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Abstract

Prior work on integrating text corpora with
knowledge graphs (KGs) to improve Knowl-
edge Graph Embedding (KGE) have obtained
good performance for entities that co-occur in
sentences in text corpora. Such sentences (tex-
tual mentions of entity-pairs) are represented
as Lexicalised Dependency Paths (LDPs) be-
tween two entities. However, it is not possible
to represent relations between entities that do
not co-occur in a single sentence using LDPs.
In this paper, we propose and evaluate sev-
eral methods to address this problem, where
we borrow LDPs from the entity pairs that co-
occur in sentences in the corpus (i.e. with men-
tion entity pairs) to represent entity pairs that
do not co-occur in any sentence in the cor-
pus (i.e. without mention entity pairs). We
propose a supervised borrowing method, Su-
perBorrow, that learns to score the suitability
of an LDP to represent a without-mention en-
tity pair using pre-trained entity embeddings
and contextualised LDP representations. Ex-
perimental results show that SuperBorrow im-
proves the link prediction performance of mul-
tiple widely-used prior KGE methods such as
TransE, DistMult, ComplEx and RotatE.

1 Introduction

Knowledge Graphs (KGs) are a structured form
of information that underline the relationships
between real-world entities (Ehrlinger and Wöß,
2016; Kroetsch and Weikum, 2016; Paulheim,
2017). A KG is represented using a set of rela-
tional tuples of the form (h, r, t), where r repre-
sents the relation between the head entity h and
the tail entity t. For example, the relational tu-
ple (Joe Biden, president-of, US) indicates that the
president-of relation holds between Joe Biden and
US. There exists a large number of publicly avail-
able and widely used KGs, such as Freebase (Bol-
lacker et al., 2008), DBpedia (Auer et al., 2007),
and YAGO ontology (Suchanek et al., 2007). KGs

have been effectively applied in various NLP tasks
such as, relation extraction (Riedel et al., 2013; We-
ston et al., 2013), question answering (Das et al.,
2017; Sydorova et al., 2019), and dialogue sys-
tems (Xu et al., 2020). However, most KGs suffer
from data sparseness as many relations between
entities are not explicitly represented (Min et al.,
2013).

To overcome the sparsity problem, Knowledge
Graph Embedding (KGE) models learn representa-
tions (a.k.a. embeddings) for entities and relations
in a given KG in a vector space, which can then be
used to infer missing links between entities (Bordes
et al., 2013; Nickel et al., 2015; Wang et al., 2017).
Such models are trained to predict relations that
are likely to exist between entities (known as link
prediction or KG completion) according to some
scoring formula. Although previously proposed
KGE methods have shown good empirical perfor-
mances for KG completion (Minervini et al., 2015),
the KGEs are learnt from the KGs only, which
might not represent all the relations that exist be-
tween the entities included in the KG. To overcome
this limitation, prior work has used external text
corpora in addition to the KGs (Toutanova et al.,
2015; Xu et al., 2016; Long et al., 2016; An et al.,
2018; Wang et al., 2019b,a; Lu et al., 2020). Com-
pared to structured KGs, unstructured text corpora
are abundantly available, up-to-date and have di-
verse linguistic expressions for extracting relational
information.

The co-occurrences of two entities within sen-
tences (a.k.a textual mentions) in a text corpus has
shown its success for text-enhanced KGEs (Komni-
nos and Manandhar, 2017; An et al., 2018). For
example, the relational tuple in the Freebase KG
(Joe Biden, president-of, US) is mentioned in the
following sentence “Joseph Robinette Biden Jr. is
an American politician who is the 46th and current
president of the United States.” This sentence ex-
presses the president-of relation between the two



entities Joe Biden and US. As the entity-pair (Joe
Biden,US) appears in a single sentence, we call
it a with-mention entity-pair. However, even in a
large text corpus, not every related entity pair co-
occurs in a specified window, which are referred
to as without-mention entity-pairs in previous stud-
ies. For instance, if we consider the widely used
FB15K-237 KG (Toutanova et al., 2015) and the
ClueWeb12 (Gabrilovich et al., 2013) text corpus
with FB entity mention annotations,1 33% of entity-
pairs in FB15k-237 do not have textual mentions
within the same sentences. This sparseness prob-
lem limits the generalisation capabilities of using
textual mentions for enhancing KGEs. Specifi-
cally, Toutanova et al. (2015); Komninos and Man-
andhar (2017) have shown larger improvements in
link prediction for with-mention entity-pairs over
without-mention pairs.

In this paper, we propose a method to augment a
given KG with additional textual relations extracted
from a corpus and represented as LDPs. The aug-
mented KG can then be used to train any KGE
learning method. This is attractive from both scala-
bility and compatibility point of views because our
proposal is agnostic to the KGE learning method
that is subsequently used for learning KGEs. Our
main contribution in this paper is to improve link
prediction for without-mention entity-pairs by bor-
rowing LDPs from with-mention entity-pairs to
overcome the sparseness in co-occurrences of the
without-mention entity-pairs. We show that learn-
ing a supervised borrowing method, SuperBorrow,
that scores suitable LDPs to represent without-
mention entity-pairs based on pre-trained entity
embeddings and contextualised LDP embeddings
boosts the performance of link prediction using a
series of KGE methods, compared to what would
have been possible without textual relations.

2 Related Work

KGEs from a Multi-relational Graph: Typi-
cally, KG embedding models consist of two main
steps: (a) defining a scoring function for a tu-
ple, and (b) learning entity and relation representa-
tions. Entities are usually represented as vectors,
whereas relations can be represented by vectors
(e.g. TransE (Bordes et al., 2013), DistMult (Yang
et al., 2014) and ComplEx (Trouillon et al., 2016))
matrices (e.g. RESCAL (Nickel et al., 2011)), or

1200 million sentences in CluWeb12 annotated with FB
entity mention annotations.

