

000 SURVDIFF: A DIFFUSION MODEL FOR GENERATING 001 SYNTHETIC DATA IN SURVIVAL ANALYSIS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT

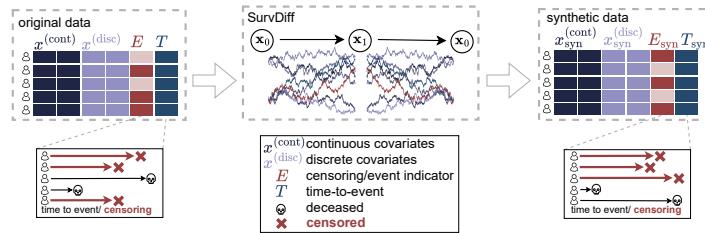
011 Survival analysis is a cornerstone of clinical research by modeling time-to-event
012 outcomes such as metastasis, disease relapse, or patient death. Unlike standard
013 tabular data, survival data often come with incomplete event information due to
014 dropout, or loss to follow-up. This poses unique challenges for synthetic data
015 generation, where it is crucial for clinical research to faithfully reproduce both the
016 event-time distribution and the censoring mechanism. In this paper, we propose
017 SURVDIFF, an *end-to-end diffusion model specifically designed for generating*
018 *synthetic data in survival analysis*. SURVDIFF is tailored to capture the data-
019 generating mechanism by jointly generating mixed-type covariates, event times,
020 and right-censoring, guided by a survival-tailored loss function. The loss encodes
021 the time-to-event structure and directly optimizes for downstream survival tasks,
022 which ensures that SURVDIFF (i) reproduces realistic event-time distributions and
023 (ii) preserves the censoring mechanism. Across multiple datasets, we show that
024 SURVDIFF consistently outperforms state-of-the-art generative baselines in both
025 distributional fidelity and survival model evaluation metrics across multiple medical
026 datasets. To the best of our knowledge, SURVDIFF is the first diffusion model
027 explicitly designed for generating synthetic survival data

028 1 INTRODUCTION

029 Survival analysis is a
030 core tool in medicine for
031 modeling time-to-event
032 outcomes (the duration
033 until an event occurs),
034 such as progression-free
035 survival in cancer or
036 overall survival in clinical
037 trials (Bewick et al., 2004;
038 Arsene & Lisboa, 2007).
039 Unlike standard tabular
040 datasets, survival data are
041 characterized by *right-
042 censoring*, where events are not observed due to dropout, loss to follow-up, or adverse reactions. Such right-censoring is common in medical practice and can affect nearly half of patients in some cancer trials (Shand et al., 2024; Norcliffe et al., 2023).

043 However, generating synthetic data for survival analysis is particularly *challenging* because failing
044 to correctly model censoring mechanisms can bias downstream clinical results (Norcliffe et al.,
045 2023; Wiegerebe et al., 2024). Unlike standard tabular data generation, the task requires not only
046 capturing covariate distributions but also faithfully (i) *reproducing time-to-event distributions* and
047 (ii) *preserving censoring mechanisms* (Bender et al., 2021). This interplay between covariates, sur-
048 vival times, and censoring makes survival data generation inherently more complex than standard
049 tabular synthesis and is why naïve applications of generic synthetic data methods, such as standard
050 generative adversarial networks (GANs) or diffusion models, fail in survival contexts.

051 To the best of our knowledge, there exist only two methods tailored method for generating synthetic
052 survival data (see Table 1): SurvivalGAN (Norcliffe et al., 2023) and the framework of Ashhad and



053 Figure 1: **SURVDIFF for generating synthetic survival data.** Our
054 SURVDIFF generates synthetic samples that retain the structure of
055 the original data, including high-fidelity covariate distributions and
056 faithful event-time distributions while preserving the *censoring mech-
057 anism*. The synthetic dataset can then be used to train downstream
058 survival models without direct access to the original patient-level data.

Henao (Ashhad & Henao, 2024; 2025) (which we refer to as *Ashhad* in the following). Both SurvivalGAN and Ashhad decompose survival data generation into separate components for covariates and for event times and censoring, rather than learning a single joint model. However, these approaches have major **limitations**: (1) in the case of SurvivalGAN, the GAN backbone is prone to mode collapse and therefore unstable training; (2) they rely on multi-stage pipelines with different models for covariates and event-time mechanisms, which makes them prone to error propagation and prevents end-to-end learning. As a result, SurvivalGAN and Ashhad produce distributions of covariates, event times, and censoring of limited fidelity.

Recently, diffusion models (Sohl-Dickstein et al., 2015; Shi et al., 2024b; Zhang et al., 2024) have gained popularity as a powerful tool for generating synthetic *tabular* data. Diffusion models offer stable training, avoid mode collapse, and consistently achieve high fidelity across diverse domains (Dhariwal & Nichol, 2021; Chen et al., 2024), which makes them a strong candidate for our task. However, they are *not* designed for survival data, and, as we show later, a naïve application thus fails to (i) reproduce realistic event-time distributions and (ii) preserve censoring mechanisms. To the best of our knowledge, a diffusion model tailored specifically to generating synthetic survival data is still missing.

In this paper, we propose SURVDIFF, a novel *end-to-end diffusion model for generating synthetic survival data*. Our SURVDIFF is carefully designed to address the unique challenges of survival data. For this, SURVDIFF *jointly* generates covariates, event times, and right-censoring, guided by a survival-tailored loss function. Our novel loss encodes the time-to-event structure and explicitly accounts for censoring, ensuring that SURVDIFF (i) reproduces realistic event-time distributions and (ii) preserves censoring mechanisms. We further improve training stability with a *sparsity-aware weighting scheme* that accounts for right-censoring by giving higher weight to earlier event times, which have more support in the data, and lower weight to later event times, which have less support. Together, these design choices allow SURVDIFF to generate synthetic survival datasets that are faithful regarding both covariate distributions and survival outcomes.

Our **main contributions**¹ are the following: (1) We propose a novel, diffusion-based method called SURVDIFF for synthetic data generation in survival settings. (2) Unlike existing methods, our SURVDIFF is end-to-end, which allows it to *jointly* optimize covariate fidelity and time-to-event information under censoring. (3) We conduct extensive experiments across multiple datasets from medicine, where we demonstrate that our SURVDIFF achieves state-of-the-art performance in both producing high-fidelity data and downstream survival analysis. In particular, we show that our SURVDIFF outperforms naïve applications of tabular diffusion models in ablation studies.

2 RELATED WORK

Generating synthetic data is often relevant for several reasons, such as augmenting datasets (Perez & Wang, 2017), mitigating bias and improving fairness (van Breugel et al., 2021), and promoting data accessibility in low-resource healthcare settings (de Benedetti et al., 2020). While synthetic data is widely explored for images and medical domains (Amad et al., 2025), less attention has been given to survival data (see below).

ML for survival analysis: Machine learning for survival analysis faces unique challenges (Wiegerebe et al., 2024; Frauen et al., 2025) because survival data combine time-to-event outcomes with right-censoring, which makes standard supervised learning methods inapplicable.

Traditional statistical approaches estimate hazard ratios or survival curves (Bender et al., 2005; Austin, 2012). More recently, deep learning methods have adapted to this setting (Ranganath et al., 2016; Mouscouri et al., 2018; Zhou et al., 2022) but often with restrictive parametric assumptions (e.g., Weibull distribution), or with conditioning on covariates (Bender et al., 2021; Kopper et al., 2022). Importantly, the focus is on estimating survival times, but *not* generating complete synthetic datasets including covariates, event times, and censoring information (Konstantinov et al., 2024).

Synthetic data generation for *tabular* data: A range of generative models has been proposed for generating synthetic tabular data (see overview in Shi et al. (2025)). These are often based on normalizing flows (**NFlow**) (Papamakarios et al., 2021), variational autoencoders (VAE) (Kingma & Welling, 2013), and generate adversarial networks (GAN) (Goodfellow et al., 2014). Further, several

¹Code is available at <https://anonymous.4open.science/r/SurvDiff-E6A0>. Upon acceptance, we move our code to a public GitHub repository.

108 specialized versions have been developed, such as: **CTGAN** (Xu et al., 2019) extends the GAN
 109 framework to mixed-type covariates using mode-specific normalization and conditional sampling.
 110 **TVAE** (Xu et al., 2019) leverages variational autoencoders to encode and recreate heterogeneous
 111 feature types. However, these methods are *not* reliable in avoiding instability or mode collapse
 112 during training (Saxena & Cao, 2021; Gong et al., 2024).

113 More recent work has turned to **diffusion models** (Sohl-Dickstein et al., 2015; Song & Ermon,
 114 2019; Ho et al., 2020; Song et al., 2021), which recently emerged as a powerful alternative for
 115 tabular data generation and which offers improved stability and fidelity compared to adversarial or
 116 variational methods. A state-of-the-art method here is **TabDiff** (Shi et al., 2024b), which directly
 117 builds on the earlier TabDDPM model for tabular data (Kotelnikov et al., 2023). As such, diffusion
 118 models established strong baselines for synthetic tabular data and remain widely used. However,
 119 these methods remain general-purpose and are *not* designed to (i) handle time-to-event outcomes
 120 or (ii) preserve censoring. Still, we later use the above state-of-the-art tabular diffusion model as a
 121 baseline.

122 **Synthetic data generation for survival data:** To the best of our knowledge, there are only two
 123 tailored for survival data generation, namely, **SurvivalGAN** (Norcliffe et al., 2023) and the **Ashhad**
 124 framework (Ashhad & Henao, 2024; 2025). Both methods generate the factorized distribution in
 125 stages rather than jointly. While these approaches demonstrate the feasibility of generating synthetic
 126 survival data, (1) in case of SurvivalGAN, the GAN backbone is prone to mode collapse and unstable
 127 training; and (2) for both methods, the staged design and reliance on multiple components make it
 128 more prone to error propagation.

129 **Research gap:** To the best of our knowledge, there is no tailored diffusion model for generating
 130 synthetic survival data (Table 1). To fill this gap, we propose SURVDIFF, which is the first end-
 131 to-end diffusion model for that purpose and which addresses key limitations of existing baselines.

Datatype	Model	Backbone	Survival [†]	Key generative models for synthetic data generation in our context.		
Tabular	NFlow	Flows	✗	While there is a large stream of generative models for tabular data, methods tailored to survival data (e.g., preserving censoring mechanisms) are scarce.	✗	✗
	TVAE	VAE	✗			
	CTGAN	GAN	✗			
	TabDiff	Diffusion	✗			
Survival	SurvivalGAN	GAN	✓	✗	✗	✗
	Ashhad	model-agnostic	✓	✓	✗	✗
	SURVDIFF (ours)	Diffusion	✓	✓	✓	✓

138 [†] Survival data generation models tailored to time-to-event and censoring.

139 Table 1: Key works on synthetic data generation.

140 3 SETTING

141 **Notation.** We denote random variables by capital letters X and realizations by small letters x . We
 142 write the probability distribution over X as P_X and as $p(x)$ its probability mass function for discrete
 143 variables or the probability density function w.r.t. the Lebesgue measure for continuous variables.

144 3.1 MATHEMATICAL BACKGROUND

145 **Diffusion models:** Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
 146 2020; Song et al., 2021) define a generative process by perturbing data through a forward noising
 147 scheme and then learning a reverse procedure. (1) The *forward process* begins from data samples
 148 $x_0 \sim P_X$ and evolves according to a Markovian stochastic differential equation (SDE) indexed by a
 149 diffusion time $u \in [0, 1]$ via

$$150 \quad dx = f(x, u) du + g(u) dw_u, \quad (1)$$

151 where f is the drift term, g the diffusion coefficient, and w_u a Wiener process, i.e., a Brownian
 152 motion with independent Gaussian increments $W_{u+\Delta} - W_u \sim \mathcal{N}(0, \Delta I)$. As u increases, the
 153 distribution P_u converges to a tractable noise distribution, typically Gaussian. (2) By reversing the
 154 process, one can then sample from the original distribution. Under mild regularity conditions, the
 155 reverse-time dynamics satisfy

$$157 \quad dx = \left[f(x, u) - g(u)^2 \nabla_x \log p_u(x) \right] du + g(u) d\bar{w}_u, \quad (2)$$

158 where \bar{w}_u is a reverse-time Wiener process and $\nabla_x \log p_u(x)$ the score function, i.e., the gradient of
 159 the log density at noise level u . Because the score function is unknown, a neural network $\mu_\theta(x, u)$ is
 160 trained via score-matching to approximate $\nabla_x \log p_u(x)$. Once trained, the model can approximate
 161 the reverse SDE and transform Gaussian noise into samples from the target distribution.

162 The above diffusion model provides a tractable approximation to maximum likelihood and underlies
 163 a broad family of generative models. However, in its standard form, it cannot model mixed-type
 164 variables (continuous or discrete), because of which extensions such as TabDiff (Shi et al., 2024b)
 165 are used. More importantly for our setting, while there are some extensions to medical settings (Ma
 166 et al., 2024; Amad et al., 2025; Ma et al., 2025), there is *no* diffusion model to capture the censoring
 167 mechanism in survival data, which motivates the need for a tailored method.

168 **Survival analysis:** The goal of survival analysis (Bewick et al., 2004; Machin et al., 2006) is to
 169 model the time until an event of interest (e.g., metastasis, relapse, etc.) occurs. For simplicity, we
 170 assume that death is the event of interest. In practice, the event is not always observed because of
 171 censoring. Let $T \geq 0$ denote the *censoring time* if the event is censored ($E = 0$), and the *event time*
 172 if the event was observed ($E = 1$).

173 The *survival function* $S(t | x) = p(T > t | X = x)$ for individuals with covariates $X = x$ at
 174 time t that quantifies the probability of surviving beyond t given covariates x . The event process can
 175 be equivalently expressed through the *hazard function* $h(t | x) = \lim_{\Delta t \rightarrow 0} \frac{p(t \leq T < t + \Delta t | T \geq t, X = x)}{\Delta t}$,
 176 which gives the instantaneous risk of death at time t conditional on surviving up to t . Survival and
 177 hazard functions are linked via $S(t | x) = \exp(- \int_0^t h(s | x) ds)$. The expected time-to-event
 178 is $\mathbb{E}[T | x] = \int_0^\infty S(t | x) dt$ (or a finite-time horizon when the study horizon is restricted). In
 179 practice, the survival probabilities $S(t | x)$ are estimated from (X_i, E_i, T_i) using tailored models
 180 for censored time-to-event data, for example, Cox proportional hazards regression (e.g., Cox, 1972),
 181 which parameterize either the hazard or the survival function while accounting for censoring.
 182

183 3.2 PROBLEM STATEMENT

184 **Data:** We observe an i.i.d. dataset $\mathcal{D}_{\text{real}} = \{(x_i^{(\text{disc})}, x_i^{(\text{cont})}, E_i, T_i)\}_{i=1}^n$ with patient data drawn
 185 from some distribution P , which consists of (1) continuous covariates $x_i^{(\text{cont})} \in \mathbb{R}^{d_{\text{cont}}}$, (2) discrete
 186 covariates $x_i^{(\text{disc})} = (x_{i,1}^{(\text{disc})}, \dots, x_{i,d_{\text{disc}}}^{(\text{disc})}) \in \mathbb{R}^{d_{\text{disc}}}$ with one-hot encoding, (3) the event indicator
 187 $E_i \in \{0, 1\}$, and (4) an observed event time $T_i \in \mathbb{R}_+$. Here, censoring is captured by the event
 188 indicator, which denotes whether the event was observed ($E_i = 1$) or whether it was censored
 189 ($E_i = 0$), such as due to study dropout, loss of follow-up, or adverse reactions.

