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Abstract

This work leverages shadow cues in a scene to infer the
surrounding illumination of the shadow-casting object. Un-
like prior works that optimize a discrete environment map,
we model scene illumination using a mixture of spherical
Gaussians (SGs). SG illumination provides more intuitive
relations to shadow appearance and offers a more compact
parameterization compared to discrete environment maps.
To estimate SG parameters, we employ an SG-based, dif-
ferentiable, closed-form rendering equation to explain the
shading of the shadow plane and minimize a photomet-
ric loss between the rendered and observed shadow plane
shading. Experiments on synthetic and real-world images
under various surrounding illumination demonstrate that
our method estimates illumination more accurately than ap-
proaches based on discrete environment maps. With our
estimated lighting, consistent shadow effects are realized
when blending virtual objects into real-world images1.

1. Introduction

Inferring scene illumination from the appearance of scene
components is a fundamental yet challenging task in com-
puter vision and graphics, with significant applications in
augmented reality. Accurate illumination estimation is es-
sential for seamlessly blending virtual objects into real envi-
ronments. Perhaps the most straightforward way is to use an
omnidirectional camera to capture the observer’s surround-
ing lighting as a high dynamic range (HDR) light probe
image. However, this method is less effective when esti-
mating incident illumination at a scene point distant from
the observer. To address this, chrome mirror balls [9] or
other reflective objects [24, 35] have been used, but such
objects are not always present in a scene, limiting the ap-
plicability of these methods. Alternatively, learning-based

*Work conducted during the first author’s internship at CyberAgent.
1Code is available at https : / / github . com /

CyberAgentAILab/ShadowSG.
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Figure 1. We estimate the surrounding illumination (highlighted
in red) of a scene object from the appearance of the shadow plane.
Unlike SH21 [28], which optimizes a discrete environment map,
our method parameterizes illumination as a mixture of SGs. This
results in more photorealistic and coherent shadow effects when
blending virtual objects into real scenes.

approaches [7, 13, 31] have been explored and rely on data-
driven priors to estimate scene lighting.

In this work, we specifically focus on shadow cues and
investigate how accurately illumination can be recovered
from them using an analysis-by-synthesis approach, as il-
lustrated in Fig. 1. Shadows are a ubiquitous light transport
phenomenon that occurs whenever a scene object obstructs
incident light (a.k.a., a pinspeck camera [6, 29]). As shown
in Fig. 2, shadows provide essential lighting cues surround-
ing the shadow-casting object. For example, one can infer
the light source’s direction by examining the position of a
shadow relative to its caster. Higher contrast in the shadow
plane suggests that the light from a particular direction is
brighter, while the shadow boundary’s sharpness can indi-
cate the light source’s extent. A blurred boundary suggests
that the light source is spread over a wide area.

Despite the intuitive observations, inferring the illumi-
nation surrounding a scene object from its cast shadows
is challenging. Prior illumination-from-shadow approaches
model the surrounding illumination as intensities from dis-
cretized incident directions [27, 28]. Since the incident
directions are predefined, higher precision in lighting es-
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Figure 2. The appearance of shadows reveals the lighting con-
ditions surrounding the shadow-casting object. (a, b) A brighter
light source produces a higher contrast on the shadow plane. (b, c)
Light sources spreading across a wider area create a more blurred
shadow boundary.

timation requires increasing the number of sampled direc-
tions. This leads to a quadratic increase in the number of
unknowns [28] or requires a more complex coarse-to-fine
optimization process [27].

This work introduces a spherical Gaussian (SG) rep-
resentation for inferring illumination from shadows. We
model the illumination surrounding a scene object as a mix-
ture of SGs and recover the SG parameters from the shadow
plane’s shading. The SG representation offers two main ad-
vantages: 1) it provides a more intuitive relationship to the
appearance of shadows, and 2) it offers a more compact pa-
rameterization than a discrete environment map. Each SG
consists of three parameters influencing the shadow’s loca-
tion, boundary sharpness, and contrast.

