε; that is, t ∈ Υ if and only if

lim
ε↓0

ε/W
(0)
l (t) = 0

for some 1 ≤ l ≤ d. Then ∀t ∈ Υ
lim
ε↓0
‖Kε(t)‖F =∞

where ‖·‖F is the Frobenius norm.

Before proving the result, we briefly remark on the theorem assumptions. First note that the number of
collocation points Nc is assumed to be fixed. Since we will show that the entries of the NTK matrix are
proportional to

1
Nc

1
ε2
,

the singular nature of the evolution of the residuals (12) could in principle be prevented by taking Nc ∼ ε−2.
However, this can make the computational cost of gradient descent based optimization prohibitively expensive
whenever the problem scale separation is sufficiently large.

Next, note the assumption (18) on dσ/dx holds for sigmoidal-type activation functions commonly used for
PINNs (Lu et al., 2021b), such as the hyberbolic tangent and logistic functions. Although it does not hold
for the ReLU function σ(x) = max(0, x), these are of course not suitable for NN based solutions to PDEs
with second order (or higher) differential operators.

Regarding the set Υ ⊆ [0, T ], note that if t /∈ Υ, then each entry of W (0) will converge to 0 in the limit
ε ↓ 0; in this scenario the neural network (17) would limit to a constant function and hence not be a suitable
solution to (15) in general. Finally, if the uniform bound (19) on the network parameters θ did not hold,
then an unstable, divergent training process could result (Wang et al., 2022); the bound helps prevent the
so-called “vanishing gradient” problem that can occur when components of ∇θLε vanish, preventing descent
in that direction.

Proof of Theorem 3.2. The proof, like that of Lemma 3.1, is a consequence of direct computation; note that
it is sufficient for a single entry of a matrix to diverge to ensure the Frobenius norm diverges. In particular
we show that entries in the Kε

uu subblock of the full NTK matrix Kε scale as 1/(Nc ε2).

Indeed, recall from Lemma 3.1 that

(Kε
uu)αα(t) = 1

Nc

Np∑
γ=1

( ∂

∂θγ
Lεu(xα; θ(t))

)2
(20)

for any 1 ≤ α ≤ Nc. Since (20) is a sum of squares, if just one entry in the sum blows up as ε ↓ 0, then
the entire sum of course will as well. Below we drop the explicit dependence of the parameters θ on t for
notational convenience.
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First, let g(x; θ) be the Rd valued function whose k-th component equals

gk(x; θ) = σ
(
W

(0)
k x+ b

(0)
k

)
,

so that

u(x; θ) =
d∑
k=1

W
(1)
k gk(x; θ)) + b(1).

By linearity,
∂

∂W
(1)
γ

Lεu(x; θ) = Lεgγ(x; θ)

for any 1 ≤ γ ≤ d. So, to prove the desired result, it suffices to show that

1
Nc

[
Lεgγ(xα; θ)

]2 →∞ (21)

as ε ↓ 0. Using (16), the left-hand side of (21) equals

1
Nc

[(
a(xα/ε)

d2

dx2 gγ(xα; θ)
)2

+ 2
ε

(
a(xα/ε)

d2

dx2 gγ(xα; θ) a′(xα/ε)
d

dx
gγ(xα; θ)

)
+ 1
ε2

(
a′(xα/ε)

d

dx
gγ(xα; θ)

)2]
. (22)

Since a is a periodic C1 function, both a(xα/ε) and a′(xα/ε) are bounded independent of xα/ε ∈ R. The
derivatives of gγ are

d

dx
gγ(x; θ) = σ′

(
W (0)
γ x+ b(0)

γ

)
W (0)
γ (23)

and
d2

dx2 gγ(x; θ) = σ′′
(
W (0)
γ x+ b(0)

γ

)(
W (0)
γ

)2
. (24)

