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ABSTRACT

Survival analysis is a cornerstone of clinical research by modeling time-to-event
outcomes such as metastasis, disease relapse, or patient death. Unlike standard
tabular data, survival data often come with incomplete event information due to
dropout, or loss to follow-up. This poses unique challenges for synthetic data
generation, where it is crucial for clinical research to faithfully reproduce both the
event-time distribution and the censoring mechanism. In this paper, we propose
SURVDIFF, an end-to-end diffusion model specifically designed for generating
synthetic data in survival analysis. SURVDIFF is tailored to capture the data-
generating mechanism by jointly generating mixed-type covariates, event times,
and right-censoring, guided by a survival-tailored loss function. The loss encodes
the time-to-event structure and directly optimizes for downstream survival tasks,
which ensures that SURVDIFF (i) reproduces realistic event-time distributions and
(ii) preserves the censoring mechanism. Across multiple datasets, we show that
SURVDIFF consistently outperforms state-of-the-art generative baselines in both
distributional fidelity and survival model evaluation metrics across multiple med-
ical datasets. To the best of our knowledge, SURVDIFF is the first diffusion model
explicitly designed for generating synthetic survival data

1 INTRODUCTION
original data

            continuous covariates
            discrete covariates
            censoring/event indicator
            time-to-event
            deceased
            censored

synthetic data

time to event/ censoringtime to event/ censoring

SurvDiff

Figure 1: SURVDIFF for generating synthetic survival data. Our
SURVDIFF generates synthetic samples that retain the structure of
the original data, including high-fidelity covariate distributions and
faithful event-time distributions while preserving the censoring mech-
anism. The synthetic dataset can then be used to train downstream
survival models without direct access to the original patient-level data.

Survival analysis is a
core tool in medicine for
modeling time-to-event
outcomes (the duration
until an event occurs),
such as progression-free
survival in cancer or
overall survival in clinical
trials (Bewick et al., 2004;
Arsene & Lisboa, 2007).
Unlike standard tabular
datasets, survival data are
characterized by right-
censoring, where events are not observed due to dropout, loss to follow-up, or adverse reactions.
Such right-censoring is common in medical practice and can affect nearly half of patients in some
cancer trials (Shand et al., 2024; Norcliffe et al., 2023).

However, generating synthetic data for survival analysis is particularly challenging because fail-
ing to correctly model censoring mechanisms can bias downstream clinical results (Norcliffe et al.,
2023; Wiegrebe et al., 2024). Unlike standard tabular data generation, the task requires not only
capturing covariate distributions but also faithfully (i) reproducing time-to-event distributions and
(ii) preserving censoring mechanisms (Bender et al., 2021). This interplay between covariates, sur-
vival times, and censoring makes survival data generation inherently more complex than standard
tabular synthesis and is why naı̈ve applications of generic synthetic data methods, such as standard
generative adversarial networks (GANs) or diffusion models, fail in survival contexts.

To the best of our knowledge, there exist only two methods tailored method for generating synthetic
survival data (see Table 1): SurvivalGAN (Norcliffe et al., 2023) and the framework of Ashhad and
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Henao (Ashhad & Henao, 2024; 2025) (which we refer to as Ashhad in the following). Both Sur-
vivalGAN and Ashhad decompose survival data generation into separate components for covariates
and for event times and censoring, rather than learning a single joint model. However, these ap-
proaches have major limitations: (1) in the case of SurvivalGAN, the GAN backbone is prone to
mode collapse and therefore unstable training; (2) they rely on multi-stage pipelines with different
models for covariates and event-time mechanisms, which makes them prone to error propagation
and prevents end-to-end learning. As a result, SurvivalGAN and Ashhad produce distributions of
covariates, event times, and censoring of limited fidelity.

Recently, diffusion models (Sohl-Dickstein et al., 2015; Shi et al., 2024b; Zhang et al., 2024) have
gained popularity as a powerful tool for generating synthetic tabular data. Diffusion models of-
fer stable training, avoid mode collapse, and consistently achieve high fidelity across diverse do-
mains (Dhariwal & Nichol, 2021; Chen et al., 2024), which makes them a strong candidate for our
task. However, they are not designed for survival data, and, as we show later, a naı̈ve application
thus fails to (i) reproduce realistic event-time distributions and (ii) preserve censoring mechanisms.
To the best of our knowledge, a diffusion model tailored specifically to generating synthetic survival
data is still missing.

In this paper, we propose SURVDIFF, a novel end-to-end diffusion model for generating synthetic
survival data. Our SURVDIFF is carefully designed to address the unique challenges of survival
data. For this, SURVDIFF jointly generates covariates, event times, and right-censoring, guided by
a survival-tailored loss function. Our novel loss encodes the time-to-event structure and explicitly
accounts for censoring, ensuring that SURVDIFF (i) reproduces realistic event-time distributions
and (ii) preserves censoring mechanisms. We further improve training stability with a sparsity-
aware weighting scheme that accounts for right-censoring by giving higher weight to earlier event
times, which have more support in the data, and lower weight to later event times, which have less
support. Together, these design choices allow SURVDIFF to generate synthetic survival datasets that
are faithful regarding both covariate distributions and survival outcomes.

Our main contributions1 are the following: (1) We propose a novel, diffusion-based method called
SURVDIFF for synthetic data generation in survival settings. (2) Unlike existing methods, our
SURVDIFF is end-to-end, which allows it to jointly optimize covariate fidelity and time-to-event
information under censoring. (3) We conduct extensive experiments across multiple datasets from
medicine, where we demonstrate that our SURVDIFF achieves state-of-the-art performance in both
producing high-fidelity data and downstream survival analysis. In particular, we show that our
SURVDIFF outperforms naı̈ve applications of tabular diffusion models in ablation studies.

2 RELATED WORK

Generating synthetic data is often relevant for several reasons, such as augmenting datasets (Perez &
Wang, 2017), mitigating bias and improving fairness (van Breugel et al., 2021), and promoting data
accessibility in low-resource healthcare settings (de Benedetti et al., 2020). While synthetic data is
widely explored for images and medical domains (Amad et al., 2025), less attention has been given
to survival data (see below).

ML for survival analysis: Machine learning for survival analysis faces unique challenges
(Wiegrebe et al., 2024; Frauen et al., 2025) because survival data combine time-to-event outcomes
with right-censoring, which makes standard supervised learning methods inapplicable.

Traditional statistical approaches estimate hazard ratios or survival curves (Bender et al., 2005;
Austin, 2012). More recently, deep learning methods have adapted to this setting (Ranganath et al.,
2016; Miscouridou et al., 2018; Zhou et al., 2022) but often with restrictive parametric assumptions
(e.g., Weibull distribution), or with conditioning on covariates (Bender et al., 2021; Kopper et al.,
2022). Importantly, the focus is on estimating survival times, but not generating complete synthetic
datasets including covariates, event times, and censoring information (Konstantinov et al., 2024).

Synthetic data generation for tabular data: A range of generative models has been proposed
for generating synthetic tabular data (see overview in Shi et al. (2025)). These are often based on
normalizing flows (NFlow) (Papamakarios et al., 2021), variational autoencoders (VAE) (Kingma &
Welling, 2013), and generate adversarial networks (GAN) (Goodfellow et al., 2014). Further, several

1Code is available at https://anonymous.4open.science/r/SurvDiff-E6A0. Upon accep-
tance, we move our code to a public GitHub repository.
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specialized versions have been developed, such as: CTGAN (Xu et al., 2019) extends the GAN
framework to mixed-type covariates using mode-specific normalization and conditional sampling.
TVAE (Xu et al., 2019) leverages variational autoencoders to encode and recreate heterogeneous
feature types. However, these methods are not reliable in avoiding instability or mode collapse
during training (Saxena & Cao, 2021; Gong et al., 2024).

More recent work has turned to diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020; Song et al., 2021), which recently emerged as a powerful alternative for
tabular data generation and which offers improved stability and fidelity compared to adversarial or
variational methods. A state-of-the-art method here is TabDiff (Shi et al., 2024b), which directly
builds on the earlier TabDDPM model for tabular data (Kotelnikov et al., 2023). As such, diffusion
models established strong baselines for synthetic tabular data and remain widely used. However,
these methods remain general-purpose and are not designed to (i) handle time-to-event outcomes
or (ii) preserve censoring. Still, we later use the above state-of-the-art tabular diffusion model as a
baseline.

Synthetic data generation for survival data: To the best of our knowledge, there are only two
tailored for survival data generation, namely, SurvivalGAN (Norcliffe et al., 2023) and the Ashhad
framework (Ashhad & Henao, 2024; 2025). Both methods generate the factorized distribution in
stages rather than jointly. While these approaches demonstrate the feasibility of generating synthetic
survival data, (1) in case of SurvivalGAN, the GAN backbone is prone to mode collapse and unstable
training; and (2) for both methods, the staged design and reliance on multiple components make it
more prone to error propagation.

Research gap: To the best of our knowledge, there is no tailored diffusion model for generating
synthetic survival data (Table 1). To fill this gap, we propose SURVDIFF, which is the first end-
to-end diffusion model for that purpose and which addresses key limitations of existing baselines.