To model the shadow plane’s appearance, we use an SG-
based, differentiable, closed-form rendering equation [11,
32] which accounts for light visibility and efficiently com-
putes shading. The SG parameters are recovered by mini-
mizing the photometric loss between the rendered and ob-
served shading of the shadow plane. Originally developed
for forward rendering, our results suggest that this rendering
equation is also effective for the inverse problem of recov-
ering SG illumination from shadows.

We conduct extensive experiments using both synthetic
and real-world data to verify the effectiveness of our
method. Compared to prior illumination-from-shadow ap-
proaches, our method more accurately recovers surrounding
illumination and achieves superior shadow plane rendering
quality. Using our estimated illumination, we demonstrate
that virtual objects can be inserted into real scenes with
more photorealistic and coherent shadow effects.

In summary, our contributions are:
• We introduce spherical Gaussian lighting representations

for inferring illumination from shadows;
• We show that the SG-based rendering equation, originally

developed for forward rendering, is effective for the in-
verse problem of estimating SG light parameters from the
shading of the shadow plane;

• We validate our method for illumination estimation and
virtual object insertion using synthetic and real-world im-
ages under various environmental lighting conditions.

2. Related Work
2.1. Illumination from Shadows

Sato et al. [27] were among the first to study and formulate
the problem of estimating illumination from shadows. They
parameterized the surrounding illumination of the shadow-
casting object as intensities from pre-defined incident direc-
tions. These intensities were estimated by solving a linear
system using the known geometry of the shadow caster.

To enhance practicality, Ikeda et al. [14] employed an
RGB-D camera to capture both the scene geometry and the
shadow image. In addition to shadows, Li et al. [21] in-
tegrated multiple clues—including shadows, textures, and
reflectance—to estimate illumination. Sato et al. [23] ex-
tended their technique by utilizing spherical harmonics and
Haar wavelets to model cast shadows. Jiddi et al. [16] con-
centrated on estimating the positions and intensities of point
light sources from cast shadows.

Recently, Swedish et al. [28] proposed a method that
jointly solves for the diffuse albedo of the shadow plane
and a discretized environment map. They introduced two
regularization terms into the linear system to enhance stabil-
ity. However, similar to the problems faced by [23, 27], the
number of unknowns increases quadratically with higher-
resolution environment map estimation, leading to instabil-
ity. Consequently, their estimated environment map is lim-
ited to low resolutions (e.g., 16× 64).

In contrast, we parameterize illumination using a mix-
ture of SGs, which is more compact than a discrete environ-
ment map and avoids the issue of parameter proliferation.
Our method is particularly effective in scenes with one or
more dominant directional or area light sources while also
performing well under general illumination conditions.

2.2. Spherical Gaussian Representation

Spherical Gaussian (SG) representations have been em-
ployed in both forward and inverse rendering tasks. In for-
ward rendering, SG illumination is useful for fast render-
ing [11, 15, 30]. SGs have also been utilized to approxi-
mate surface reflection [12, 15, 32] and refraction [8]. In in-
verse rendering, SGs have been applied to approximate the
specular component of surface reflectance [36] and illumi-
nation [4, 17, 33, 36, 38]. These methods typically rely on
the shading of scene objects for illumination estimation, and
cast shadows degrade the quality of inverse rendering [33].

Our method offers a new perspective by demonstrating
that SG illumination can be recovered from cast shadows.
We show that the SG-based forward rendering formula [32]
is also effective for the inverse problem.



3. Approach
We aim to estimate the surrounding illumination of a scene
object from the appearance of its shadows cast on the plane
where the object is placed. Our method takes a single im-
age as input and outputs the illumination parameterized as
a mixture of spherical Gaussians (SGs).

Overview Figure 3 summarizes our method. Section 3.1
describes the physics-based rendering equation approxi-
mated by the SGs. Section 3.2 then derives a closed-form
rendering equation differentiable with respect to the un-
known SG parameters. Finally, Sec. 3.3 details our strat-
egy for optimizing SG parameters based on the closed-form
rendering equations.