Since the activation function is smooth and the network parameters are uniformly bounded in ε and t, both
(23) and (24) are also bounded for all xα ∈ [a, b]. Consequently, (22) is dominated by the 1/ε2 term for ε
vanishingly small. The positivity assumption (18) on dσ/dx and the uniform boundedness of the network
parameters imply also that the (absolute value of the) first derivative (23) is bounded below by a constant
independent of ε; this implies that for any t ∈ Υ

lim
ε↓0

1
ε

∣∣∣∣ ddx gl(x; θ)
∣∣∣∣ =∞

holds for at least one l ∈ {1, . . . d}. Take γ = l, and let ε vanish monotonically to zero in such a way that
a′(xα/ε) 6= 0 for any ε (such a sequence exists since a is periodic and non-constant). Then (22) indeed limits
to positive infinity, giving the desired result.

Without giving a formal proof, we now briefly describe sufficient conditions under which Theorem 3.2 could
be extended to the more general case n > 1 (assuming one retains the positivity assumption (18) on dσ/dx
and the uniform boundedness assumption (19) on the network parameters). A neural network with one
hidden layer of width d would be

u(x; θ) =
d∑
k=1

W
(1)
k σ

( n∑
l=1

W
(0)
kl xl + b(0)

)
+ b(1);

here xl denotes the l-th component of the function input x ∈ Rn. Following the same argument just given,
define

gk(x; θ) = σ
( n∑
l=1

W
(0)
kl xl + b(0)

)
,

7
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and assume that there exists some 1 ≤ µ ≤ d and 1 ≤ ν ≤ n such that W (0)
µν is asymptotically larger than

ε (as before, if no such entries exist, then W (0) limits to the zero matrix as ε ↓ 0, and hence u(x; θ) limits
to a constant function). The Frobenius norm of the PINN’s neural tangent kernel matrix will blow-up if
[Lεgµ(x; θ)]2 blows-up at some collocation point x. This can occur if the entries for which ∇ · a are nonzero
coincide with the entries where W (0) is larger than O (ε); more precisely, if there is a sequence ε ↓ 0 such
that

n∑
i=1

∂aiν
∂xi

(x
ε

)
σ′
( n∑
l=1

W
(0)
µl xl + b(0)

µ

)
W (0)
µν 6= 0

for any collocation point x, then the main result will generalize.

Returning to the case of one-dimension (n = 1), we now extend Theorem 3.2 to more general fully connected
neural networks under an additional assumption on the network parameter’s asymptotic behavior.
Theorem 3.3. Let u : R → R be a fully connected neural network with Λ hidden layers of widths
d1, d2, . . . , dΛ, so that

u(0)(x) = x,

u(l)(x) = σ
(
W (l)u(l−1)(x) + b(l)

)
, 1 ≤ l ≤ Λ,

u(x; θ) = W (Λ+1) · u(Λ)(x) + b(Λ+1). (25)

If all of the assumptions from Theorem 3.2 are retained, but Υ is now defined to be the set of t ∈ [0, T ] such
that the magnitude of every entry of each matrix W (l), 1 ≤ l ≤ Λ, are asymptotically larger than ε1/Λ, then
∀t ∈ Υ

lim
ε↓0
‖Kε(t)‖F =∞,

where Kε is the NTK matrix associated to the loss function (8) of the boundary value problem (15).

The proof proceeds nearly identically to that of Theorem 3.2, and hence it is in Appendix C.

4 Numerical results

4.1 Scaling of the neural tangent kernel matrix

Theorems 3.2 and 3.3 state that the Frobenius norm of the neural tangent kernel (NTK) matrixKε associated
to the PINN approximation of the multiscale BVP (15) should scale inversely proportional to Nc ε

2 for
gradient descent training with infinitesimal time steps. Here we numerically reproduce this scaling for a
neural network trained in a more practical setting, namely with the Adam optimizer (Kingma & Ba, 2014).