190 **Task:** Given the original data $\mathcal{D}_{\text{real}}$, our objective is to generate \tilde{n} new samples $\mathcal{D}_{\text{syn}} =$
 191 $\{(x_i^{(\text{disc})}, x_i^{(\text{cont})}, E_i, T_i)\}_{i=1}^{\tilde{n}}$ that approximate the target distribution P . In particular, the synthetic
 192 data \mathcal{D}_{syn} must preserve both (i) the joint distribution of covariates and (ii) survival outcomes (i.e.,
 193 the time-to-event information as induced by the censoring mechanism conditional on covariates).

194 **Fidelity desiderata.** As in previous literature (Norcliffe et al., 2023), we measure the closeness of
 195 \mathcal{D}_{syn} to $\mathcal{D}_{\text{real}}$ along four main dimensions:

- 196 (i) *Covariate fidelity.* Here, the idea is to generate patient samples that have similar character-
 197 istics (e.g., age, gender, etc.) as the original dataset. Optimally, $\mathcal{D}_{\text{real}}$ and \mathcal{D}_{syn} should be
 198 drawn from the same distribution P . This similarity can be quantified via distances such as the
 199 Jensen–Shannon distance or the Wasserstein distance.
- 200 (ii) *Survival-specific fidelity.* We assess whether the synthetic data \mathcal{D}_{syn} capture the temporal struc-
 201 ture of the survival process. This includes the Event-Time Divergence (ETD) metric, which
 202 compares covariates of individuals experiencing events in similar time intervals, and temporal
 203 distribution plots for censored and uncensored events.
- 204 (iii) *Overall fidelity.* To evaluate fidelity across all variables, we report the Shape metric (Shi et al.,
 205 2024b), which incorporates T and E and compares marginal distributions, and provide normal-
 206 ized marginal histograms for X , T , and E to compare real and synthetic marginal distributions.
- 207 (iv) *Survival analysis performance.* The aim is to generate data that allow training survival models
 208 on synthetic samples and evaluating them on real outcomes. This follows the idea of *train on*
 209 *synthetic, test on real* (TSTR) to assess the ability of the synthetic data to be used for real-world
 210 applications (Esteban et al., 2017). In our case, we evaluate whether the synthetic data \mathcal{D}_{syn}
 211 preserves event-time structure. We report the concordance index (Harrell et al., 1982) (C-index),
 212 which measures correct risk ranking, and the Brier score (Brier, 1950), which measures the
 213 accuracy of predicted survival probabilities.

214 Below, we develop a diffusion model tailored to survival data, yet where preserving censoring is
 215 non-trivial. Unlike standard diffusion models, our method incorporates a censoring-aware objective
 216 to generate synthetic data with event-time and censoring patterns that align with the real data $\mathcal{D}_{\text{real}}$.

216 **4 METHOD**

217
 218 **Overview.** We now introduce SURVDIFF, a diffusion-based model for generating synthetic survival
 219 data in an *end-to-end* manner, where we jointly model both continuous and discrete covariates,
 220 event times, and censoring indicator. SURVDIFF comprises three components (see Figure 4.3): **A** a
 221 *forward diffusion process* that perturbs covariates, event times, and censoring indicators; **B** a *reverse*
 222 *diffusion process* that reconstructs survival data from noise; and **C** a *survival-tailored diffusion loss*
 223 that preserves event-time ordering while incorporating censored observations.

224 In SURVDIFF, we employ a masked-diffusion process (Sahoo et al., 2024) together with a Gaussian
 225 diffusion process, and follow the architecture in Shi et al. (2024b) to handle mixed-type covariates.
 226 The main novelty lies in how we design the training objective, which enables learning high-fidelity
 227 covariate distributions and thus generates faithful synthetic datasets for downstream survival tasks.
 228 We distinguish the role of the event indicator E (discrete) and event time T (continuous), which
 229 progress along different noising schemes due to the different variable types.

230 To integrate both continuous and discrete variables, we represent the continuous covariates jointly in
 231 a vector of dimension d_{cont} and encode the discrete covariates each in a one-hot vector. Specifically,
 232 for individual i and covariate j with C_j different values, we obtain $x_{i,j}^{(\text{disc})} \in \mathcal{V}_j = \{v \in \{0, 1\}^{C_j+1} \mid$
 233 $\sum_{k=1}^{C_j+1} v_k = 1\}$, where the first C_j entries correspond to the different values and the last entry to
 234 a mask state. The mask is later used to hide specific one-hot vectors, forcing the model to learn
 235 the original value of the discrete covariate. We denote the one-hot vector representing the mask by
 236 $m \in \mathcal{V}_j$ with $m_k = 1$. In addition, we define $P_{\text{cat}}(\cdot; \pi)$ as the discrete distribution over the C_j
 237 possible values and the mask with probabilities $\pi \in \Delta^{C_j+1}$, where Δ^{C_j+1} is the $C_j + 1$ -simplex.
 238 For simplification, with a slight abuse of notation, we omit the index i for a patient in the following.

239 **A FORWARD DIFFUSION PROCESS**

240 Following Shi et al. (2024b), the forward diffusion process in SURVDIFF perturbs each element of
 241 the data point $(x^{(\text{cont})}, x^{(\text{disc})}, E, T)$ with the power-mean noise schedule $\sigma^{\text{cont}}(\cdot)$ and the log-linear
 242 noise schedule $\sigma^{\text{disc}}(\cdot)$ for continuous and discrete covariates. We review both cases below.

243 • *Continuous covariates:* Let $z = (x^{(\text{cont})}, T)$. We adopt a so-called variance-exploding (VE)
 244 SDE (Song et al., 2021; Karras et al., 2022; Shi et al., 2024b):

$$245 \quad dz = f(z, u) du + g(u) dW_u, \quad f(z, u) \equiv 0, \quad g(u) = \sqrt{\frac{d}{du}(\sigma^{\text{cont}}(u))^2}. \quad (3)$$

246 where W_u is a standard Wiener process. The forward perturbation then has the closed form

$$247 \quad z_u = z_0 + \sigma^{\text{cont}}(u) \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I_{d_{\text{cont}}}), \quad q(z_u \mid z_0) = \mathcal{N}(z_0, (\sigma^{\text{cont}}(u))^2 I_{d_{\text{cont}}}), \quad (4)$$

248 with identity matrix I and z_0 the embedding of the original data point $(x^{(\text{cont})}, T)$ with diffusion time
 249 $u = 0$. As $\sigma^{\text{cont}}(u)$ increases, the marginal distribution converges to isotropic Gaussian noise, while
 250 each conditional remains centered at the transformed z_0 .

251 • *Discrete covariates:* Let $\tilde{z} = (x^{(\text{disc})}, E)$ and \tilde{z}_0 the embedding of the original data point
 252 $(x^{(\text{disc})}, E)$. We use a masking process (Austin et al., 2021; Shi et al., 2024a; Sahoo et al., 2024;
 253 Shi et al., 2024b) with schedule $\alpha_u = \sigma^{\text{disc}}(u) \in [0, 1]$, where α_u decreases monotonically in u . At
 254 each step, a one-hot vector representing a discrete value is retained with probability α_u and replaced
 255 by the mask m with probability $1 - \alpha_u$ via

$$256 \quad q(\tilde{z}_u \mid \tilde{z}_0) = p_{\text{cat}}(\tilde{z}_u; \alpha_u \tilde{z}_0 + (1 - \alpha_u)m). \quad (5)$$

257 As $u \rightarrow 1$, all entries converge to the mask state, such that the representation loses informative
 258 structure and becomes indistinguishable across samples.

259 **B REVERSE DIFFUSION PROCESS**

260 We now aim to model the underlying survival data distribution P . For this, the reverse process
 261 in SURVDIFF reconstructs survival data from noisy inputs by iteratively denoising the continuous
 262 and discrete covariates together with the event indicator and event time. The denoising network,
 263 parameterized by θ , produces outputs for covariates and survival quantities. The diffusion loss $\mathcal{L}_{\text{diff}}$
 264 guides training for feature reconstruction while the survival loss $\mathcal{L}_{\text{surv}}$ enforces time-event structure.

265 • *Continuous covariates:* The reverse-time VE dynamics are parameterized by the score function
 266 $\nabla_z \log p_u(z)$ with $z = (x^{(\text{cont})}, T)$, which transports samples from Gaussian noise back to valid

270 data points. To do so, we train a diffusion model μ_θ , with the continuous part of the model output
 271 μ_θ^{cont} , to predict the perturbation ε in the closed-form $z_u = z_0 + \sigma^{\text{cont}}(u)\varepsilon$. Here, the objective is
 272

$$273 \quad \mathcal{L}_{\text{cont}}(\theta) = \mathbb{E}_{z_0 \sim P_{T, X^{\text{cont}}}} \mathbb{E}_{u \sim U[0, 1]} \mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I_{d_{\text{cont}}})} \left[\left\| \mu_\theta^{\text{cont}}(z_u, u) - \varepsilon \right\|_2^2 \right], \quad (6)$$

275 which is equivalent (up to weightings) to score matching for VE SDEs. The diffusion model μ_θ ,
 276 with the continuous part of the model output μ_θ^{cont} , reconstructs the original datapoints z_0 from the
 277 noisy data.

278 • **Discrete covariates:** For $\tilde{z} = (x^{\text{(disc)}}, \textcolor{red}{E})$ with masking schedule $\alpha_u = \sigma^{\text{disc}}(u)$, the reverse
 279 dynamics progressively denoise the original values from the mask m . The distribution of \tilde{z} over an
 280 earlier index $s < u$ is given by

$$281 \quad q(\tilde{z}_s \mid \tilde{z}_u, \tilde{z}_0) = \begin{cases} p_{\text{cat}}(\tilde{z}_s; \tilde{z}_u), & \tilde{z}_u \neq m, \\ p_{\text{cat}}\left(\tilde{z}_s; \frac{\alpha_s - \alpha_u}{1 - \alpha_u} \tilde{z}_0 + \frac{1 - \alpha_s}{1 - \alpha_u} m\right), & \tilde{z}_u = m. \end{cases} \quad (7)$$

284 The diffusion model μ_θ , with the discrete part of the model output μ_θ^{disc} , reconstructs the original
 285 datapoint \tilde{z}_0 from the noisy inputs. The objective follows from the continuous-time evidence lower
 286 bound (ELBO) for masking diffusion

$$287 \quad \mathcal{L}_{\text{disc}}(\theta) = \mathbb{E}_{\tilde{z}_0 \sim P_{E, X^{\text{disc}}}} \left[\int_0^1 \frac{\dot{\alpha}_u}{1 - \alpha_u} \log \langle \mu_\theta^{\text{disc}}(\tilde{z}_u, u), \tilde{z}_0 \rangle \mathbf{1}[\tilde{z}_u = m] du \right]. \quad (8)$$

290 with $\dot{\alpha}_u = \frac{d}{du} \alpha_u$ and where $\langle \cdot, \cdot \rangle$ is the inner product.

292 **Diffusion loss:** The overall **diffusion loss** is obtained as a weighted combination of continuous and
 293 discrete terms with weights $\lambda_{\text{cont}}, \lambda_{\text{disc}} > 0$:

$$294 \quad \mathcal{L}_{\text{diff}}(\theta) = \lambda_{\text{cont}} \mathcal{L}_{\text{cont}}(\theta) + \lambda_{\text{disc}} \mathcal{L}_{\text{disc}}(\theta). \quad (9)$$

296 4.3 C SURVIVAL-TAILORED DIFFUSION LOSS

297 To encode the survival-specific data structure, including event times and censoring indicator,
 298 SURVDIFF adds a survival loss on top of the diffusion objective. Concretely, we generate a pre-
 299 diction of survival risk from the denoised covariates and adapt the loss to account for regions with
 300 uneven data support, thereby ensuring that rare long-term events are not overweighted.

301 Let $x^{\text{(cont)}} \in \mathbb{R}^{d_{\text{cont}}}$ denote the predicted continuous vector, and let $x_j^{\text{(disc)}} \in \mathcal{V}_j$ be the predicted
 302 probability vector for discrete covariate j (including the [mask] state). We concatenate these to form
 303 $\mathbf{x} = [x^{\text{(cont)}}; x_1^{\text{(disc)}}; \dots; x_{d_{\text{disc}}}^{\text{(disc)}}]$. A survival head f_θ , realized as a multi-layer perceptron, maps \mathbf{x} to
 304 a scalar risk score $r = f_\theta(\mathbf{x})$. Now, consider sample $i = 1, \dots, n$ with observed times T_i , event
 305 indicators $\textcolor{red}{E}_i$, and risk sets $\mathcal{R}(T_i) = \{k \in [n] : T_k \geq T_i\}$. The risk set at time T_i contains all
 306 patients who are still under observation and have not yet experienced the event.

308 Our survival loss extends the Cox partial negative log-likelihood (Cox, 1972; Katzman et al., 2018)
 309 with **sparsity-aware weighting**, which models the event risk proportional to a baseline hazard and
 310 covariate effects over time. We optimize

$$311 \quad \mathcal{L}_{\text{surv}}(\theta) = - \sum_{i \in [n]: E_i=1} w_i \log \frac{\exp(r_i)}{\sum_{j \in \mathcal{R}(T_i)} \exp(r_j)}, \quad (10)$$

313 with the predicted scalar risk score r_i and the **importance weights** w_i defined below to balance
 314 the contributions across event times and mitigate sparsity in regions with limited support. Only
 315 uncensored events ($E_i = 1$) contribute directly; censored observations affect the denominator via
 316 the risk sets. With $w = 1$, our loss simplifies to the classical Cox proportional hazards loss (Katzman
 317 et al., 2018).