KGE method Score function
f(h,R, t)

TransE (Bordes et al., 2013) ||h + r − t||`1/2
DistMult (Yang et al., 2014) 〈h, r, t〉
ComplEx (Trouillon et al., 2016) 〈h, r, t̄〉
RotatE (Sun et al., 2019) ||h ◦ r − t||2

Table 1: Score functions proposed in KGE methods.
Entity embeddings h, t ∈ Rd are vectors in all models,
except in ComplEx where h, t ∈ Cd. Here, `1/2 de-
notes either `1 or `2 norm of a vector. In ComplEx, t̄ is
the element-wise complex conjugate.

by 3D tensors (e.g. Neural Tensor Network (Socher
et al., 2013)).

Using some form of a representation, scoring
functions are then defined to evaluate the strength
of a relation r between h and t entities in a
triple. TransE is one of the earliest and well-known
distance-based KGE method that performs a lin-
ear translation and its scoring function is given in
Table 1. Alternatively, a bilinear function is used
in several KGE models, such as RESCAL, Dist-
Mult and ComplEx, for which scoring functions
are defined in Table 1. KGEs are learnt such that
the observed facts (positive triples) are assigned
higher scores compared to that of the negative triple
(for example generated by perturbing a positive in-
stance by replacing its head or tail entities by an
entity randomly selected from the set of entities)
by minimising a loss function, such as the logistic
loss or the margin loss.

Conventional KGE models are trained using
the facts in the KGs, which are often incomplete.
Therefore, to overcome the sparsity of structured
KGs, we propose to integrate information from a
text corpus, thereby augmenting the KG. The aug-
mented KG is then used as the input to existing
KGE methods to learn accurate entity and relation
embeddings. In particular, we do not modify the
scoring functions nor optimisation objectives for
the respective KGE methods, which makes our pro-
posed approach applicable in many existing KGE
methods without any modifications.
Text-Enhanced KGEs: Recently, a new line of
research that combines textual information with re-
lational graphs has emerged (Lu et al., 2020). Dif-
ferent combination methods have been proposed
for this purpose. Wang et al. (2014) proposed a
model to embed both entities and words (using en-
tity names and Wikipedia anchors) into the same
low-dimensional vector space to capture relational



information from a KG and the co-occurrences
from the corpus. Rosso et al. (2019) control the
amount of information shared between the two data
sources in the joint embedding space using regu-
larisation. This joint model is further enhanced
by incorporating entity descriptions from an ex-
ternal corpus, which are jointly learnt with the
KG (Zhong et al., 2015; Xie et al., 2016; Veira et al.,
2019). In a different scenario, the text-enhanced
knowledge embedding model by Wang et al. (2016)
creates a co-occurrence network of words and enti-
ties from an entity-annotated corpus. The authors
define point-wise and pair-wise contexts using the
co-occurrence frequencies in the network. Then,
entity and relation embeddings are enhanced using
textual point-wise and pair-wise embeddings, re-
spectively. Similarly, Rezayi et al. (2021) construct
an augmented KG that has nodes from external
text. The original and the augmented graphs are
then aligned to suppress the noise and distil relevant
information. In our work, we focus on adding extra
edges to the KG rather than nodes as in Rezayi et al.
(2021) and Wang et al. (2016).

In addition to contextual information and textual
descriptions of individual words/entities, sentences
where two entities co-occur have been used as con-
textual evidence to learn KGEs (Toutanova et al.,
2015; Komninos and Manandhar, 2017; Tang et al.,
2019). For example, Toutanova et al. (2015) ex-
tracted LDPs by parsing co-occurring sentences
in a text corpus, which are then used as textual
relations in the KG. This model can be seen as
a special case of universal schema (Riedel et al.,
2013), which combines textual and KG relations in
the same entity-pair co-occurrence matrix, subse-
quently decomposed to obtain entity embeddings.
Komninos and Manandhar (2017) proposed a novel
triple scoring function where textual mentions are
used as a source of supporting evidence for a triple.

Our problem setting differs from prior work on
text-enhanced KGEs in two important ways. First,
we do not modify the underlying structure of the
KGE method, which is attractive from both scala-
bility and compatibility of our proposal. Second,
rather than considering only entity-pairs that are oc-
curring within a specified context in the corpus (i.e.
with-mention entity-pairs), we propose to borrow
LDPs from with-mention entity-pairs to overcome
the data sparseness in without-mention entity-pairs
that never co-occur within any sentence in the cor-
pus.

3 Method

A relational KGD consists of a set of entities E and
a set of relationsR. InD, knowledge is represented
by relational tuples (h, r, t) ∈ D, where the head
entity h is related to the tail entity t by the KG
relation r. In this work, we assume relations to be
asymmetric in general (if (h, r, t) ∈ D then it does
not necessarily follow that (t, r, h) ∈ D). The goal
is to learn representations for entities and relations
such that missing tuples can be accurately inferred.

As KGs D are often sparse with many missing
edges between entities, the learnt KGEs are af-
fected, which in return impacts the performance of
KGEs on downstream tasks such as link prediction.
To address this sparseness problem, we consider the
availability of a text corpus T where relational facts
are expressed using contexts in which an entity-pair
co-occurs. The textual relations that are extracted
from T can be injected into D before applying a
KGE method.