As in Theorems 3.2 and 3.3, we focus on the Kε
uu subblock of the NTK matrix. For a neural network with

one hidden layer d, the ij-th entry of Kε
uu is given by

(
Kε
uu

)
ij

(t) =
d∑
k=1

( ∂

∂W
(1)
k

Lεu(xi; θ(t))
∂

∂W
(1)
k

Lεu(xj ; θ(t)) + ∂

∂W
(0)
k

Lεu(xi; θ(t))
∂

∂W
(0)
k

Lεu(xj ; θ(t))

+ ∂

∂b
(0)
k

Lεu(xi; θ(t))
∂

∂b
(0)
k

Lεu(xj ; θ(t))
)

(note ∂Lεu(x; θ)/∂b(1) = 0). For network width d = 50 and Nc = 256 collocation points, Figure 2(a) shows
the Frobenius norm ‖Kε

uu‖F associated to (15) for the particular case that [a, b] = [−π, π], ua = ub = 0, and
aε(x) = 1/(2.1 + 2 sin(2πx/ε)). The norm is computed at time t = 0, i.e. at initialization, for a sequence
of ε values between 1/10 and 1/100. For every ε value, the neural network parameters are initialized
from the normal distribution with mean zero and unit variance. Figure 2(b) shows the Frobenius norms
after initializing with the Glorot distribution (Glorot & Bengio, 2010) and then training for ten thousand
iterations with the Adam optimizer at a learning rate of η = 10−5. In both cases, the norm increases as
1/ε2, consistent with the theory developed above.
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Figure 2: Scaling of the Frobenius norm of the NTK matrix and the first three principal eigenvalues (a) at
initialization and (b) after training with Adam optimizer.

Recall that the Frobenius norm of a square matrix is equal to the Euclidean norm of its singular values.
Since Kε

uu is a symmetric matrix, its singular values equal the absolute value of its (real valued) eigenvalues.
Hence, Theorems 3.2 and 3.3 imply that

∑Nc

i=1(λεi)2 →∞ as ε vanishes, where λεi are the eigenvalues of Kε
uu.

Figures 2(a) and 2(b) further suggest that, for the BVP just described, the first few principal eigenvalues
(denoted λ1, λ2, and λ3) also increase at a rate proportional to 1/ε2, both at initialization and after training
with the Adam optimizer. In contrast, the spectral radius of the Kε

bb subblock (not shown) is essentially
independent of ε.
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Figure 3: The eigenspectrum of the NTK (a) at initialization and (b) after training.

For the particular case ε = 1/80, Figure 3 shows the full spectra of the NTK matrix both at initialization and
after training. At initialization, there are a handful of large eigenvalues, but the rest are clustered around
the origin; after training, there is a single large eigenvalue well-separated from the cluster near the origin.
In both cases the ratio λεmax/λ

ε
min is quite large, indicating that (12) is a stiff initial value problem.

4.2 Learning a two-scale function

Consider next the two-scale function

uε(x) = sin(2x) + ε sin(x/ε)− ε

π
sin(π/ε)x. (26)

9
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This function satisfies the Poisson BVP

− d2

dx2u
ε(x) = 4 sin(2x) + 1

ε
sin(x/ε), −π < x < π (27)

with homogeneous Dirichlet boundary conditions uε(−π) = uε(π) = 0; it additionally satisfies the elliptic,
Darcy BVP given by

− d

dx

(
a(x/ε) d

dx
uε(x)

)
= f ε(x), (28)

for x ∈ (−π, π), again with homogeneous Dirichlet conditions, where

a(x/ε) =
(
2.1 + 2 sin(x/ε)

)−1

and the expression for the right-hand side forcing f ε(x) is listed in Appendix D.

We describe three different neural network approximations to the two-scale function uε(x) by:

(1) regression (i.e. supervised learning),

(2) a PINN solver for the Poisson problem (27), and

(3) a PINN solver for the Darcy problem (28).

While the first two methods generate satisfactory approximations to (26), indicating that (a good approxi-
mation to) the target function lives in the “span” of the neural network used, the third method does not. All
of the numerical tests are implemented in the open-source DeepXDE package (Lu et al., 2021b), and in each
case, the neural network weights and biases are randomly initialized with the Glorot distribution (Glorot &
Bengio, 2010).

