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ABSTRACT

Survival analysis is a cornerstone of clinical research by modeling time-to-event
outcomes such as metastasis, disease relapse, or patient death. Unlike standard
tabular data, survival data often come with incomplete event information due to
dropout, or loss to follow-up. This poses unique challenges for synthetic data
generation, where it is crucial for clinical research to faithfully reproduce both the
event-time distribution and the censoring mechanism. In this paper, we propose
SURVDIFF, an end-to-end diffusion model specifically designed for generating
synthetic data in survival analysis. SURVDIFF is tailored to capture the data-
generating mechanism by jointly generating mixed-type covariates, event times,
and right-censoring, guided by a survival-tailored loss function. The loss encodes
the time-to-event structure and directly optimizes for downstream survival tasks,
which ensures that SURVDIFF (i) reproduces realistic event-time distributions and
(ii) preserves the censoring mechanism. Across multiple datasets, we show that
SURVDIFF consistently outperforms state-of-the-art generative baselines in both
distributional fidelity and survival model evaluation metrics across multiple med-
ical datasets. To the best of our knowledge, SURVDIFF is the first diffusion model
explicitly designed for generating synthetic survival data
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such as progression-free
survival in cancer or
overall survival in clinical
trials (Bewick et al., 2004
Arsene & Lisboal, [2007).
Unlike standard tabular
datasets, survival data are
characterized by right-
censoring, where events are not observed due to dropout, loss to follow-up, or adverse reactions.
Such right-censoring is common in medical practice and can affect nearly half of patients in some
cancer trials (Shand et al.| [2024; Norcliffe et al.| [2023)).

Figure 1: SURVDIFF for generating synthetic survival data. Our
SURVDIFF generates synthetic samples that retain the structure of
the original data, including high-fidelity covariate distributions and
faithful event-time distributions while preserving the censoring mech-
anism. The synthetic dataset can then be used to train downstream
survival models without direct access to the original patient-level data.

However, generating synthetic data for survival analysis is particularly challenging because fail-
ing to correctly model censoring mechanisms can bias downstream clinical results (Norcliffe et al.,
2023} |Wiegrebe et al., [2024). Unlike standard tabular data generation, the task requires not only
capturing covariate distributions but also faithfully (i) reproducing time-to-event distributions and
(i) preserving censoring mechanisms (Bender et al.,|2021). This interplay between covariates, sur-
vival times, and censoring makes survival data generation inherently more complex than standard
tabular synthesis and is why naive applications of generic synthetic data methods, such as standard
generative adversarial networks (GANSs) or diffusion models, fail in survival contexts.

To the best of our knowledge, there exist only two methods tailored method for generating synthetic
survival data (see Table : Survival GAN (Norclifte et al.l|2023)) and the framework of Ashhad and
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Henao (Ashhad & Henaol [2024; [2025)) (which we refer to as Ashhad in the following). Both Sur-
vivalGAN and Ashhad decompose survival data generation into separate components for covariates
and for event times and censoring, rather than learning a single joint model. However, these ap-
proaches have major limitations: (1) in the case of SurvivalGAN, the GAN backbone is prone to
mode collapse and therefore unstable training; (2) they rely on multi-stage pipelines with different
models for covariates and event-time mechanisms, which makes them prone to error propagation
and prevents end-to-end learning. As a result, SurvivalGAN and Ashhad produce distributions of
covariates, event times, and censoring of limited fidelity.

Recently, diffusion models (Sohl-Dickstein et al.| 2015} |Shi et al.l |2024b; [Zhang et al., [2024) have
gained popularity as a powerful tool for generating synthetic fabular data. Diffusion models of-
fer stable training, avoid mode collapse, and consistently achieve high fidelity across diverse do-
mains (Dhariwal & Nicholl, 2021} (Chen et al., 2024)), which makes them a strong candidate for our
task. However, they are not designed for survival data, and, as we show later, a naive application
thus fails to (i) reproduce realistic event-time distributions and (ii) preserve censoring mechanisms.
To the best of our knowledge, a diffusion model tailored specifically to generating synthetic survival
data is still missing.

In this paper, we propose SURVDIFF, a novel end-to-end diffusion model for generating synthetic
survival data. Our SURVDIFF is carefully designed to address the unique challenges of survival
data. For this, SURVDIFF jointly generates covariates, event times, and right-censoring, guided by
a survival-tailored loss function. Our novel loss encodes the time-to-event structure and explicitly
accounts for censoring, ensuring that SURVDIFF (i) reproduces realistic event-time distributions
and (ii) preserves censoring mechanisms. We further improve training stability with a sparsity-
aware weighting scheme that accounts for right-censoring by giving higher weight to earlier event
times, which have more support in the data, and lower weight to later event times, which have less
support. Together, these design choices allow SURVDIFF to generate synthetic survival datasets that
are faithful regarding both covariate distributions and survival outcomes.

Our main contribution{] are the following: (1) We propose a novel, diffusion-based method called
SURVDIFF for synthetic data generation in survival settings. (2) Unlike existing methods, our
SURVDIFF is end-to-end, which allows it to jointly optimize covariate fidelity and time-to-event
information under censoring. (3) We conduct extensive experiments across multiple datasets from
medicine, where we demonstrate that our SURVDIFF achieves state-of-the-art performance in both
producing high-fidelity data and downstream survival analysis. In particular, we show that our
SURVDIFF outperforms naive applications of tabular diffusion models in ablation studies.

2 RELATED WORK

Generating synthetic data is often relevant for several reasons, such as augmenting datasets (Perez &
Wang] 2017)), mitigating bias and improving fairness (van Breugel et al.,|2021)), and promoting data
accessibility in low-resource healthcare settings (de Benedetti et al., [2020). While synthetic data is
widely explored for images and medical domains (Amad et al.,|2025)), less attention has been given
to survival data (see below).

ML for survival analysis: Machine learning for survival analysis faces unique challenges
(Wiegrebe et al} |2024; [Frauen et al., [2025) because survival data combine time-to-event outcomes
with right-censoring, which makes standard supervised learning methods inapplicable.

Traditional statistical approaches estimate hazard ratios or survival curves (Bender et al., 2005}
Austin, [2012). More recently, deep learning methods have adapted to this setting (Ranganath et al.,
2016; Miscouridou et al., |2018; Zhou et al., [2022)) but often with restrictive parametric assumptions
(e.g., Weibull distribution), or with conditioning on covariates (Bender et al., 2021 |Kopper et al.,
2022). Importantly, the focus is on estimating survival times, but not generating complete synthetic
datasets including covariates, event times, and censoring information (Konstantinov et al., [2024)).

Synthetic data generation for fabular data: A range of generative models has been proposed
for generating synthetic tabular data (see overview in |Shi et al.| (2025))). These are often based on
normalizing flows (NFlow) (Papamakarios et al.,|2021), variational autoencoders (VAE) (Kingma &
‘Wellingl [2013)), and generate adversarial networks (GAN) (Goodfellow et al.,|2014). Further, several

!Code is available at https://anonymous.4open.science/r/SurvDiff-E6AO0. Upon accep-
tance, we move our code to a public GitHub repository.
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specialized versions have been developed, such as: CTGAN (Xu et all 2019) extends the GAN
framework to mixed-type covariates using mode-specific normalization and conditional sampling.
TVAE (Xu et al.l |2019) leverages variational autoencoders to encode and recreate heterogeneous
feature types. However, these methods are not reliable in avoiding instability or mode collapse
during training (Saxena & Cao, 2021} Gong et al., |[2024).

More recent work has turned to diffusion models (Sohl-Dickstein et al. [2015; [Song & Ermon,
2019; Ho et al., 20205 [Song et al.l [2021)), which recently emerged as a powerful alternative for
tabular data generation and which offers improved stability and fidelity compared to adversarial or
variational methods. A state-of-the-art method here is TabDiff (Shi et al., [2024b), which directly
builds on the earlier TabDDPM model for tabular data (Kotelnikov et al.l [2023). As such, diffusion
models established strong baselines for synthetic tabular data and remain widely used. However,
these methods remain general-purpose and are not designed to (i) handle time-to-event outcomes
or (ii) preserve censoring. Still, we later use the above state-of-the-art tabular diffusion model as a
baseline.

Synthetic data generation for survival data: To the best of our knowledge, there are only two
tailored for survival data generation, namely, SurvivalGAN (Norcliffe et al.,[2023)) and the Ashhad
framework (Ashhad & Henaol 2024; 2025). Both methods generate the factorized distribution in
stages rather than jointly. While these approaches demonstrate the feasibility of generating synthetic
survival data, (1) in case of SurvivalGAN, the GAN backbone is prone to mode collapse and unstable
training; and (2) for both methods, the staged design and reliance on multiple components make it
more prone to error propagation.