Datatype Model Backbone Survival† Key generative models for synthetic data generation in our context.
While there is a large stream of generative models for tabular data, meth-
ods tailored to survival data (e.g., preserving censoring mechanisms) are
scarce.

Tabular

NFlow Flows ✗
TVAE VAE ✗
CTGAN GAN ✗
TabDiff Diffusion ✗

High-fidelity patient covariates End-to-end Avoid error propagation

Survival SurvivalGAN GAN ✓ ✗ ✗ ✗
Ashhad model-agnostic ✓ ✓ ✗ ✗
SURVDIFF (ours) Diffusion ✓ ✓ ✓ ✓

† Survival data generation models tailored to time-to-event and censoring.
Table 1: Key works on synthetic data generation.

3 SETTING

Notation. We denote random variables by capital letters X and realizations by small letters x. We
write the probability distribution over X as PX and as p(x) its probability mass function for discrete
variables or the probability density function w.r.t. the Lebesgue measure for continuous variables.

3.1 MATHEMATICAL BACKGROUND

Diffusion models: Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2021) define a generative process by perturbing data through a forward noising
scheme and then learning a reverse procedure. (1) The forward process begins from data samples
x0 ∼ PX and evolves according to a Markovian stochastic differential equation (SDE) indexed by a
diffusion time u ∈ [0, 1] via

dx = f(x, u) du+ g(u) dwu, (1)

where f is the drift term, g the diffusion coefficient, and wu a Wiener process, i.e., a Brownian
motion with independent Gaussian increments Wu+∆ − Wu ∼ N (0,∆I)). As u increases, the
distribution Pu converges to a tractable noise distribution, typically Gaussian. (2) By reversing the
process, one can then sample from the original distribution. Under mild regularity conditions, the
reverse-time dynamics satisfy

dx =
[
f(x, u)− g(u)2∇x log pu(x)

]
du+ g(u) dw̄u, (2)

where w̄u is a reverse-time Wiener process and ∇x log pu(x) the score function, i.e., the gradient of
the log density at noise level u. Because the score function is unknown, a neural network µθ(x, u) is
trained via score-matching to approximate ∇x log pu(x). Once trained, the model can approximate
the reverse SDE and transform Gaussian noise into samples from the target distribution.
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The above diffusion model provides a tractable approximation to maximum likelihood and underlies
a broad family of generative models. However, in its standard form, it cannot model mixed-type
variables (continuous or discrete), because of which extensions such as TabDiff (Shi et al., 2024b)
are used. More importantly for our setting, while there are some extensions to medical settings (Ma
et al., 2024; Amad et al., 2025; Ma et al., 2025), there is no diffusion model to capture the censoring
mechanism in survival data, which motivates the need for a tailored method.

Survival analysis: The goal of survival analysis (Bewick et al., 2004; Machin et al., 2006) is to
model the time until an event of interest (e.g., metastasis, relapse, etc.) occurs. For simplicity, we
assume that death is the event of interest. In practice, the event is not always observed because of
censoring. Let T ≥ 0 denote the censoring time if the event is censored (E = 0), and the event time
if the event was observed (E = 1).

The survival function S(t | x) = p(T > t | X = x) for individuals with covariates X = x at
time t that quantifies the probability of surviving beyond t given covariates x. The event process can
be equivalently expressed through the hazard function h(t | x) = lim∆t→0

p(t≤T<t+∆t|T≥t,X=x)
∆t ,

which gives the instantaneous risk of death at time t conditional on surviving up to t. Survival and
hazard functions are linked via S(t | x) = exp

(
−

∫ t

0
h(s | x) ds

)
. The expected time-to-event

is E[T | x] =
∫∞
0

S(t | x) dt (or a finite-time horizon when the study horizon is restricted). In
practice, the survival probabilities S(t | x) are estimated from (Xi, Ei, Ti) using tailored models
for censored time-to-event data, for example, Cox proportional hazards regression (e.g., Cox, 1972),
which parameterize either the hazard or the survival function while accounting for censoring.

3.2 PROBLEM STATEMENT

Data: We observe an i.i.d. dataset Dreal = {(x(disc)
i , x(cont)

i , Ei, Ti)}ni=1 with patient data drawn
from some distribution P , which consists of (1) continuous covariates x(cont)

i ∈ Rdcont , (2) discrete

covariates x
(disc)
i =

(
x(disc)
i,1 , . . . , x(disc)

i,ddisc

)
∈ Rddisc with one-hot encoding, (3) the event indicator

Ei ∈ {0, 1}, and (4) an observed event time Ti ∈ R+. Here, censoring is captured by the event
indicator, which denotes whether the event was observed (Ei = 1) or whether it was censored
(Ei = 0), such as due to study dropout, loss of follow-up, or adverse reactions.

Task: Given the original data Dreal, our objective is to generate ñ new samples Dsyn =

{(x(disc)
i , x(cont)

i , Ei, Ti)}ñi=1 that approximate the target distribution P . In particular, the synthetic
data Dsyn must preserve both (i) the joint distribution of covariates and (ii) survival outcomes (i.e.,
the time-to-event information as induced by the censoring mechanism conditional on covariates).

Fidelity desiderata. As in previous literature (Norcliffe et al., 2023), we measure the closeness of
Dsyn to Dreal along four main dimensions:
(i) Covariate fidelity. Here, the idea is to generate patient samples that have similar character-

istics (e.g., age, gender, etc.) as the original dataset. Optimally, Dreal and Dsyn should be
drawn from the same distribution P . This similarity can be quantified via distances such as the
Jensen–Shannon distance or the Wasserstein distance.

(ii) Survival-specific fidelity. We assess whether the synthetic data Dsyn capture the temporal struc-
ture of the survival process. This includes the Event-Time Divergence (ETD) metric, which
compares covariates of individuals experiencing events in similar time intervals, and temporal
distribution plots for censored and uncensored events.

(iii) Overall fidelity. To evaluate fidelity across all variables, we report the Shape metric (Shi et al.,
2024b), which incorporates T and E and compares marginal distributions, and provide normal-
ized marginal histograms for X , T , and E to compare real and synthetic marginal distributions.

(iv) Survival analysis performance. The aim is to generate data that allow training survival models
on synthetic samples and evaluating them on real outcomes. This follows the idea of train on
synthetic, test on real (TSTR) to assess the ability of the synthetic data to be used for real-world
applications (Esteban et al., 2017). In our case, we evaluate whether the synthetic data Dsyn

preserves event-time structure. We report the concordance index (Harrell et al., 1982) (C-index),
which measures correct risk ranking, and the Brier score (Brier, 1950), which measures the
accuracy of predicted survival probabilities.

Below, we develop a diffusion model tailored to survival data, yet where preserving censoring is
non-trivial. Unlike standard diffusion models, our method incorporates a censoring-aware objective
to generate synthetic data with event-time and censoring patterns that align with the real data Dreal.

4
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4 METHOD

Overview. We now introduce SURVDIFF, a diffusion-based model for generating synthetic survival
data in an end-to-end manner, where we jointly model both continuous and discrete covariates,
event times, and censoring indicator. SURVDIFF comprises three components (see Figure 4.3): A a
forward diffusion process that perturbs covariates, event times, and censoring indicators; B a reverse
diffusion process that reconstructs survival data from noise; and C a survival-tailored diffusion loss
that preserves event-time ordering while incorporating censored observations.

In SURVDIFF, we employ a masked-diffusion process (Sahoo et al., 2024) together with a Gaussian
diffusion process, and follow the architecture in Shi et al. (2024b) to handle mixed-type covariates.
The main novelty lies in how we design the training objective, which enables learning high-fidelity
covariate distributions and thus generates faithful synthetic datasets for downstream survival tasks.
We distinguish the role of the event indicator E (discrete) and event time T (continuous), which
progress along different noising schemes due to the different variable types.

To integrate both continuous and discrete variables, we represent the continuous covariates jointly in
a vector of dimension dcont and encode the discrete covariates each in a one-hot vector. Specifically,
for individual i and covariate j with Cj different values, we obtain x(disc)

i,j ∈ Vj = {v ∈ {0, 1}Cj+1 |∑Cj+1
k=1 vk = 1}, where the first Cj entries correspond to the different values and the last entry to

a mask state. The mask is later used to hide specific one-hot vectors, forcing the model to learn
the original value of the discrete covariate. We denote the one-hot vector representing the mask by
m ∈ Vj with mk = 1. In addition, we define Pcat(·;π) as the discrete distribution over the Cj

possible values and the mask with probabilities π ∈ ∆Cj+1, where ∆Cj+1 is the Cj + 1-simplex.
For simplification, with a slight abuse of notation, we omit the index i for a patient in the following.

4.1 A FORWARD DIFFUSION PROCESS

Following Shi et al. (2024b), the forward diffusion process in SURVDIFF perturbs each element of
the data point (x(cont), x(disc), E, T ) with the power-mean noise schedule σcont(·) and the log-linear
noise schedule σdisc(·) for continuous and discrete covariates. We review both cases below.