Consider first approximating uε(x) with a neural network by regression, which we denote as uR(x; θ). For
{xi}Ni=1 ∈ [−π, π], the network parameters are determined by minimizing

Lε(θ) = 1
N

N∑
i=1

(
uR(xi; θ)− uε(xi)

)2
.

We set ε = 1/32 and use a neural network with hyperbolic tangent activation functions and four hidden
layers, each of width d = 40. Using N = d2π/(ε/2)e = 403 equispaced training points, the network is trained
with the Adam (Kingma & Ba, 2014) and L-BFGS (Byrd et al., 1995) optimizers for ten independent trials.
In each test, Adam is used for 20, 000 and 10, 000 iterations with learning rates of η = 10−2 and η = 10−3,
respectively, and L-BFGS is then used, on average, for approximately 3600 steps.

Let EuR(x; θ) denote the neural network averaged over all ten trials. Taking {xi}1000
i=1 to be a set of equispaced

points from −π to π, Figures 4(a) and (b) show the resulting approximation and error, respectively. The
maximum error is approximately

max
xi

|eR| := max
xi

∣∣uε(xi)− EuR(xi; θ)
∣∣ ≈ 2.65 · 10−3,

and the average variance in the error over the interval [−π, π] is about 3 · 10−7.

Next, consider approximating the solution to the Poisson problem (27) with a PINN uP(x; θ). The loss
function is

Lε(θ) = 1
Nc

Nc∑
i=1

1
2

( d2

dx2uP(xi; θ) + (4 sin(2xi) + 1
ε

sin(xi/ε))
)2

+ 1
2

(
[uP(−π; θ)]2 + [uP(π; θ)]2

)
.

For ε = 1/32 and same neural network as before, we train with Nc = 1024 equispaced collocation points for
ten independent trials. The training schedule consists of 10, 000, 10, 000, 20, 000, and 20, 000 iterations of

10
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Figure 4: (a) For ε = 1/32, the two-scale function uε(x) given by (26) and its approximations by regression
(EuR), a Poisson PINN (EuP) and a Darcy PINN (EuD); in each case the neural network contains four
hidden layers of width d = 40. (b) The absolute value of corresponding generalization errors eR, eP and eD
at 1000 equispaced points from −π to π.

Adam with learning rates of η = 10−4, η = 10−5, η = 10−6, and η = 10−7, respectively, and then L-BFGS
for a few thousand iterations, on average.

Figures 4(a) and (b) show the resulting approximations and the generalization errors of the neural net-
works after training. Taking again EuP(x; θ) to be the network averaged over all the trials, the maximum
generalization error is

max
xi

|eP| := max
xi

|uε(xi)− EuP(xi; θ)| ≈ 7.20 · 10−2,

while the average variance across the interval is about 1.12 · 10−1.

Finally, consider the PINN approximation uD(x; θ) of the Darcy problem (28), where the loss function is

Lε(θ) = 1
Nc

Nc∑
i=1

1
2

[ d
dx

(
a(xi/ε)

d

dx
uD(xi; θ)

)
+ f ε(xi)

]2
+ 1

2

(
[uD(−π; θ)]2 + [uD(π; θ)]2

)
.

Once again, ε = 1/32, and the network architecture and number of collocation points is the same as the
Poisson case. The training schedule consists of 10, 000, 10, 000, 20, 000, and 20, 000 iterations of Adam with
learning rates of η = 10−3, η = 10−4, η = 10−5, and η = 10−6, respectively, and then L-BFGS for a few
thousand iterations, on average. The maximum generalization error

max
xi

|eD| := max
xi

|uε(xi)− EuD(xi; θ)| ≈ 4.31 · 10−1,

which is about 40%, and the average variance across the interval is nearly as large–about 2.83 · 10−1. From
Figures 4(a) and (b) it can be seen that the error contains both low and high frequency components.

5 Conclusions

Physics informed neural networks have demonstrated success in a wide variety of problems in scientific
computing (Karniadakis et al., 2021), however, they can sometimes struggle to approximate solutions to
differential equations with multiscale features. Athough PINN convergence theory guarantees that minimiz-
ers of (regularized) loss functions can well approximate solutions to elliptic problems, in practice, achieving
those minimizers is difficult for boundary value problems with highly oscillatory coefficients present in the
differential operator.