Research gap: To the best of our knowledge, there is no tailored diffusion model for generating
synthetic survival data (Table [T). To fill this gap, we propose SURVDIFF, which is the first end-
to-end diffusion model for that purpose and which addresses key limitations of existing baselines.

ival®
Datatype xlglgel IEI?) cksbone Sur;lval Key generative models for synthetic data generation in our context.
W W

TVAE VAE X ‘While there is a large stream of generative models for tabular data, meth-
Tabular CTGAN GAN X ods tailored to survival data (e.g., preserving censoring mechanisms) are

TabDiff Diffusion X scarce.

777777777777777777777777777777777777777777777777 High-fidelity patient covariates =~ End-to-end  Avoid error propagation

Survival Survival GAN GAN v X X X

Ashhad model-agnostic v v X X

SURVDIFF (ours) Diffusion v v v v

T Survival data generation models tailored to time-to-event and censoring.

Table 1: Key works on synthetic data generation.
3 SETTING

Notation. We denote random variables by capital letters X and realizations by small letters z. We
write the probability distribution over X as Px and as p(x) its probability mass function for discrete
variables or the probability density function w.r.t. the Lebesgue measure for continuous variables.

3.1 MATHEMATICAL BACKGROUND
Diffusion models: Diffusion models (Sohl-Dickstein et al., 2015} |Song & Ermon, |2019; |Ho et al.,
2020; Song et al.| [2021) define a generative process by perturbing data through a forward noising
scheme and then learning a reverse procedure. (1) The forward process begins from data samples
o ~ Px and evolves according to a Markovian stochastic differential equation (SDE) indexed by a
diffusion time u € [0, 1] via

dz = f(z,u) du + g(u) dw,, ()

where f is the drift term, g the diffusion coefficient, and w, a Wiener process, i.e., a Brownian
motion with independent Gaussian increments W, n — W, ~ N(0,AT)). As u increases, the
distribution P, converges to a tractable noise distribution, typically Gaussian. (2) By reversing the
process, one can then sample from the original distribution. Under mild regularity conditions, the
reverse-time dynamics satisfy

dw = [f(z,u) — 9(u)* V.t log pu(x) | du + g(u) ., @

where w,, is a reverse-time Wiener process and V. log p,, () the score function, i.e., the gradient of
the log density at noise level u. Because the score function is unknown, a neural network pp(x, u) is
trained via score-matching to approximate V. log p,, (). Once trained, the model can approximate
the reverse SDE and transform Gaussian noise into samples from the target distribution.
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The above diffusion model provides a tractable approximation to maximum likelihood and underlies
a broad family of generative models. However, in its standard form, it cannot model mixed-type
variables (continuous or discrete), because of which extensions such as TabDiff (Shi et al., 2024b)
are used. More importantly for our setting, while there are some extensions to medical settings (Ma
et al., 2024; |Amad et al., 2025; Ma et al., 2025)), there is no diffusion model to capture the censoring
mechanism in survival data, which motivates the need for a tailored method.

Survival analysis: The goal of survival analysis (Bewick et al., 2004; [Machin et al., [2000) is to
model the time until an event of interest (e.g., metastasis, relapse, etc.) occurs. For simplicity, we
assume that death is the event of interest. In practice, the event is not always observed because of
censoring. Let T' > 0 denote the censoring time if the event is censored (E = 0), and the event time
if the event was observed (E = 1).

The survival function S(t | ) = p(T' > t | X = z) for individuals with covariates X = z at
time ¢ that quantifies the probability of surviving beyond ¢ given covariates x. The event process can
be equivalently expressed through the hazard function h(t | x) = lima¢—o © (t<T<t+At‘T>t X=a)
which gives the instantaneous risk of death at time ¢ conditional on surv1v1ng up to t. Surv1val and
hazard functlons are linked via S(t | =) = exp ( — fo s | @) ds). The expected time-to-event
isE[T | z] = fo (t | ) dt (or a finite-time horizon when the study horizon is restricted). In
practice, the survival probabilities S(¢ | ) are estimated from (X;, F;, T;) using tailored models
for censored time-to-event data, for example, Cox proportional hazards regression (e.g.,|Cox,|1972),
which parameterize either the hazard or the survival function while accounting for censoring.

3.2 PROBLEM STATEMENT
Data: We observe an i.id. dataset Dyea = { (2%, 2™ E; T;)}7_, with patient data drawn

from some distribution P, which consists of (1) continuous covariates xl(-com) € R, (2) discrete

(disc) _ ( (disc) z(disc))

covariates x; € R with one-hot encoding, (3) the event indicator

Tin oo Tidgg
E; € {0,1}, and (4) an observed event time 7; € R,. Here, censoring is captured by the event
indicator, which denotes whether the event was observed (E; = 1) or whether it was censored

(E; = 0), such as due to study dropout, loss of follow-up, or adverse reactions.

Task: Given the original data D, our objective is to generate n new samples Dy, =

{(2\59 gl B T;)}7_ | that approximate the target distribution P. In particular, the synthetic
data Dy, must preserve both (i) the joint distribution of covariates and (ii) survival outcomes (i.e.,
the time-to-event information as induced by the censoring mechanism conditional on covariates).

Fidelity desiderata. As in previous literature (Norcliffe et al.,[2023)), we measure the closeness of
Dgyn t0 Dyeq along four main dimensions:

(1) Covariate fidelity. Here, the idea is to generate patient samples that have similar character-
istics (e.g., age, gender, etc.) as the original dataset. Optimally, D;ca1 and Dsyy should be
drawn from the same distribution P. This similarity can be quantified via distances such as the
Jensen—Shannon distance or the Wasserstein distance.

(ii) Survival-specific fidelity. We assess whether the synthetic data Dsy,, capture the temporal struc-
ture of the survival process. This includes the Event-Time Divergence (ETD) metric, which
compares covariates of individuals experiencing events in similar time intervals, and temporal
distribution plots for censored and uncensored events.

(iii) Overall fidelity. To evaluate fidelity across all variables, we report the Shape metric (Shi et al.,
2024b), which incorporates 7" and ' and compares marginal distributions, and provide normal-
ized marginal histograms for X, 7', and E to compare real and synthetic marginal distributions.

(iv) Survival analysis performance. The aim is to generate data that allow training survival models
on synthetic samples and evaluating them on real outcomes. This follows the idea of train on
synthetic, test on real (TSTR) to assess the ability of the synthetic data to be used for real-world
applications (Esteban et al.l [2017). In our case, we evaluate whether the synthetic data Dsyy,
preserves event-time structure. We report the concordance index (Harrell et al.,|1982) (C-index),
which measures correct risk ranking, and the Brier score (Brier, [1950), which measures the
accuracy of predicted survival probabilities.

Below, we develop a diffusion model tailored to survival data, yet where preserving censoring is

non-trivial. Unlike standard diffusion models, our method incorporates a censoring-aware objective

to generate synthetic data with event-time and censoring patterns that align with the real data D).
4
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4 METHOD

Overview. We now introduce SURVDIFF, a diffusion-based model for generating synthetic survival
data in an end-to-end manner, where we jointly model both continuous and discrete covariates,
event times, and censoring indicator. SURVDIFF comprises three components (see Figure : Aa
Sforward diffusion process that perturbs covariates, event times, and censoring indicators; @) a reverse
diffusion process that reconstructs survival data from noise; and © a survival-tailored diffusion loss
that preserves event-time ordering while incorporating censored observations.

In SURVDIFF, we employ a masked-diffusion process (Sahoo et al.| 2024) together with a Gaussian
diffusion process, and follow the architecture in|Shi et al.| (2024b) to handle mixed-type covariates.
The main novelty lies in how we design the training objective, which enables learning high-fidelity
covariate distributions and thus generates faithful synthetic datasets for downstream survival tasks.
We distinguish the role of the event indicator £ (discrete) and event time 71" (continuous), which
progress along different noising schemes due to the different variable types.

To integrate both continuous and discrete variables, we represent the continuous covariates jointly in
a vector of dimension d.,, and encode the discrete covariates each in a one-hot vector. Specifically,
for individual 7 and covariate j with C; different values, we obtain " € V; = {v € {0,1}%*! |

J
kCJ:J{l vy = 1}, where the first C; entries correspond to the different values and the last entry to

a mask state. The mask is later used to hide specific one-hot vectors, forcing the model to learn
the original value of the discrete covariate. We denote the one-hot vector representing the mask by
m € V; with mg; = 1. In addition, we define Py (-; ) as the discrete distribution over the C;
possible values and the mask with probabilities 7 € A%+, where A%+ is the C; + 1-simplex.
For simplification, with a slight abuse of notation, we omit the index ¢ for a patient in the following.

