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Figure 1: VLMs cannot perform inductive
logic learning faithfully, failing to capture the
logical structure of “cake and candles on cake”.

Vision–language models (VLMs) have achieved impres-
sive results across multimodal tasks, yet they continue
to struggle with visual reasoning. Studies reveal frequent
failures in both perception and reasoning, even on rela-
tively simple tasks [2, 6, 9, 10]. As illustrated in Figure 1,
VLMs may propose rules that violate the task constraints:
in this case, the rule “contains candle or candles” is in-
correctly satisfied by a negative support image. Such
errors highlight the gap between pattern recognition and
systematic reasoning in VLMs.

Recent work attempts to address this through test-
time scaling, where models “think” longer via extended
chain-of-thought generation [5]. While effective in some cases, this approach is computationally expensive
and prone to contradictions or repetitive loops [4, 7]. An alternative lies in neuro-symbolic AI, which
integrates neural perception with symbolic reasoning [3, 8]. Program synthesis [1], for example, is able to
induce symbolic rules that are interpretable and logically consistent. However, for visual reasoning, such
methods usually depend on domain-specific detectors, limiting their generality [8].

Table 1: VLP vs. direct prompting. Accuracy (%).
First column shows averages. VLP is model-agnostic and
boosts performance across backbones, with largest gains on
logic-heavy benchmarks.

Model Avg. Bongard-OW Bongard-HOI COCOLogic CLEVR-Hans3

InternVL3-8B 60.4 56.3 ±2.3 60.8 ±1.7 66.3 ±1.0 58.3 ±7.6

w/ VLP 72.8 (+12.4) 63.7 ±2.4 (+7.4) 68.9 ±1.3 (+8.1) 72.5 ±5.1 (+6.2) 86.1 ±6.1 (+27.8)

InternVL3-14B 61.7 63.3 ±1.9 67.1 ±1.4 64.2 ±2.1 52.2 ±6.4

w/ VLP 69.2 (+7.5) 61.5 ±1.3 (-1.8) 70.6 ±1.7 (+3.5) 71.2 ±1.0 (+7.0) 73.3 ±5.4 (+21.1)

Kimi-VL-A3B 55.4 58.1 ±0.6 57.5 ±2.1 66.7 ±2.6 39.4 ±6.9

w/ VLP 62.5 (+7.1) 57.7 ±1.9 (-0.4) 57.1 ±2.3 (-0.4) 59.7 ±2.5 (-7.0) 75.6 ±2.1 (+36.2)

Qwen2.5-VL-7B 60.6 61.8 ±1.0 67.6 ±0.4 61.7 ±3.3 51.1 ±2.1

w/ VLP 67.7 (+7.1) 59.6 ±1.9 (-2.2) 67.2 ±0.6 (-0.4) 67.9 ±0.6 (+6.2) 76.1 ±1.6 (+25.0)

We therefore propose combining VLMs
with program synthesis to address these
limitations. Rather than embedding reasoning
inside the VLM, we use it as part of a do-
main specific language, producing structured
visual descriptions that can be combined with
symbolic functions. Our approach, Vision Lan-
guage Programs (VLP), operates directly on
images, enforces logical consistency with task
constraints, and remains fully interpretable.

Experiments on synthetic and real-world
data show that even small VLMs, when used
in this programmatic setting, outperform direct prompting, particularly on tasks requiring complex logical
rules (cf. Table 1). The result of our method is a VLP that encodes a visual rule, combining VLM-based
and symbolic functions. E.g., for the example in Figure 1 we obtain:

(and (exists_object (get_objects IMG) cake)(exists_object (get_actions IMG) candles_on_cake))

In conclusion, our hybrid approach leverages VLM priors while enabling systematic reasoning, a crucial
step toward models that can both obtain high performance and provide transparent explanations to humans.
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