We show that for a class of linear, multiscale elliptic equations, the Frobenius norm of the neural tangent
kernel matrix associated to the PINN becomes unbounded as the characteristic wavelength of the oscillations
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vanishes. Numerical examples illustrate that during training, the ordinary differential equation that governs
the evolution of the PDE residuals becomes increasingly stiff as ε ↓ 0, translating to poor PINN training
behavior.

The present work considers standard, fully connected neural network architectures; it may be possible in
future research to develop alternative PINN architectures that are specifically adapted to the problem.
Future work will likely also benefit from more sophisticated learning techniques beyond (stochastic) gradient
descent, for example genetic algorithms (Mirjalili, 2019). Another possibility is to employ continuation
methods (Allgower & Georg, 2003), i.e. “curriculum regularization” (Krishnapriyan et al., 2021).

Recent results establishing a “frequency principle” in machine learning motivated this study; during training,
neural networks tend to learn their target functions from low to high frequency (Luo et al., 2021). See also
the work by Wang et al. (2021b) for spectral analysis of physics informed neural networks applied to Poisson
problems with multiscale forcing. An interesting avenue for future study is to characterize the spectral
behavior during training of deep learning methods for learning operators; see for example (Li et al., 2020;
Khoo et al., 2021; Bhattacharya et al., 2021; Lu et al., 2021a; Zhang et al., 2022). In the context of the
present work, this would be the nonlinear map from the problem data aε and f in (3) to the solution uε.
Finally, we note many other novel neural network approaches to multiscale elliptic problems not discussed
here have recently been proposed, for example (Han & Lee, 2023; Leung et al., 2022; Fabian et al., 2022).
We hope some of the results presented here might inspire insight into these exciting approaches.
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A Description of PINN approximation for multiscale Poisson problem

Here we give a more complete description of the example from Section 2 of a PINN approximation to the
Poisson boundary value problem (4) with homogeneous Dirichlet boundary conditions.

The PINN solution is computed with a fully connected neural network with four hidden layers of sixty nodes
each and hyperbolic tangent activation functions. The training consisted of 100, 1, 000, 15, 000, 30, 000 and
10, 000 iterations with the Adam optimizer with learning rates of η = 10−2, η = 10−3, η = 10−4, η = 10−5,
and η = 10−6, respectively. We note, however, using a constant value of η = 10−3 throughout training
produced results qualitatively similar to those in Figure 1; i.e. the observed frequency principle was fairly
robust to changes in the learning rate. As mentioned in the description in Section 2, for legibility, the results
shown in Figure 1 are that of the rolling average (of 50 values) to the trajectories of the error in the Fourier
coefficients.

Finally, we mention that at the end of the training process, the ∞-norm error between the true solution and
the neural network approximation is about 1.26 · 10−2.

B Proof of Lemma 3.1

Proof. Computing first the entries of the gradient of the loss function (8) gives

∂Lε

∂θl
= 1
Nc

Nc∑
j=1

rpde(xj ; θ)
∂

∂θl
Lεu(xj ; θ) + λ

Nb

Nb∑
j=1

rb(sj ; θ)
∂

∂θl
u(sj ; θ). (29)

Next, compute

d

dt
rpde(xi; θ(t)) = d

dt
(Lεu(xi; θ(t))− f(xi)) =

Np∑
l=1

∂

∂θl
Lεu(xi; θ)

dθl
dt

= −
Np∑
l=1

∂

∂θl
Lεu(xi; θ)

∂Lε

∂θl
, (30)
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where the final equality comes from the assumption of gradient flow dynamics (11). A similar computation
gives

d

dt
rb(si; θ(t)) = d

dt
(u(si; θ(t))− g(si)) =

Np∑
l=1

∂

∂θl
u(si; θ)

dθl
dt

= −
Np∑
l=1

∂

∂θl
u(si; θ)