318 In our loss, we choose w_i as follows. First, we note that late events yield small risk sets and unstable
 319 gradients. Hence, our w_i should downweight rare long-duration events while preserving the partial-
 320 likelihood structure. For event i within time T_i , we define

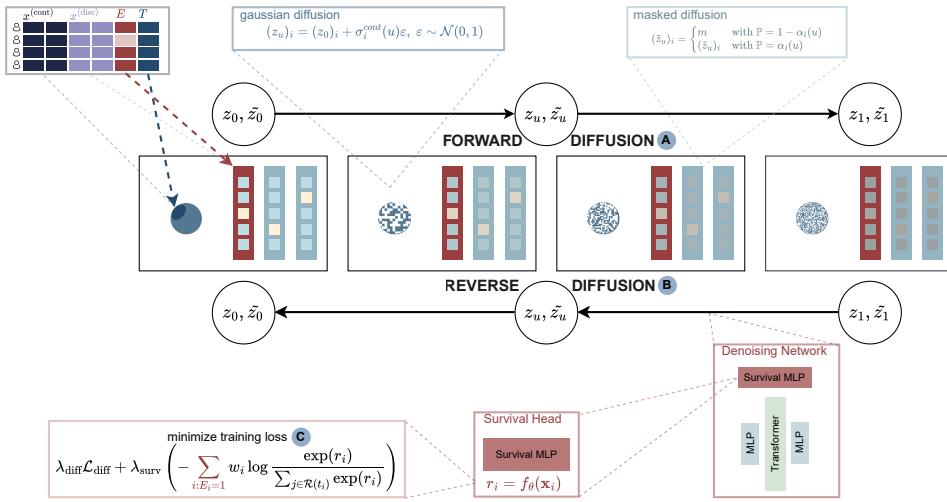
$$322 \quad w_i = \begin{cases} 1, & T_i \leq \tau, \\ \exp(-\alpha(T_i - \tau)), & T_i > \tau, \end{cases} \quad (11)$$

324 where τ is the duration threshold (e.g., 80th percentile of the maximum observed time) from which
325 exponential downweighting starts. Therein, we use an exponential decay weighting to downweight
326 rare late events, which reduces instability from small risk sets and makes the joint optimization of
327 diffusion and survival objectives more stable, while remaining differentiable.

328 **Overall SURVDIFF loss:** Then, the total loss consisting of the multiple objectives is
329

$$\mathcal{L}_{\text{total}}(\theta) = \mathcal{L}_{\text{diff}}(\theta) + \lambda_{\text{surv}} \mathcal{L}_{\text{surv}}(\theta) \quad (12)$$

330 with $\lambda_{\text{surv}} > 0$ and initiated adaptively. This formulation allows SURVDIFF to be trained end-to-end,
331 jointly aligning feature reconstruction with survival-specific objectives.



350 Figure 2: **Overview of our SURVDIFF.** SURVDIFF consisting of **A** forward diffusion, the **B**
351 backward diffusion and the **C** novel survival-focused loss. Importantly, we distinguish the role of **E**
352 (event indicator; binary) and **T** (time-to-event; continuous), which progress along different noising
353 schemes due to the different variable types.

354 4.4 TRAINING AND SAMPLING

356 **Training:** SURVDIFF is trained end-to-end on minibatches. For each batch, we sample a noise level
357 $u \sim U(0, 1)$ and corrupt the inputs via the forward processes. The network receives the noisy tuples,
358 predicts denoised event indicators, event times, and continuous and discrete covariates, from which
359 the diffusion loss $\mathcal{L}_{\text{diff}}$ is computed. Denoised covariates define the survival input, yield risk scores,
360 and contribute to the survival loss $\mathcal{L}_{\text{surv}}$. To stabilize training λ_{surv} is monotonically interpolated
361 during a short warm-up period (Sønderby et al., 2016; Li et al., 2020) and then set to a calibrated
362 value determined by *adaptive scaling*:

363 After a short calibration phase, the survival weight λ_{surv} is chosen such that the survival term con-
364 tributes a target fraction α_{surv} of the total objective, because the survival loss can differ substantially
365 in scale across datasets. Using running averages $\bar{\mathcal{L}}_{\text{diff}}$ and $\bar{\mathcal{L}}_{\text{surv}}$ over the calibration window, the
366 weight is computed as

$$\lambda_{\text{surv}} = \min \left\{ \lambda_{\text{max}}, \frac{\alpha_{\text{surv}} \bar{\mathcal{L}}_{\text{diff}}}{(1 - \alpha_{\text{surv}})(\bar{\mathcal{L}}_{\text{surv}} + \varepsilon)} \right\}. \quad (13)$$

369 This choice stabilizes the balance between diffusion and survival signals. The fixed calibrated weight
370 preserves a stable training signal, as fully adaptive signals over all timesteps can drive the ratio by
371 shrinking λ_{surv} instead of minimizing the loss.

372 **Sampling:** After training we generate synthetic data \mathcal{D}_{syn} by initializing continuous data points as
373 $z_1 \sim \mathcal{N}(0, I)$ and discrete ones as $\tilde{z}_1 = m$, for $u = 1$. The learned reverse process then runs over
374 a discretized schedule from $u = 1$ to $u = 0$, applying Gaussian denoising updates to z_u and cate-
375 gorical unmasking to \tilde{z}_u . This yields a full synthetic sample $(x^{(\text{cont})}, x^{(\text{disc})}, E, T)$. Administrative
376 censoring can be applied post hoc to reflect study-specific follow-up horizons.

378

5 EXPERIMENTS

379 We next evaluate SURVDIFF across multiple survival datasets and benchmarks, with all implementation details given in Supplement A. **Datasets:** We demonstrated the superior performance
 380 of SURVDIFF in extensive experiments across various medical datasets with *survival* data: (i) the
 381 ACTG clinical trial dataset (**AIDS**) (Hammer et al., 1997), (ii) the German Breast Cancer Study
 382 Group 2 dataset (**GBSG2**) (Schumacher et al., 1994), and (iii) the Molecular Taxonomy of Breast
 383 Cancer International Consortium dataset (**METABRIC**) (Pereira et al., 2016). Details for each
 384 dataset are in Supplement A.

Metric	Method	AIDS	GBSG2	METABRIC
JS distance (↓: better)	NFlow	0.0129 ± 0.0017	0.0115 ± 0.0023	0.0123 ± 0.0017
	TVAE	0.0111 ± 0.0011	0.0130 ± 0.0009	0.0098 ± 0.0008
	CTGAN	0.0176 ± 0.0019	0.0120 ± 0.0017	0.0179 ± 0.0026
	TabDiff	0.0085 ± 0.0003	0.0179 ± 0.0005	0.0098 ± 0.0002
	SurvivalGAN	0.0135 ± 0.0018	0.0159 ± 0.0021	0.0212 ± 0.0027
	Ashhad	0.0074 ± 0.0003	0.0496 ± 0.0002	0.0070 ± 0.0010*
SurvDiff (<i>ours</i>)		0.0059 ± 0.0014	0.0074 ± 0.0007	0.0062 ± 0.0013
Wasserstein distance (↓: better)	NFlow	0.1161 ± 0.0106	0.0675 ± 0.0137	0.0826 ± 0.0144
	TVAE	0.0779 ± 0.0045	0.0400 ± 0.0033	0.0349 ± 0.0029
	CTGAN	0.2461 ± 0.0253	0.0558 ± 0.0094	0.1058 ± 0.0212
	TabDiff	0.0882 ± 0.0007	0.0533 ± 0.0012	0.0492 ± 0.0005
	SurvivalGAN	0.1545 ± 0.0151	0.0889 ± 0.0218	0.1689 ± 0.0272
	Ashhad	0.1068 ± 0.0021	0.9287 ± 0.0047	0.0890 ± 0.0040*
SurvDiff (<i>ours</i>)		0.0960 ± 0.0146	0.0347 ± 0.0026	0.0535 ± 0.0059
Shape error rate (↓: better)	NFlow	0.0858 ± 0.0104	0.1032 ± 0.0116	0.0872 ± 0.0106
	TVAE	0.0768 ± 0.0053	0.1403 ± 0.0051	0.0802 ± 0.0050
	CTGAN	0.1175 ± 0.0135	0.1260 ± 0.0140	0.1235 ± 0.0130
	TabDiff	0.0577 ± 0.0015	0.1392 ± 0.0038	0.0679 ± 0.0012
	SurvivalGAN	0.0934 ± 0.0083	0.1550 ± 0.0130	0.1507 ± 0.0168
	Ashhad	0.0983 ± 0.0034	0.2485 ± 0.0025	*
SurvDiff (<i>ours</i>)		0.0494 ± 0.0134	0.1138 ± 0.0190	0.0519 ± 0.0121

404 * These values are the reported values in (Ashhad & Henao, 2024; 2025).

405 Table 2: **Covariate fidelity.** Covariate diversity metrics over different datasets (reported: mean ±
 406 s.d.) across 10 runs with different seeds).

407 **Baselines:** Our choice of benchmark is consistent with earlier work (Norcliffe et al., 2023). In
 408 particular, we benchmark our SURVDIFF against the following baselines for generating synthetic
 409 tabular or survival data: (1) **NFlow**, (2) **TVAE**, (3) **CTGAN**, (4) **TabDiff**, (5) **SurvivalGAN**, and
 410 (6) **Ashhad**. Details about the baselines and hyperparameters are in Supplement B.

411 **Performance metrics:** We compare the synthetic data along four dimensions:

412 (i) *Covariate fidelity.* We assess how closely the distribution of patient characteristics in the synthetic data matches the original data. For this, we compare the observed covariates via the
 413 Jensen-Shannon (JS) distance and the Wasserstein distance. We report marginal JS for per-
 414 feature alignment and joint WS to capture overall multivariate structure.

415 (ii) *Survival-specific fidelity.* We evaluate whether the synthetic data reproduce the temporal struc-
 416 ture of the survival process. The evaluation includes the Event-Time Divergence (ETD) metric,
 417 which compares covariates of individuals with events occurring in similar equally sized time
 418 intervals (Supplement C), as well as temporal distribution plots for censored and uncensored
 419 events.

420 (iii) *Overall fidelity.* To assess fidelity across all patient variables, we report the Shape metric Shi
 421 et al. (2024b), which quantifies differences in the marginal distributions, and present normalized
 422 marginal histograms.

423 (iv) *Survival analysis performance.* The goal is to generate data that enable survival models trained
 424 on synthetic samples to generalize to real outcomes. For this, we train five popular survival
 425 models on the synthetic datasets, namely: (a) DeepHit (Lee et al., 2018), (b) Cox proportional
 426 hazards (Cox, 1972), (c) Weibull accelerated failure time regression (Weibull, 1951), (d) ran-
 427 dom survival forest (Ishwaran et al., 2008), and (e) XGBoost (Chen & Guestrin, 2016). We
 428 then compare the prediction quality on the real data with the corresponding model via: (1) the
 429 concordance index (C-index) (Harrell et al., 1982), which evaluates the accuracy of the ranking
 430 between predicted survival probabilities and observed event times, and (2) the Brier score (Brier,
 431 1950), which assesses the calibration of the probabilistic predictions. We report averaged results
 432 across the five survival models over 10 different seeds.

432 6 RESULTS

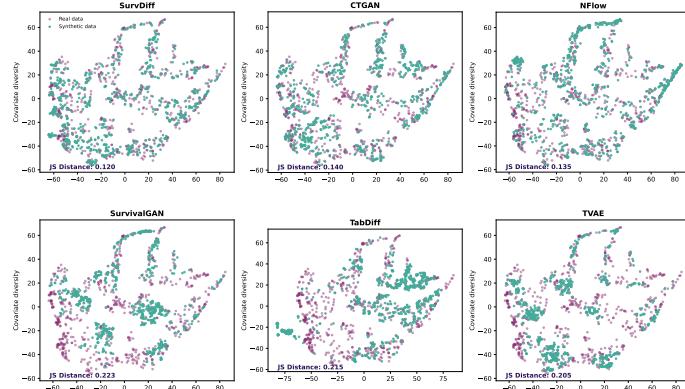
433 **• Covariate fidelity:** We report
 434 the covariate diversity in Table 2. We observe the following:
 435 SURVDIFF consistently outperforms all other methods in terms
 436 of the **marginal JS** distance averaged
 437 over all features across all datasets. Furthermore, SURVDIFF
 438 achieves highly competitive performance measured by the
 439 **joint** Wasserstein distance in all
 440 experiments. SURVDIFF outperforms SurvivalGAN as the state-
 441 of-the-art baseline for synthetic
 442 survival data generation by a
 443 clear margin. For example, in
 444 terms of the **joint** WS, our SURVDIFF has a clearly lower distance compared to SurvivalGAN
 445 (GBSG2: -60% ; etc.). **Additional visualizations and implementation details are in Supplements A, D, and E.**

446 *Insights:* To further evaluate the goodness-of-fit of the generated data, we visually assess the covariate
 447 fidelity in Fig. 3 and the survival-specific fidelity in Fig. 4. All baselines have large discrepancies
 448 between observed and synthetic covariates. This is particularly strong for SurvivalGAN, our main
 449 baseline, but also for other models. The results again confirm the fidelity of SURVDIFF.

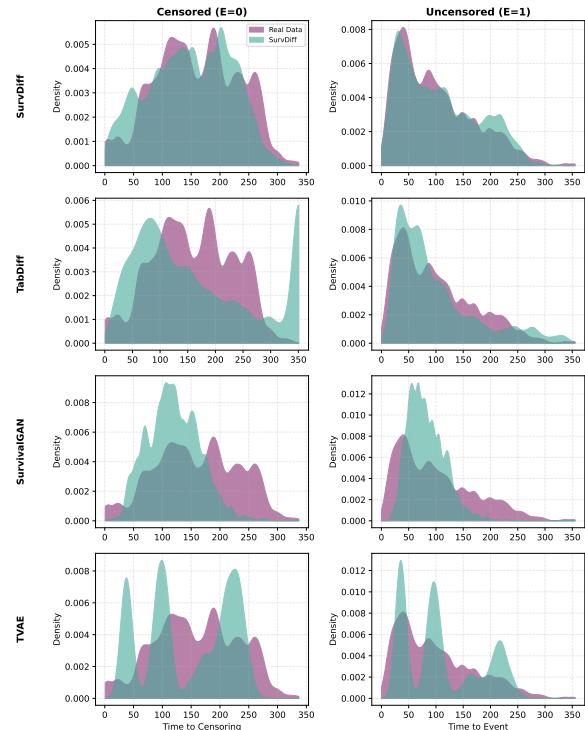
450 **• Survival-specific fidelity:** We evaluate
 451 whether the synthetic data **preserve the temporal structure** of the survival
 452 process. Fig. 4 compares the event-time
 453 distributions for censored and uncensored
 454 patients. The curves show that patients
 455 who experience an event at early, mid,
 456 or late horizons exhibit **similar temporal patterns** in both the real and synthetic
 457 datasets. This indicates that SURVDIFF
 458 reproduces the progression of event
 459 times rather than collapsing toward frequent
 460 horizons.

461 **• Overall fidelity:** We further report the
 462 **Shape** metric (Shi et al., 2024b) in Tab. 2,
 463 which measures differences in the
 464 distributional shape of all patient variables
 465 and offers a focused view on whether real and
 466 synthetic samples share similar structural
 467 patterns. SURVDIFF achieves competitive
 468 performance. To evaluate specifically
 469 whether the time-to-event distribution is
 470 faithful, we explicitly report the Event-
 471 Time Divergence in Supplement C and
 472 normalized marginal covariate histograms
 473 in Supplement D, which further quantifies
 474 how well the synthetic data replicate char-
 475 acteristics of patients who experience an
 476 event at similar horizons.

477 *Insight.* In sum, SURVDIFF performs
 478 overall best in preserving the time-to-event
 479 dynamics and generating synthetic with
 480 high-fidelity temporal dynamics.