•Continuous covariates: Let z = (x(cont), T ). We adopt a so-called variance-exploding (VE)
SDE (Song et al., 2021; Karras et al., 2022; Shi et al., 2024b):

dz = f(z, u) du+ g(u) dWu, f(z, u) ≡ 0, g(u) =
√

d
du (σ

cont(u))2. (3)

where Wu is a standard Wiener process. The forward perturbation then has the closed form
zu = z0 + σcont(u)ε, ε ∼ N (0, Idcont), q(zu | z0) = N (z0, (σ

cont(u))2Idcont), (4)

with identity matrix I and z0 the embedding of the original data point (x(cont), T ) with diffusion time
u = 0. As σcont(u) increases, the marginal distribution converges to isotropic Gaussian noise, while
each conditional remains centered at the transformed z0.

•Discrete covariates: Let z̃ = (x(disc), E) and z̃0 the embedding of the original data point
(x(disc), E). We use a masking process (Austin et al., 2021; Shi et al., 2024a; Sahoo et al., 2024;
Shi et al., 2024b) with schedule αu = σdisc(u) ∈ [0, 1], where αu decreases monotonically in u. At
each step, a one-hot vector representing a discrete value is retained with probability αu and replaced
by the mask m with probability 1− αu via

q(z̃u | z̃0) = pcat(z̃u;αuz̃0 + (1− αu)m). (5)

As u → 1, all entries converge to the mask state, such that the representation loses informative
structure and becomes indistinguishable across samples.

4.2 B REVERSE DIFFUSION PROCESS

We now aim to model the underlying survival data distribution P . For this, the reverse process
in SURVDIFF reconstructs survival data from noisy inputs by iteratively denoising the continuous
and discrete covariates together with the event indicator and event time. The denoising network,
parameterized by θ, produces outputs for covariates and survival quantities. The diffusion loss Ldiff
guides training for feature reconstruction while the survival loss Lsurv enforces time-event structure.

•Continuous covariates: The reverse-time VE dynamics are parameterized by the score function
∇z log pu(z) with z = (x(cont), T ), which transports samples from Gaussian noise back to valid

5
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data points. To do so, we train a diffusion model µθ, with the continuous part of the model output
µcont
θ , to predict the perturbation ε in the closed-form zu = z0 + σcont(u)ε. Here, the objective is

Lcont(θ) = Ez0∼P
T,X(cont) Eu∼U [0,1] Eε∼N (0,Idcont )

[ ∥∥µcont
θ (zu, u)− ε

∥∥2
2

]
, (6)

which is equivalent (up to weightings) to score matching for VE SDEs. The diffusion model µθ,
with the continuous part of the model output µcont

θ , reconstructs the original datapoints z0 from the
noisy data.
•Discrete covariates: For z̃ = (x(disc), E) with masking schedule αu = σdisc(u), the reverse dy-
namics progressively denoise the original values from the mask m. The distribution of z̃ over an
earlier index s < u is given by

q(z̃s | z̃u, z̃0) =

pcat(z̃s; z̃u), z̃u ̸= m,

pcat

(
z̃s;

αs−αu

1−αu
z̃0 +

1−αs

1−αu
m
)
, z̃u = m.

(7)

The diffusion model µθ, with the discrete part of the model output µdisc
θ , reconstructs the original

datapoint z̃0 from the noisy inputs. The objective follows from the continuous-time evidence lower
bound (ELBO) for masking diffusion

Ldisc(θ) = Ez̃0∼P
E,X(disc)

[∫ 1

0

α̇u

1− αu
log⟨µdisc

θ (z̃u, u), z̃0⟩1[z̃u = m] du

]
. (8)

with α̇u = d
duαu and where ⟨·, ·⟩ is the inner product.

Diffusion loss: The overall diffusion loss is obtained as a weighted combination of continuous and
discrete terms with weights λcont, λdisc > 0:

Ldiff(θ) = λcontLcont(θ) + λdiscLdisc(θ). (9)

4.3 C SURVIVAL-TAILORED DIFFUSION LOSS

To encode the survival-specific data structure, including event times and censoring indicator,
SURVDIFF adds a survival loss on top of the diffusion objective. Concretely, we generate a pre-
diction of survival risk from the denoised covariates and adapt the loss to account for regions with
uneven data support, thereby ensuring that rare long-term events are not overweighted.

Let x(cont) ∈ Rdcont denote the predicted continuous vector, and let x(disc)
j ∈ Vj be the predicted

probability vector for discrete covariate j (including the [mask] state). We concatenate these to form
x = [x(cont);x

(disc)
1 ; . . . ;x

(disc)
ddisc

]. A survival head fθ, realized as a multi-layer perceptron, maps x to
a scalar risk score r = fθ(x). Now, consider sample i = 1, . . . , n with observed times Ti, event
indicators Ei, and risk sets R(Ti) = {k ∈ [n] : Tk ≥ Ti}. The risk set at time Ti contains all
patients who are still under observation and have not yet experienced the event.

Our survival loss extends the Cox partial negative log-likelihood (Cox, 1972; Katzman et al., 2018)
with sparsity-aware weighting, which models the event risk proportional to a baseline hazard and
covariate effects over time. We optimize

Lsurv(θ) = −
∑

i∈[n]:Ei=1

wi log
exp(ri)∑

j∈R(Ti)
exp(rj)

, (10)

with the predicted scalar risk score ri and the importance weights wi defined below to balance
the contributions across event times and mitigate sparsity in regions with limited support. Only
uncensored events (Ei = 1) contribute directly; censored observations affect the denominator via
the risk sets. With w = 1, our loss simplifies to the classical Cox proportional hazards loss (Katzman
et al., 2018).

In our loss, we choose wi as follows. First, we note that late events yield small risk sets and unstable
gradients. Hence, our wi should downweight rare long-duration events while preserving the partial-
likelihood structure. For event i within time Ti, we define

wi =

{
1, Ti ≤ τ,

exp
(
− α (Ti − τ)

)
, Ti > τ,

(11)
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where τ is the duration threshold (e.g., 80th percentile of the maximum observed time) from which
exponential downweighting starts. Therein, we use an exponential decay weighting to downweight
rare late events, which reduces instability from small risk sets and makes the joint optimization of
diffusion and survival objectives more stable, while remaining differentiable.

Overall SURVDIFF loss: Then, the total loss consisting of the multiple objectives is

Ltotal(θ) = Ldiff(θ) + λsurvLsurv(θ) (12)

with λsurv > 0 and initiated adaptively. This formulation allows SURVDIFF to be trained end-to-end,
jointly aligning feature reconstruction with survival-specific objectives.

FORWARD           DIFFUSION

REVERSE            DIFFUSION

minimize training loss

A

B

C

gaussian diffusion masked diffusion

M
LP

Tr
an

sf
or

m
er

M
LP

Denoising Network

Survival MLP

Survival Head

Survival MLP

Figure 2: Overview of our SURVDIFF. SURVDIFF consisting of A forward diffusion, the B
backward diffusion and the C novel survival-focused loss. Importantly, we distinguish the role of E
(event indicator; binary) and T (time-to-event; continuous), which progress along different noising
schemes due to the different variable types.

4.4 TRAINING AND SAMPLING

Training: SURVDIFF is trained end-to-end on minibatches. For each batch, we sample a noise level
u ∼ U(0, 1) and corrupt the inputs via the forward processes. The network receives the noisy tuples,
predicts denoised event indicators, event times, and continuous and discrete covariates, from which
the diffusion loss Ldiff is computed. Denoised covariates define the survival input, yield risk scores,
and contribute to the survival loss Lsurv. To stabilize training λsurv is monotonically interpolated
during a short warm-up period (Sønderby et al., 2016; Li et al., 2020) and then set to a calibrated
value determined by adaptive scaling:

After a short calibration phase, the survival weight λsurv is chosen such that the survival term con-
tributes a target fraction αsurv of the total objective, because the survival loss can differ substantially
in scale across datasets. Using running averages L̄diff and L̄surv over the calibration window, the
weight is computed as

λsurv = min
{
λmax,

αsurvL̄diff

(1− αsurv)(L̄surv + ε)

}
. (13)

This choice stabilizes the balance between diffusion and survival signals. The fixed calibrated weight
preserves a stable training signal, as fully adaptive signals over all timesteps can drive the ratio by
shrinking λsurv instead of minimizing the loss.

Sampling: After training we generate synthetic data Dsyn by initializing continuous data points as
z1 ∼ N (0, I) and discrete ones as z̃1 = m, for u = 1.The learned reverse process then runs over
a discretized schedule from u = 1 to u = 0, applying Gaussian denoising updates to zu and cate-
gorical unmasking to z̃u. This yields a full synthetic sample (x(cont), x(disc), E, T ). Administrative
censoring can be applied post hoc to reflect study-specific follow-up horizons.
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5 EXPERIMENTS
We next evaluate SURVDIFF across multiple survival datasets and benchmarks, with all imple-
mentation details given in Supplement A. Datasets: We demonstrated the superior performance
of SURVDIFF in extensive experiments across various medical datasets with survival data: (i) the
ACTG clinical trial dataset (AIDS) (Hammer et al., 1997), (ii) the German Breast Cancer Study
Group 2 dataset (GBSG2) (Schumacher et al., 1994), and (iii) the Molecular Taxonomy of Breast
Cancer International Consortium dataset (METABRIC) (Pereira et al., 2016). Details for each
dataset are in Supplement A.