Assumptions Following prior works [27, 28], we assume
that the scene geometry is known, the shadow plane is
Lambertian, and the surrounding illumination is sufficiently
distant to be considered spatially invariant. As shown in
Sec. 4.2, the scene geometry can be obtained via pho-
togrammetry or monocular estimators when the shadow
caster has strong prior information, such as human bodies.

3.1. Image Formation Model

We model the appearance of a diffuse, opaque shadow
plane under natural lighting using Kajiya’s rendering equa-
tion [18]. For a shadow plane point x with normal n ∈ S2,
the observed radiance Lo is given by:

Lo(x) = kd(x)

∫
S2
L(ω)V (x,ω)max(n⊤ω, 0) dω. (1)

In Eq. (1), kd(x) represents the direction-independent dif-
fuse albedo. The light distribution L(ω) describes the light
intensity from each incident direction ω. The light visibility
V (x,ω) is a binary function indicating whether the shadow
plane point x is occluded by the shadow caster in the di-
rection ω. Under the distant lighting assumption, the light
distribution is spatially invariant, while light visibility de-
pends on the scene geometry and varies across the shadow
plane.

The key challenge in applying Eq. (1) for inverse ren-
dering is evaluating the integral. Prior works discretize the
hemisphere into solid angles. However, this can lead to the
parameter proliferation problem for fine-grained illumina-
tion estimation. Instead, we approximate the light distribu-
tion and the cosine term using spherical Gaussians (SGs)
to derive a closed-form rendering equation in terms of SG
parameters. An SG is a Gaussian function defined on the
surface of a sphere S2, given by:

G(ω;µ, λ,a) = aeλ(ω
⊤µ−1). (2)

An SG is defined by three parameters: the unit lobe axis
µ ∈ S2, the lobe sharpness λ ∈ R+, and the non-negative
lobe amplitude a ∈ Rm

+ , where m is the dimension of the
amplitude (e.g., m = 3 for RGB channels).

We represent the light distribution as a mixture of SGs:

L(ω) ≈
N∑
i=1

G(ω;µi, λi,ai) :=

N∑
i=1

Gi, (3)

where N is the total number of light SGs. The scene illu-
mination is then parameterized by the set of unknown SG
parameters {µi, λi,ai}Ni=1.

The cosine term max(n⊤ω, 0) is approximated by a sin-
gle SG, where ω is the variable and n is the lobe axis:

max(n⊤ω, 0) ≈ G(ω;n, λc, ac) := Gc. (4)

Following [32], we set λc = 2.133 and ac = 1.170. There
are no unknown parameters in Gc, as the normal of the
shadow plane is assumed to be known.

With the SG approximations Eqs. (3) and (4), we rewrite
the rendering equation Eq. (1) as:

Lo(x) ≈ kd(x)

∫
S2

(
N∑
i=1

Gi(ω)

)
Gc(ω)V (x,ω) dω

= kd(x)

N∑
i=1

∫
S2
Gi(ω)Gc(ω)V (x,ω) dω. (5)

We omit the SG parameters for brevity. Equation (5) states
that the appearance of the shadow plane is composed of N
images, each generated by individual SGs Gi(ω).

Compared to discrete representations, each parameter of
an SG contributes more intuitively to the shadow plane’s ap-
pearance, as illustrated in Fig. 4. This compactness allows
our method to achieve better results with fewer parameters,
as discussed in more detail in Sec. 4.

3.2. Closed-form rendering equation

This section derives a closed-form equation for Eq. (5) re-
garding illumination SG parameters. When two SGs are
multiplied, the result is a new SG with updated parameters:

GiGc = G′
i(ω;µ′

i, λ
′
i,a

′
i)

with µ′
i =

λiµi + λcn

∥λiµi + λcn∥
, λ′

i = λi + λc,

and a′i = acaie
λ′
i(∥µ

′
i∥−1).