481 **Figure 3: t-SNE visualization of covariate fidelity of **real** and **synthetic** data on GBSG2. \Rightarrow Takeaway: Synthetic samples from
 482 SURVDIFF are well aligned with the original data. SURVDIFF
 483 achieves high covariate fidelity.**



484 **Figure 4: Temporal distributions** of real and synthetic
 485 survival data on METABRIC, shown separately for
 486 censored and uncensored patients. \Rightarrow Takeaway: Synthetic
 487 patients from SURVDIFF exhibit similar event-
 488 time patterns as the real cohort, indicating strong
 489 temporal fidelity.

Metric	Method	AIDS	GBSG2	METABRIC
C-Index (↑: better)	Real data	0.6844 ± 0.0925	0.6592 ± 0.0275	0.6225 ± 0.0225
	NFlow	0.6032 ± 0.0987	0.6032 ± 0.0987	0.5711 ± 0.0286
	TVAE	0.6144 ± 0.1018	0.6406 ± 0.0532	0.5825 ± 0.0531
	CTGAN	0.5457 ± 0.0205	0.5945 ± 0.0232	0.5463 ± 0.0310
	TabDiff	0.6572 ± 0.1117	0.6286 ± 0.0247	0.6078 ± 0.0144
	SurvivalGAN	0.6354 ± 0.0553	0.6357 ± 0.0221	0.5837 ± 0.0092
	Ashhad	0.5184 ± 0.1324	0.5062 ± 0.0705	0.5890 ± 0.0150[†]
SurvDiff (<i>ours</i>)		0.7017 ± 0.0782	0.6613 ± 0.0215	0.5992 ± 0.0276
Brier Score (↓: better)	Real data	0.0630 ± 0.0013	0.2063 ± 0.0150	0.1997 ± 0.0114
	NFlow	0.0532 ± 0.0019	0.2116 ± 0.0083	0.2109 ± 0.0043
	CTGAN	0.0671 ± 0.0071	0.2256 ± 0.0025	0.2477 ± 0.0203
	TVAE	0.0531 ± 0.0015	0.2115 ± 0.0149	0.2136 ± 0.0082
	TabDiff	0.0539 ± 0.0052	0.2130 ± 0.0050	0.1997 ± 0.0086
	SurvivalGAN	0.0573 ± 0.0026	0.2154 ± 0.0064	0.2180 ± 0.0055
	Ashhad	0.0537 ± 0.0021	0.2192 ± 0.0082	0.2150 ± 0.0050[†]
SurvDiff (<i>ours</i>)		0.0522 ± 0.0024	0.2036 ± 0.0092	0.2120 ± 0.0040

[†] Values taken from Ashhad & Henao (2024; 2025).

Table 3: **Survival model performance.** Survival model metrics over different datasets (reported: mean ± s.d. across 10 runs with different seeds). \Rightarrow *Takeaway:* Using synthetic samples from SURVDIFF consistently results in strong downstream performance results, especially *under strong right censoring*. Again, this benefit is especially *large* in comparison to the main baseline SurvivalGAN.

• **Survival analysis performance:** In Table 3, we evaluate the performance of all models on downstream survival tasks. We observe that (1) SURVDIFF consistently achieves *large improvements* over SurvivalGAN and Ashhad on survival model tasks, (2) SURVDIFF achieves the best performance on AIDS and GBSG2, while performing on par with the best methods on METABRIC, and (3) the advantages of SURVDIFF are especially pronounced on datasets with stronger censoring (AIDS & GBSG2).

• **Sensitivity to dataset size:** Inspired by medical practice, we also present results on uniformly at random downsampled datasets to understand the sensitivity to small sample size settings, which are common in medicine. This additional sensitivity study is presented in Supplement G). Therein, we see *large benefits of SURVDIFF over existing methods in small-sample settings*. Hence, our method is well-designed to meet needs in medical practice.

• **Additional results:** For completeness, we also report Kaplan-Meier-based metrics in Supplement F. Therein, SURVDIFF shows comparable performance. We further include ablation studies and parameter sensitivity analysis of our novel loss in Supplement J, and visualize loss convergence in Supplement H.

• **Extension to differential privacy:** We show that SURVDIFF can be readily extended to incorporate differential privacy. For this, we present a differentially private variant of SURVDIFF, which offers formal privacy guarantees under DP-SGD (Dwork & Roth, 2014; Abadi et al., 2016). Implementation details and experiment results are in Supplement I. We show that SURVDIFF outperforms the DP-GAN baseline across covariate fidelity and survival analysis performance metrics.

7 DISCUSSION

Clinical considerations. We follow needs in clinical research, where it is essential to preserve patient characteristics in synthetic data (Yan et al., 2022; Giuffrè & Shung, 2023). Existing baselines, such as SurvivalGAN, often fail to do so, leading to mismatches that no longer accurately reflect the true patient population. Since summarizing patient demographics is typically the first step in clinical studies, inaccuracies in the patient covariate distributions are particularly problematic: they can distort estimates of incidence rates and lead to misleading subgroup survival times. Hence, a key strength of our method is to preserve covariate fidelity; i.e., ensuring that synthetic datasets remain clinically meaningful while also supporting strong survival analysis performance.

Conclusion: We propose SURVDIFF, a novel end-to-end diffusion model tailored to generating survival data. Our SURVDIFF jointly generates patient covariates, event times, and right-censoring indicators in an end-to-end manner. As a result, SURVDIFF generating reliable synthetic datasets that (i) match patient characteristics and (ii) produce faithful event-time distributions that preserve censoring mechanisms and thus improve downstream survival analysis.

540 REFERENCES
541

542 Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
543 Li Zhang. Deep learning with differential privacy. In *ACM SIGSAC Conference on Computer and*
544 *Communications Security*, 2016.

545 Harry Amad, Zhaozhi Qian, Dennis Frauen, Julianna Piskorz, Stefan Feuerriegel, and Mihaela
546 van der Schaar. Improving the generation and evaluation of synthetic data for downstream medical
547 causal inference. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2025.

548 C. T. C. Arsene and P. J. G. Lisboa. Chapter 8 - Artificial neural networks used in the survival
549 analysis of breast cancer patients: A node-negative study. In *Outcome Prediction in Cancer*, pp.
550 191–239. Elsevier, 2007.

551 Mohd Ashhad and Ricardo Henao. Conditioning on time is all you need for synthetic survival data
552 generation. *arXiv preprint*, arXiv:2405.17333, 2024.

553 Mohd Ashhad and Ricardo Henao. Generating accurate synthetic survival data by conditioning on
554 outcomes. In *Machine Learning for Healthcare Conference*, 2025.

555 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
556 denoising diffusion models in discrete state-spaces. In *Neural Information Processing Systems*
557 (*NeurIPS*), 2021.

558 Peter C. Austin. Generating survival times to simulate cox proportional hazards models with time-
559 varying covariates. *Statistics in Medicine*, 31(29):3946–3958, 2012.

560 Andreas Bender, David Rügamer, Fabian Scheipl, and Bernd Bischl. A general machine learning
561 framework for survival analysis. In *Joint European Conference on Machine Learning and*
562 *Knowledge Discovery in Databases*, 2021.

563 Ralf Bender, Thomas Augustin, and Maria Blettner. Generating survival times to simulate cox
564 proportional hazards models. *Statistics in Medicine*, 24(11):1713–1723, 2005.

565 Viv Bewick, Liz Cheek, and Jonathan Ball. Statistics review 12: Survival analysis. *Critical Care*, 8
566 (5):389–394, 2004.

567 Glenn W. Brier. Verification of forecasts expressed in terms of probability. *Monthly Weather Review*,
568 78(1):1–3, 1950.

569 Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion mod-
570 els: Applications, guided generation, statistical rates and optimization. *arXiv preprint*,
571 arXiv:2404.07771, 2024.

572 Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In *International*
573 *Conference on Knowledge Discovery and Data Mining (KDD)*, 2016.

574 D. R. Cox. Regression models and life-tables. *Journal of the Royal Statistical Society. Series B*
575 (*Methodological*), 34(2):187–220, 1972.

576 Juan de Benedetti, Namir Oues, Zhenchen Wang, Puja Myles, and Allan Tucker. Practical lessons
577 from generating synthetic healthcare data with bayesian networks. In *Joint European Conference*
578 *on Machine Learning and Knowledge Discovery in Databases Workshops*, 2020.

579 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
580 *Conference on Neural Information Processing Systems (NeurIPS)*, 2021.

581 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Found. Trends*
582 *Theor. Comput. Sci.*, 9(3-4):211–407, 2014.

583 Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued (medical) time series
584 generation with recurrent conditional GANs. *arXiv preprint*, arXiv:1706.02633, 2017.

585 Michael P. Fay, Erica H. Brittain, and Michael A. Proschan. Pointwise confidence intervals for a
586 survival distribution with small samples or heavy censoring. *Biostatistics*, 14(4):723–736, 2013.

594 Dennis Frauen, Maresa Schröder, Konstantin Hess, and Stefan Feuerriegel. Orthogonal survival
 595 learners for estimating heterogeneous treatment effects from time-to-event data. In *Conference*
 596 *on Neural Information Processing Systems (NeurIPS)*, 2025.

597

598 Mauro Giuffrè and Dennis L. Shung. Harnessing the power of synthetic data in healthcare: Innova-
 599 tion, application, and privacy. *npj Digital Medicine*, 6(1):1–8, 2023.

600 Yanxiang Gong, Zhiwei Xie, Mei Xie, and Xin Ma. Testing generated distributions in GANs to
 601 penalize mode collapse. In *International Conference on Artificial Intelligence and Statistics (AIS-
 602 TATS)*, 2024.

603

604 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 605 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Conference on Neural*
 606 *Information Processing Systems (NeurIPS)*, 2014.

607

608 Scott M. Hammer, Kathleen E. Squires, Michael D. Hughes, Janet M. Grimes, Lisa M. Demeter,
 609 Judith S. Currier, Joseph J. Eron, Judith E. Feinberg, Henry H. Balfour, Lawrence R. Deyton,
 610 Jeffrey A. Chodakewitz, Margaret A. Fischl, John P. Phair, Louise Pedneault, Bach-Yen Nguyen,
 611 and Jon C. Cook. A controlled trial of two nucleoside analogues plus indinavir in persons with
 612 human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less.
New England Journal of Medicine, 337(11):725–733, 1997.

613

614 Frank E. Harrell, Jr, Robert M. Califf, David B. Pryor, Kerry L. Lee, and Robert A. Rosati. Evalu-
 615 ating the yield of medical tests. *JAMA*, 247(18):2543–2546, 1982.

616

617 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Conference*
 618 *on Neural Information Processing Systems (NeurIPS)*, 2020.

619

620 Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random sur-
 621 vival forests. *The Annals of Applied Statistics*, 2(3):841–860, 2008.

622

623 E. L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. *Journal of*
the American Statistical Association, 53(282):457–481, 1958.

624

625 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 626 based generative models. In *Conference on Neural Information Processing Systems (NeurIPS)*,
 627 2022.

628

629 Jared L. Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval
 630 Kluger. DeepSurv: Personalized treatment recommender system using a cox proportional hazards
 631 deep neural network. *BMC Medical Research Methodology*, 18(1):24, 2018.

632

633 Dae Hyun Kim, Hajime Uno, and Lee-Jen Wei. Restricted mean survival time as a measure to
 634 interpret clinical trial results. *JAMA Cardiology*, 2(11):1179–1180, 2017.

635

636 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *International Conference*
 637 *on Learning Representations (ICLR)*, 2013.

638

639 A. V. Konstantinov, S. R. Kirpichenko, and L. V. Utkin. Generating survival interpretable trajectories
 640 and data. *Doklady Mathematics*, 110(1):S75–S86, 2024.

641

642 Philipp Kopper, Simon Wiegreb, Bernd Bischl, Andreas Bender, and David Rügamer. DeepPAMM:
 643 Deep piecewise exponential additive mixed models for complex hazard structures in survival anal-
 644 ysis. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)*, 2022.

645

646 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Modelling
 647 Tabular Data with Diffusion Models. In *International Conference on Machine Learning (ICML)*,
 648 2023.

649

650 Changhee Lee, William Zame, Jinsung Yoon, and Mihaela van der Schaar. DeepHit: A deep learning
 651 approach to survival analysis with competing risks. In *AAAI Conference on Artificial Intelligence*,
 652 2018.

648 Junnan Li, Richard Socher, and Steven C H Hoi. DivideMix: Learning with noisy labels as semi-
 649 supervised learning. In *International Conference on Learning Representations (ICLR)*, 2020.
 650

651 Yuchen Ma, Valentyn Melnychuk, Jonas Schweisthal, and Stefan Feuerriegel. DiffPO: A causal
 652 diffusion model for learning distributions of potential outcomes. In *Conference on Neural Infor-
 653 mation Processing Systems (NeurIPS)*, 2024.

654 Yuchen Ma, Jonas Schweisthal, Hengrui Zhang, and Stefan Feuerriegel. A diffusion-based method
 655 for learning the multi-outcome distribution of medical treatments. In *International Conference on
 656 Knowledge Discovery and Data Mining (KDD)*, 2025.

657 David Machin, Yin Bun Cheung, and Mahesh Kb Parmar. *Survival Analysis: A Practical Approach*.
 658 Wiley, 1st edition, 2006.
 659

660 Xenia Misouridou, Adler Perotte, Noemie Elhadad, and Rajesh Ranganath. Deep survival analysis:
 661 Nonparametrics and missingness. In *Machine Learning for Healthcare Conference*, 2018.

662 Alexander Norcliffe, Bogdan Cebere, Fergus Imrie, Pietro Lió, and Mihaela van der Schaar. Sur-
 663 vivalGAN: Generating time-to-event data for survival analysis. In *International Conference on
 664 Artificial Intelligence and Statistics (AISTATS)*, 2023.

665 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 666 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine
 667 Learning Research*, 22(57):1–64, 2021.

668 Bernard Pereira, Suet-Feung Chin, Oscar M. Rueda, Hans-Kristian Moen Vollan, Elena Provenzano,
 669 Helen A. Bardwell, Michelle Pugh, Linda Jones, Roslin Russell, Stephen-John Sammut, Dana
 670 W. Y. Tsui, Bin Liu, Sarah-Jane Dawson, Jean Abraham, Helen Northen, John F. Peden, Abhik
 671 Mukherjee, Gulisa Turashvili, Andrew R. Green, Steve McKinney, Arusha Oloumi, Sohrab Shah,
 672 Nitzan Rosenfeld, Leigh Murphy, David R. Bentley, Ian O. Ellis, Arnie Purushotham, Sarah E.
 673 Pinder, Anne-Lise Børresen-Dale, Helena M. Earl, Paul D. Pharoah, Mark T. Ross, Samuel Apari-
 674 cio, and Carlos Caldas. The somatic mutation profiles of 2,433 breast cancers refine their genomic
 675 and transcriptomic landscapes. *Nature Communications*, 7(1):11479, 2016.

676 Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using
 677 deep learning. *arXiv preprint*, arXiv:1712.04621, 2017.

678 Zhaozhi Qian, Rob Davis, and Mihaela van der Schaar. Synthcity: A benchmark framework for
 679 diverse use cases of tabular synthetic data. In *Conference on Neural Information Processing
 680 Systems (NeurIPS)*, volume 36, pp. 3173–3188, 2023.