Metric Method AIDS GBSG2 METABRIC

JS
distance
(↓: better)

NFlow 0.0129 ± 0.0017 0.0115 ± 0.0023 0.0123 ± 0.0017
TVAE 0.0111 ± 0.0011 0.0130 ± 0.0009 0.0098 ± 0.0008

CTGAN 0.0176 ± 0.0019 0.0120 ± 0.0017 0.0179 ± 0.0026
TabDiff 0.0085 ± 0.0003 0.0179 ± 0.0005 0.0098 ± 0.0002

SurvivalGAN 0.0135 ± 0.0018 0.0159 ± 0.0021 0.0212 ± 0.0027
Ashhad 0.0074 ± 0.0003 0.0496 ± 0.0002 0.0070 ± 0.0010∗

SurvDiff (ours) 0.0059 ± 0.0014 0.0074 ± 0.0007 0.0062 ± 0.0013

Wasserstein
distance
(↓: better)

NFlow 0.1161 ± 0.0106 0.0675 ± 0.0137 0.0826 ± 0.0144
TVAE 0.0779 ± 0.0045 0.0400 ± 0.0033 0.0349 ± 0.0029

CTGAN 0.2461 ± 0.0253 0.0558 ± 0.0094 0.1058 ± 0.0212
TabDiff 0.0882 ± 0.0007 0.0533 ± 0.0012 0.0492 ± 0.0005

SurvivalGAN 0.1545 ± 0.0151 0.0889 ± 0.0218 0.1689 ± 0.0272
Ashhad 0.1068 ± 0.0021 0.9287 ± 0.0047 0.0890 ± 0.0040∗

SurvDiff (ours) 0.0960 ± 0.0146 0.0347 ± 0.0026 0.0535 ± 0.0059

Shape
error rate
(↓: better)

NFlow 0.0858 ± 0.0104 0.1032 ± 0.0116 0.0872 ± 0.0106
TVAE 0.0768 ± 0.0053 0.1403 ± 0.0051 0.0802 ± 0.0050

CTGAN 0.1175 ± 0.0135 0.1260 ± 0.0140 0.1235 ± 0.0130
TabDiff 0.0577 ± 0.0015 0.1392 ± 0.0038 0.0679 ± 0.0012

SurvivalGAN 0.0934 ± 0.0083 0.1550 ± 0.0130 0.1507 ± 0.0168
Ashhad 0.0983 ± 0.0034 0.2485 ± 0.0025 ∗

SurvDiff (ours) 0.0494 ± 0.0134 0.1138 ± 0.0190 0.0519 ± 0.0121

∗ These values are the reported values in (Ashhad & Henao, 2024; 2025).

Table 2: Covariate fidelity. Covariate diversity metrics over different datasets (reported: mean ±
s.d.) across 10 runs with different seeds).
Baselines: Our choice of benchmark is consistent with earlier work (Norcliffe et al., 2023). In
particular, we benchmark our SURVDIFF against the following baselines for generating synthetic
tabular or survival data: (1) NFlow, (2) TVAE, (3) CTGAN, (4) TabDiff, (5) SurvivalGAN, and
(6) Ashhad. Details about the baselines and hyperparameters are in Supplement B.

Performance metrics: We compare the synthetic data along four dimensions:
(i) Covariate fidelity. We assess how closely the distribution of patient characteristics in the syn-

thetic data matches the original data. For this, we compare the observed covariates via the
Jensen-Shannon (JS) distance and the Wasserstein distance. We report marginal JS for per-
feature alignment and joint WS to capture overall multivariate structure.

(ii) Survival-specific fidelity. We evaluate whether the synthetic data reproduce the temporal struc-
ture of the survival process. The evaluation includes the Event-Time Divergence (ETD) metric,
which compares covariates of individuals with events occurring in similar equally sized time
intervals (Supplement C), as well as temporal distribution plots for censored and uncensored
events.

(iii) Overall fidelity. To assess fidelity across all patient variables, we report the Shape metric Shi
et al. (2024b), which quantifies differences in the marginal distributions, and present normalized
marginal histograms.

(iv) Survival analysis performance. The goal is to generate data that enable survival models trained
on synthetic samples to generalize to real outcomes. For this, we train five popular survival
models on the synthetic datasets, namely: (a) DeepHit (Lee et al., 2018), (b) Cox proportional
hazards (Cox, 1972), (c) Weibull accelerated failure time regression (Weibull, 1951), (d) ran-
dom survival forest (Ishwaran et al., 2008), and (e) XGBoost (Chen & Guestrin, 2016). We
then compare the prediction quality on the real data with the corresponding model via: (1) the
concordance index (C-index) (Harrell et al., 1982), which evaluates the accuracy of the ranking
between predicted survival probabilities and observed event times, and (2) the Brier score (Brier,
1950), which assesses the calibration of the probabilistic predictions. We report averaged results
across the five survival models over 10 different seeds.
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6 RESULTS
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Figure 3: t-SNE visualization of covariate fidelity of real and
synthetic data on GBSG2. ⇒ Takeaway: Synthetic samples from
SURVDIFF are well aligned with the original data. SURVDIFF
achieves high covariate fidelity.

•Covariate fidelity: We report
the covariate diversity in Ta-
ble 2. We observe the following:
SURVDIFF consistently outper-
forms all other methods in terms
of the marginal JS distance aver-
aged over all features across all
datasets. Furthermore, SURVD-
IFF achieves highly competitive
performance measured by the
joint Wasserstein distance in all
experiments. SURVDIFF outper-
forms SurvivalGAN as the state-
of-the-art baseline for synthetic
survival data generation by a
clear margin. For example, in
terms of the joint WS, our SURVDIFF has a clearly lower distance compared to SurvivalGAN
(GBSG2: −60%; etc.). Additional visualizations and implementation details are in Supple-
ments A, D, and E.
Insights: To further evaluate the goodness-of-fit of the generated data, we visually assess the covari-
ate fidelity in Fig. 3 and the survival-specific fidelity in Fig. 4. All baselines have large discrepancies
between observed and synthetic covariates. This is particularly strong for SurvivalGAN, our main
baseline, but also for other models. The results again confirm the fidelity of SURVDIFF.
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Figure 4: Temporal distributions of real and synthetic
survival data on METABRIC, shown separately for
censored and uncensored patients. ⇒ Takeaway: Syn-
thetic patients from SURVDIFF exhibit similar event-
time patterns as the real cohort, indicating strong tem-
poral fidelity.

• Survival-specific fidelity: We evalu-
ate whether the synthetic data preserve
the temporal structure of the survival
process. Fig. 4 compares the event-time
distributions for censored and uncensored
patients. The curves show that patients
who experience an event at early, mid,
or late horizons exhibit similar tempo-
ral patterns in both the real and synthetic
datasets. This indicates that SURVD-
IFF reproduces the progression of event
times rather than collapsing toward fre-
quent horizons.

• Overall fidelity: We further report the
Shape metric (Shi et al., 2024b) in Tab. 2,
which measures differences in the distri-
butional shape of all patient variables and
offers a focused view on whether real and
synthetic samples share similar structural
patterns. SURVDIFF achieves competi-
tive performance. To evaluate specifically
whether the time-to-event distribution is
faithful, we explicitly report the Event-
Time Divergence in Supplement C and
normalized marginal covariate histograms
in Supplement D, which further quantifies
how well the synthetic data replicate char-
acteristics of patients who experience an
event at similar horizons.

Insight. In sum, SURVDIFF performs
overall best in preserving the time-to-event
dynamics and generating synthetic with
high-fidelity temporal dynamics.
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Metric Method AIDS GBSG2 METABRIC

C-Index
(↑: better)

Real data 0.6844 ± 0.0925 0.6592 ± 0.0275 0.6225 ± 0.0225
NFlow 0.6032 ± 0.0987 0.6032 ± 0.0987 0.5711 ± 0.0286
TVAE 0.6144 ± 0.1018 0.6406 ± 0.0532 0.5825 ± 0.0531

CTGAN 0.5457 ± 0.0205 0.5945 ± 0.0232 0.5463 ± 0.0310
TabDiff 0.6572 ± 0.1117 0.6286 ± 0.0247 0.6078 ± 0.0144

SurvivalGAN 0.6354 ± 0.0553 0.6357 ± 0.0221 0.5837 ± 0.0092

Ashhad 0.5184 ± 0.1324 0.5062 ± 0.0705 0.5890 ± 0.0150†

SurvDiff (ours) 0.7017 ± 0.0782 0.6613 ± 0.0215 0.5992 ± 0.0276

Brier Score
(↓: better)

Real data 0.0630 ± 0.0013 0.2063 ± 0.0150 0.1997 ± 0.0114
NFlow 0.0532 ± 0.0019 0.2116 ± 0.0083 0.2109 ± 0.0043

CTGAN 0.0671 ± 0.0071 0.2256 ± 0.0025 0.2477 ± 0.0203
TVAE 0.0531 ± 0.0015 0.2115 ± 0.0149 0.2136 ± 0.0082

TabDiff 0.0539 ± 0.0052 0.2130 ± 0.0050 0.1997 ± 0.0086
SurvivalGAN 0.0573 ± 0.0026 0.2154 ± 0.0064 0.2180 ± 0.0055

Ashhad 0.0537 ± 0.0021 0.2192 ± 0.0082 0.2150 ± 0.0050†

SurvDiff (ours) 0.0522 ± 0.0024 0.2036 ± 0.0092 0.2120 ± 0.0040

†
Values taken from Ashhad & Henao (2024; 2025).