4.1 (A FORWARD DIFFUSION PROCESS

Following [Shi et al.|(2024b), the forward diffusion process in SURVDIFF perturbs each element of
the data point (2" (@9 F T with the power-mean noise schedule °°"(-) and the log-linear
noise schedule o¥*¢(-) for continuous and discrete covariates. We review both cases below.

e Continuous covariates: Let z = (2™ T). We adopt a so-called variance-exploding (VE)
SDE (Song et al., 2021} Karras et al., [2022; [Shi et al.| 2024b)):
dz = f(z,u)du+g(u) AW,  flz,u) =0,  g(u) =/ 4 (0" (w))2. 3)

where W, is a standard Wiener process. The forward perturbation then has the closed form
2 =20+ 0M(we, &~ N(0,14,,), (2| 20) = N (20, (0" (1))* L), )

with identity matrix I and z, the embedding of the original data point (™ T') with diffusion time
u = 0. As 0°™(u) increases, the marginal distribution converges to isotropic Gaussian noise, while
each conditional remains centered at the transformed z.

e Discrete covariates: Let 7 = (z(%59) F) and %, the embedding of the original data point
(x(””“), E). We use a masking process (Austin et al., 20215 |Shi et al., [2024a; |Sahoo et al., [2024;
Shi et al., 2024b) with schedule o, = 0%°(u) € [0, 1], where o, decreases monotonically in u. At
each step, a one-hot vector representing a discrete value is retained with probability «,, and replaced
by the mask m with probability 1 — o, via

q(éu | ZO) = pcat(2u§ auEO + (1 - au)m) (5)

As u — 1, all entries converge to the mask state, such that the representation loses informative
structure and becomes indistinguishable across samples.

4.2 ® REVERSE DIFFUSION PROCESS

We now aim to model the underlying survival data distribution P. For this, the reverse process
in SURVDIFF reconstructs survival data from noisy inputs by iteratively denoising the continuous
and discrete covariates together with the event indicator and event time. The denoising network,
parameterized by 6, produces outputs for covariates and survival quantities. The diffusion loss Lgist
guides training for feature reconstruction while the survival loss L, enforces time-event structure.

e Continuous covariates: The reverse-time VE dynamics are parameterized by the score function
V. log p,(z) with z = (2(©" T'), which transports samples from Gaussian noise back to valid
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data points. To do so, we train a diffusion model py, with the continuous part of the model output
p’™, to predict the perturbation € in the closed-form z,, = zg + 0°*™(u)e. Here, the objective is

cont

2
Leont(0) = EZONPT’X(COM) EUNU[OJ] EENN(O,I%"[) [HN(J (2u,u) — 5“2] ) (6)

which is equivalent (up to weightings) to score matching for VE SDEs. The diffusion model gy,
with the continuous part of the model output ;™ reconstructs the original datapoints zo from the
noisy data.
e Discrete covariates: For 7 = (%) F) with masking schedule a,,, = 0%*¢(u), the reverse dy-
namics progressively denoise the original values from the mask m. The distribution of Z over an
earlier index s < w is given by o _

pcat(zs; Zu)a Zu 7é m,

)

Q(gs ‘ 2’[1,720) =

S . Qs—Qy 3 1—a s
pCal(zSa 1—ay 20 + 1—o, m)7 Zy = M.

The diffusion model pg, with the discrete part of the model output ugisc, reconstructs the original
datapoint Z; from the noisy inputs. The objective follows from the continuous-time evidence lower
bound (ELBO) for masking diffusion

1 .

Ay isc [ ~ - -

Laisc(0) = EzonP, iy [/ . log (g™ (Zu, ), Z0) 1[Z, = m] du] ) ®)
s 0 Qy,

with &, = <o, and where (-, -) is the inner product.

Diffusion loss: The overall diffusion loss is obtained as a weighted combination of continuous and
discrete terms with weights Acone, Agise > 0:

Ediff(a) = /\contﬁcom(a) + Adiscﬁdisc (9) (9)

4.3 (© SURVIVAL-TAILORED DIFFUSION LOSS

To encode the survival-specific data structure, including event times and censoring indicator,
SURVDIFF adds a survival loss on top of the diffusion objective. Concretely, we generate a pre-
diction of survival risk from the denoised covariates and adapt the loss to account for regions with
uneven data support, thereby ensuring that rare long-term events are not overweighted.

Let 2" ¢ Ré%on denote the predicted continuous vector, and let xg-di“) € V; be the predicted

probability vector for discrete covariate j (including the [mask] state). We concatenate these to form
x = [z, xgd‘sc); s x(;;i:)]. A survival head fp, realized as a multi-layer perceptron, maps x to
a scalar risk score 7 = fp(x). Now, consider sample i = 1,...,n with observed times T}, event
indicators E;, and risk sets R(7;) = {k € [n] : T > T;}. The risk set at time 7; contains all
patients who are still under observation and have not yet experienced the event.

Our survival loss extends the Cox partial negative log-likelihood (Cox, |1972; [Katzman et al., [2018))
with sparsity-aware weighting, which models the event risk proportional to a baseline hazard and
covariate effects over time. We optimize

exp(r;)
£su v(e) = - ws IOg ) (10)
r iG[n]%i—l ZjER(Tz) exp(7;)

with the predicted scalar risk score r; and the importance weights w; defined below to balance
the contributions across event times and mitigate sparsity in regions with limited support. Only
uncensored events (F; = 1) contribute directly; censored observations affect the denominator via
the risk sets. With w = 1, our loss simplifies to the classical Cox proportional hazards loss (Katzman
et al.,[2018)).

In our loss, we choose w; as follows. First, we note that late events yield small risk sets and unstable
gradients. Hence, our w; should downweight rare long-duration events while preserving the partial-
likelihood structure. For event ¢ within time 7;, we define

1a Ti S T,
w; = (11
exp(—a(Ti—T)), T >,
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where 7 is the duration threshold (e.g., 80th percentile of the maximum observed time) from which
exponential downweighting starts. Therein, we use an exponential decay weighting to downweight
rare late events, which reduces instability from small risk sets and makes the joint optimization of
diffusion and survival objectives more stable, while remaining differentiable.

Overall SURVDIFF loss: Then, the total loss consisting of the multiple objectives is

Etotal(a) == Ldiff(e) + )\survﬁsurv(a) (12)

with Agyrv > 0 and initiated adaptively. This formulation allows SURVDIFF to be trained end-to-end,
jointly aligning feature reconstruction with survival-specific objectives.

E T gaussian diffusion masked diffusion

g -= (22)i = (20)i + 05 (w)e, & ~ N(0,1) ) { \:;7::
8 | T ]
8 L1 ]
- A}
ta /\
\\\ ~ ~ ~
\ \\ FORWARD DIFFUSION A
\ X
v
Y
i 235

REVERSE DIFFUSION &
20, 2o € @4 21,71

["Denoising Network |

Survival Head
minimize training loss (€

AdifrLaite + Asurv (* > wilog #>
i1
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Figure 2: Overview of our SURVDIFF. SURVDIFF consisting of @) forward diffusion, the @
backward diffusion and the (€ novel survival-focused loss. Importantly, we distinguish the role of £/

(event indicator; binary) and 7' (time-to-event; continuous), which progress along different noising
schemes due to the different variable types.

4.4 TRAINING AND SAMPLING

Training: SURVDIFF is trained end-to-end on minibatches. For each batch, we sample a noise level
u ~ U(0, 1) and corrupt the inputs via the forward processes. The network receives the noisy tuples,
predicts denoised event indicators, event times, and continuous and discrete covariates, from which
the diffusion loss L is computed. Denoised covariates define the survival input, yield risk scores,
and contribute to the survival loss L. To stabilize training A, is monotonically interpolated

during a short warm-up period (Sgnderby et al.l [2016; |Li et al.| 2020) and then set to a calibrated
value determined by adaptive scaling:

After a short calibration phase, the survival weight Ag, is chosen such that the survival term con-
tributes a target fraction o, of the total objective, because the survival loss can differ substantially
in scale across datasets. Using running averages Lgir and Lg,y over the calibration window, the

weight is computed as —— {)\mam Csury Eiiiff } 13
(]- - Oésurv)(ﬁsuw + 5)

This choice stabilizes the balance between diffusion and survival signals. The fixed calibrated weight

preserves a stable training signal, as fully adaptive signals over all timesteps can drive the ratio by
shrinking A instead of minimizing the loss.