To align D with T , entity linking is applied to
resolve ambiguous entity mentions in the text with
unique entities in the KG (Gabrilovich et al., 2013;
Shen et al., 2014). Then, Sentences that mentions
two entities are considered as textual mentions of
relations between entities. Assuming that the cor-
pus is annotated using the entities in D, there are
multiple possibilities to obtain relational features
of sentences that mention the entities. Following
previous work (Toutanova et al., 2015), we first run
a dependency parser (Chen and Manning, 2014) on
each sentence containing an entity-pair to obtain
LDPs. Then, if E contains the head and tail entities
of an LDP l (but the entity-pair might not be con-
nected by KG relations), we insert l intoR to form
a textual triple (h, l, t) ∈ D. The augmented KG
is then used to learn embeddings for E and R us-
ing different KGE methods. During KGE processs,
we treat both original relations in the KG and the
augmented LDPs equally. In principle, any exist-
ing KGE learning method can be applied on the
augmented KG as we later see in our experiments.

One obvious limitation of the above-described
method is that entity-pairs that never co-occur in
any contextual window (e.g. a sentence) will not
be connected by any LDP during the augmenta-
tion process. This is fine if the two entities are
truly unrelated. However, this is problematic for
entities that are related in the KG but their rela-
tions were not sufficiently covered in the text cor-
pus because of the coverage issues and small size



of the corpus. As we later see in our evaluations
(§ 5), this is indeed the case for the majority of the
without-mention entity-pairs. To overcome this lim-
itation of our proposal, next we describe a method
to borrow LDPs from with-mention entity-pairs
to without-mention entity pairs. It is worth not-
ing that we do not connect any two entities by
LDPs, but only those that are related in the KG
and predicted to be associated with an LDP by the
proposed method.

3.1 Learn to Borrow LDPs

Given a without-mention entity pair (h∗, t∗), we
propose a supervised borrowing method SuperBor-
row to rank LDPs that are extracted for the with
mention entity-pairs from a text corpus. Given pre-
trained entity representations h and t, we learn an
entity-pair encoder, f , parametrised by θ, to create
an entity-pair representation, f(h, t; θ), for (h, t).
In this work, the encoder f is implemented as a
multilayer perceptron with a nonlinear activation,
where the input entity-pair to the MLP is encoded
as follows:

x = [h⊕ t⊕ (h− t)⊕ (h ◦ t)] (1)

Here, ⊕ denotes the concatenation of vectors and
◦ is the element-wise multiplication between two
vectors. (1) considers the information in the head
and tail entity embeddings independently as well
as the interactions between their corresponding di-
mensions. These features for entity-pairs have been
used successfully for representing semantic rela-
tions in prior work (Washio and Kato, 2018; Joshi
et al., 2018; Hakami and Bollegala, 2019). The
final output vector f(h, t; θ) of the MLP is treated
as the representation of the entity-pair (h, t).

As an alternative to representing the relation-
ship between two entities in an entity-pair (h, t)
by f(h, t; θ) using the corresponding entity embed-
dings, we can use S(h,t), the set of LDPs connecting
h and t entities (Bollegala et al., 2010). Because
an LDP is a sequence of textual tokens, we can use
any sentence encoder to represent an LDP by a vec-
tor. Specifically, in our experiments later we use
the pretrained sentence encoder SBERT (Reimers
and Gurevych, 2019) to represent an LDP, l, by a
vector, l.

We require LDPs that co-occur with an entity-
pair (h, t) to be similar to f(h, t; θ) than LDPs
that do not co-occur with (h, t). Specifically, we
use the set of with-mention entity-pairs with their

Relations Entities Triples w-m w/o-m
Train/Test

FB 237 14,541 272,115/20,466 2,344 18,122
Text 1,100 12,930 404,009/- - -

Table 2: Statistics of the datasets. w-m and w/o-m de-
notes the number of test instances respectively in with-
mention and without-mention entity-pair sets.

associated LDPs as positive training instances S =
{(h, l, t)}. LDPs that are associated with either h
or t alone (not both) are used as negative training
instances S ′(h,t) as given by (2).

S ′(h,t) = {(h, l′, t)|∃t′ : (h, l′, t′) ∈ D ∧ t′ 6= t,

∃h′ : (h′, l′, t) ∈ D ∧ h′ 6= h} (2)

We learn the parameters of f(h, t, θ) by min-
imising the marginal loss over S(h,t) and S ′(h,t) as
shown in (3).

∑
(h,l,t)∈S

∑
(h,l′,t)∈S′

(h,t)

max
(

0, γ − f(h, t; θ)>(l− l′)
)

(3)

Here, γ(≥ 0) is the margin and is set to 1 in
our experiments. To determine which LDPs to
be borrowed for a particular without-mention en-
tity pair, (h∗, t∗), we first compute its represen-
tation, f(h∗, t∗; θ) using the θ found by minimis-
ing (3) above. We then score each LDP, l, using
the sentence encoder model, by the inner-product,
f(h∗, t∗; θ)>l. We then select the top-k LDPs with
the highest inner-products with f(h∗, t∗; θ) to aug-
ment the KG. The number of borrowed LDPs (k) is
a hyperparameter that is tuned using the validation
triples selected from the KG.