∂Lε

∂θl
, (31)

Inserting (29) into (30) and rearranging the sums gives

d

dt
rpde(xi; θ(t)) = −

( Nc∑
j=1

[ 1
Nc

Np∑
l=1

∂

∂θl
Lεu(xi; θ)

∂

∂θl
Lεu(xj ; θ)

]
rpde(xj ; θ)

+
Nb∑
j=1

[ λ
Nb

Np∑
l=1

∂

∂θl
Lεu(xi; θ)

∂

∂θl
u(sj ; θ)

]
rb(sj ; θ)

)
,

while inserting (29) into (31) similarly results in

d

dt
rb(si; θ(t)) = −

( Nc∑
j=1

[ 1
Nc

Np∑
l=1

∂

∂θl
u(si; θ)

∂

∂θl
Lεu(xj ; θ)

]
rpde(xj ; θ)

+
Nb∑
j=1

[ λ
Nb

Np∑
l=1

∂

∂θl
u(si; θ)

∂

∂θl
u(sj ; θ)

]
rb(sj ; θ)

)
as desired.

C Proof of Theorem 3.3

Proof. From (25) we note that W (1) ∈ Rd1×1, W (l) ∈ Rdl×dl−1 for l = 2, . . . ,Λ, and W (Λ+1) ∈ R1×dΛ , while
b(l) ∈ Rdl for l = 1, . . . ,Λ and b(Λ+1) ∈ R. The fully connected neural network (25) can then be written as

u(x; θ) =
dΛ∑
kΛ=1

W
(Λ+1)
kΛ

u
(Λ)
kΛ

(x) + b(Λ+1),

u
(Λ)
kΛ

(x) = σ
( dΛ−1∑
kΛ−1=1

W
(Λ)
kΛkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)
, 1 ≤ kΛ ≤ dΛ,

u
(Λ−1)
kΛ−1

(x) = σ
( dΛ−2∑
kΛ−2=1

W
(Λ−1)
kΛ−1kΛ−2

u
(Λ−2)
kΛ−2

(x) + b
(Λ−1)
kΛ−1

)
, 1 ≤ kΛ−1 ≤ dΛ−1,

...

u
(2)
k2

(x) = σ
( d1∑
k1=1

W
(2)
k2k1

u
(1)
k1

(x) + b
(2)
k2

)
, 1 ≤ k2 ≤ d2

u
(1)
k1

(x) = σ
(
W

(1)
k1
x+ b

(1)
k1

)
, 1 ≤ k1 ≤ d1.

By linearity, note that
∂

∂W
(Λ+1)
γ

Lεu(x; θ) = Lεu(Λ)
γ (x) (32)
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for any 1 ≤ γ ≤ dΛ.

As before, consider a diagonal entry in the Kε
uu subblock of the NTK matrix (14)

(Kε
uu)αα(t) = 1

Nc

Np∑
γ=1

∂

∂θγ
Lεu(xα; θ(t)) ∂

∂θγ
Lεu(xα; θ(t)).

By (32), a sufficient condition for the Frobenius norm of Kε to blow-up, then, is for

lim
ε↓0

(
Lεu(Λ)

γ (xα)
)2 =∞

for some collocation point xα, some 1 ≤ γ ≤ dΛ, and t ∈ Υ (here the dependence of u(Λ)
γ on t and θ is

implied). Since

(
Lεu(Λ)

γ (xα)
)2 =

[(
a(xα/ε)

d2

dx2 u
(Λ)
γ (xα)

)2
+ 2
ε

(
a(xα/ε)

d2

dx2 u
(Λ)
γ (xα) a′(xα/ε)

d

dx
u(Λ)
γ (xα)

)
+ 1
ε2

(
a′(xα/ε)

d

dx
u(Λ)
γ (xα)

)2]
, (33)

and since a is a periodic C1 function, the desired result will follow if (i) the second derivative of u(Λ)
γ is

uniformly bounded in ε and (ii) the first derivative is asymptotically larger than ε, so that

lim
ε↓0

1
ε

∣∣∣∣ ddx u(Λ)
γ (x)

∣∣∣∣ =∞ (34)

for any t ∈ Υ.