Sampling: After training we generate synthetic data Dy, by initializing continuous data points as
21 ~ N(0,1) and discrete ones as Z; = m, for u = 1.The learned reverse process then runs over
a discretized schedule from © = 1 to v = 0, applying Gaussian denoising updates to z,, and cate-
gorical unmasking to Z,. This yields a full synthetic sample (2" 79 B T'). Administrative
censoring can be applied post hoc to reflect study-specific follow-up horizons.
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5 EXPERIMENTS

We next evaluate SURVDIFF across multiple survival datasets and benchmarks, with all imple-
mentation details given in Supplement [A] Datasets: We demonstrated the superior performance
of SURVDIFF in extensive experiments across various medical datasets with survival data: (i) the
ACTG clinical trial dataset (AIDS) (Hammer et al., [1997), (ii) the German Breast Cancer Study
Group 2 dataset (GBSG2) (Schumacher et al.| [1994), and (iii) the Molecular Taxonomy of Breast
Cancer International Consortium dataset (METABRIC) (Pereira et al.l [2016). Details for each
dataset are in Supplement [A]

Metric |  Method | AIDS \ GBSG2 |  METABRIC
NFlow 0.0129 + 0.0017 | 0.0115 #+ 0.0023 | 0.0123 4 0.0017
TVAE 0.0111 + 0.0011 | 0.0130 + 0.0009 | 0.0098 + 0.0008
Js CTGAN 0.0176 + 0.0019 | 0.0120 + 0.0017 | 0.0179 % 0.0026
distance TabDiff 0.0085 + 0.0003 | 0.0179 + 0.0005 | 0.0098 £ 0.0002
(L:betler) | SurvivalGAN | 0.0135 + 0.0018 | 0.0159 + 0.0021 | 0.0212 + 0.0027
Ashhad 0.0074 + 0.0003 | 0.0496 £ 0.0002 | 0.0070 + 0.0010*
SurvDiff (ours) | 0.0059 + 0.0014 | 0.0074 + 0.0007 | 0.0062 & 0.0013
NFlow 0.1161 + 0.0106 | 0.0675 + 0.0137 | 0.0826 + 0.0144
TVAE 0.0779 + 0.0045 | 0.0400 + 0.0033 | 0.0349 + 0.0029
Wasserstein|  CTGAN 0.2461 + 0.0253 | 0.0558 + 0.0094 | 0.1058 + 0.0212
distance TabDiff 0.0882 + 0.0007 | 0.0533 £ 0.0012 | 0.0492 £ 0.0005
(Libetier) | SurvivalGAN | 0.1545 & 0.0151 | 0.0889 £ 0.0218 | 0.1689 + 0.0272
Ashhad 0.1068 =+ 0.0021 | 0.9287 + 0.0047 | 0.0890 % 0.0040*
SurvDIff (ours) | 0.0960 £ 0.0146 | 0.0347 £ 0.0026 | 0.0535 £ 0.0059
NFlow 0.0858 + 0.0104 | 0.1032 + 0.0116 | 0.0872 + 0.0106
TVAE 0.0768 + 0.0053 | 0.1403 =+ 0.0051 | 0.0802 % 0.0050
Shape CTGAN 0.1175 + 0.0135 | 0.1260 + 0.0140 | 0.1235 + 0.0130
error rate TabDiff 0.0577 + 0.0015 | 0.1392 + 0.0038 | 0.0679 + 0.0012
(Libetler) | SurvivalGAN | 0.0934 + 0.0083 | 0.1550 & 0.0130 | 0.1507 + 0.0168

Ashhad 0.0983 £ 0.0034 | 0.2485 + 0.0025 *

SurvDiff (ours) | 0.0494 + 0.0134 | 0.1138 + 0.0190 | 0.0519 F 0.0121

* These values are the reported values in (Ashhad & Henao 20245 2025).

Table 2: Covariate fidelity. Covariate diversity metrics over different datasets (reported: mean =+
s.d.) across 10 runs with different seeds).

Baselines: Our choice of benchmark is consistent with earlier work (Norcliffe et al., [2023). In
particular, we benchmark our SURVDIFF against the following baselines for generating synthetic
tabular or survival data: (1) NFlow, (2) TVAE, (3) CTGAN, (4) TabDiff, (5) SurvivalGAN, and
(6) Ashhad. Details about the baselines and hyperparameters are in Supplement [B]

Performance metrics: We compare the synthetic data along four dimensions:

(i) Covariate fidelity. We assess how closely the distribution of patient characteristics in the syn-
thetic data matches the original data. For this, we compare the observed covariates via the
Jensen-Shannon (JS) distance and the Wasserstein distance. We report marginal JS for per-
feature alignment and joint WS to capture overall multivariate structure.

(ii) Survival-specific fidelity. We evaluate whether the synthetic data reproduce the temporal struc-
ture of the survival process. The evaluation includes the Event-Time Divergence (ETD) metric,
which compares covariates of individuals with events occurring in similar equally sized time
intervals (Supplement [C), as well as temporal distribution plots for censored and uncensored
events.

(iii) Overall fidelity. To assess fidelity across all patient variables, we report the Shape metric |Shi
et al.|(2024b)), which quantifies differences in the marginal distributions, and present normalized
marginal histograms.

(iv) Survival analysis performance. The goal is to generate data that enable survival models trained
on synthetic samples to generalize to real outcomes. For this, we train five popular survival
models on the synthetic datasets, namely: (a) DeepHit (Lee et al., [2018), (b) Cox proportional
hazards (Cox| [1972)), (c) Weibull accelerated failure time regression (Weibull, |1951)), (d) ran-
dom survival forest (Ishwaran et al., 2008)), and (¢) XGBoost (Chen & Guestrin, 2016). We
then compare the prediction quality on the real data with the corresponding model via: (1) the
concordance index (C-index) (Harrell et al.|, |1982), which evaluates the accuracy of the ranking
between predicted survival probabilities and observed event times, and (2) the Brier score (Brier,
1950), which assesses the calibration of the probabilistic predictions. We report averaged results
across the five survival models over 10 different seeds.
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Survpiff

6 RESULTS

e Covariate fidelity: We report -
the covariate diversity in Ta-
ble[2] We observe the following: .
SURVDIFF consistently outper- — -«lse

ovariate diversity

forms all other methods in terms

%0 a0 20 © 20 40 60 80

of the marginal JS distance aver- .,
aged over all features across all ~ «|
datasets. Furthermore, SURVD- | * e
IFF achieves highly competitive

performance measured by the

joint Wasserstein distance in all =~ wlsommdion

TabDiff

ovariate diversity

c

experiments. SURVDIFF outper-

TG @0 20 6 20 40 60 80 TG0 40 20 © 20 40 60 80

forms SurvivalGAN as the state- Figure 3: t-SNE visualization of covariate fidelity of real and
of-the-art baseline for Synthetic synthetic data on GBSG2. = Takeaway: Synthetic Samples from
survival data generation by a SURVDIFF are well aligned with the original data. SURVDIFF
clear margin‘ For example, in achieves l’llgl’l covariateﬁdelity.

terms of the joint WS, our SURVDIFF has a clearly lower distance compared to Survival GAN
(GBSG2: —60%; etc.). Additional visualizations and implementation details are in Supple-

ments [A] [D] and [E]

Insights: To further evaluate the goodness-of-fit of the generated data, we visually assess the covari-
ate fidelity in Fig.[3and the survival-specific fidelity in Fig. ] All baselines have large discrepancies
between observed and synthetic covariates. This is particularly strong for SurvivalGAN, our main
baseline, but also for other models. The results again confirm the fidelity of SURVDIFF.

e Survival-specific fidelity: We evalu-
ate whether the synthetic data preserve
the temporal structure of the survival
process. Fig. ] compares the event-time
distributions for censored and uncensored
patients. The curves show that patients
who experience an event at early, mid,
or late horizons exhibit similar tempo-
ral patterns in both the real and synthetic
datasets.  This indicates that SURVD-
IFF reproduces the progression of event
times rather than collapsing toward fre-
quent horizons.

o Overall fidelity: We further report the
Shape metric in Tab.[2]
which measures differences in the distri-
butional shape of all patient variables and
offers a focused view on whether real and
synthetic samples share similar structural
patterns. SURVDIFF achieves competi-
tive performance. To evaluate specifically
whether the time-to-event distribution is
faithful, we explicitly report the Event-
Time Divergence in Supplement [C| and
normalized marginal covariate histograms
in Supplement D] which further quantifies
how well the synthetic data replicate char-
acteristics of patients who experience an
event at similar horizons.