4 Experimental Setup

4.1 Dataset and Training Details
Datasets: We use FB15k237 as the KG and
ClueWeb122 as the corpus for extracting LDPs for
the entity-pairs in the FB157k237 KG. Specifically,
we use the textual triples consisting of LDPs that
are extracted and made available3 by Toutanova
et al. (2015). The number of extracted unique LDPs
and textual triples in this dataset are respectively

2https://lemurproject.org/clueweb12/
3https://www.microsoft.com/en-us/

download/details.aspx?id=52312

https://lemurproject.org/clueweb12/
https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://www.microsoft.com/en-us/download/details.aspx?id=52312


overall with-mention without-mention

Model MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE (KG only) 0.336 113 0.523 0.368 0.243 0.314 135 0.508 0.349 0.218 0.333 111 0.519 0.364 0.241
KG+ExtractedLDPs 0.314 126 0.495 0.343 0.224 0.433 43 0.659 0.489 0.319 0.293 138 0.468 0.318 0.206
LinkAll 0.344 105 0.531 0.380 0.249 0.430 44 0.653 0.493 0.316 0.328 113 0.510 0.360 0.235
Co-occurrence 0.502 47 0.695 0.553 0.402 0.412 48 0.639 0.464 0.297 0.506 47 0.695 0.557 0.408
NeighbBorrow 0.491 49 0.682 0.541 0.392 0.422 46 0.646 0.475 0.308 0.493 50 0.68 0.542 0.395
SuperBorrow 0.751 15 0.868 0.799 0.681 0.394 49 0.629 0.445 0.277 0.787 11 0.888 0.835 0.723

DistMult (KG only) 0.302 133 0.489 0.333 0.209 0.257 149 0.436 0.289 0.165 0.302 131 0.489 0.333 0.209
KG+ExtractedLDPs 0.325 113 0.512 0.357 0.232 0.427 35 0.656 0.483 0.311 0.306 125 0.488 0.335 0.216
LinkAll 0.329 108 0.521 0.363 0.233 0.437 33 0.670 0.496 0.315 0.309 118 0.497 0.339 0.215
Co-occurrence 0.365 74 0.574 0.404 0.261 0.428 33 0.664 0.479 0.310 0.351 81 0.558 0.388 0.248
NeighbBorrow 0.415 54 0.639 0.465 0.302 0.412 35 0.645 0.463 0.297 0.408 57 0.631 0.458 0.295
SuperBorrow 0.482 53 0.681 0.535 0.377 0.415 35 0.655 0.475 0.291 0.482 56 0.678 0.534 0.379

ComplEx (KG only) 0.312 125 0.493 0.342 0.222 0.275 142 0.459 0.299 0.185 0.312 124 0.493 0.342 0.222
KG+ExtractedLDPs 0.321 107 0.505 0.349 0.229 0.407 36 0.637 0.458 0.291 0.304 117 0.482 0.329 0.216
LinkAll 0.328 107 0.519 0.361 0.232 0.432 34 0.665 0.493 0.311 0.309 118 0.496 0.338 0.216
Co-occurrence 0.358 76 0.570 0.399 0.252 0.436 33 0.679 0.499 0.319 0.342 83 0.552 0.380 0.238
NeighbBorrow 0.428 47 0.650 0.479 0.315 0.418 35 0.646 0.478 0.298 0.422 50 0.643 0.472 0.309
SuperBorrow 0.489 42 0.687 0.540 0.385 0.416 38 0.653 0.481 0.291 0.491 43 0.686 0.541 0.388

RotatE (KG only) 0.358 94 0.560 0.395 0.259 0.331 120 0.527 0.365 0.236 0.354 92 0.557 0.391 0.254
KG+ExtractedLDPs 0.359 94 0.551 0.396 0.264 0.448 44 0.672 0.509 0.333 0.341 101 0.528 0.374 0.247
LinkAll 0.363 91 0.558 0.400 0.266 0.442 44 0.671 0.503 0.321 0.346 98 0.536 0.378 0.251
Co-occurrence 0.435 54 0.639 0.484 0.329 0.441 46 0.663 0.499 0.327 0.426 56 0.629 0.473 0.321
NeighbBorrow 0.463 43 0.672 0.514 0.357 0.443 45 0.675 0.497 0.326 0.457 44 0.664 0.508 0.351
SuperBorrow 0.682 19 0.836 0.739 0.594 0.412 51 0.652 0.473 0.290 0.706 16 0.851 0.764 0.621

Table 3: Results of link prediction on FB15K237. Higher is better for all metrics except for the mean rank (MR) for
which lower values indicate better performance. The best result for each metric and each KGE method is shown in
bold.

2, 740, 176 and 3, 978, 014. To make the training
of KGE methods computationally efficient, we fil-
ter out LDPs that occur in less than 100 distinct
entity-pairs in the corpus. The FB15k237 test set
is split into with-mention (i.e. entity-pairs that
co-occur in some LDP) and without-mention (i.e
entity-pairs that do not co-occur in any LDP) sets
as shown in Table 2. According to Table 2, there
are 88.14% without-mention entity-pairs in the test
set. Note that even if we consider the complete
set of LDPs from the ClueWeb12, the portion of
without-mention test entity-pairs in FB15k237 is
only 73.23%. This shows the significance of the
problem of representing without-mention entity-
pairs, which is the focus of this paper.

Training SuperBorrow: We used the with-
mention entity-pairs in train split of FB15K237 to
train SuperBorrow. The number of entity-pairs in
the training set is 311,906, and on average we have
1.32 LDPs per entity-pair. On average, we generate
100 negative triples for each with-mention pair. We
hold-out 10% of the training entity-pairs for valida-
tion purposes (we obtain 280716 and 31190 entity-
pairs for training and validation, respectively). To
represent each entity, we use the publicly avail-
able 100-dimensional pre-trained RelWalk embed-

dings,4 which are publicly available for the entities
and relations in FB15k237.