Table 3: Survival model performance. Survival model metrics over different datasets (reported:
mean ± s.d. across 10 runs with different seeds). ⇒ Takeaway: Using synthetic samples from
SURVDIFF consistently results in strong downstream performance results, especially under strong
right censoring. Again, this benefit is especially large in comparison to the main baseline Survival-
GAN.
•Survival analysis performance: In Table 3, we evaluate the performance of all models on down-
stream survival tasks. We observe that (1) SURVDIFF consistently achieves large improvements over
SurvivalGAN and Ashhad on survival model tasks, (2) SURVDIFF achieves the best performance on
AIDS and GBSG2, while performing on par with the best methods on METABRIC, and (3) the
advantages of SURVDIFF are especially pronounced on datasets with stronger censoring (AIDS &
GBSG2).

•Sensitivity to dataset size: Inspired by medical practice, we also present results on uniformly at
random downsampled datasets to understand the sensitivity to small sample size settings, which are
common in medicine. This additional sensitivity study is presented in Supplement G). Therein, we
see large benefits of SURVDIFF over existing methods in small-sample settings. Hence, our method
is well-designed to meet needs in medical practice.

•Additional results: For completeness, we also report Kaplan-Meier-based metrics in Supple-
ment F. Therein, SURVDIFF shows comparable performance. We further include ablation studies
and parameter sensitivity analysis of our novel loss in Supplement J, and visualize loss convergence
in Supplement H.

• Extension to differential privacy: We show that SURVDIFF can be readily extended to incor-
porate differential privacy. For this, we present a differentially private variant of SURVDIFF, which
offers formal privacy guarantees under DP-SGD (Dwork & Roth, 2014; Abadi et al., 2016). Imple-
mentation details and experiment results are in Supplement I. We show that SURVDIFF outperforms
the DP-GAN baseline across covariate fidelity and survival analysis performance metrics.

7 DISCUSSION

Clinical considerations. We follow needs in clinical research, where it is essential to preserve
patient characteristics in synthetic data (Yan et al., 2022; Giuffrè & Shung, 2023). Existing baselines,
such as SurvivalGAN, often fail to do so, leading to mismatches that no longer accurately reflect
the true patient population. Since summarizing patient demographics is typically the first step in
clinical studies, inaccuracies in the patient covariate distributions are particularly problematic: they
can distort estimates of incidence rates and lead to misleading subgroup survival times. Hence, a key
strength of our method is to preserve covariate fidelity; i.e., ensuring that synthetic datasets remain
clinically meaningful while also supporting strong survival analysis performance.

Conclusion: We propose SURVDIFF, a novel end-to-end diffusion model tailored to generating
survival data. Our SURVDIFF jointly generates patient covariates, event times, and right-censoring
indicators in an end-to-end manner. As a result, SURVDIFF generating reliable synthetic datasets
that (i) match patient characteristics and (ii) produce faithful event-time distributions that preserve
censoring mechanisms and thus improve downstream survival analysis.
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A IMPLEMENTATION DETAILS

A.1 DATASETS

AIDS (ACTG 320 Trial). The AIDS dataset2 originates from the ACTG 320 trial, which evaluated
combination antiretroviral therapy in HIV patients (Hammer et al., 1997). It contains data from
1151 patients. The observed event is death, and 91.7% of patients are censored. Covariates include
baseline clinical and laboratory measures such as CD4 cell count, age, hemoglobin, weight, and
prior therapy indicators.

GBSG2 (German Breast Cancer Study Group 2). The GBSG2 dataset3 stems from a randomized
clinical trial of 686 breast cancer patients treated between 1984 and 1989 (Schumacher et al., 1994).
The endpoint is recurrence-free survival, defined as the time to relapse or death, whichever occurs
first. Here, 56.4% patients are censored. Covariates cover age, menopausal status, tumor size, grade,
number of positive lymph nodes, progesterone and estrogen receptor levels, and hormone therapy
status.

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). The
METABRIC dataset4 is a large breast cancer cohort study with 1903 patients and long-term follow-
up (Pereira et al., 2016). The event of interest is overall survival. The censoring rate is 42%. It
includes a mix of clinical variables (age, tumor size, grade, receptor status).

A.2 IMPLEMENTATION OF SURVDIFF

SURVDIFF is implemented in Pytorch. All experiments were carried out on one NVIDIA A100-
PCIE-40GB. The default settings of our method and all benchmarking methods are listed below in
Section B. The model architecture is based on the architecture of (Shi et al., 2024b). Each of the
experiments was concluded after at most 13min.

Covariates: We embed high-cardinality discrete covariates as continuous vectors; however, we still
distinguish them formally by their underlying finite support.

2https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.
datasets.load_aids.html

3https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.
datasets.load_gbsg2.html

4https://github.com/havakv/pycox
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B HYPERPARAMETERS

The hyperparameter grids for NFlow, CTGAN, TVAE, and SurvivalGAN follow the configurations
in the SurvivalGAN paper (Norcliffe et al., 2023) provided in the SynthCity library (Qian et al.,
2023). For the Ashhad baseline, we use the hyperparameters reported in the original paper (Ashhad
& Henao, 2024; 2025). All benchmark models are run with these published settings to ensure
comparability across datasets.

Model Hyperparameters

SURVDIFF

No. Epochs 1200
Transformer Hidden Layers 5
MLP Hidden Layers 3
Survival MLP Hidden Layers 2
σmin 0.002
σmax 20.0
Learning Rate 0.001
Weight Decay 0.0001
Dropout 0.1
Batch Size 256
Warm-up Epochs 150
αsurv 0.3
Calibration Steps 10
Sampling Steps 300

Table 4: Hyperparameters for SURVDIFF.

Model Hyperparameters

CoxPH
Estimation Method Breslow
Penalizer 0.0
L1 Ratio 0.0

Weibull AFT
α 0.05
Penalizer 0.0
L1 Ratio 0.0

SurvivalXGBoost

Objective Survival: AFT
Evaluation Metric AFT Negative Log Likelihood
AFT Loss Distribution Normal
AFT Loss Distribution Scale 1.0
No. Estimators 100
Column Subsample Ratio (by node) 0.5
Maximum Depth 8
Subsample Ratio 0.5
Learning Rate 0.05
Minimum Child Weight 50
Tree Method Histogram
Booster Dart

RandomSurvivalForest
Max Depth 3
No. Estimators 100
Criterion Gini

Deephit

No. Durations 1000
Batch Size 100
Epochs 2000
Learning Rate 0.001
Hidden Width 300
α 0.28
σ 0.38
Dropout Rate 0.02
Patience 20
Using Batch Normalization True

Table 5: Hyperparameters for survival models.
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Model Hyperparameters

SurvivalGAN

CTGAN
No. Iterations 1500
Generator Hidden Layers 3
Discriminator Hidden Layers 2
Discriminator and Generator Hidden Width 250
Discriminator Non-linearity Leaky ReLU
Generator Non-linearity Tanh
Discriminator and Generator Dropout Rate 0.1
Learning Rate 0.001
Weight Decay 0.001
Batch Size 500
Gradient Penalty (λ 10
Encoder Max Clusters 10

DeepHit
No. Durations 100
Batch Size 100
No. Epochs 2000
Learning Rate 0.001
Hidden Width 300
α 0.28
σ 0.38
Dropout Rate 0.02
Patience 20
Using Batch Normalization True

XGBoost
No. Estimators 200
Depth 5
Booster Dart
Tree Method Histogram

TabDiff

No. Epochs 4000
Transformer Hidden Layers 5
MLP Hidden Layers 2
σmin 0.002
σmax 80.0
Learning Rate 0.002
Batch Size 256
Sampling Steps 300

CTGAN

Embedding Width 10
Generator and Discriminator No. Hidden Layers 2
Generator and Discriminator Hidden Width 256

Generator and Discriminator Learning Rate 2 × 10−4

Generator and Discriminator Decay 1 × 10−6

Batch Size 500
Discriminator Steps 1
No. Iterations 300
Pac 10

TVAE

Embedding Width 128
Encoder and Decoder No. Hidden Layers 2
Encoder and Decoder Hidden Width 128

L2 Scale 1 × 10−5

Batch Size 500
No. Iterations 300
Loss Factor 2

NFlow

No. Iterations 500
No. Hidden Layers 1
Hidden Width 100
Batch Size 100
No. Transform Blocks 1
Dropout Rate 0.1
No. Bins 8
Tail Bound 3

Learning Rate 1 × 10−3

Base Distribution Standard Normal
Linear Transform Type Permutation
Base Transform Type Affine-Coupling

Ashhad

No. Iterations 1000
Batch Size 1024
Learning Rate 0.002
Weight Decay 0.0001
No. of Time-Steps 1000
Scheduler Cosine
Gaussian Loss Type MSE

Table 6: Hyperparameters for benchmarking models.
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B.1 IMPLEMENTATION DETAILS OF THE COVARIATE DISTRIBUTION EXPERIMENTS

For each dataset with n training samples and p covariates, we generate exactly n synthetic samples
with every method. All covariates are preprocessed exactly in the same way as for the survival
models (continuous features standardized, categorical variables one-hot encoded), and we do not
apply any additional dimensionality reduction (no PCA or similar). Following the commonly used
SynthCity library (Qian et al., 2023), we report a marginal Jensen–Shannon distance and a joint
Wasserstein distance.