Insight.  In sum, SURVDIFF performs
overall best in preserving the time-to-event
dynamics and generating synthetic with
high-fidelity temporal dynamics.
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Figure 4: Temporal distributions of real and synthetic
survival data on METABRIC, shown separately for
censored and uncensored patients. = Takeaway: Syn-
thetic patients from SURVDIFF exhibit similar event-
time patterns as the real cohort, indicating strong tem-
poral fidelity.
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Metric |  Method | AIDS \ GBSG2 |  METABRIC
Real data 0.6844 + 0.0925 | 0.6592 % 0.0275 | 0.6225 £ 0.0225
NFlow 0.6032 & 0.0987 | 0.6032 + 0.0987 | 0.5711 + 0.0286
TVAE 0.6144 + 0.1018 | 0.6406 + 0.0532 | 0.5825 =+ 0.0531
C-Index CTGAN 0.5457 £ 0.0205 | 0.5945 + 0.0232 | 0.5463 £ 0.0310
(1 better) TabDiff 0.6572 4 0.1117 | 0.6286 + 0.0247 | 0.6078 + 0.0144
SurvivalGAN | 0.6354 £ 0.0553 | 0.6357 £ 0.0221 | 0.5837 £ 0.0092
Ashhad 0.5184 + 0.1324 | 0.5062 =+ 0.0705 | 0.5890 & 0.01507
SurvDiff (ours) | 0.7017 £ 0.0782 | 0.6613 £ 0.0215 | 0.5992 £ 0.0276
Real data 0.0630 & 0.0013 | 0.2063 & 0.0150 | 0.1997 + 0.0114
NFlow 0.0532 & 0.0019 | 0.2116 % 0.0083 | 0.2109 + 0.0043
CTGAN 0.0671 & 0.0071 | 0.2256 + 0.0025 | 0.2477 % 0.0203
Brier Score TVAE 0.0531 + 0.0015 | 0.2115 + 0.0149 | 0.2136 £ 0.0082
({: better) TabDiff 0.0539 £ 0.0052 | 0.2130 + 0.0050 | 0.1997 + 0.0086
SurvivalGAN | 0.0573 £ 0.0026 | 0.2154 + 0.0064 | 0.2180 =% 0.0055
Ashhad 0.0537 £ 0.0021 | 0.2192 + 0.0082 | 0.2150 % 0.00507
SurvDiff (ours) | 0.0522 £ 0.0024 | 0.2036 £ 0.0092 | 0.2120 £ 0.0040

t Values taken from|Ashhad & Henao|(2024;2025).

Table 3: Survival model performance. Survival model metrics over different datasets (reported:
mean =+ s.d. across 10 runs with different seeds). = Takeaway: Using synthetic samples from
SURVDIFF consistently results in strong downstream performance results, especially under strong
right censoring. Again, this benefit is especially large in comparison to the main baseline Survival-
GAN.

e Survival analysis performance: In Table 3] we evaluate the performance of all models on down-
stream survival tasks. We observe that (1) SURVDIFF consistently achieves large improvements over
Survival GAN and Ashhad on survival model tasks, (2) SURVDIFF achieves the best performance on
AIDS and GBSG2, while performing on par with the best methods on METABRIC, and (3) the
advantages of SURVDIFF are especially pronounced on datasets with stronger censoring (AIDS &
GBSG2).

o Sensitivity to dataset size: Inspired by medical practice, we also present results on uniformly at
random downsampled datasets to understand the sensitivity to small sample size settings, which are
common in medicine. This additional sensitivity study is presented in Supplement [G). Therein, we
see large benefits of SURVDIFF over existing methods in small-sample settings. Hence, our method
is well-designed to meet needs in medical practice.

o Additional results: For completeness, we also report Kaplan-Meier-based metrics in Supple-
ment [F] Therein, SURVDIFF shows comparable performance. We further include ablation studies
and parameter sensitivity analysis of our novel loss in Supplement[J] and visualize loss convergence
in Supplement [H]

o Extension to differential privacy: We show that SURVDIFF can be readily extended to incor-
porate differential privacy. For this, we present a differentially private variant of SURVDIFF, which
offers formal privacy guarantees under DP-SGD (Dwork & Roth| 2014} |Abadi et al., 2016). Imple-
mentation details and experiment results are in Supplement[l] We show that SURVDIFF outperforms
the DP-GAN baseline across covariate fidelity and survival analysis performance metrics.

7  DISCUSSION

Clinical considerations. We follow needs in clinical research, where it is essential to preserve
patient characteristics in synthetic data (Yan et al., 2022} |Giuffre & Shung| 2023). Existing baselines,
such as Survival GAN, often fail to do so, leading to mismatches that no longer accurately reflect
the true patient population. Since summarizing patient demographics is typically the first step in
clinical studies, inaccuracies in the patient covariate distributions are particularly problematic: they
can distort estimates of incidence rates and lead to misleading subgroup survival times. Hence, a key
strength of our method is to preserve covariate fidelity; i.e., ensuring that synthetic datasets remain
clinically meaningful while also supporting strong survival analysis performance.

Conclusion: We propose SURVDIFF, a novel end-to-end diffusion model tailored to generating
survival data. Our SURVDIFF jointly generates patient covariates, event times, and right-censoring
indicators in an end-to-end manner. As a result, SURVDIFF generating reliable synthetic datasets
that (i) match patient characteristics and (ii) produce faithful event-time distributions that preserve
censoring mechanisms and thus improve downstream survival analysis.

10
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A IMPLEMENTATION DETAILS

A.1 DATASETS

AIDS (ACTG 320 Trial). The AIDS datase originates from the ACTG 320 trial, which evaluated
combination antiretroviral therapy in HIV patients (Hammer et al., [1997). It contains data from
1151 patients. The observed event is death, and 91.7% of patients are censored. Covariates include
baseline clinical and laboratory measures such as CD4 cell count, age, hemoglobin, weight, and
prior therapy indicators.

GBSG2 (German Breast Cancer Study Group 2). The GBSG2 datase stems from a randomized
clinical trial of 686 breast cancer patients treated between 1984 and 1989 (Schumacher et al.l{1994).
The endpoint is recurrence-free survival, defined as the time to relapse or death, whichever occurs
first. Here, 56.4% patients are censored. Covariates cover age, menopausal status, tumor size, grade,
number of positive lymph nodes, progesterone and estrogen receptor levels, and hormone therapy
status.

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). The
METABRIC dataseﬂis a large breast cancer cohort study with 1903 patients and long-term follow-
up (Pereira et al, [2016). The event of interest is overall survival. The censoring rate is 42%. It
includes a mix of clinical variables (age, tumor size, grade, receptor status).

A.2 IMPLEMENTATION OF SURVDIFF

SURVDIFF is implemented in Pytorch. All experiments were carried out on one NVIDIA A100-
PCIE-40GB. The default settings of our method and all benchmarking methods are listed below in
Section [Bl The model architecture is based on the architecture of (Shi et al., 2024b)). Each of the
experiments was concluded after at most 13min.

Covariates: We embed high-cardinality discrete covariates as continuous vectors; however, we still
distinguish them formally by their underlying finite support.

Zhttps://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.
datasets.load_aids.html

‘https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.
datasets.load_gbsg2.html

*https://github.com/havakv/pycox
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B HYPERPARAMETERS

The hyperparameter grids for NFlow, CTGAN, TVAE, and SurvivalGAN follow the configurations
in the Survival GAN paper (Norcliffe et al., |2023) provided in the SynthCity library (Qian et al.,
2023)). For the Ashhad baseline, we use the hyperparameters reported in the original paper (Ashhad
& Henao, 2024; 2025). All benchmark models are run with these published settings to ensure
comparability across datasets.

Model Hyperparameters
No. Epochs 1200
Transformer Hidden Layers 5
MLP Hidden Layers 3
Survival MLP Hidden Layers 2
Omin 0.002
Omax 20.0

SURVDIFF Learning Rate 0.001
Weight Decay 0.0001
Dropout 0.1
Batch Size 256
Warm-up Epochs 150
Qisury 0.3
Calibration Steps 10
Sampling Steps 300

Table 4: Hyperparameters for SURVDIFF.

Model Hyperparameters
Estimation Method Breslow
CoxPH Penalizer 0.0
L' Ratio 0.0
« 0.05
Weibull AFT Penalizer 0.0
L' Ratio 0.0
Objective Survival: AFT
Evaluation Metric AFT Negative Log Likelihood
AFT Loss Distribution Normal
AFT Loss Distribution Scale 1.0
No. Estimators 100
. Column Subsample Ratio (by node) 0.5
SurvivalXGBoost Maximum Depth 8
Subsample Ratio 0.5
Learning Rate 0.05
Minimum Child Weight 50
Tree Method Histogram
Booster Dart
Max Depth 3
RandomSurvivalForest No. Estimators 100
Criterion Gini
No. Durations 1000
Batch Size 100
Epochs 2000
Learning Rate 0.001
Hidden Width 300
. « 0.28
Deephit - 0.38
Dropout Rate 0.02
Patience 20
Using Batch Normalization True