According to (1), the input layer of the trained
MLP has 400 features. The hyperparameters
including the number of hidden layers {2, 3},
`2, regularisation coefficient {0, 0.01, 0.001},
the learning rate {0.01, 0.1} and the non-linear
activation {tanh, relu, sigmoid} are tuned using
the above-mentioned validation set. The MLP
consists of two 768-dimensional layers, and
the last layer represents the entity-pair to be
mapped to the LDP embedding space that has
768 dimensions encoded using the SBERT
paraphrase-distilroberta-base5

model, which has reported SoTA performance on
various knowledge-intensive tasks (Warstadt et al.,
2020). SuperBorrow is trained for 50 iterations
using mini-batch Stochastic Gradient Descent with
momentum and a batch size of 128. The source for
SuperBorrow is publicly available.6

4https://github.com/LivNLP/
Relational-Walk-for-Knowledge-Graphs

5https://huggingface.
co/sentence-transformers/
paraphrase-distilroberta-base-v2

6https://github.com/Huda-Hakami/
Learning-to-Borrow-for-KGs

https://github.com/LivNLP/Relational-Walk-for-Knowledge-Graphs
https://github.com/LivNLP/Relational-Walk-for-Knowledge-Graphs
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
https://github.com/Huda-Hakami/Learning-to-Borrow-for-KGs
https://github.com/Huda-Hakami/Learning-to-Borrow-for-KGs


Evaluation Protocol: After augmenting
FB15K237 with the borrowed k LDPs for
each without-mention entity-pair, we train a KGE
method to obtain embeddings for the entities
in E , relations in R and textual relations. The
hyperparameter k is tuned on the validation
set of FB15K237 for each KGE method from
{1, 3, 10, 15, 20, 25, 30}.

We use Link Prediction, which has been popu-
larly used as an evaluation task to compare the
KGEs we obtain from a KGE learning method
before and after augmenting the KG with the
LDPs borrowed using SuperBorrow and other base-
lines (Wang et al., 2021). Link prediction is the
task of predicting the missing head (i.e. (?, r, t)) or
tail (i.e. (h, r, ?)) entity in a given triple by ranking
the entities in the KG according to the scoring func-
tion of the KGE method. Following prior work,
the performance is evaluated using Mean Recip-
rocal Rank (MRR), Mean Rank (MR) and Hits at
Rank k (H@k) under the filtered setting, which re-
moves all triples appeared in training, validating or
testing sets from candidate triples before obtaining
the rank for the ground truth triple. We consider
all entities that appear in the corresponding argu-
ment of the relation to be predicted to further filter
out incorrect candidates, which is known as type-
constraint setting (Chang et al., 2014; Toutanova
and Chen, 2015).

We also evaluate the learnt KGEs using a relation
prediction task, which predicts the relation between
two given entities (i.e., (h, ?, t)) from the set of
relations in the KG. This task assumes that we
are given entity-pairs with candidate relations. The
performance is measured using the same evaluation
metrics as used in the link prediction task under
the filtered setting. We use the publicly available
OpenKE tool to conduct experiments with different
KGE methods (Han et al., 2018).7

4.2 Baselines
We compare the proposed LDP borrowing method
against multiple baselines as follows.

LinkAll: In this baseline we connect the two en-
tities in each without-mention entity-pair with a
unique link, instead of reusing LDPs, and aug-
ment the KG with the without-mention entity-pairs.
This baseline enables us to simply incorporate all
without-mention entity-pairs into the KG without
requiring to borrow any LDPs. It will demonstrate

7https://github.com/thunlp/OpenKE

the importance, if any, of sharing LDPs between
with- vs. without-mention entity-pairs as opposed
to simply connecting all without-mention entity-
pairs with distinct relations.

Co-occurrence: This baseline connects all
entity-pairs that co-occurs in any sentence in
the corpus (T ) with a generic relation (i.e. co-
occurrence relation) in the augmented KG and
does not distinguish between different textual re-
lations. This baseline is designed to highlight
the importance of the context of entity-pair co-
occurrences in the corpus beyond simply treating
all co-occurrences equally during the augmenting
process.

NeighbBorrow: Given a without-mention entity-
pair (h∗, t∗), we can borrow the LDPs from the first
nearest neighbouring (1NN) with-mention entity-
pair (h, t). The similarity between entity-pairs can
be computed using (4) in an unsupervised manner
using pretrained entity embeddings such as Rel-
Walk embeddings (Bollegala et al., 2021).

sim((h, t), (h∗, t∗)) = cos(h,h∗) cos(t, t∗) (4)

Here, cos is the cosine similarity between two vec-
tors converted to nonnegative values (i.e. [0, 1])
using the linear transformation (x+ 1)/2. On aver-
age, when considering 1NN, we borrow 1.3 LDPs
for each without-mention pair of entities. In con-
trast to the proposed SuperBorrow, NeighbBorrow
is unsupervised and decouples entities in each pair
when computing their similarity.

5 Results

Link Prediction: Table 3 shows the results of
link prediction for different settings on FB15K237
under different KGE methods. Two translational
distance-based KGE methods (i.e. TransE and
RotatE) and two semantic matching-based mod-
els (i.e. DistMult and ComplEx) are used as the
KGE learning methods (Rossi et al., 2021; Wang
et al., 2021). We emphasize that our purpose here
is not to compare the absolute performance among
those KGE methods, but to evaluate the effect of
using LDPs for augmenting the KG and represent-
ing the without-mention entity-pairs via different
borrowing methods. For SuperBorrow, the optimal
numbers of borrowed LDPs (k) determined using
the validation set for TransE, DistMult, ComplEx
and RotatE respectively are 30, 20, 15 and 25.