(6)

The key challenge then is to calculate the integral of the
product between two spherical functions, the SG G′

i and
the light visibility V . To approximate this integral, we first
calculate the analytically derived integral of the SG G′

i over
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Figure 3. Overview. We represent scene illumination as a mixture of spherical Gaussians (SGs) (Sec. 3.1) and use a closed-form, differen-
tiable rendering equation to model the shadow plane shading (Sec. 3.2). The SG parameters are estimated by minimizing the photometric
loss on the shadow plane (Sec. 3.3). After optimization, the estimated SGs allow for seamlessly blending virtual objects into the scene.

(a) (b) (c) (d)

Figure 4. Each parameter of an SG intuitively influences the ap-
pearance of the cast shadow. Each image is rendered by varying
one parameter from the SG in (a). The bottom left of each im-
age shows the corresponding SG visualized on a sphere. (a, b)
The lobe axis adjusts the shadow’s position. (a, c) Lobe sharpness
controls the sharpness of the shadow’s boundary. (a, d) Lobe am-
plitude affects the contrast of the shading on the shadow plane.

a hemisphere centered at the lobe axis and then scale the
result using a sigmoid function [32]:∫

S2
G′

iV dω ≈ σ

∫
S2
G′

i dω = σ
2πa′i
λ′
i

(
1− e−λ′

i

)
. (7)

This sigmoid function σ depends on two factors: 1) the SG
sharpness λ′

i, and 2) the signed angular distance θµ from
the SG lobe axis µi to the closest visible boundary:

σ(λ′
i, θµ) =

1

1 + exp(−k(λ′
i)θµ)

, (8)

where k(λ′
i) = 0.204λ

′3
i − 0.892λ

′2
i + 2.995λ′

i + 0.067
designed by [32]. Equations (7) and (8) suggest that: 1) the
integral of a sharper SG is less affected by light visibility, as
the SG values are more concentrated around the lobe axis,
and 2) an SG with a lobe axis far from the light visibility
boundary is also less affected since the SG values diminish
rapidly away from the lobe axis.

The remaining challenge is efficiently finding the min-
imal angular distance θµ. A naı̈ve approach would sam-
ple incoming directions, calculate their angular distances to
the SG lobe axis, and select the direction on the visibility
boundary with the smallest angular distance [32]. However,
this approach reintroduces significant computational com-
plexity, negating the compactness of SG parameterization.
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Figure 5. (a, b) The shape of the shadow-casting object is approx-
imated by a mixture of spheres. (c) The angular distance θµ from
an SG lobe axis µi to a sphere s is analytically calculated using
Eq. (9). The smallest angular distance is the minimum of the an-
gles to all spheres (Eq. (10)).

Inspired by [11], we approximate the shadow caster’s ge-
ometry as a mixture of spheres using the adaptive media-
axis approximation [5]. This reduces the evaluation from
the number of incident directions to the number of spheres
used to approximate the shadow caster’s geometry. Specif-
ically, for a shadow plane point x, the minimal angular dis-
tance from the SG lobe axis µi to the visibility boundary
introduced by a sphere s can be calculated as

θµ(x, s) = arccos

(
s⊤µi

||s||

)
− arcsin

(
rs
||s||

)
, (9)

where s = cs − x is the vector connecting the sphere cen-
ter and the shadow plane point, and rs is the sphere’s radius.
We calculate θµ(x, s) for each sphere s, and θµ is the small-
est one among them:

θµ(x) = min
s

θµ(x, s). (10)

We use a tree structure to store the mixture of spheres, orga-
nized from coarse to fine. The smallest θµ can be found in a
top-down manner, further reducing evaluation number [11].