Table 5: Hyperparameters for survival models.
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Model Hyperparameters
CTGAN
No. Iterations 1500
Generator Hidden Layers 3
Discriminator Hidden Layers 2
Discriminator and Generator Hidden Width 250
Discriminator Non-linearity Leaky ReLU
Generator Non-linearity Tanh
Discriminator and Generator Dropout Rate 0.1
Learning Rate 0.001
Weight Decay 0.001
Batch Size 500
Gradient Penalty (A 10
Encoder Max Clusters 10
DeepHit
SurvivalGAN | No. Durations 100
Batch Size 100
No. Epochs 2000
Learning Rate 0.001
Hidden Width 300
« 0.28
o 0.38
Dropout Rate 0.02
Patience 20
Using Batch Normalization True
XGBoost
No. Estimators 200
Depth 5
Booster Dart
Tree Method Histogram
No. Epochs 4000
Transformer Hidden Layers 5
MLP Hidden Layers 2
o O min 0.002
TabDiff o 80.0
Learning Rate 0.002
Batch Size 256
Sampling Steps 300
Embedding Width 10
Generator and Discriminator No. Hidden Layers 2
Generator and Discriminator Hidden Width 256
Generator and Discriminator Learning Rate 2x107%
CTGAN Generator and Discriminator Decay 1x 1076
Batch Size 500
Discriminator Steps 1
No. Iterations 300
Pac 10
Embedding Width 128
Encoder and Decoder No. Hidden Layers 2
Encoder and Decoder Hidden Width 128
TVAE L? Scale 1x107°
Batch Size 500
No. Iterations 300
Loss Factor 2
No. Iterations 500
No. Hidden Layers 1
Hidden Width 100
Batch Size 100
No. Transform Blocks 1
Dropout Rate 0.1
NFlow No. Bins 8
Tail Bound 3
Learning Rate 1x1073
Base Distribution Standard Normal
Linear Transform Type Permutation
Base Transform Type Affine-Coupling
No. Iterations 1000
Batch Size 1024
Learning Rate 0.002
Ashhad Weight Decay 0.0001
No. of Time-Steps 1000
Scheduler Cosine
Gaussian Loss Type MSE

Table 6: Hyperparameters for benchmarking models.
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B.1 IMPLEMENTATION DETAILS OF THE COVARIATE DISTRIBUTION EXPERIMENTS

For each dataset with n training samples and p covariates, we generate exactly n synthetic samples
with every method. All covariates are preprocessed exactly in the same way as for the survival
models (continuous features standardized, categorical variables one-hot encoded), and we do not
apply any additional dimensionality reduction (no PCA or similar). Following the commonly used

SynthCity library (Qian et al.l 2023)), we report a marginal Jensen—Shannon distance and a joint
Wasserstein distance.

Jensen—-Shannon distance (marginal). For each covariate £ € {1,...,p} we approximate its
marginal distribution on the real data by an equal-width histogram with

B = min{10, #{unique values in Xfeﬁf}} (14)

bins. The resulting bin edges are reused to bin the synthetic data, so real and synthetic histograms
share the same support. Let p*) and ¢(*) denote the corresponding normalized bin counts. We apply
add—one smoothing to all bins and compute the Jensen—Shannon distance J SD(p(k), q(k)) using the
SciPy implementation. The reported value is the average over covariates, i.e.,

1 p
JSDmarginal = E Z JSD(p(k), q(k)) (15)
k=1

After preprocessing, there are no missing values; extreme observations are not removed but simply
fall into the outermost histogram bins.

Wasserstein distance (joint). Let X € R™*? and X € R™*? denote the real and synthetic covariate
matrices, respectively. We apply feature-wise min-max scaling to [0, 1] using only the real data via

X = MinMax(X), X = MinMax(X), (16)

and treat X and X as empirical distributions over RP with equal mass 1/n on each
sample. We then compute a Sinkhorn-regularized 2-Wasserstein distance using the
SamplesLoss (loss="sinkhorn") optimal transport solver (GeomLoss). This matches the
WassersteinDistance metric in SynthCity (Qian et al.| 2023). Since all datasets are fully ob-
served after preprocessing, NaNs do not occur, and potential anomalies are handled solely through
the min—max scaling.
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C EVENT-TIME DIVERGENCE (ETD)

A survival-aware generative model should reproduce not only when events occur but also which
types of patients tend to experience events at different stages of the disease course. If the synthetic
cohort is to be useful for survival modeling, then the synthetic patients who die early, mid-course,
or late should resemble the corresponding groups in the real cohort. The Event-Time Divergence
(ETD) metric evaluates this alignment.

We divide the observed event-time horizon into five equally sized intervals and focus on uncensored
individuals whose events fall within each interval. For every interval, we compare the covariate
distribution of real patients who die in that interval with that of synthetic patients whose generated
event times fall in the same interval. The comparison uses the Jensen-Shannon distance, producing
five divergence scores that measure how well the model reproduced the covariate composition of
event-time matched subpopulations.

Formally, we have

5

ETD = Z JSDist(Pew(X | E=1,T € I};), Pyu(X | E = 1,T € Tp), (17)
k=1

where Zj, denotes the k-th of five equal-mass event-time intervals obtained by partitioning uncen-
sored event times 7. We then aggregate these per-interval divergences into a sum across intervals.

Across all datasets, SURVDIFF yields the lowest ETD values for the aggregated metric (Tables [7-
[9). This reflects that our model not only captures the overall covariates structure but also generates
patients with event-time patterns that mirror those of real clinical cohorts.

Event-Time-Divergence Ctgan Tvae Nflow Survival_gan Tabdiff Survdiff
0< T <60.4 0.0672 £+ 0.0158 0.0515 4 0.0193 0.0348 + 0.0078 0.0360 £ 0.0133 0.0245 £ 0.0034 0.0253 + 0.0049
60.4 < T <119.8 0.0610 £+ 0.0103 0.0264 + 0.0044 0.0349 + 0.0093 0.0331 + 0.0158 0.0313 £ 0.0029 0.0291 £ 0.0031
119.8 < T <179.2 0.0640 £+ 0.0149 0.0697 4 0.0078 0.0347 + 0.0093 0.0414 + 0.0103 0.0377 £ 0.0041 0.0404 £ 0.0062
179.2 < T < 238.64 0.0647 £ 0.0182 0.0479 £ 0.0073 0.0409 + 0.0077 0.0583 £ 0.0111 0.0523 £ 0.0044 0.0458 £ 0.0032
238.64 < T < 298.0 0.0613 + 0.0107 0.0304 + 0.0043 0.0306 £ 0.0102 0.0854 £ 0.0000 0.0616 £ 0.0107 0.0284 + 0.0046
sum 0.3182 £ 0.0320 0.2296 + 0.0229 0.1813 + 0.0199 0.2532 £ 0.0256 0.2073 £ 0.0192 0.1690 £ 0.0102

Table 7: Event-Time-Divergence on AIDS. For five equally sized event-time intervals, we compute
the Jensen—Shannon distance between real and synthetic distributions using only uncensored individ-
uals who die within each interval, ensuring covariate-matched comparison. Reported: mean + s.d.
across runs.

Event-Time-Divergence Ctgan Tvae Nflow Survival_gan Tabdiff Survdiff

0< T <548.8 0.0266 + 0.0091 0.0182 £ 0.0040 0.0196 + 0.0035 0.0270 £ 0.0077 0.0329 £ 0.0021 0.0192 £ 0.0022
548.8 < T < 1025.6  0.0230 £ 0.0049 0.0157 £+ 0.0019 0.0166 £ 0.0038 0.0262 £ 0.0073 0.0231 + 0.0001 0.0134 £ 0.0035
1025.6 < T' < 1502.4 0.0253 £ 0.0047 0.0267 + 0.0031 0.0222 £ 0.0050 0.0350 + 0.0084 0.0295 £ 0.0022 0.0194 + 0.0026
1502.4 < T < 1979.2  0.0299 £ 0.0053 0.0250 + 0.0032 0.0272 £ 0.0060 0.0502 + 0.0116 0.0349 £ 0.0048 0.0239 + 0.0017
1979.2 < T < 2456.0 0.0506 £ 0.0125 0.0607 £+ 0.0161 0.0384 + 0.0048 0.0870 £ 0.0066 0.0436 + 0.0071 0.0341 £ 0.0069

+

sum 0.1553 £ 0.0177 0.1463 £ 0.0173 0.1214 + 0.0105 0.2255 £ 0.0190 0.1641 + 0.0093 0.1100 0.0086

Table 8: Event-Time-Divergence on GBSG2. For five equally sized event-time intervals, we
compute the Jensen—Shannon distance between real and synthetic distributions using only uncen-
sored individuals who die within each interval, ensuring covariate-matched comparison. Reported:
mean =+ s.d. across runs.
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Event-Time-Divergence Ctgan Tvae Nflow Survival_gan Tabdiff Survdiff