https://github.com/thunlp/OpenKE


overall without-mention

Model MR H@3 H@1 MR H@3 H@1

DistMult (KG only) 4.1 0.938 0.856 4.0 0.942 0.865
KG+ExtractedLDPs 2.6 0.955 0.876 2.7 0.957 0.883
LinkAll 7.2 0.887 0.752 7.8 0.880 0.744
Co-occurrence 2.4 0.954 0.875 2.4 0.956 0.882
NeighbBorrow 3.0 0.955 0.874 3.0 0.956 0.881
SuperBorrow 2.2 0.960 0.875 2.2 0.962 0.882

ComplEx (KG only) 3.1 0.954 0.900 2.8 0.957 0.908
KG+ExtractedLDPs 1.9 0.967 0.917 1.9 0.967 0.922
LinkAll 4.0 0.909 0.812 4.3 0.902 0.808
Co-occurrence 1.8 0.967 0.916 1.8 0.967 0.920
NeighbBorrow 1.7 0.973 0.921 1.7 0.974 0.925
SuperBorrow 1.7 0.972 0.917 1.7 0.973 0.922

Table 4: Results of relation prediction on FB15K237.

As shown in Table 3, augmenting the KG
with the extracted LDPs (i.e., KG+ExtractedLDPs)
significantly improves the performance for with-
mention entity-pairs for all KGE methods. How-
ever, the performance when predicting links for
without-mention entity-pairs decreases slightly for
all KGE methods, except for DistMult in the
KG+ExtractedLDPs setting. For the borrowing
models, even though the co-occurrence baseline
improves the prediction for without-mention set,
borrowing relevant LDPs from the 1NN entity-
pairs (NeighbBorrow) or the proposed supervised
borrowing (SuperBorrow) reports superior results.
We can see that the best performance for the over-
all and without-mention sets are achieved with the
augmented KG using SuperBorrow, followed by
NeighbBorrow.

Relation Prediction: Table 4 shows the accura-
cies for the relation prediction task. Experimen-
tally, the best results for this task is obtained when
corrupting r, in addition to h and t corruptions, is
applied to generate negative triples to train the KGE
method. This negative sampling schedule follows
the evaluation procedure of relation prediction. As
shown in the table, SuperBorrow reports the best
MR and Hits@3 for DistMult KGEs, while Neibh-
Borrow baseline performs better than SuperBorrow
with ComplEx method. Further results for relation
prediction are in the Supplementary Appendix A.

Comparisons against Prior Work: We
compare our proposed method against
prior work, namely Feature Rich Network
(FRN) (Komninos and Manandhar, 2017) and
Conv (E+DistMult) (Toutanova et al., 2015).
In FRN, an MLP is trained to predict the
probability of a given triple being true using
different types of features such as the entity

overall with-mention without-mention

Model MRR H@10 MRR H@10 MRR H@10

Conv (E+DistMult) 0.401 0.581 0.339 0.499 0.424 0.611
FRN 0.403 0.620 0.441 0.683 0.387 0.595
ours (DistMult) 0.460 0.714 0.378 0.649 0.468 0.720
ours (RotatE) 0.499 0.712 0.439 0.674 0.504 0.715

Table 5: Comparisons against prior work on link pre-
diction on FB15K237. The results for prior work are
taken from the original papers. The best results are in
bold, while the second best results are underlined.

types and features extracted from textual relation
mentions. Conv(E+DistMult) represents LDPs
by vectors using a convolutional neural network,
and combines DistMult scoring function with that
of the Entity model (E) proposed by Riedel et al.
(2013). E model learns a vector for each entity
and two vectors for each relation corresponding
to the two arguments rh and rt of a relation r.
The scoring function of a triple in E model is
defined as h>rh + t>rt. The combined model
(E+DistMult) is trained on a linearly weighted
combination of KG triples and textual triples.
For a fair comparison, we consider the task of
predicting missing tail entities and we avoid the
type-constraint setting.

As shown in Table 5, for the overall test set of
FB15K237 our models outperform both FRN and
Conv models according to MRR and H@10. For
with-mention entity-pairs, our models report higher
scores compared to Conv(E+DistMult), while FRN
performs best. For with-mention entity-pairs FRN
can extract rich features from the contexts of co-
occurrences, which helps it to obtain superior per-
formances. However, both FRN and Conv models
perform poorly on without-mention entity-pairs,
where such contextual features are unavailable. On
the other hand, by using the proposed SuperBorrow
to augment LDPs for KGs we can overcome this
limitation successfully.

6 Analysis

Borrowed LDPs: To provide examples of LDPs
injected into FB15K237, Table 6 shows the bor-
rowed LDPs by NeighbBorrow and SuperBorrow
for some selected entity-pairs. We can see that
representative LDPs of various relation types are
ranked at the top by SuperBorrow. For example, for
the film-distributor relation, NeighbBorrow selects
LDPs containing specific tokens such as movie or
film, whereas SuperBorrow retrieves LDPs that bet-



Entity-pairs (h, r, t) Borrowed LDPs
NeighbBorrow SuperBorrow

h= Woodrow Wilson h:〈-nsubj〉:joined:〈dobj〉:t h:〈-poss〉:t
t= League of Nations h:〈-nsubj〉:left:〈dobj〉:t h:〈-nsubj〉:president:〈prep〉:of:〈pobj〉:t
r= organizations-founded h:〈-poss〉:t h:〈-nsubj〉:joined:〈dobj〉:t

h:〈-poss〉:ambassador:〈prep〉:to:〈pobj〉:t
h:〈-nsubj〉:member:〈prep〉:of:〈pobj〉:t

h= 20th Century Fox h:〈-nn〉:movie:〈appos〉:t h:〈-dobj〉:released:〈nsubj〉:t
t= Lincoln h:〈-nn〉:film:〈nsubj〉:t h:〈-dobj〉:release:〈nsubj〉:t
r= film-distributor h:〈-nn〉:movie:〈dep〉:t h:〈-nsubj〉:released:〈dobj〉:t