Jensen–Shannon distance (marginal). For each covariate k ∈ {1, . . . , p} we approximate its
marginal distribution on the real data by an equal–width histogram with

B = min
{
10, #{unique values in X

(k)
real}

}
(14)

bins. The resulting bin edges are reused to bin the synthetic data, so real and synthetic histograms
share the same support. Let p(k) and q(k) denote the corresponding normalized bin counts. We apply
add–one smoothing to all bins and compute the Jensen–Shannon distance JSD(p(k), q(k)) using the
SciPy implementation. The reported value is the average over covariates, i.e.,

JSDmarginal =
1

p

p∑
k=1

JSD(p(k), q(k)). (15)

After preprocessing, there are no missing values; extreme observations are not removed but simply
fall into the outermost histogram bins.

Wasserstein distance (joint). Let X ∈ Rn×p and X̃ ∈ Rn×p denote the real and synthetic covariate
matrices, respectively. We apply feature-wise min-max scaling to [0, 1] using only the real data via

X̂ = MinMax(X), ˆ̃X = MinMax(X̃), (16)

and treat X̂ and ˆ̃X as empirical distributions over Rp with equal mass 1/n on each
sample. We then compute a Sinkhorn–regularized 2–Wasserstein distance using the
SamplesLoss(loss="sinkhorn") optimal transport solver (GeomLoss). This matches the
WassersteinDistance metric in SynthCity (Qian et al., 2023). Since all datasets are fully ob-
served after preprocessing, NaNs do not occur, and potential anomalies are handled solely through
the min–max scaling.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C EVENT-TIME DIVERGENCE (ETD)

A survival-aware generative model should reproduce not only when events occur but also which
types of patients tend to experience events at different stages of the disease course. If the synthetic
cohort is to be useful for survival modeling, then the synthetic patients who die early, mid-course,
or late should resemble the corresponding groups in the real cohort. The Event-Time Divergence
(ETD) metric evaluates this alignment.

We divide the observed event-time horizon into five equally sized intervals and focus on uncensored
individuals whose events fall within each interval. For every interval, we compare the covariate
distribution of real patients who die in that interval with that of synthetic patients whose generated
event times fall in the same interval. The comparison uses the Jensen-Shannon distance, producing
five divergence scores that measure how well the model reproduced the covariate composition of
event-time matched subpopulations.

Formally, we have

ETD =

5∑
k=1

JSDist(Preal(X | E = 1, T ∈ Ik), Psyn(X | E = 1, T ∈ Ik), (17)

where Ik denotes the k-th of five equal-mass event-time intervals obtained by partitioning uncen-
sored event times T . We then aggregate these per-interval divergences into a sum across intervals.

Across all datasets, SURVDIFF yields the lowest ETD values for the aggregated metric (Tables 7–
9). This reflects that our model not only captures the overall covariates structure but also generates
patients with event-time patterns that mirror those of real clinical cohorts.

Event-Time-Divergence Ctgan Tvae Nflow Survival gan Tabdiff Survdiff

0 ≤ T ≤ 60.4 0.0672 ± 0.0158 0.0515 ± 0.0193 0.0348 ± 0.0078 0.0360 ± 0.0133 0.0245 ± 0.0034 0.0253 ± 0.0049
60.4 < T ≤ 119.8 0.0610 ± 0.0103 0.0264 ± 0.0044 0.0349 ± 0.0093 0.0331 ± 0.0158 0.0313 ± 0.0029 0.0291 ± 0.0031
119.8 < T ≤ 179.2 0.0640 ± 0.0149 0.0697 ± 0.0078 0.0347 ± 0.0093 0.0414 ± 0.0103 0.0377 ± 0.0041 0.0404 ± 0.0062
179.2 < T ≤ 238.64 0.0647 ± 0.0182 0.0479 ± 0.0073 0.0409 ± 0.0077 0.0583 ± 0.0111 0.0523 ± 0.0044 0.0458 ± 0.0032
238.64 < T ≤ 298.0 0.0613 ± 0.0107 0.0304 ± 0.0043 0.0306 ± 0.0102 0.0854 ± 0.0000 0.0616 ± 0.0107 0.0284 ± 0.0046

sum 0.3182 ± 0.0320 0.2296 ± 0.0229 0.1813 ± 0.0199 0.2532 ± 0.0256 0.2073 ± 0.0192 0.1690 ± 0.0102

Table 7: Event-Time-Divergence on AIDS. For five equally sized event-time intervals, we compute
the Jensen–Shannon distance between real and synthetic distributions using only uncensored individ-
uals who die within each interval, ensuring covariate-matched comparison. Reported: mean ± s.d.
across runs.

Event-Time-Divergence Ctgan Tvae Nflow Survival gan Tabdiff Survdiff

0 ≤ T ≤ 548.8 0.0266 ± 0.0091 0.0182 ± 0.0040 0.0196 ± 0.0035 0.0270 ± 0.0077 0.0329 ± 0.0021 0.0192 ± 0.0022
548.8 < T ≤ 1025.6 0.0230 ± 0.0049 0.0157 ± 0.0019 0.0166 ± 0.0038 0.0262 ± 0.0073 0.0231 ± 0.0001 0.0134 ± 0.0035
1025.6 < T ≤ 1502.4 0.0253 ± 0.0047 0.0267 ± 0.0031 0.0222 ± 0.0050 0.0350 ± 0.0084 0.0295 ± 0.0022 0.0194 ± 0.0026
1502.4 < T ≤ 1979.2 0.0299 ± 0.0053 0.0250 ± 0.0032 0.0272 ± 0.0060 0.0502 ± 0.0116 0.0349 ± 0.0048 0.0239 ± 0.0017
1979.2 < T ≤ 2456.0 0.0506 ± 0.0125 0.0607 ± 0.0161 0.0384 ± 0.0048 0.0870 ± 0.0066 0.0436 ± 0.0071 0.0341 ± 0.0069

sum 0.1553 ± 0.0177 0.1463 ± 0.0173 0.1214 ± 0.0105 0.2255 ± 0.0190 0.1641 ± 0.0093 0.1100 ± 0.0086

Table 8: Event-Time-Divergence on GBSG2. For five equally sized event-time intervals, we
compute the Jensen–Shannon distance between real and synthetic distributions using only uncen-
sored individuals who die within each interval, ensuring covariate-matched comparison. Reported:
mean ± s.d. across runs.
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Event-Time-Divergence Ctgan Tvae Nflow Survival gan Tabdiff Survdiff

0 ≤ T ≤ 71.1 0.0280 ± 0.0081 0.0162 ± 0.0029 0.0173 ± 0.0042 0.0310 ± 0.0108 0.0158 ± 0.0007 0.0130 ± 0.0030
71.1 < T ≤ 142.1 0.0292 ± 0.0119 0.0134 ± 0.0022 0.0129 ± 0.0036 0.0287 ± 0.0038 0.0131 ± 0.0009 0.0089 ± 0.0010
142.1 < T ≤ 213.2 0.0276 ± 0.0082 0.0128 ± 0.0016 0.0162 ± 0.0045 0.0328 ± 0.0094 0.0196 ± 0.0021 0.0108 ± 0.0013
213.2 < T ≤ 284.2 0.0288 ± 0.0078 0.0193 ± 0.0033 0.0202 ± 0.0029 0.0645 ± 0.0108 0.0221 ± 0.0015 0.0165 ± 0.0034
284.2 < T ≤ 355.2 0.0600 ± 0.0189 0.0732 ± 0.0009 0.0425 ± 0.0084 0.0722 ± 0.0000 0.0279 ± 0.0029 0.0363 ± 0.0112

sum 0.1735 ± 0.0263 0.1349 ± 0.0053 0.1092 ± 0.0114 0.2291 ± 0.0183 0.0985 ± 0.0041 0.0855 ± 0.0122

Table 9: Event-Time-Divergence on METABRIC. For five equally sized event-time intervals, we
compute the Jensen–Shannon distance between real and synthetic distributions using only uncen-
sored individuals who die within each interval, ensuring covariate-matched comparison. Reported:
mean ± s.d. across runs.
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D ADDITIONAL COVARIATE, EVENT-TIME, EVENT-INDICATOR, AND
KAPLAN-MEIER VISUALIZATIONS

To complement the main results, we provide additional visualizations of covariate, event-time, and
event-indicator structure across all datasets. Figures 5 and 3 report t-SNE embeddings comparing
real and synthetic covariates for the baseline models on the AIDS and METABRIC datasets. Figures
10–12 present joint t-SNE and Kaplan-Meier visualizations for SURVDIFF and baselines, aggregated
over ten random seeds, illustrating alignment in covariate geometry and Kaplan-Meier trajectories.
Finally, Figures 7–9 show marginal distributions for all covariates, offering a complementary view
of univariate fidelity. Together, these visualizations provide a qualitative assessment of the stability
of training and the consistency of generated covariates and event-time characteristics across datasets.