The first derivative is

d

dx
u(Λ)
γ (x) = σ′

( dΛ−1∑
kΛ−1=1

W
(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

) dΛ−1∑
kΛ−1=1

[
W

(Λ)
γkΛ−1

d

dx
u

(Λ−1)
kΛ−1

(x)
]

(35)

after applying the chain rule once. Using Einstein summation notation for brevity, (35) simplifies to

d

dx
u(Λ)
γ (x) = σ′

(
W

(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)[
W

(Λ)
γkΛ−1

d

dx
u

(Λ−1)
kΛ−1

(x)
]
.

Continuing with the chain rule (and the Einstein notation), we get

d

dx
u(Λ)
γ (x) = σ′

(
W

(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)
×[

W
(Λ)
γkΛ−1

σ′
(
W

(Λ−1)
kΛ−1kΛ−2

u
(Λ−2)
kΛ−2

(x) + b
(Λ−1)
kΛ−1

)[
W

(Λ−1)
kΛ−1kΛ−2

d

dx
u

(Λ−2)
kΛ−2

(x)
]]
.

From here we can recurse downwards to compute the full derivative as

d

dx
u(Λ)
γ (x) = σ′

(
W

(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)
×[

W
(Λ)
γkΛ−1

σ′
(
W

(Λ−1)
kΛ−1kΛ−2

u
(Λ−2)
kΛ−2

(x) + b
(Λ−1)
kΛ−1

)[
W

(Λ−1)
kΛ−1kΛ−2

σ′
(
W

(Λ−2)
kΛ−2kΛ−3

u
(Λ−3)
kΛ−3

(x) + b
(Λ−2)
kΛ−2

)
×[

. . .
[
W

(3)
k3k2

σ′
(
W

(2)
k2k1

u
(1)
k1

(x) + b
(2)
k2

)[
W

(2)
k2k1

σ′
(
W

(1)
k1
x+ b

(1)
k1

)
W

(1)
k1

]]
. . .
]]]

. (36)

By the uniform boundedness assumption (19) on the network parameters θ, (36) is uniformly bounded in ε
from above for any x ∈ [a, b]. As a consequence of the positivity assumption (18), (19) further implies that
each instance of dσ/dx in (36) is bounded below by a positive number that is independent of ε. Note that
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(36) generally contains sums and products of dσ/dx and network weights (entries in the W (l) matrices). For
any t ∈ Υ, the weights are asymptotically larger than ε1/Λ, so that

lim
ε↓0

( ε

W
(1)
k1

W
(2)
k2k1

. . .W
(Λ−1)
kΛ−1kΛ−2

W
(Λ)
kΛkΛ−1

)
= 0

for any combination of indices 1 ≤ k1 ≤ d1, 1 ≤ k2 ≤ d2, and so on, meaning that (34) indeed holds.

Ergo, as in the proof of Theorem 3.2, as long as ε vanishes monotonically to zero in such a way that
a′(xα/ε) 6= 0 any ε, (33) limits to positive infinity as desired.

D Boundary value problem forcing functions

The right-hand side forcing function f ε(x) for the Darcy BVP (28) with homogenenous Dirichlet boundary
conditions is given by gε(x)/hε(x), where

gε(x) = 10
[
20π+168πε cos (x) sin (x)− 20

(
2π − 4π cos2(x) + ε sin(π/ε)

)
cos(x/ε)

+
(

21π + 160πε cos (x) sin(x)
)

sin(x/ε)
]
,

and
hε(x) = 400πε sin2(x/ε) + 840πε sin(x/ε) + 441πε.

17


	Introduction
	Motivation
	Neural tangent kernel matrix theory
	Numerical results
	Scaling of the neural tangent kernel matrix
	Learning a two-scale function

	Conclusions
	Description of PINN approximation for multiscale Poisson problem
	Proof of Lemma 3.1
	Proof of Theorem 3.3
	Boundary value problem forcing functions