h:〈-poss〉:t h:〈-appos〉:grant:〈appos〉:t
h:〈-pobj〉:with:〈-prep〉:t

h= Deep Impact h:〈-pobj〉:in:〈-prep〉:work:〈poss〉:t h:〈-dep〉:film:〈poss〉:t
t= Leslie Dilley h:〈-nn〉:fame:〈-pobj〉:of:〈-prep〉:t h:〈vmod〉:produced:〈prep〉:by:〈pobj〉:t
r= film-production-design-by h:〈poss〉:t h:〈vmod〉:written:〈prep〉:by:〈pobj〉:t

h:〈-dep〉:tagged:〈appos〉:t
h:〈-nn〉:film:〈nsubj〉:t

h= Idaho h:〈-nsubjpass〉:located:〈prep〉:in:〈pobj〉:t h:〈-poss〉:t
t= Christianity h:〈-appos〉:usa:〈-appos〉:t h:〈-amod〉:state:〈prep〉:of:〈pobj〉:t
r= religion h:〈-poss〉:t h:〈rcmod〉:plays:〈dobj〉:t

h:〈-dobj〉:entered:〈nsubj〉:t
h:〈-nn〉:date:〈nn〉:t

Table 6: Borrowed LDPs of selected entity-pairs. Top 5 LDPs with our borrowing method and LDPs borrowed
from 3NN entity-pairs are shown.

ter express the target relation such as 20th Century
Fox:〈-dobj〉:released:〈nsubj〉:Lincoln.

Relation Categories: To better analyse the ef-
fect of the proposed SuperBorrow for KGEs, we
evaluate the link prediction task on different re-
lation categories including 1to1, 1toN, Nto1 and
NtoN as defined in Bordes et al. (2013).

Table 7 presents the results of predicting head
entities for all KGE methods considering KG only
and SuperBorrow. We can see that SuperBor-
row achieves higher performance over the original
graph on all relation categories. In particular, our
proposal significantly boosts the performance of
predicting head entities for the Nto1 relation type
where all KGE methods report the lowest H@10 for
the KG only setting. Similar results are obtained
for predicting the tail entities as in Appendix B.
Overall, these results show that incorporating infor-
mation from text corpora into KGs enables us to
learn KGEs that encode diverse relation types.

Visualisation of Entity Embeddings: In Fig-
ure 1, we visualise the entity embeddings of
KGonly and KG with LDPs using t-distributed
stochastic neighbour embeddings (t-SNE) (Hinton
and Roweis, 2002) method. Relations in FB15k237
are labelled as domain/type/property where do-
main/type represents the type of a head entity in

Method 1to1 1toN Nto1 NtoN
# Tuples 192 1293 4289 14,696

TransE
KG only 0.536 0.597 0.124 0.418
SuperBorrow 0.947 0.984 0.377 0.829

DistMult
KG only 0.500 0.433 0.064 0.371
SuperBorrow 0.922 0.856 0.338 0.547

ComplEx
KG only 0.495 0.434 0.045 0.368
SuperBorrow 0.917 0.913 0.277 0.601

RotatE
KG only 0.568 0.631 0.118 0.388
SuperBorrow 0.932 0.969 0.404 0.722

Table 7: Hits@10 of tail prediction for different rela-
tion categories.

the relation. Thus, for each entity in the KG, we
extract its types from all training triples where the
entity acts as the head. We label entities that belong
to the two most frequent entity types, which are
people/person (4,538 entities) and film/film (1,923
entities). From Figure 1, we see that the embed-
dings learnt from the augmented graph results in
distinct clusters of the same type, compared to the
clusters obtained from the KG alone. This empha-
sizes the importance of using textual mentions in
KGE learning.

7 Conclusion

We considered the problem of representing without-
mention entity-pairs in KGE learning. Specifically,



(a) KG only (b) KG with LDPs

Figure 1: t-SNE plots for DistMult entity embeddings
comparing (a) KG-only and (b) KG with LDPs.

we proposed a method (SuperBorrow) to determine
which LDPs to borrow from with-mention entity-
pairs to augment a KG using a corpus. Our pro-
posed method improves the performance of several
KGE learning methods in link and relation predic-
tion tasks.
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Appendix

A Relation Prediction

Relation prediction results for all the KGE meth-
ods are shown in Table 8. As we see, unlike se-
mantic matching-based KGE models, incorporat-
ing LDPs into the KG do not improve relation pre-
diction for translational distance-based KGE meth-
ods (TransE and RotatE). For KG+ExtractedLDPs
embeddings, the performance for with-mention set
decreases by 0.045 and 0.012 on average for MRR
and H@{10,3,1}, for TransE and RotatE respec-
tively. In-depth analysis for this observation can be
conducted in future research.

B Tail Prediction for Relation Categories

Table 9 presents Hits@10 for tail prediction con-
sidering 1to1, 1toN, Nto1 and NtoN relation cate-
gories. As we see, SuperBorrow embeddings ob-
tain the best results for all KGE methods and all
the relation categories.

Method 1to1 1toN Nto1 NtoN
# Tuples 192 1293 4289 14,696

TransE
KG only 0.547 0.097 0.851 0.574
SuperBorrow 0.943 0.647 0.980 0.907

DistMult
KG only 0.521 0.055 0.774 0.507
SuperBorrow 0.880 0.424 0.898 0.657

ComplEx
KG only 0.500 0.034 0.787 0.518
SuperBorrow 0.869 0.456 0.964 0.753

RotatE
KG only 0.536 0.107 0.855 0.561
SuperBorrow 0.927 0.731 0.983 0.853

Table 9: Hits@10 of tail prediction for different rela-
tion categories.