0<T <71.1 0.0280 £ 0.0081 0.0162 + 0.0029 0.0173 4 0.0042 0.0310 £ 0.0108 0.0158 £ 0.0007 0.0130 + 0.0030
71.1 < T < 142.1 0.0292 £ 0.0119 0.0134 + 0.0022 0.0129 4 0.0036 0.0287 £ 0.0038 0.0131 £ 0.0009 0.0089 + 0.0010
142.1 < T < 213.2 0.0276 £+ 0.0082 0.0128 £ 0.0016 0.0162 £ 0.0045 0.0328 4 0.0094 0.0196 £ 0.0021 0.0108 £ 0.0013
213.2 < T < 284.2 0.0288 £ 0.0078 0.0193 £ 0.0033 0.0202 + 0.0029 0.0645 £+ 0.0108 0.0221 £ 0.0015 0.0165 + 0.0034
284.2 < T <355.2 0.0600 £ 0.0189 0.0732 £ 0.0009 0.0425 &+ 0.0084 0.0722 £ 0.0000 0.0279 £ 0.0029 0.0363 + 0.0112

+ + + +

sum 0.1735 £ 0.0263 0.1349 + 0.0053 0.1092 0.0114 0.2291 0.0183 0.0985 0.0041 0.0855 0.0122

Table 9: Event-Time-Divergence on METABRIC. For five equally sized event-time intervals, we
compute the Jensen—Shannon distance between real and synthetic distributions using only uncen-
sored individuals who die within each interval, ensuring covariate-matched comparison. Reported:
mean =+ s.d. across runs.
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D ADDITIONAL COVARIATE, EVENT-TIME, EVENT-INDICATOR, AND
KAPLAN-MEIER VISUALIZATIONS

To complement the main results, we provide additional visualizations of covariate, event-time, and
event-indicator structure across all datasets. Figures [3] and [3| report t-SNE embeddings comparing
real and synthetic covariates for the baseline models on the AIDS and METABRIC datasets. Figures
[TOHI2]present joint t-SNE and Kaplan-Meier visualizations for SURVDIFF and baselines, aggregated
over ten random seeds, illustrating alignment in covariate geometry and Kaplan-Meier trajectories.
Finally, Figures [7H9] show marginal distributions for all covariates, offering a complementary view
of univariate fidelity. Together, these visualizations provide a qualitative assessment of the stability
of training and the consistency of generated covariates and event-time characteristics across datasets.
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Figure 6: t-SNE visualization of covariate fidelity on the METABRIC dataset.
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E ADDITIONAL TEMPORAL SURVIVAL-TIME VISUALIZATIONS

To assess how well the generative models reproduce temporal survival structure, we report time-
to-censoring and time-to-event distributions in Figures[I3]and [T4] These density plots compare the
empirical survival times of real individuals with those generated by each baseline model, separately
for censored and uncensored cases. The visualizations highlight whether synthetic cohorts capture
early-event behavior, late-event tails, and typical censoring patterns observed in the real data. To-
gether, these plots provide a qualitative view of temporal fidelity that complements the Event-Time

Divergence (ETD) metric in Supplement[Cland the results reported in the main text.

0.008 1

SurvDiff
Density

0.002

0.000

0.010

0.008 -

TabDiff
Density

0.002 A

0.000 A

0.008 -

SurvivalGAN
Density

0.002 A

0.000

0.0175 |

0.0150 1

0.0125 1

AE

0.0050 A

0.0025 |

0.0000 A

Figure 13

0.006

0.004

2 0.006 1

0.004

0.006 1

0.004

20.0100 1
n

Censored (E=0)

I Real Data
[0 SurvDiff

50 100 150 200 250 300 350

o

50 100 150 200 250 300 350

o

50 100 150 200 250 300 350

o

50 100 150 200 250 300 350
Time to Censoring

o

0.008

0.006

Density

0.002 A

0.000 A

0.008

0.006

Density

0.002 A

0.000 A

0.012

0.010

0.008

Density

0.004

0.002 A

0.000 A

0.008 A

0.006 A

Density

0.002 A

0.000 A

Uncensored (E=1)

0.004

50 100 150 200 250 300 35

o

0.004

50 100 150 200 250 300 350

o

0.006

50 100 150 200 250 300

o

0.004

50 100 150 200 250 300

Time to Event

o

: Temporal fidelity visualization of covariate fidelity on the AIDS dataset.
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Figure 14: Temporal fidelity visualization of covariate fidelity on the GBSG2 dataset.
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F KAPLAN-MEIER METRICS

In addition to the (i) covariate distribution fidelity metrics and the (ii) survival model performance
metrics, we also examine (iii) survival metrics, where SURVDIFF shows broadly comparable per-
formance across datasets. We evaluate how well synthetic data reproduce survival outcomes. For
this, we compare Kaplan-Meier curves (Kaplan & Meier, |1958)) of real and synthetic cohorts using
the mean squared error (KM MSE) (Fay et al.| [2013)), and quantify differences in restricted mean
survival time (RMST gap) (Royston & Parmar| 2011} |Kim et al., [2017) up to a fixed horizon. For
the RMST gap, it is important to note that, since it summarizes the difference in areas under the
survival curves, it can mask deviations that cancel each other out (e.g., synthetic survival curves
slightly above real ones early but below later). This is shown in Table[T0} Overall, the results show
the strong performance of our SURVDIFF.

Metric Method AIDS ‘ GBSG2 METABRIC

NFlow 0.0235 £ 0.0066 0.0697 £ 0.0205 0.0598 £ 0.0251

TVAE 0.0360 £ 0.0023 0.0408 £ 0.0152 | 0.0223 + 0.0064

RMST gap CTGAN 0.0491 £ 0.0204 0.0510 £ 0.0178 0.0890 £ 0.0248
(4 better) TabDiff 0.0092 £ 0.0014 | 0.0091 + 0.0034 | 0.0329 + 0.0027
SurvivalGAN | 0.0079 £ 0.0028 | 0.0319 + 0.0124 0.0644 £+ 0.0178

SurvDiff (ours) | 0.0155 £ 0.0051 0.0412 £ 0.0208 0.0577 £ 0.0267

NFlow 0.0009 £ 0.0003 0.0095 £ 0.0042 0.0082 £ 0.0036

TVAE 0.0015 £ 0.0002 0.0109 £ 0.0027 | 0.0036 + 0.0006

KM MSE CTGAN 0.0049 £ 0.0041 0.0087 £ 0.0077 0.0109 £ 0.0027
(. better) TabDiff 0.0001 + 0.0000 | 0.0007 £+ 0.0001 | 0.0049 £ 0.0003
SurvivalGAN 0.0002 £ 0.0001 0.0045 £+ 0.0016 0.0124 £+ 0.0033

SurvDiff (ours) | 0.0004 £ 0.0002 0.0058 £ 0.0016 0.0075 £ 0.0034

Table 10: KM metrics. Kaplan-Meier metrics across multiple runs over different datasets (reported:
mean =+ s.d.) over 10 runs with different seeds.
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G SENSITIVITY STUDY: REDUCED DATASET SIZES

We further investigate the performance of SURVDIFF under reduced dataset sizes by randomly
downsampling the AIDS and METABRIC datasets. Table [TT|summarizes the results in comparison
to TabDiff across the (i) covariate distribution fidelity metrics, the (ii) survival analysis performance
metrics, and (iii) survival metrics. Across most metrics and settings, SURVDIFF achieves clear im-
provements, with only three exceptions in which the results remain comparable. On all other metrics,
SURVDIFF demonstrates superior performance. Notably, on METABRIC, the gains are substantial,
with large improvements in Wasserstein distance, Brier score, RMST gap, and KM MSE. This is
particularly relevant since METABRIC is the dataset where both methods were previously on par in
the larger-scale evaluation. The results thus underscore that SURVDIFF not only retains its strength
in smaller-sample regimes but, in fact, shows even stronger advantages for smaller datasets. =
These findings highlight the robustness of our approach when data availability is limited.

Metric | Method |  AIDS(500) |  AIDS(700) | METABRIC (500) | METABRIC (700)
JS distance TabDiff | 0.0083 + 0.0010 | 0.0086 + 0.0006 | 0.0300 % 0.0007 | 0.0280 % 0.0008
(4 better) SurvDiff (ours) | 0.0083 £ 0.0012 | 0.0092 = 0.0007 | 0.0048 £ 0.0017 | 0.0031 = 0.0005
Wasserstein distance TabDiff 0.1801 + 0.0432 | 0.1398 =+ 0.0326 | 0.1066 £ 0.0332 | 0.0882 £ 0.0119
(4 better) SurvDiff (ours) | 0.1280 % 0.0079 | 0.1211 £ 0.0157 | 0.0877 = 0.0069 | 0.0774 % 0.0062
C-Index TabDiff 0.6303 £ 0.0698 | 0.5818 £ 0.0428 | 0.6452 £ 0.0178 | 0.6275 £ 0.0282
(1 better) SurvDiff (ours) | 0.7401 £ 0.0533 | 0.6482 £ 0.0268 | 0.6431 =+ 0.0338 | 0.6343 % 0.0475
Brier Score TabDiff 0.0702 £ 0.0065 | 0.0872 £ 0.0031 | 0.1750 =+ 0.0087 | 0.2025 % 0.0067
(4 better) SurvDiff (ours) | 0.0588 £ 0.0023 | 0.0840 £ 0.0013 | 0.1692 £ 0.0060 | 0.2006 + 0.0017
RMST gap TabDiff 0.0361 % 0.0240 | 0.0235 £ 0.0168 | 0.0092 £ 0.0035 | 0.0184 %+ 0.0171
(4 better) SurvDiff (ours) | 0.0091 = 0.0042 | 0.0119 £ 0.0062 | 0.0064 £ 0.0024 | 0.0120 £ 0.0043
KM MSE TabDiff 0.0060 =+ 0.0055 | 0.0029 =+ 0.0029 | 0.0011 £ 0.0002 | 0.0026 % 0.0019
(4 better) SurvDiff (ours) | 0.0003 £ 0.0001 | 0.0006 £ 0.0005 | 0.0010 = 0.0002 | 0.0019 £ 0.0004