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.050

SurvDiff
Real data
Synthetic data

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.121

CTGAN

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.098

NFlow

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.140

SurvivalGAN

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.079

TabDiff

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.123

TVAE

Figure 5: t-SNE visualization of covariate fidelity on the AIDS dataset.

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.069

SurvDiff
Real data
Synthetic data

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.184

CTGAN

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.103

NFlow

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.242

SurvivalGAN

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.120

TabDiff

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

Co
va

ria
te

 d
iv

er
sit

y

JS Distance: 0.175

TVAE

Figure 6: t-SNE visualization of covariate fidelity on the METABRIC dataset.
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Figure 7: Marginal probability visualization on the AIDS dataset.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0.05

ag
e

SurvDiff
Real Data
SurvDiff

20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

TabDiff

20 30 40 50 60 70 80
0.00

0.02

0.04

0.06

0.08

SurvivalGAN

20 30 40 50 60 70 80
0.00

0.02

0.04

0.06

0.08

0.10

TVAE

0 200 400 600 800 1000 1200
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
es

tre
c

0 200 400 600 800 1000 1200
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0 200 400 600 800 1000 1200
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0 200 400 600 800 1000 1200
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

pn
od

es

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 500 1000 1500 2000
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

pr
og

re
c

0 500 1000 1500 2000
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

ts
ize

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 500 1000 1500 2000 2500
0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008

du
ra

tio
n

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ho
rT

h

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
en

os
ta

t

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

tg
ra

de

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

ev
en

t

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

Figure 8: Marginal probability visualization on the GBSG2 dataset.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

x0

SurvDiff
Real Data
SurvDiff

6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

TabDiff

6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

SurvivalGAN

6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
TVAE

5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

x2

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

5.0 5.5 6.0 6.5 7.0 7.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x3

5.0 5.5 6.0 6.5 7.0 7.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

5.0 5.5 6.0 6.5 7.0 7.5
0.0

0.5

1.0

1.5

2.0

2.5

5.0 5.5 6.0 6.5 7.0 7.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

x8

20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

du
ra

tio
n

0 100 200 300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 100 200 300
0.000

0.002

0.004

0.006

0.008

0.010

0 100 200 300
0.000

0.002

0.004

0.006

0.008

0.010

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x4

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x5

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x6

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

0.5 0.0 0.5 1.0 1.5
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x7

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ev
en

t

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.0 0.5 1.0 1.5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 9: Marginal probability visualization on the METABRIC dataset.
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Figure 10: t-SNE visualization and KM curves on the AIDS dataset.
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Figure 11: t-SNE visualization and KM curves on the GBSG2 dataset.
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Figure 12: t-SNE visualization and KM curves on the METABRIC dataset.
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E ADDITIONAL TEMPORAL SURVIVAL-TIME VISUALIZATIONS

To assess how well the generative models reproduce temporal survival structure, we report time-
to-censoring and time-to-event distributions in Figures 13 and 14. These density plots compare the
empirical survival times of real individuals with those generated by each baseline model, separately
for censored and uncensored cases. The visualizations highlight whether synthetic cohorts capture
early-event behavior, late-event tails, and typical censoring patterns observed in the real data. To-
gether, these plots provide a qualitative view of temporal fidelity that complements the Event-Time
Divergence (ETD) metric in Supplement C and the results reported in the main text.
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Figure 13: Temporal fidelity visualization of covariate fidelity on the AIDS dataset.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

De
ns

ity

Su
rv

D
iff

Censored (E=0)
Real Data
SurvDiff

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

De
ns

ity

Uncensored (E=1)

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

De
ns

ity

Ta
bD

iff

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

De
ns

ity

0 500 1000 1500 2000 2500
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

De
ns

ity

Su
rv

iv
al

G
AN

0 500 1000 1500 2000 2500
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150
De

ns
ity

0 500 1000 1500 2000 2500
Time to Censoring

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

De
ns

ity

TV
AE

0 500 1000 1500 2000 2500
Time to Event

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

De
ns

ity

Figure 14: Temporal fidelity visualization of covariate fidelity on the GBSG2 dataset.
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F KAPLAN-MEIER METRICS

In addition to the (i) covariate distribution fidelity metrics and the (ii) survival model performance
metrics, we also examine (iii) survival metrics, where SURVDIFF shows broadly comparable per-
formance across datasets. We evaluate how well synthetic data reproduce survival outcomes. For
this, we compare Kaplan-Meier curves (Kaplan & Meier, 1958) of real and synthetic cohorts using
the mean squared error (KM MSE) (Fay et al., 2013), and quantify differences in restricted mean
survival time (RMST gap) (Royston & Parmar, 2011; Kim et al., 2017) up to a fixed horizon. For
the RMST gap, it is important to note that, since it summarizes the difference in areas under the
survival curves, it can mask deviations that cancel each other out (e.g., synthetic survival curves
slightly above real ones early but below later). This is shown in Table 10. Overall, the results show
the strong performance of our SURVDIFF.

Metric Method AIDS GBSG2 METABRIC

RMST gap
(↓: better)

NFlow 0.0235 ± 0.0066 0.0697 ± 0.0205 0.0598 ± 0.0251
TVAE 0.0360 ± 0.0023 0.0408 ± 0.0152 0.0223 ± 0.0064

CTGAN 0.0491 ± 0.0204 0.0510 ± 0.0178 0.0890 ± 0.0248
TabDiff 0.0092 ± 0.0014 0.0091 ± 0.0034 0.0329 ± 0.0027

SurvivalGAN 0.0079 ± 0.0028 0.0319 ± 0.0124 0.0644 ± 0.0178
SurvDiff (ours) 0.0155 ± 0.0051 0.0412 ± 0.0208 0.0577 ± 0.0267

KM MSE
(↓: better)

NFlow 0.0009 ± 0.0003 0.0095 ± 0.0042 0.0082 ± 0.0036
TVAE 0.0015 ± 0.0002 0.0109 ± 0.0027 0.0036 ± 0.0006

CTGAN 0.0049 ± 0.0041 0.0087 ± 0.0077 0.0109 ± 0.0027
TabDiff 0.0001 ± 0.0000 0.0007 ± 0.0001 0.0049 ± 0.0003

SurvivalGAN 0.0002 ± 0.0001 0.0045 ± 0.0016 0.0124 ± 0.0033
SurvDiff (ours) 0.0004 ± 0.0002 0.0058 ± 0.0016 0.0075 ± 0.0034

Table 10: KM metrics. Kaplan-Meier metrics across multiple runs over different datasets (reported:
mean ± s.d.) over 10 runs with different seeds.
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G SENSITIVITY STUDY: REDUCED DATASET SIZES

We further investigate the performance of SURVDIFF under reduced dataset sizes by randomly
downsampling the AIDS and METABRIC datasets. Table 11 summarizes the results in comparison
to TabDiff across the (i) covariate distribution fidelity metrics, the (ii) survival analysis performance
metrics, and (iii) survival metrics. Across most metrics and settings, SURVDIFF achieves clear im-
provements, with only three exceptions in which the results remain comparable. On all other metrics,
SURVDIFF demonstrates superior performance. Notably, on METABRIC, the gains are substantial,
with large improvements in Wasserstein distance, Brier score, RMST gap, and KM MSE. This is
particularly relevant since METABRIC is the dataset where both methods were previously on par in
the larger-scale evaluation. The results thus underscore that SURVDIFF not only retains its strength
in smaller-sample regimes but, in fact, shows even stronger advantages for smaller datasets. ⇒
These findings highlight the robustness of our approach when data availability is limited.