C Training KGE Methods

For reproducability, we list the hyperparameter
setting to train KGE methods in Table 10. Ada-
Grad (Duchi et al., 2011) with 100 batches is used
to learn KGEs. Table 11 shows the training time (in
hours) to train KGE methods for KG only and Su-
perBorrow using OpenKE-Pytorch tool (Han et al.,
2018).



overall with-mention without-mention

Model MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE (KG only) 0.961 1.6 0.992 0.980 0.940 0.919 1.9 0.988 0.958 0.875 0.967 1.5 0.993 0.983 0.949
KG+ExtractedLDPs 0.934 1.6 0.994 0.967 0.899 0.860 1.7 0.991 0.926 0.789 0.944 1.5 0.994 0.973 0.914
LinkAll 0.932 1.5 0.993 0.955 0.899 0.845 1.9 0.985 0.887 0.778 0.944 1.4 0.994 0.964 0.916
Co-occurrence 0.925 1.6 0.993 0.962 0.887 0.863 1.8 0.990 0.931 0.793 0.933 1.5 0.993 0.967 0.899
NeighbBorrow 0.927 1.5 0.994 0.964 0.888 0.862 1.7 0.993 0.929 0.791 0.936 1.5 0.994 0.969 0.901
SuperBorrow 0.925 1.5 0.993 0.963 0.886 0.868 1.8 0.990 0.926 0.802 0.933 1.5 0.994 0.968 0.897

DistMult (KG only) 0.901 4.1 0.968 0.938 0.856 0.855 4.5 0.959 0.914 0.789 0.907 4.0 0.969 0.942 0.865
KG+ExtractedLDPs 0.918 2.6 0.980 0.955 0.876 0.887 2.4 0.982 0.940 0.826 0.922 2.7 0.980 0.957 0.883
LinkAll 0.825 7.2 0.940 0.887 0.752 0.883 2.1 0.986 0.944 0.813 0.818 7.8 0.934 0.880 0.744
Co-occurrence 0.918 2.4 0.979 0.954 0.875 0.89 2.0 0.980 0.942 0.831 0.921 2.4 0.979 0.956 0.882
NeighbBorrow 0.917 3.0 0.979 0.955 0.874 0.883 2.7 0.976 0.942 0.819 0.921 3.0 0.979 0.956 0.881
SuperBorrow 0.920 2.2 0.984 0.960 0.875 0.885 2.2 0.980 0.943 0.822 0.924 2.2 0.985 0.962 0.882

ComplEx (KG only) 0.929 3.1 0.977 0.954 0.900 0.884 4.8 0.962 0.925 0.835 0.935 2.8 0.980 0.957 0.908
KG+ExtractedLDPs 0.944 1.9 0.987 0.967 0.917 0.921 1.7 0.986 0.962 0.877 0.947 1.9 0.987 0.967 0.922
LinkAll 0.867 4.0 0.955 0.909 0.812 0.906 1.8 0.988 0.960 0.848 0.861 4.3 0.951 0.902 0.808
Co-occurrence 0.944 1.8 0.987 0.967 0.916 0.930 1.7 0.989 0.965 0.892 0.946 1.8 0.987 0.967 0.920
NeighbBorrow 0.948 1.7 0.989 0.973 0.921 0.925 1.9 0.987 0.965 0.884 0.951 1.7 0.989 0.974 0.925
SuperBorrow 0.946 1.7 0.990 0.972 0.917 0.922 1.8 0.987 0.962 0.879 0.949 1.7 0.990 0.973 0.922

RotatE (KG only) 0.972 1.4 0.996 0.990 0.954 0.945 1.3 0.993 0.981 0.910 0.976 1.4 0.997 0.991 0.960
KG+ExtractedLDPs 0.967 1.3 0.995 0.988 0.945 0.933 1.5 0.983 0.974 0.892 0.971 1.2 0.996 0.990 0.952
LinkAll 0.958 1.3 0.995 0.984 0.931 0.923 1.6 0.983 0.964 0.879 0.963 1.3 0.996 0.987 0.938
Co-occurrence 0.964 1.3 0.994 0.985 0.943 0.931 1.4 0.987 0.970 0.892 0.969 1.3 0.995 0.987 0.949
NeighbBorrow 0.964 1.3 0.995 0.985 0.941 0.933 1.5 0.985 0.971 0.894 0.968 1.2 0.996 0.987 0.948
SuperBorrow 0.964 1.2 0.995 0.986 0.941 0.931 1.5 0.985 0.972 0.892 0.968 1.2 0.996 0.988 0.947

Table 8: Relation predictino on FB15K237.

KGE Method learning rate embedding dimension negative samples loss function margin epochs
TransE 1.0 300 25 Margin loss 5.0 1000

DistMult 0.5 300 25 SoftPlus loss - 1000
ComplEx 0.5 100 25 SoftPlus loss - 1000

RotatE 2e-5 300 25 SigmoidLoss 9.0 1000

Table 10: The hyperparameter setting for KGE methods on link prediction task.

Method #Train tuples Time (h)

TransE
KG only 272,115 0.42

SuperBorrow 1,217,294 1.58

DistMult
KG only 272,115 0.78

SuperBorrow 1,036,904 2.67

ComplEx
KG only 272,115 0.69

SuperBorrow 946,709 2.11

RotatE
KG only 272,115 1.11

SuperBorrow 1,127,099 4.13

Table 11: Training time on FB15K237 in hours.