Table 11: Downsampled datasets. Covariate fidelity, downstream performance, and survival met-
rics over different downsampled datasets (reported: mean =+ s.d.) across 10 runs with different seeds.
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H SURVDIFF TRAINING LOSS

The training losses are shown in Figure [T3] which shows smooth and stable convergence across
all objectives. Both the discrete and continuous diffusion losses decrease steadily, which reflects
effective denoising of categorical and numerical covariates. The survival loss declines in parallel,
indicating that the additional supervision integrates well with the generative process. Evidently, in
the total loss, the adaptive scaling of Ay, balances the different components during training.

Discrete Loss (Categorical Features)

Continuous Loss (Numerical Features)

© sto 1000 1300 2000 2500 3000 300 4000
Epoch

Cox Survival Loss

] S0 100 100 2000 2500 3000 300 4000
Epoch

Total Loss (Weighted Sum)

© o0 1000 1300 2000 2300 3000 300 4000
Epoch

Figure 15: Training dynamics of SURVDIFF.
Laisc, the continuous diffusion loss Leont, the
Etotal = ﬁdiff + )\survcsurv-

] S0 100 100 2000 2300 3000 300 4000
Epoch

Shown are the discrete/categorical diffusion loss
Cox survival loss Lg,;y, and the total objective
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I DIFFERENTIALLY-PRIVATE SURVDIFF

We further present a variant of SURVDIFF that is differentially private (Dwork & Rothl 2014).
For this, we combine SURVDIFF with differentially private stochastic gradient descent (DP-
SGD) (Abadi et al}[2016). Differential privacy (DP) provides a formal guarantee that the influence
of any single individual in the training set is negligible. Formally, a randomized mechanism M is
(e, d)-differentially private if for all adjacent datasets D and D’ differing in one record, i.e.,

PIM(D)e S| < e P[M(D')€S] + &  forall measurable S. (18)

This constraint enforces that the distribution of the model’s output changes only minimally when
a single patient is removed or replaced, thereby limiting what can be inferred about any individ-
ual (Abadi et al} 2016). Note that none of the baselines (i.e., differentially-private variants of both
SurvivalGAN and Ashhad are lacking). To this end, our DP-SURVDIFF is the first differentially-
private method for synthetic survival data generation.

DP-SGD ensures this guarantee by clipping per-sample gradients to a fixed norm C' and adding
Gaussian noise scaled to the clipping threshold. At iteration ¢, the update is

1 .
g = 5 X clin(Vali, €) + N (0, 0*CT) )

1€EB:
where o is the noise multiplier.

In all private experiments, we impose the same privacy budget for both DP-SURVDIFF and the DP-
GAN baseline, fixing ¢ = 8.0 and § = 1075, This budget is in line with typical DP deep-learning
practice and provides a meaningful privacy guarantee while maintaining a usable signal for model

learning (Abadi et al} 2016).

Table [T2] summarizes the results across two datasets and ten random seeds. Under identical pri-
vacy constraints, DP-SURVDIFF consistently achieves better C-Index, Brier Score, and divergence
metrics compared to DP-GAN, indicating that our model remains robust even under strict privacy-
preserving training.

Metric Method AIDS METABRIC
C-Index DP-GAN 0.4872 4+ 0.0261 0.4872 £+ 0.0261
(1 better) DP-SurvDiff (ours) 0.5104 + 0.0222 0.5090 + 0.0144
Brier Score DP-GAN 0.4083 4+ 0.0304 0.2595 + 0.0188
(J: better) DP-SurvDiff (ours) 0.1298 + 0.0352 0.2461 + 0.0091
JS distance DP-GAN 0.1100 £+ 0.0053 0.0525 £ 0.0037
(4 better) DP-SurvDiff (ours) 0.0570 + 0.0033 0.0365 + 0.0025
Wasserstein distance DP-GAN 2.1769 £ 0.1217 0.7631 £ 0.0756
({: better) DP-SurvDiff (ours) 0.9654 + 0.0852 0.4135 + 0.042
Shape error rate DP-GAN 0.6075 4+ 0.0297 0.3323 £ 0.0240
(4 better) DP-SurvDiff (ours) 0.3416 + 0.0270 0.2721 + 0.0187

Table 12: Extension of SURVDIFF to differential privacy. Metrics across multiple runs over
different datasets (reported: mean = s.d.) over 10 runs with different seeds.
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J  ABLATION STUDY AND PARAMETER SENSITIVITY ANALYSIS

We conduct an ablation study to isolate the contribution of the survival loss weighting mechanism
used in SURVDIFF. In this variant, we fix the survival loss weight to w = 1, removing the down-
weighting of sparse risk sets and treating all event times uniformly. Table [T3]reports results across
ten runs on GBSG2 and METABRIC. The full method achieves better C-Index and Brier Score
and typically attains lower divergence metrics, with performance gains that are consistent across
datasets.

The differences are moderate, as expected for a stable objective, but the pattern is systematic rather
than incidental, indicating that duration-dependent weighting provides a measurable benefit without
introducing variability or instability.

Metric Method GBSG2 METABRIC
C-Index w=1 0.6545 + 0.0266 0.5990 + 0.0206
(7 better) w™ 0.6601 + 0.0252 0.5992 + 0.0272
Brier Score w=1 0.2041 £+ 0.0089 0.2083 + 0.0066
(: better) w™* 0.2037 + 0.0092 0.2069 + 0.0071
JS distance w=1 0.0075 £ 0.0008 0.0067 + 0.0016
(. better) w™* 0.0074 + 0.0007 0.0062 + 0.0013
Wasserstein distance w=1 0.0844 + 0.0028 0.0554 + 0.0062
({1 better) w* 0.0347 £+ 0.0026 0.0535 + 0.0059

Table 13: Ablation study. Metrics across multiple runs over different datasets (reported: mean +
s.d.) over 10 runs with different seeds.

We further study the sensitivity of SURVDIFF to the exponential-decay parameter gy, Which mod-
erates the contribution of long-duration events in the time-sensitive survival loss. Table [T4] sum-
marizes results for ag,, € {0.01,0.1,0.15,0.25} on GBSG2 and METABRIC. Across all settings,
SURVDIFF exhibits stable performance with only small variants in C-Index, Brier Score, JS distance
and Wasserstein distance. The configuration g, = 0.1 yields consistently strong results on both
datasets. These findings show that SURVDIFF maintains robustness over a reasonable range of cvgyry
values, supporting its practical applicability without requiring extensive hyperparameter tuning.

Metric Method GBSG2 METABRIC

C-Index a=0.01 0.6598 + 0.0272 0.5933 £ 0.0332
(1 better) a=0.15 0.6519 4+ 0.0318 0.5934 + 0.0313
a=0.25 0.6561 + 0.0273 0.5989 + 0.0253
a=0.1 0.6601 + 0.0252 0.5992 + 0.0272

Brier Score a=0.01 0.2039 + 0.0094 0.2083 £ 0.0067
({: better) a=0.15 0.2039 + 0.0092 0.2109 £ 0.0069
a=0.25 0.2042 £+ 0.0108 0.2087 £ 0.0063
a=0.1 0.2037 + 0.0092 0.2069 + 0.0071

JS distance a=0.01 0.0071 £+ 0.0009 0.0070 4+ 0.0015
(- better) a=0.15 0.0081 4+ 0.0008 0.0076 £+ 0.0014
a=0.25 0.0077 4+ 0.0008 0.0067 £+ 0.0018
a=0.1 0.0074 £+ 0.0007 0.0062 + 0.0013

Wasserstein distance a =0.01 0.0349 £ 0.0028 0.0556 £ 0.0057
(. better) a=0.15 0.0364 + 0.0025 0.0598 £ 0.0059
a=0.25 0.0349 £+ 0.0029 0.0559 £ 0.006
a=0.1 0.0347 + 0.0026 0.0535 £+ 0.0059

Table 14: Sensitivity analysis. Metrics across multiple runs over different datasets (reported: mean
=+ s.d.) over 10 runs with different seeds.
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