Metric Method AIDS (500) AIDS (700) METABRIC (500) METABRIC (700)

JS distance
(↓: better)

TabDiff 0.0083 ± 0.0010 0.0086 ± 0.0006 0.0300 ± 0.0007 0.0280 ± 0.0008
SurvDiff (ours) 0.0083 ± 0.0012 0.0092 ± 0.0007 0.0048 ± 0.0017 0.0031 ± 0.0005

Wasserstein distance
(↓: better)

TabDiff 0.1801 ± 0.0432 0.1398 ± 0.0326 0.1066 ± 0.0332 0.0882 ± 0.0119
SurvDiff (ours) 0.1280 ± 0.0079 0.1211 ± 0.0157 0.0877 ± 0.0069 0.0774 ± 0.0062

C-Index
(↑: better)

TabDiff 0.6303 ± 0.0698 0.5818 ± 0.0428 0.6452 ± 0.0178 0.6275 ± 0.0282
SurvDiff (ours) 0.7401 ± 0.0533 0.6482 ± 0.0268 0.6431 ± 0.0338 0.6343 ± 0.0475

Brier Score
(↓: better)

TabDiff 0.0702 ± 0.0065 0.0872 ± 0.0031 0.1750 ± 0.0087 0.2025 ± 0.0067
SurvDiff (ours) 0.0588 ± 0.0023 0.0840 ± 0.0013 0.1692 ± 0.0060 0.2006 ± 0.0017

RMST gap
(↓: better)

TabDiff 0.0361 ± 0.0240 0.0235 ± 0.0168 0.0092 ± 0.0035 0.0184 ± 0.0171
SurvDiff (ours) 0.0091 ± 0.0042 0.0119 ± 0.0062 0.0064 ± 0.0024 0.0120 ± 0.0043

KM MSE
(↓: better)

TabDiff 0.0060 ± 0.0055 0.0029 ± 0.0029 0.0011 ± 0.0002 0.0026 ± 0.0019
SurvDiff (ours) 0.0003 ± 0.0001 0.0006 ± 0.0005 0.0010 ± 0.0002 0.0019 ± 0.0004

Table 11: Downsampled datasets. Covariate fidelity, downstream performance, and survival met-
rics over different downsampled datasets (reported: mean ± s.d.) across 10 runs with different seeds.
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H SURVDIFF TRAINING LOSS

The training losses are shown in Figure 15, which shows smooth and stable convergence across
all objectives. Both the discrete and continuous diffusion losses decrease steadily, which reflects
effective denoising of categorical and numerical covariates. The survival loss declines in parallel,
indicating that the additional supervision integrates well with the generative process. Evidently, in
the total loss, the adaptive scaling of λsurv balances the different components during training.

Figure 15: Training dynamics of SURVDIFF. Shown are the discrete/categorical diffusion loss
Ldisc, the continuous diffusion loss Lcont, the Cox survival loss Lsurv, and the total objective
Ltotal = Ldiff + λsurvLsurv.
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I DIFFERENTIALLY-PRIVATE SURVDIFF

We further present a variant of SURVDIFF that is differentially private (Dwork & Roth, 2014).
For this, we combine SURVDIFF with differentially private stochastic gradient descent (DP-
SGD) (Abadi et al., 2016). Differential privacy (DP) provides a formal guarantee that the influence
of any single individual in the training set is negligible. Formally, a randomized mechanism M is
(ε, δ)-differentially private if for all adjacent datasets D and D′ differing in one record, i.e.,

P [M(D) ∈ S] ≤ eε P [M(D′) ∈ S] + δ for all measurable S. (18)

This constraint enforces that the distribution of the model’s output changes only minimally when
a single patient is removed or replaced, thereby limiting what can be inferred about any individ-
ual (Abadi et al., 2016). Note that none of the baselines (i.e., differentially-private variants of both
SurvivalGAN and Ashhad are lacking). To this end, our DP-SURVDIFF is the first differentially-
private method for synthetic survival data generation.

DP-SGD ensures this guarantee by clipping per-sample gradients to a fixed norm C and adding
Gaussian noise scaled to the clipping threshold. At iteration t, the update is

gt =
1

B

∑
i∈Bt

clip(∇θℓi, C) + N
(
0, σ2C2I

)
, (19)

where σ is the noise multiplier.

In all private experiments, we impose the same privacy budget for both DP-SURVDIFF and the DP-
GAN baseline, fixing ε = 8.0 and δ = 10−5. This budget is in line with typical DP deep-learning
practice and provides a meaningful privacy guarantee while maintaining a usable signal for model
learning (Abadi et al., 2016).

Table 12 summarizes the results across two datasets and ten random seeds. Under identical pri-
vacy constraints, DP-SURVDIFF consistently achieves better C-Index, Brier Score, and divergence
metrics compared to DP-GAN, indicating that our model remains robust even under strict privacy-
preserving training.

Metric Method AIDS METABRIC

C-Index
(↑: better)

DP-GAN 0.4872 ± 0.0261 0.4872 ± 0.0261
DP-SurvDiff (ours) 0.5104 ± 0.0222 0.5090 ± 0.0144

Brier Score
(↓: better)

DP-GAN 0.4083 ± 0.0304 0.2595 ± 0.0188
DP-SurvDiff (ours) 0.1298 ± 0.0352 0.2461 ± 0.0091

JS distance
(↓: better)

DP-GAN 0.1100 ± 0.0053 0.0525 ± 0.0037
DP-SurvDiff (ours) 0.0570 ± 0.0033 0.0365 ± 0.0025

Wasserstein distance
(↓: better)

DP-GAN 2.1769 ± 0.1217 0.7631 ± 0.0756
DP-SurvDiff (ours) 0.9654 ± 0.0852 0.4135 ± 0.042

Shape error rate
(↓: better)

DP-GAN 0.6075 ± 0.0297 0.3323 ± 0.0240
DP-SurvDiff (ours) 0.3416 ± 0.0270 0.2721 ± 0.0187

Table 12: Extension of SURVDIFF to differential privacy. Metrics across multiple runs over
different datasets (reported: mean ± s.d.) over 10 runs with different seeds.
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J ABLATION STUDY AND PARAMETER SENSITIVITY ANALYSIS

We conduct an ablation study to isolate the contribution of the survival loss weighting mechanism
used in SURVDIFF. In this variant, we fix the survival loss weight to w = 1, removing the down-
weighting of sparse risk sets and treating all event times uniformly. Table 13 reports results across
ten runs on GBSG2 and METABRIC. The full method achieves better C-Index and Brier Score
and typically attains lower divergence metrics, with performance gains that are consistent across
datasets.

The differences are moderate, as expected for a stable objective, but the pattern is systematic rather
than incidental, indicating that duration-dependent weighting provides a measurable benefit without
introducing variability or instability.

Metric Method GBSG2 METABRIC

C-Index
(↑: better)

w = 1 0.6545 ± 0.0266 0.5990 ± 0.0206
w∗ 0.6601 ± 0.0252 0.5992 ± 0.0272

Brier Score
(↓: better)

w = 1 0.2041 ± 0.0089 0.2083 ± 0.0066
w∗ 0.2037 ± 0.0092 0.2069 ± 0.0071

JS distance
(↓: better)

w = 1 0.0075 ± 0.0008 0.0067 ± 0.0016
w∗ 0.0074 ± 0.0007 0.0062 ± 0.0013

Wasserstein distance
(↓: better)

w = 1 0.0344 ± 0.0028 0.0554 ± 0.0062
w∗ 0.0347 ± 0.0026 0.0535 ± 0.0059

Table 13: Ablation study. Metrics across multiple runs over different datasets (reported: mean ±
s.d.) over 10 runs with different seeds.

We further study the sensitivity of SURVDIFF to the exponential-decay parameter αsurv, which mod-
erates the contribution of long-duration events in the time-sensitive survival loss. Table 14 sum-
marizes results for αsurv ∈ {0.01, 0.1, 0.15, 0.25} on GBSG2 and METABRIC. Across all settings,
SURVDIFF exhibits stable performance with only small variants in C-Index, Brier Score, JS distance
and Wasserstein distance. The configuration αsurv = 0.1 yields consistently strong results on both
datasets. These findings show that SURVDIFF maintains robustness over a reasonable range of αsurv
values, supporting its practical applicability without requiring extensive hyperparameter tuning.

Metric Method GBSG2 METABRIC

C-Index
(↑: better)

α = 0.01 0.6598 ± 0.0272 0.5933 ± 0.0332
α = 0.15 0.6519 ± 0.0318 0.5934 ± 0.0313
α = 0.25 0.6561 ± 0.0273 0.5989 ± 0.0253
α = 0.1 0.6601 ± 0.0252 0.5992 ± 0.0272

Brier Score
(↓: better)

α = 0.01 0.2039 ± 0.0094 0.2083 ± 0.0067
α = 0.15 0.2039 ± 0.0092 0.2109 ± 0.0069
α = 0.25 0.2042 ± 0.0108 0.2087 ± 0.0063
α = 0.1 0.2037 ± 0.0092 0.2069 ± 0.0071

JS distance
(↓: better)

α = 0.01 0.0071 ± 0.0009 0.0070 ± 0.0015
α = 0.15 0.0081 ± 0.0008 0.0076 ± 0.0014
α = 0.25 0.0077 ± 0.0008 0.0067 ± 0.0018
α = 0.1 0.0074 ± 0.0007 0.0062 ± 0.0013

Wasserstein distance
(↓: better)

α = 0.01 0.0349 ± 0.0028 0.0556 ± 0.0057
α = 0.15 0.0364 ± 0.0025 0.0598 ± 0.0059
α = 0.25 0.0349 ± 0.0029 0.0559 ± 0.006
α = 0.1 0.0347 ± 0.0026 0.0535 ± 0.0059

Table 14: Sensitivity analysis. Metrics across multiple runs over different datasets (reported: mean
± s.d.) over 10 runs with different seeds.
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