681 Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei. Deep survival analysis. In
 682 *Machine Learning for Healthcare Conference*, 2016.

683 Patrick Royston and Mahesh K. B. Parmar. The use of restricted mean survival time to estimate
 684 the treatment effect in randomized clinical trials when the proportional hazards assumption is in
 685 doubt. *Statistics in Medicine*, 30(19):2409–2421, 2011.

686 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Mariano Marroquin,
 687 Justin T. Chiu, Alexander M. Rush, and Volodymyr Kuleshov. Simple and effective masked
 688 diffusion language models. In *Conference on Neural Information Processing Systems (NeurIPS)*,
 689 2024.

690 Divya Saxena and Jiannong Cao. Generative adversarial networks (GANs): Challenges, solutions,
 691 and future directions. *ACM Computing Surveys*, 54(3):63:1–63:42, 2021.

692 M Schumacher, G Bastert, H Bojar, K Hübner, M Olschewski, W Sauerbrei, C Schmoor, C Beyerle,
 693 R L Neumann, and H F Rauschecker. Randomized 2 x 2 trial evaluating hormonal treatment and
 694 the duration of chemotherapy in node-positive breast cancer patients. German breast cancer study
 695 group. *Journal of Clinical Oncology*, 12(10):2086–2093, 1994.

696 Jenny Shand, Elizabeth Stovold, Lucy Goulding, and Kate Cheema. Cancer care treatment attrition
 697 in adults: Measurement approaches and inequities in patient dropout rates – A rapid review. *BMC
 698 Cancer*, 24(1):1345, 2024.

702 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
 703 -ized masked diffusion for discrete data. In *Conference on Neural Information Processing Systems*
 704 (*NeurIPS*), 2024a.

705 Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. TabD-
 706 iff: A mixed-type diffusion model for tabular data generation. In *International Conference on*
 707 *Learning Representations (ICLR)*, 2024b.

708 Ruxue Shi, Yili Wang, Mengnan Du, Xu Shen, Yi Chang, and Xin Wang. A comprehensive survey
 709 of synthetic tabular data generation. *arXiv preprint*, arXiv:2504.16506, 2025.

710 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 711 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-
 712 ing (ICML)*, 2015.

713 Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
 714 variational autoencoders. In *Conference on Neural Information Processing Systems (NeurIPS)*,
 715 2016.

716 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 717 In *Conference on Neural Information Processing Systems (NeurIPS)*, 2019.

718 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 719 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-
 720 tional Conference on Learning Representations (ICLR)*, 2021.

721 Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. DECAF: Gen-
 722 erating fair synthetic data using causally-aware generative networks. In *Conference on Neural*
 723 *Information Processing Systems (NeurIPS)*, 2021.

724 Waloddi Weibull. A statistical distribution function of wide applicability. *Journal of Applied Me-
 725 chanics*, 18(3):293–297, 1951.

726 Simon Wiegrebé, Philipp Kopper, Raphael Sonabend, Bernd Bischl, and Andreas Bender. Deep
 727 learning for survival analysis: A review. *Artificial Intelligence Review*, 57(3):65, 2024.

728 Lei Xu, Maria Skouliaridou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tab-
 729 ular data using conditional GAN. In *Conference on Neural Information Processing Systems*
 730 (*NeurIPS*), 2019.

731 Chao Yan, Yao Yan, Zhiyu Wan, Ziqi Zhang, Larsson Omberg, Justin Guinney, Sean D. Mooney, and
 732 Bradley A. Malin. A multifaceted benchmarking of synthetic electronic health record generation
 733 models. *Nature Communications*, 13(1):7609, 2022.

734 Hengrui Zhang, Jian Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
 735 Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
 736 based diffusion in latent space. In *International Conference on Learning Representations (ICLR)*,
 737 2024.

738 Xingyu Zhou, Wen Su, Changyu Liu, Yuling Jiao, Xingqiu Zhao, and Jian Huang. Deep generative
 739 survival analysis: Nonparametric estimation of conditional survival function. *arXiv preprint*,
 740 arXiv:2205.09633, 2022.

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757

A IMPLEMENTATION DETAILS

758
759

A.1 DATASETS

760
761
762
763
764

AIDS (ACTG 320 Trial). The AIDS dataset² originates from the ACTG 320 trial, which evaluated combination antiretroviral therapy in HIV patients (Hammer et al., 1997). It contains data from 1151 patients. The observed event is death, and 91.7% of patients are censored. Covariates include baseline clinical and laboratory measures such as CD4 cell count, age, hemoglobin, weight, and prior therapy indicators.

765
766
767
768
769
770

GBSG2 (German Breast Cancer Study Group 2). The GBSG2 dataset³ stems from a randomized clinical trial of 686 breast cancer patients treated between 1984 and 1989 (Schumacher et al., 1994). The endpoint is recurrence-free survival, defined as the time to relapse or death, whichever occurs first. Here, 56.4% patients are censored. Covariates cover age, menopausal status, tumor size, grade, number of positive lymph nodes, progesterone and estrogen receptor levels, and hormone therapy status.

771
772
773
774
775

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). The METABRIC dataset⁴ is a large breast cancer cohort study with 1903 patients and long-term follow-up (Pereira et al., 2016). The event of interest is overall survival. The censoring rate is 42%. It includes a mix of clinical variables (age, tumor size, grade, receptor status).

776

A.2 IMPLEMENTATION OF SURVDIFF

777
778
779
780
781

SURVDIFF is implemented in Pytorch. All experiments were carried out on one NVIDIA A100-PCIE-40GB. The default settings of our method and all benchmarking methods are listed below in Section B. The model architecture is based on the architecture of (Shi et al., 2024b). Each of the experiments was concluded after at most 13min.

782
783

Covariates: We embed high-cardinality discrete covariates as continuous vectors; however, we still distinguish them formally by their underlying finite support.

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

²https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.datasets.load_aids.html

³https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.datasets.load_gbsg2.html

⁴<https://github.com/havakv/pycox>

810 **B HYPERPARAMETERS**
811812 The hyperparameter grids for NFlow, CTGAN, TVAE, and SurvivalGAN follow the configurations
813 in the SurvivalGAN paper (Norcliffe et al., 2023) provided in the SynthCity library (Qian et al.,
814 2023). For the Ashhad baseline, we use the hyperparameters reported in the original paper (Ashhad
815 & Henao, 2024; 2025). All benchmark models are run with these published settings to ensure
816 comparability across datasets.
817
818

819 Model	820 Hyperparameters	
821 SURVDIFF	No. Epochs	1200
	Transformer Hidden Layers	5
	MLP Hidden Layers	3
	Survival MLP Hidden Layers	2
	σ_{\min}	0.002
	σ_{\max}	20.0
	Learning Rate	0.001
	Weight Decay	0.0001
	Dropout	0.1
	Batch Size	256
	Warm-up Epochs	150
	α_{surv}	0.3
822 Calibration Steps	10	
	Sampling Steps	300

830 Table 4: Hyperparameters for SURVDIFF.
831
832

833 Model	834 Hyperparameters	
835 CoxPH	Estimation Method	Breslow
	Penalizer	0.0
	L^1 Ratio	0.0
836 Weibull AFT	α	0.05
	Penalizer	0.0
	L^1 Ratio	0.0
837 SurvivalXGBoost	Objective	Survival: AFT
	Evaluation Metric	AFT Negative Log Likelihood
	AFT Loss Distribution	Normal
	AFT Loss Distribution Scale	1.0
	No. Estimators	100
	Column Subsample Ratio (by node)	0.5
	Maximum Depth	8
	Subsample Ratio	0.5
	Learning Rate	0.05
	Minimum Child Weight	50
	Tree Method	Histogram
	Booster	Dart
838 RandomSurvivalForest	Max Depth	3
	No. Estimators	100
	Criterion	Gini
839 Deephit	No. Durations	1000
	Batch Size	100
	Epochs	2000
	Learning Rate	0.001
	Hidden Width	300
	α	0.28
	σ	0.38
	Dropout Rate	0.02
	Patience	20
	Using Batch Normalization	True

840 Table 5: Hyperparameters for survival models.
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

866

Model	Hyperparameters	
CTGAN		
SurvivalGAN	No. Iterations	1500
	Generator Hidden Layers	3
	Discriminator Hidden Layers	2
	Discriminator and Generator Hidden Width	250
	Discriminator Non-linearity	Leaky ReLU
	Generator Non-linearity	Tanh
	Discriminator and Generator Dropout Rate	0.1
	Learning Rate	0.001
	Weight Decay	0.001
	Batch Size	500
TabDiff	Gradient Penalty (λ)	10
	Encoder Max Clusters	10
	DeepHit	
	No. Durations	100
	Batch Size	100
	No. Epochs	2000
	Learning Rate	0.001
	Hidden Width	300
	α	0.28
	σ	0.38
CTGAN	Dropout Rate	0.02
	Patience	20
	Using Batch Normalization	True
	XGBoost	
	No. Estimators	200
	Depth	5
	Booster	Dart
	Tree Method	Histogram
	No. Epochs	4000
	Transformer Hidden Layers	5
TVAE	MLP Hidden Layers	2
	σ_{\min}	0.002
	σ_{\max}	80.0
	Learning Rate	0.002
	Batch Size	256
	Sampling Steps	300
	Embedding Width	10
	Generator and Discriminator No. Hidden Layers	2
	Generator and Discriminator Hidden Width	256
	Generator and Discriminator Learning Rate	2×10^{-4}
NFlow	Generator and Discriminator Decay	1×10^{-6}
	Batch Size	500
	Discriminator Steps	1
	No. Iterations	300
	Pac	10
	Embedding Width	128
	Encoder and Decoder No. Hidden Layers	2
	Encoder and Decoder Hidden Width	128
	L^2 Scale	1×10^{-5}
	Batch Size	500
Ashhad	No. Iterations	300
	No. Hidden Layers	2
	Hidden Width	100
	Batch Size	100
	No. Transform Blocks	1
	Dropout Rate	0.1
	No. Bins	8
	Tail Bound	3
	Learning Rate	1×10^{-3}
	Base Distribution	Standard Normal
Gaussian Loss Type	Linear Transform Type	Permutation
	Base Transform Type	Affine-Coupling
	No. Iterations	1000
	Batch Size	1024
	Learning Rate	0.002
Ashhad	Weight Decay	0.0001
	No. of Time-Steps	1000
	Scheduler	Cosine
	Gaussian Loss Type	MSE

915

916

917

Table 6: Hyperparameters for benchmarking models.

918
919

B.1 IMPLEMENTATION DETAILS OF THE COVARIATE DISTRIBUTION EXPERIMENTS

920
921
922
923
924
925

For each dataset with n training samples and p covariates, we generate exactly n synthetic samples with every method. All covariates are preprocessed *exactly in the same way* as for the survival models (continuous features standardized, categorical variables one-hot encoded), and we do *not* apply any additional dimensionality reduction (no PCA or similar). Following the commonly used SynthCity library (Qian et al., 2023), we report a marginal Jensen–Shannon distance and a joint Wasserstein distance.

926
927

Jensen–Shannon distance (marginal). For each covariate $k \in \{1, \dots, p\}$ we approximate its marginal distribution on the real data by an equal–width histogram with

928
929

$$B = \min\{10, \#\{\text{unique values in } X_{\text{real}}^{(k)}\}\} \quad (14)$$

930
931
932
933
934

bins. The resulting bin edges are reused to bin the synthetic data, so real and synthetic histograms share the same support. Let $p^{(k)}$ and $q^{(k)}$ denote the corresponding normalized bin counts. We apply add-one smoothing to all bins and compute the Jensen–Shannon distance $\text{JSD}(p^{(k)}, q^{(k)})$ using the SciPy implementation. The reported value is the average over covariates, i.e.,

935
936
937

$$\text{JSD}_{\text{marginal}} = \frac{1}{p} \sum_{k=1}^p \text{JSD}(p^{(k)}, q^{(k)}). \quad (15)$$

938
939

After preprocessing, there are no missing values; extreme observations are not removed but simply fall into the outermost histogram bins.

940
941
942

Wasserstein distance (joint). Let $X \in \mathbb{R}^{n \times p}$ and $\tilde{X} \in \mathbb{R}^{n \times p}$ denote the real and synthetic covariate matrices, respectively. We apply feature-wise min–max scaling to $[0, 1]$ using only the real data via

943
944

$$\hat{X} = \text{MinMax}(X), \quad \hat{\tilde{X}} = \text{MinMax}(\tilde{X}), \quad (16)$$

945
946
947
948
949
950

and treat \hat{X} and $\hat{\tilde{X}}$ as empirical distributions over \mathbb{R}^p with equal mass $1/n$ on each sample. We then compute a Sinkhorn–regularized 2–Wasserstein distance using the `SamplesLoss(loss="sinkhorn")` optimal transport solver (GeomLoss). This matches the `WassersteinDistance` metric in SynthCity (Qian et al., 2023). Since all datasets are fully observed after preprocessing, NaNs do not occur, and potential anomalies are handled solely through the min–max scaling.

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **C EVENT-TIME DIVERGENCE (ETD)**
973

974 A survival-aware generative model should reproduce not only when events occur but also which
975 types of patients tend to experience events at different stages of the disease course. If the synthetic
976 cohort is to be useful for survival modeling, then the synthetic patients who die early, mid-course,
977 or late should resemble the corresponding groups in the real cohort. The Event-Time Divergence
978 (ETD) metric evaluates this alignment.

979 We divide the observed event-time horizon into five equally sized intervals and focus on uncensored
980 individuals whose events fall within each interval. For every interval, we compare the covariate
981 distribution of real patients who die in that interval with that of synthetic patients whose generated
982 event times fall in the same interval. The comparison uses the Jensen-Shannon distance, producing
983 five divergence scores that measure how well the model reproduced the covariate composition of
984 event-time matched subpopulations.

985 Formally, we have
986

987
$$ETD = \sum_{k=1}^5 JSDist(P_{\text{real}}(X | E = 1, T \in \mathcal{I}_k), P_{\text{syn}}(X | E = 1, T \in \mathcal{I}_k)), \quad (17)$$
988

989 where \mathcal{I}_k denotes the k -th of five equal-mass event-time intervals obtained by partitioning uncen-
990 sored event times T . We then aggregate these per-interval divergences into a sum across intervals.

991 Across all datasets, SURVDIFF yields the lowest ETD values for the aggregated metric (Tables 7–
992 9). This reflects that our model not only captures the overall covariates structure but also generates
993 patients with event-time patterns that mirror those of real clinical cohorts.

994
995
996
997
998

Event-Time-Divergence	Ctgan	Tvae	Nflow	Survival_gan	Tabdiff	Survdif
$0 \leq T \leq 60.4$	0.0672 ± 0.0158	0.0515 ± 0.0193	0.0348 ± 0.0078	0.0360 ± 0.0133	0.0245 ± 0.0034	0.0253 ± 0.0049
$60.4 < T \leq 119.8$	0.0610 ± 0.0103	0.0264 ± 0.0044	0.0349 ± 0.0093	0.0331 ± 0.0158	0.0313 ± 0.0029	0.0291 ± 0.0031
$119.8 < T \leq 179.2$	0.0640 ± 0.0149	0.0697 ± 0.0078	0.0347 ± 0.0093	0.0414 ± 0.0103	0.0377 ± 0.0041	0.0404 ± 0.0062
$179.2 < T \leq 238.64$	0.0647 ± 0.0182	0.0479 ± 0.0073	0.0409 ± 0.0077	0.0583 ± 0.0111	0.0523 ± 0.0044	0.0458 ± 0.0032
$238.64 < T \leq 298.0$	0.0613 ± 0.0107	0.0304 ± 0.0043	0.0306 ± 0.0102	0.0854 ± 0.0000	0.0616 ± 0.0107	0.0284 ± 0.0046
sum	0.3182 ± 0.0320	0.2296 ± 0.0229	0.1813 ± 0.0199	0.2532 ± 0.0256	0.2073 ± 0.0192	0.1690 ± 0.0102

1000
1001
1002
1003
1004 Table 7: **Event-Time-Divergence on AIDS.** For five equally sized event-time intervals, we compute
1005 the Jensen–Shannon distance between real and synthetic distributions *using only uncensored individ-
1006 uals who die within each interval*, ensuring covariate-matched comparison. Reported: mean \pm s.d.
1007 across runs.

1008
1009

Event-Time-Divergence	Ctgan	Tvae	Nflow	Survival_gan	Tabdiff	Survdif
$0 \leq T \leq 548.8$	0.0266 ± 0.0091	0.0182 ± 0.0040	0.0196 ± 0.0035	0.0270 ± 0.0077	0.0329 ± 0.0021	0.0192 ± 0.0022
$548.8 < T \leq 1025.6$	0.0230 ± 0.0049	0.0157 ± 0.0019	0.0166 ± 0.0038	0.0262 ± 0.0073	0.0231 ± 0.0001	0.0134 ± 0.0035
$1025.6 < T \leq 1502.4$	0.0253 ± 0.0047	0.0267 ± 0.0031	0.0222 ± 0.0050	0.0350 ± 0.0084	0.0295 ± 0.0022	0.0194 ± 0.0026
$1502.4 < T \leq 1979.2$	0.0299 ± 0.0053	0.0250 ± 0.0032	0.0272 ± 0.0060	0.0502 ± 0.0116	0.0349 ± 0.0048	0.0239 ± 0.0017
$1979.2 < T \leq 2456.0$	0.0506 ± 0.0125	0.0607 ± 0.0161	0.0384 ± 0.0048	0.0870 ± 0.0066	0.0436 ± 0.0071	0.0341 ± 0.0069
sum	0.1553 ± 0.0177	0.1463 ± 0.0173	0.1214 ± 0.0105	0.2255 ± 0.0190	0.1641 ± 0.0093	0.1100 ± 0.0086

1010
1011
1012
1013
1014
1015 Table 8: **Event-Time-Divergence on GBSG2.** For five equally sized event-time intervals, we
1016 compute the Jensen–Shannon distance between real and synthetic distributions *using only uncen-
1017 sored individuals who die within each interval*, ensuring covariate-matched comparison. Reported:
1018 mean \pm s.d. across runs.

1019
1020
1021
1022
1023
1024
1025

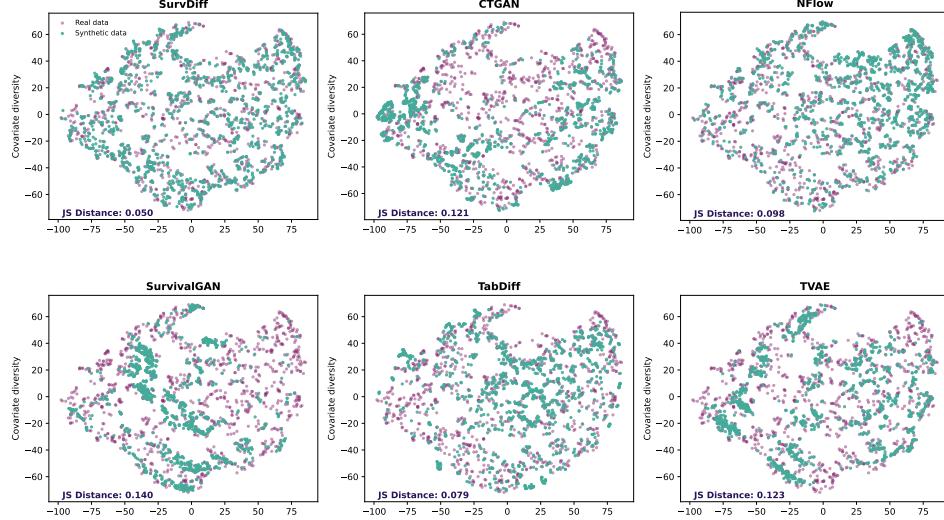
1026	Event-Time-Divergence	Ctgan	Tvae	Nflow	Survival_gan	Tabdiff	Survdiff
1027	$0 \leq T \leq 71.1$	0.0280 ± 0.0081	0.0162 ± 0.0029	0.0173 ± 0.0042	0.0310 ± 0.0108	0.0158 ± 0.0007	0.0130 ± 0.0030
1028	$71.1 < T \leq 142.1$	0.0292 ± 0.0119	0.0134 ± 0.0022	0.0129 ± 0.0036	0.0287 ± 0.0038	0.0131 ± 0.0009	0.0089 ± 0.0010
1029	$142.1 < T \leq 213.2$	0.0276 ± 0.0082	0.0128 ± 0.0016	0.0162 ± 0.0045	0.0328 ± 0.0094	0.0196 ± 0.0021	0.0108 ± 0.0013
1030	$213.2 < T \leq 284.2$	0.0288 ± 0.0078	0.0193 ± 0.0033	0.0202 ± 0.0029	0.0645 ± 0.0108	0.0221 ± 0.0015	0.0165 ± 0.0034
1031	$284.2 < T \leq 355.2$	0.0600 ± 0.0189	0.0732 ± 0.0009	0.0425 ± 0.0084	0.0722 ± 0.0000	0.0279 ± 0.0029	0.0363 ± 0.0112
1032	sum	0.1735 ± 0.0263	0.1349 ± 0.0053	0.1092 ± 0.0114	0.2291 ± 0.0183	0.0985 ± 0.0041	0.0855 ± 0.0122

Table 9: **Event-Time-Divergence on METABRIC.** For five equally sized event-time intervals, we compute the Jensen–Shannon distance between real and synthetic distributions *using only uncensored individuals who die within each interval*, ensuring covariate-matched comparison. Reported: mean \pm s.d. across runs.

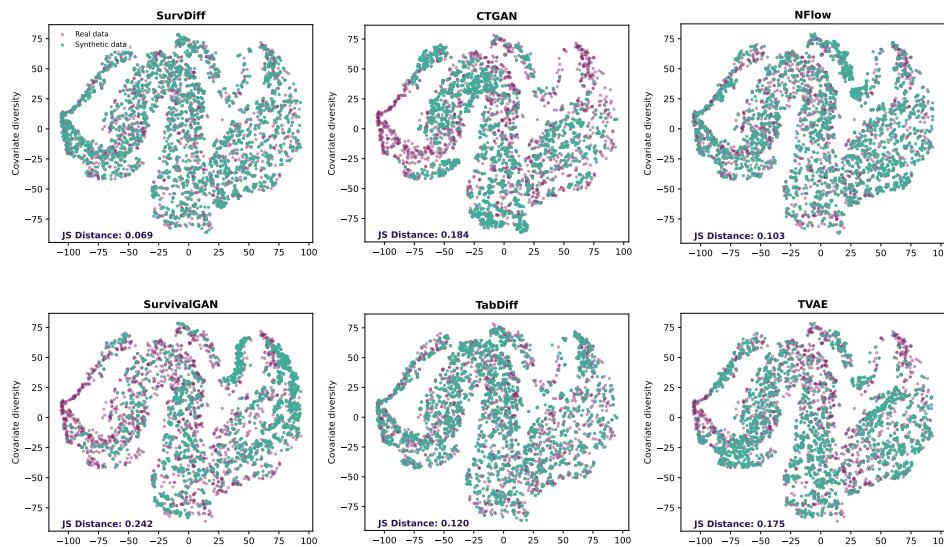
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081 **D ADDITIONAL COVARIATE, EVENT-TIME, EVENT-INDICATOR, AND**
 1082 **KAPLAN-MEIER VISUALIZATIONS**

1083 To complement the main results, we provide additional visualizations of covariate, event-time, and
 1084 event-indicator structure across all datasets. Figures 5 and 3 report t-SNE embeddings comparing
 1085 real and synthetic covariates for the baseline models on the AIDS and METABRIC datasets. Figures
 1086 10–12 present joint t-SNE and Kaplan-Meier visualizations for SURVDIFF and baselines, aggregated
 1087 over ten random seeds, illustrating alignment in covariate geometry and Kaplan-Meier trajectories.
 1088 Finally, Figures 7–9 show marginal distributions for all covariates, offering a complementary view
 1089 of univariate fidelity. Together, these visualizations provide a qualitative assessment of the stability
 1090 of training and the consistency of generated covariates and event-time characteristics across datasets.



1091
 1092 **Figure 5: t-SNE visualization of covariate fidelity on the AIDS dataset.**



1093
 1094 **Figure 6: t-SNE visualization of covariate fidelity on the METABRIC dataset.**

Figure 7: Marginal probability visualization on the AIDS dataset.

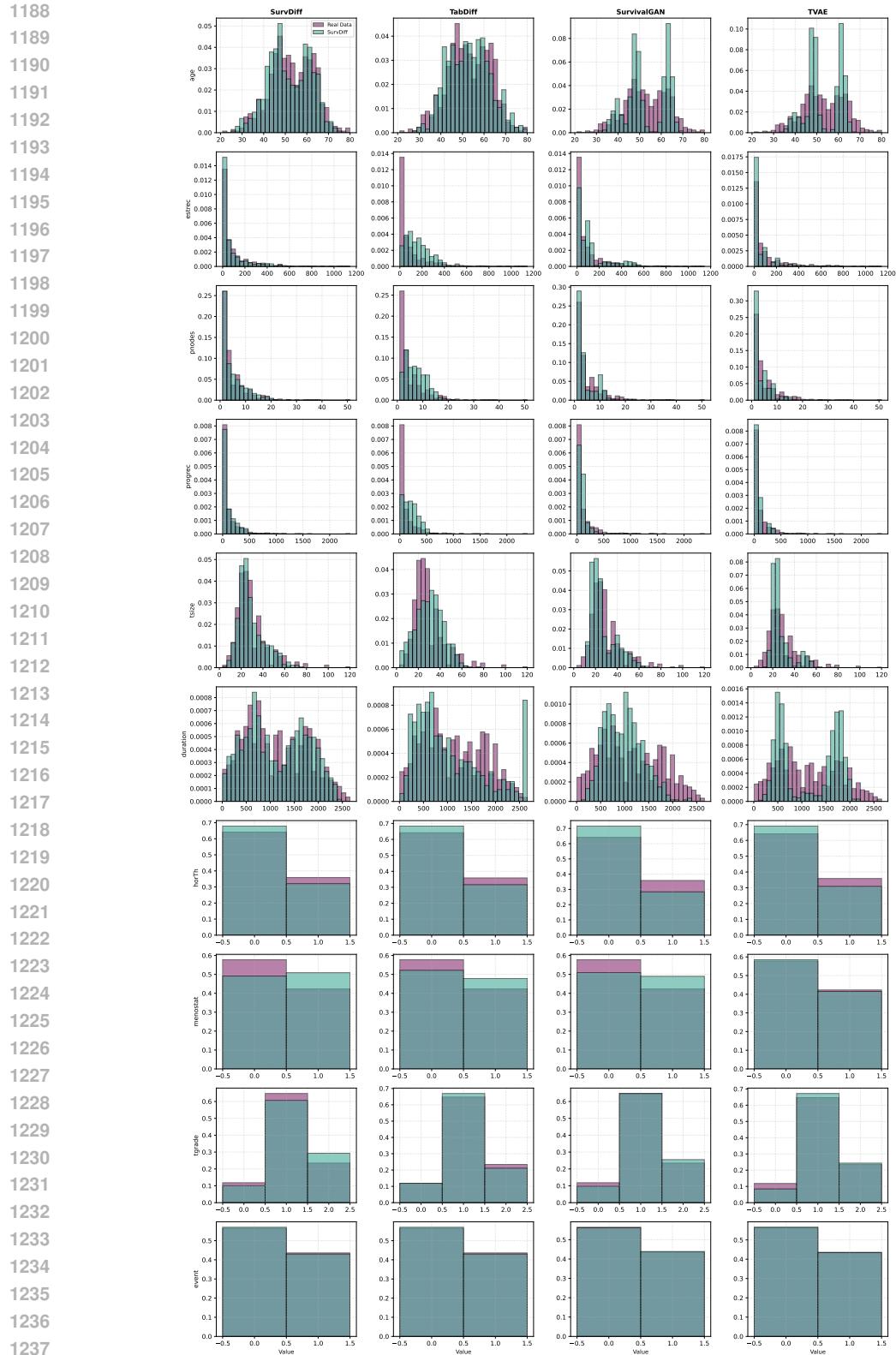


Figure 8: Marginal probability visualization on the GBSG2 dataset.

Figure 9: **Marginal probability visualization on the METABRIC dataset.**

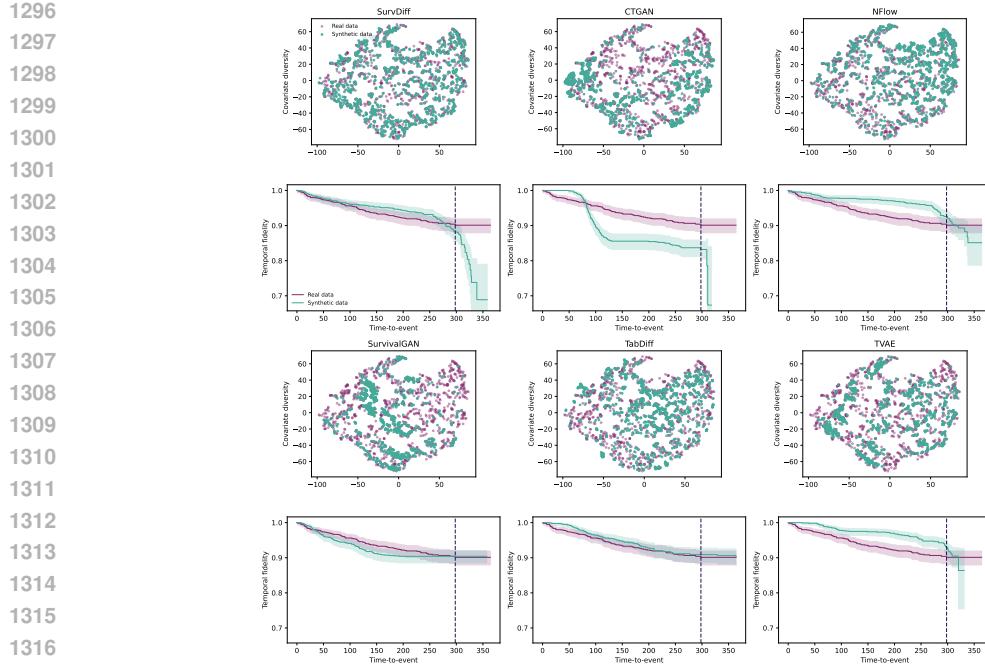


Figure 10: t-SNE visualization and KM curves on the AIDS dataset.

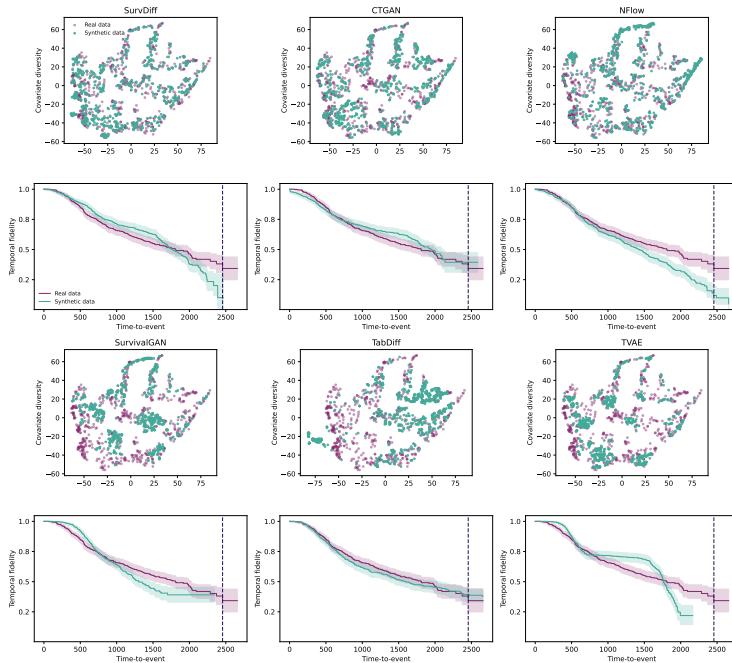


Figure 11: t-SNE visualization and KM curves on the GBSG2 dataset.

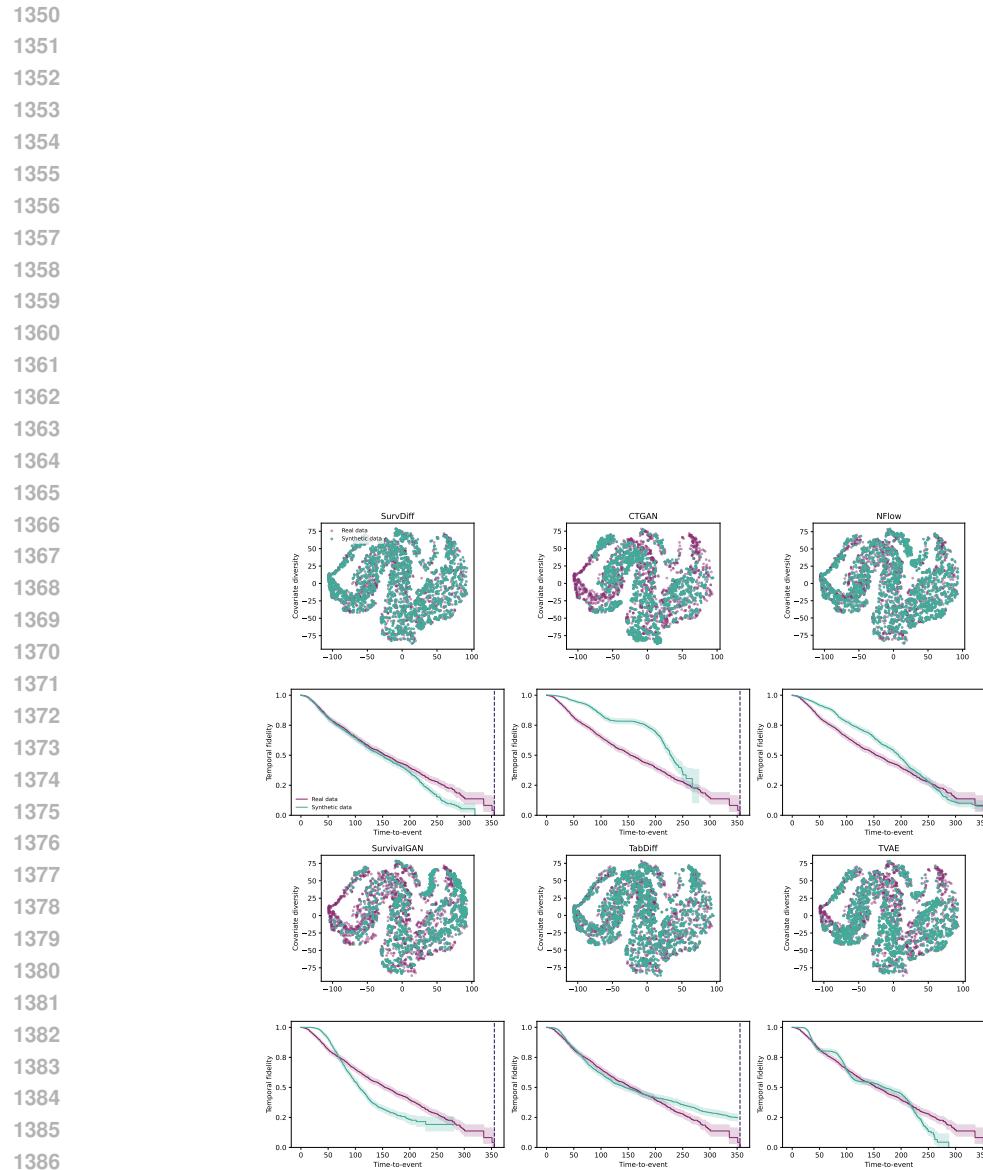
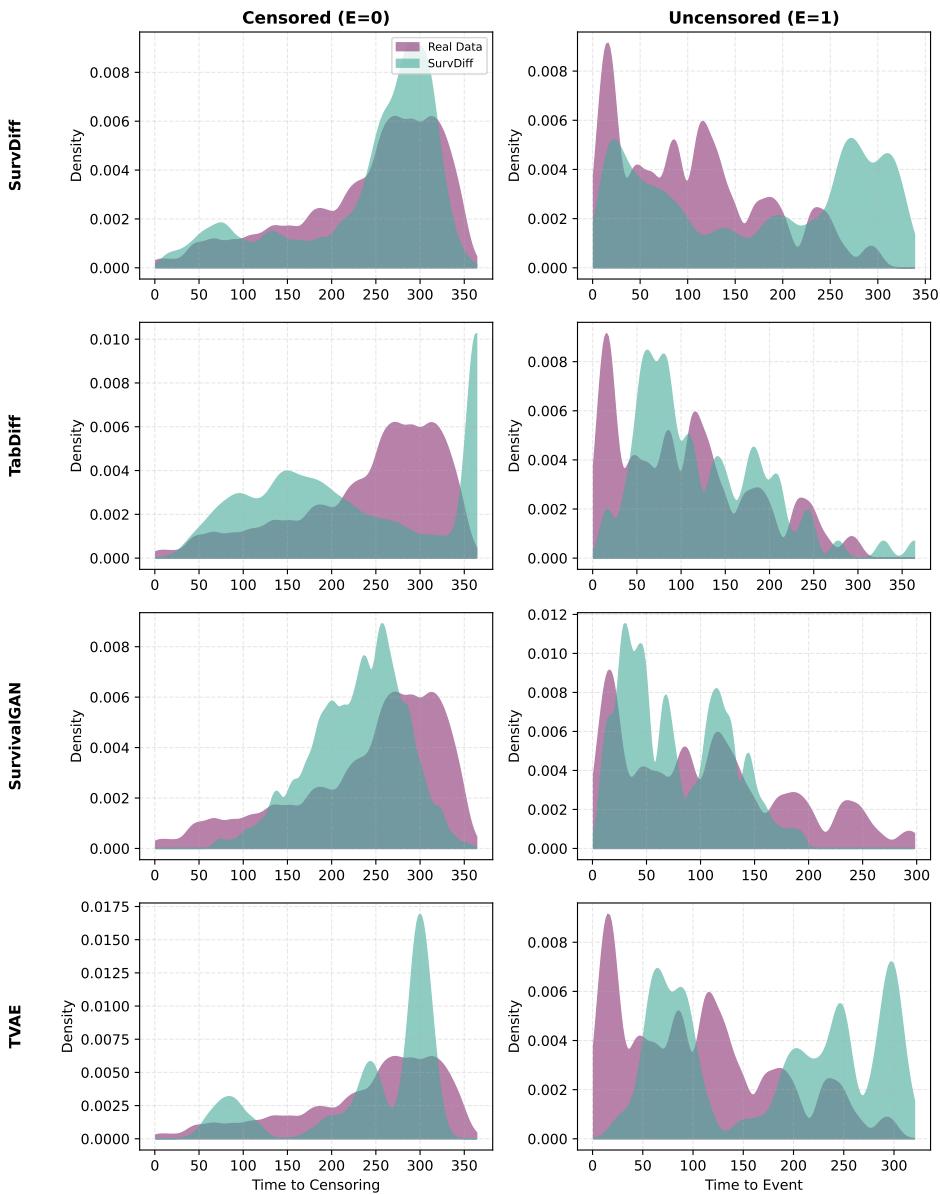
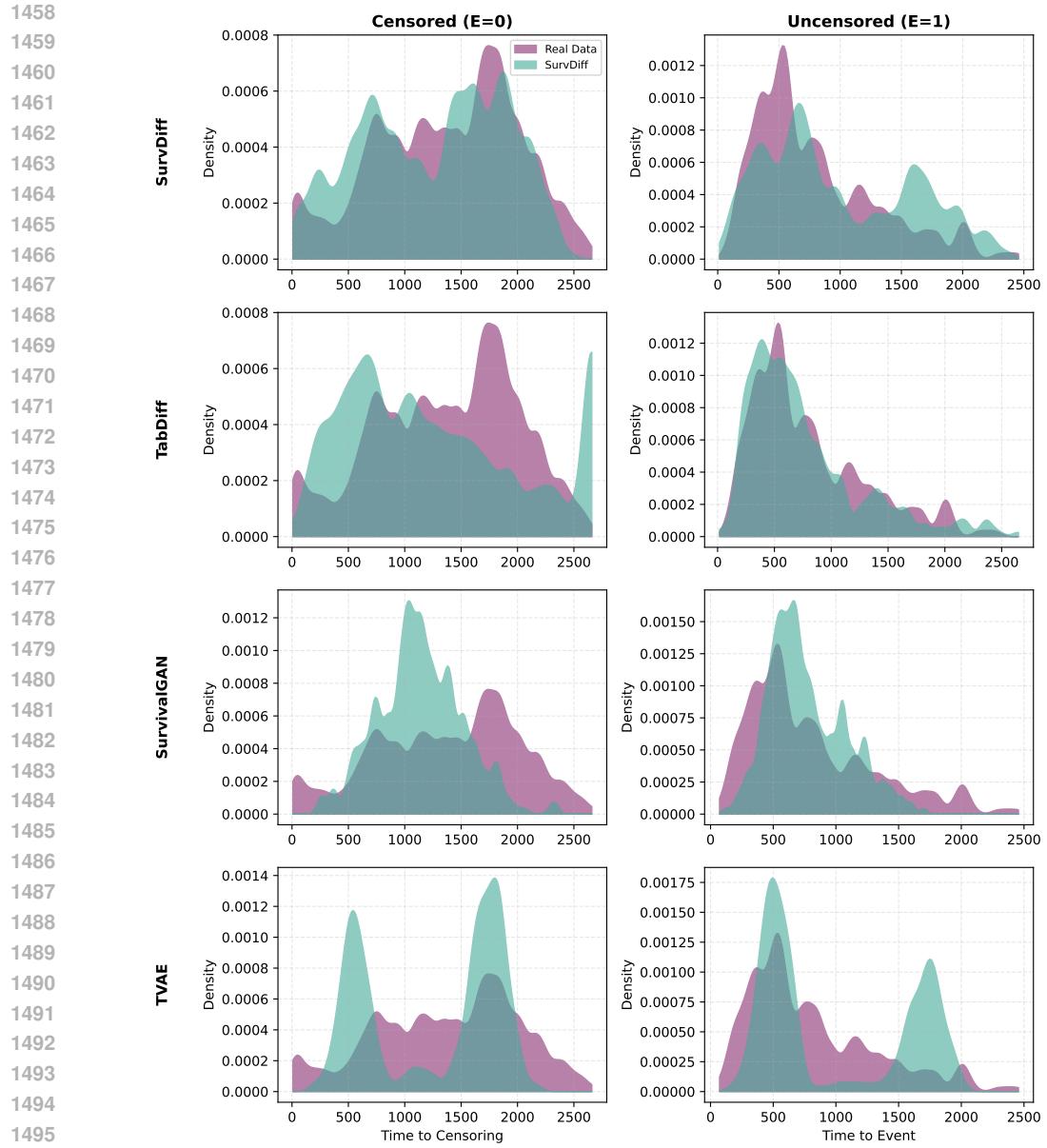


Figure 12: t-SNE visualization and KM curves on the METABRIC dataset.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
E ADDITIONAL TEMPORAL SURVIVAL-TIME VISUALIZATIONS

1406 To assess how well the generative models reproduce temporal survival structure, we report time-
 1407 to-censoring and time-to-event distributions in Figures 13 and 14. These density plots compare the
 1408 empirical survival times of real individuals with those generated by each baseline model, separately
 1409 for censored and uncensored cases. The visualizations highlight whether synthetic cohorts capture
 1410 early-event behavior, late-event tails, and typical censoring patterns observed in the real data. To-
 1411 gether, these plots provide a qualitative view of temporal fidelity that complements the Event-Time
 1412 Divergence (ETD) metric in Supplement C and the results reported in the main text.

1452
1453
1454
1455
1456
1457
Figure 13: **Temporal fidelity visualization of covariate fidelity on the AIDS dataset.**

Figure 14: **Temporal fidelity** visualization of covariate fidelity on the GBSG2 dataset.

1512 **F KAPLAN-MEIER METRICS**
1513

1514 In addition to the (i) *covariate distribution fidelity* metrics and the (ii) *survival model performance*
 1515 metrics, we also examine (iii) *survival* metrics, where SURVDIFF shows broadly comparable per-
 1516 formance across datasets. We evaluate how well synthetic data reproduce survival outcomes. For
 1517 this, we compare Kaplan-Meier curves (Kaplan & Meier, 1958) of real and synthetic cohorts using
 1518 the mean squared error (KM MSE) (Fay et al., 2013), and quantify differences in restricted mean
 1519 survival time (RMST gap) (Royston & Parmar, 2011; Kim et al., 2017) up to a fixed horizon. For
 1520 the RMST gap, it is important to note that, since it summarizes the difference in areas under the
 1521 survival curves, it can mask deviations that cancel each other out (e.g., synthetic survival curves
 1522 slightly above real ones early but below later). This is shown in Table 10. Overall, the results show
 1523 the strong performance of our SURVDIFF.

1524

1525

Metric	Method	AIDS	GBSG2	METABRIC
RMST gap (↓: better)	NFlow	0.0235 ± 0.0066	0.0697 ± 0.0205	0.0598 ± 0.0251
	TVAE	0.0360 ± 0.0023	0.0408 ± 0.0152	0.0223 ± 0.0064
	CTGAN	0.0491 ± 0.0204	0.0510 ± 0.0178	0.0890 ± 0.0248
	TabDiff	0.0092 ± 0.0014	0.0091 ± 0.0034	0.0329 ± 0.0027
	SurvivalGAN	0.0079 ± 0.0028	0.0319 ± 0.0124	0.0644 ± 0.0178
KM MSE (↓: better)	SurvDiff (<i>ours</i>)	0.0155 ± 0.0051	0.0412 ± 0.0208	0.0577 ± 0.0267
	NFlow	0.0009 ± 0.0003	0.0095 ± 0.0042	0.0082 ± 0.0036
	TVAE	0.0015 ± 0.0002	0.0109 ± 0.0027	0.0036 ± 0.0006
	CTGAN	0.0049 ± 0.0041	0.0087 ± 0.0077	0.0109 ± 0.0027
	TabDiff	0.0001 ± 0.0000	0.0007 ± 0.0001	0.0049 ± 0.0003
	SurvivalGAN	0.0002 ± 0.0001	0.0045 ± 0.0016	0.0124 ± 0.0033
	SurvDiff (<i>ours</i>)	0.0004 ± 0.0002	0.0058 ± 0.0016	0.0075 ± 0.0034

1537 Table 10: **KM metrics.** Kaplan-Meier metrics across multiple runs over different datasets (reported:
 1538 mean ± s.d.) over 10 runs with different seeds.

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

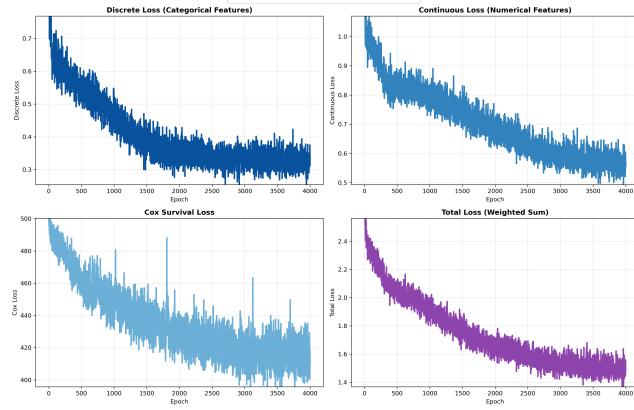
1566 **G SENSITIVITY STUDY: REDUCED DATASET SIZES**
1567

1568 We further investigate the performance of SURVDIFF under reduced dataset sizes by randomly
 1569 downsampling the AIDS and METABRIC datasets. Table 11 summarizes the results in comparison
 1570 to TabDiff across the (i) *covariate distribution fidelity* metrics, the (ii) *survival analysis performance*
 1571 metrics, and (iii) *survival* metrics. Across most metrics and settings, SURVDIFF achieves clear im-
 1572 provements, with only three exceptions in which the results remain comparable. On all other metrics,
 1573 SURVDIFF demonstrates superior performance. Notably, on METABRIC, the gains are substantial,
 1574 with *large improvements* in Wasserstein distance, Brier score, RMST gap, and KM MSE. This is
 1575 particularly relevant since METABRIC is the dataset where both methods were previously on par in
 1576 the larger-scale evaluation. The results thus underscore that SURVDIFF not only retains its strength
 1577 in smaller-sample regimes but, in fact, shows *even stronger advantages for smaller datasets*. \Rightarrow
 1578 *These findings highlight the robustness of our approach when data availability is limited.*

Metric	Method	AIDS (500)	AIDS (700)	METABRIC (500)	METABRIC (700)
JS distance (\downarrow : better)	TabDiff SurvDiff (<i>ours</i>)	0.0083 \pm 0.0010 0.0083 \pm 0.0012	0.0086 \pm 0.0006 0.0092 \pm 0.0007	0.0300 \pm 0.0007 0.0048 \pm 0.0017	0.0280 \pm 0.0008 0.0031 \pm 0.0005
Wasserstein distance (\downarrow : better)	TabDiff SurvDiff (<i>ours</i>)	0.1801 \pm 0.0432 0.1280 \pm 0.0079	0.1398 \pm 0.0326 0.1211 \pm 0.0157	0.1066 \pm 0.0332 0.0877 \pm 0.0069	0.0882 \pm 0.0119 0.0774 \pm 0.0062
C-Index (\uparrow : better)	TabDiff SurvDiff (<i>ours</i>)	0.6303 \pm 0.0698 0.7401 \pm 0.0533	0.5818 \pm 0.0428 0.6482 \pm 0.0268	0.6452 \pm 0.0178 0.6431 \pm 0.0338	0.6275 \pm 0.0282 0.6343 \pm 0.0475
Brier Score (\downarrow : better)	TabDiff SurvDiff (<i>ours</i>)	0.0702 \pm 0.0065 0.0588 \pm 0.0023	0.0872 \pm 0.0031 0.0840 \pm 0.0013	0.1750 \pm 0.0087 0.1692 \pm 0.0060	0.2025 \pm 0.0067 0.2006 \pm 0.0017
RMST gap (\downarrow : better)	TabDiff SurvDiff (<i>ours</i>)	0.0361 \pm 0.0240 0.0091 \pm 0.0042	0.0235 \pm 0.0168 0.0119 \pm 0.0062	0.0092 \pm 0.0035 0.0064 \pm 0.0024	0.0184 \pm 0.0171 0.0120 \pm 0.0043
KM MSE (\downarrow : better)	TabDiff SurvDiff (<i>ours</i>)	0.0060 \pm 0.0055 0.0003 \pm 0.0001	0.0029 \pm 0.0029 0.0006 \pm 0.0005	0.0011 \pm 0.0002 0.0010 \pm 0.0002	0.0026 \pm 0.0019 0.0019 \pm 0.0004

1594
1595 **Table 11: Downsampled datasets.** Covariate fidelity, downstream performance, and survival met-
1596 rics over different *downsampled* datasets (reported: mean \pm s.d.) across 10 runs with different seeds.
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620 **H SURVDIFF TRAINING LOSS**
1621

1622 The training losses are shown in Figure 15, which shows smooth and stable convergence across
1623 all objectives. Both the discrete and continuous diffusion losses decrease steadily, which reflects
1624 effective denoising of categorical and numerical covariates. The survival loss declines in parallel,
1625 indicating that the additional supervision integrates well with the generative process. Evidently, in
1626 the total loss, the *adaptive scaling* of λ_{surv} balances the different components during training.
1627

1641 **Figure 15: Training dynamics of SURVDIFF.** Shown are the discrete/categorical diffusion loss
1642 $\mathcal{L}_{\text{disc}}$, the continuous diffusion loss $\mathcal{L}_{\text{cont}}$, the Cox survival loss $\mathcal{L}_{\text{surv}}$, and the total objective
1643 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{diff}} + \lambda_{\text{surv}} \mathcal{L}_{\text{surv}}$.
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675 **I DIFFERENTIALLY-PRIVATE SURVDIFF**

1676 We further present a variant of SURVDIFF that is differentially private (Dwork & Roth, 2014).
 1677 For this, we combine SURVDIFF with differentially private stochastic gradient descent (DP-
 1678 SGD) (Abadi et al., 2016). Differential privacy (DP) provides a *formal guarantee* that the influence
 1679 of any single individual in the training set is negligible. Formally, a randomized mechanism M is
 1680 (ε, δ) -differentially private if for all adjacent datasets D and D' differing in one record, i.e.,

$$1681 \quad P[M(D) \in S] \leq e^\varepsilon P[M(D') \in S] + \delta \quad \text{for all measurable } S. \quad (18)$$

1683 This constraint enforces that the distribution of the model’s output changes only minimally when
 1684 a single patient is removed or replaced, thereby limiting what can be inferred about any individual
 1685 (Abadi et al., 2016). Note that none of the baselines (i.e., differentially-private variants of both
 1686 SurvivalGAN and Ashhad are lacking). To this end, our DP-SURVDIFF is the **first differentially-**
 1687 **private** method for synthetic survival data generation.

1688 DP-SGD ensures this guarantee by clipping per-sample gradients to a fixed norm C and adding
 1689 Gaussian noise scaled to the clipping threshold. At iteration t , the update is
 1690

$$1691 \quad g_t = \frac{1}{B} \sum_{i \in \mathcal{B}_t} \text{clip}(\nabla_{\theta} \ell_i, C) + \mathcal{N}(0, \sigma^2 C^2 I), \quad (19)$$

1694 where σ is the noise multiplier.

1695 In all private experiments, we impose the same privacy budget for both DP-SURVDIFF and the DP-
 1696 GAN baseline, fixing $\varepsilon = 8.0$ and $\delta = 10^{-5}$. This budget is in line with typical DP deep-learning
 1697 practice and provides a meaningful privacy guarantee while maintaining a usable signal for model
 1698 learning (Abadi et al., 2016).

1699 Table 12 summarizes the results across two datasets and ten random seeds. Under identical pri-
 1700 vacy constraints, DP-SURVDIFF consistently achieves better C-Index, Brier Score, and divergence
 1701 metrics compared to DP-GAN, indicating that our model remains robust even under strict privacy-
 1702 preserving training.

Metric	Method	AIDS	METABRIC
C-Index (↑: better)	DP-GAN DP-SurvDiff (<i>ours</i>)	0.4872 ± 0.0261 0.5104 ± 0.0222	0.4872 ± 0.0261 0.5090 ± 0.0144
Brier Score (↓: better)	DP-GAN DP-SurvDiff (<i>ours</i>)	0.4083 ± 0.0304 0.1298 ± 0.0352	0.2595 ± 0.0188 0.2461 ± 0.0091
JS distance (↓: better)	DP-GAN DP-SurvDiff (<i>ours</i>)	0.1100 ± 0.0053 0.0570 ± 0.0033	0.0525 ± 0.0037 0.0365 ± 0.0025
Wasserstein distance (↓: better)	DP-GAN DP-SurvDiff (<i>ours</i>)	2.1769 ± 0.1217 0.9654 ± 0.0852	0.7631 ± 0.0756 0.4135 ± 0.042
Shape error rate (↓: better)	DP-GAN DP-SurvDiff (<i>ours</i>)	0.6075 ± 0.0297 0.3416 ± 0.0270	0.3323 ± 0.0240 0.2721 ± 0.0187

1717 Table 12: **Extension of SURVDIFF to differential privacy.** Metrics across multiple runs over
 1718 different datasets (reported: mean ± s.d.) over 10 runs with different seeds.

1728 J ABLATION STUDY AND PARAMETER SENSITIVITY ANALYSIS

1730 We conduct an ablation study to isolate the contribution of the survival loss weighting mechanism
 1731 used in SURVDIFF. In this variant, we fix the survival loss weight to $w = 1$, removing the down-
 1732 weighting of sparse risk sets and treating all event times uniformly. Table 13 reports results across
 1733 ten runs on GBSG2 and METABRIC. The full method achieves better C-Index and Brier Score
 1734 and typically attains lower divergence metrics, with performance gains that are consistent across
 1735 datasets.

1736 The differences are moderate, as expected for a stable objective, but the pattern is systematic rather
 1737 than incidental, indicating that duration-dependent weighting provides a measurable benefit without
 1738 introducing variability or instability.

Metric	Method	GBSG2	METABRIC
C-Index (↑: better)	$w = 1$	0.6545 ± 0.0266	0.5990 ± 0.0206
	w^*	0.6601 ± 0.0252	0.5992 ± 0.0272
Brier Score (↓: better)	$w = 1$	0.2041 ± 0.0089	0.2083 ± 0.0066
	w^*	0.2037 ± 0.0092	0.2069 ± 0.0071
JS distance (↓: better)	$w = 1$	0.0075 ± 0.0008	0.0067 ± 0.0016
	w^*	0.0074 ± 0.0007	0.0062 ± 0.0013
Wasserstein distance (↓: better)	$w = 1$	0.0344 ± 0.0028	0.0554 ± 0.0062
	w^*	0.0347 ± 0.0026	0.0535 ± 0.0059

1749 Table 13: **Ablation study.** Metrics across multiple runs over different datasets (reported: mean \pm
 1750 s.d.) over 10 runs with different seeds.

1752
 1753
 1754 We further study the sensitivity of SURVDIFF to the exponential-decay parameter α_{surv} , which
 1755 moderates the contribution of long-duration events in the time-sensitive survival loss. Table 14 sum-
 1756marizes results for $\alpha_{\text{surv}} \in \{0.01, 0.1, 0.15, 0.25\}$ on GBSG2 and METABRIC. Across all settings,
 1757 SURVDIFF exhibits stable performance with only small variants in C-Index, Brier Score, JS distance
 1758 and Wasserstein distance. The configuration $\alpha_{\text{surv}} = 0.1$ yields consistently strong results on both
 1759 datasets. These findings show that SURVDIFF maintains robustness over a reasonable range of α_{surv}
 1760 values, supporting its practical applicability without requiring extensive hyperparameter tuning.

Metric	Method	GBSG2	METABRIC
C-Index (↑: better)	$\alpha = 0.01$	0.6598 ± 0.0272	0.5933 ± 0.0332
	$\alpha = 0.15$	0.6519 ± 0.0318	0.5934 ± 0.0313
	$\alpha = 0.25$	0.6561 ± 0.0273	0.5989 ± 0.0253
	$\alpha = 0.1$	0.6601 ± 0.0252	0.5992 ± 0.0272
Brier Score (↓: better)	$\alpha = 0.01$	0.2039 ± 0.0094	0.2083 ± 0.0067
	$\alpha = 0.15$	0.2039 ± 0.0092	0.2109 ± 0.0069
	$\alpha = 0.25$	0.2042 ± 0.0108	0.2087 ± 0.0063
	$\alpha = 0.1$	0.2037 ± 0.0092	0.2069 ± 0.0071
JS distance (↓: better)	$\alpha = 0.01$	0.0071 ± 0.0009	0.0070 ± 0.0015
	$\alpha = 0.15$	0.0081 ± 0.0008	0.0076 ± 0.0014
	$\alpha = 0.25$	0.0077 ± 0.0008	0.0067 ± 0.0018
	$\alpha = 0.1$	0.0074 ± 0.0007	0.0062 ± 0.0013
Wasserstein distance (↓: better)	$\alpha = 0.01$	0.0349 ± 0.0028	0.0556 ± 0.0057
	$\alpha = 0.15$	0.0364 ± 0.0025	0.0598 ± 0.0059
	$\alpha = 0.25$	0.0349 ± 0.0029	0.0559 ± 0.006
	$\alpha = 0.1$	0.0347 ± 0.0026	0.0535 ± 0.0059

1777 Table 14: **Sensitivity analysis.** Metrics across multiple runs over different datasets (reported: mean
 1778 \pm s.d.) over 10 runs with different seeds.