3.3. Illumination optimization

With the closed-form rendering equation described
in Sec. 3.2, we optimize the light SG parameters



{µi, λi,ai}Ni=1 such that the rendered radiances of
the shadow plane are close to the observed radiance. We
define the objective function as

L =
1

Nb

Nb∑
j=1

(Lo,j − Ij)
2, (11)

where Lo,j and Ij are the rendered and observed radiance
at a pixel j sampled from the shadow plane, and Nb is the
total number of pixels sampled in each iteration.

Reparameterization To enforce nonnegative SG lights
(i.e., ai ≥ 0 ∀i), we optimize the absolute value |ai| in-
stead of ai. This reparameterization ensures non-negativity
during rendering, stabilizes the optimization process, and
eliminates the necessity to pre-determine the exact number
of light SGs. Once a subset of SGs accurately reproduces
the observed radiance, the remaining SGs can be optimized
to have tiny amplitudes, thereby minimizing their influence
on the rendered image.

Adaptive pruning To further improve rendering quality,
we regularly prune SGs that contribute only marginally to
the rendered image during optimization. We observe that
SGs with tiny amplitudes and large sharpness can still pro-
duce almost unnoticeable hard shadows, thereby degrading
the overall rendering quality. However, optimizing these
SGs is difficult because their gradients nearly vanish. To
reduce the influence of such SGs, we employ an adaptive
pruning strategy [19]. Specifically, we use two thresholds:
one for ai and another for its gradient ∇ai. An SG is pruned
when both the infinity norm ∥ai∥∞ and ∥∇ai∥∞ fall below
their respective thresholds. This strategy further makes our
method less sensitive to the initial number of SGs since re-
dundant ones are eventually pruned.

4. Experiments
We evaluate our method against baselines using synthetic
images in Sec. 4.1 and real-world images in Sec. 4.2.

Baselines We compare our method with two illumination-
from-shadow methods SS03 [27] and SH21 [28]. We re-
implemented both methods due to the lack of publicly avail-
able implementations. Both methods represent surrounding
illumination as light intensities from predefined incident di-
rections. We define the incident directions using a latitude-
longitude format with a resolution of 16 × 64 (a.k.a., en-
vironment map). Both methods formulate the problem as
a linear system, and we use PyTorch’s lstsq as the solver.
For SS03 [27], we additionally apply Scipy’s non-negative
least-squares solver nnls, which enforces the non-negative
values in the estimated environment map, and denote this
variant as SS03+ [27].

Evaluation metrics. We use PSNR, SSIM, and
LPIPS [37] to evaluate the re-rendered image quality
after optimization. The metrics are calculated for pixels on
the shadow plane. To evaluate the estimated environment
maps, we use angular error following [10, 35]. The
angular error is calculated as the average angular distance
between the RGB values of the estimated and ground truth
environment maps.

Implementation details We implement our method using
the PyTorch framework [25]. The surrounding illumination
is initialized in all experiments as N = 256 SGs. The initial
SG lobe axes are uniformly sampled from the hemisphere,
while the lobe amplitudes and sharpness are randomly ini-
tialized as positive values. We approximate the object mesh
using a sphere tree with 3 levels and 8 branches, yielding a
total of 512 spheres, following the method in [5].

For optimization, we use the Adam optimizer [20] with
an initial learning rate of 0.001, which is annealed by 0.9
every 5000 step. At each step, we sample Nb = 1024 pix-
els and optimize for a total of 20000 steps. Adaptive prun-
ing begins at step 500 and terminates at step 15000. The
thresholds for SG lobe amplitude and its gradient during the
adaptive pruning are set to 0.005 and 0.001, respectively.
The experiments are conducted on an NVIDIA RTX A6000
GPU, with a runtime of approximately 5 minutes per scene.

4.1. Evaluations on synthetic images

Rendering setup We use Blender Cycles to render syn-
thetic HDR images. The scene consists of a Stanford Bunny
placed on a plane with diffuse reflectance. Three types of
surrounding lighting are used: (a) a single or a mixture of
directional lights, implemented using Blender’s SUN light
type and denoted as DIRECTION1 and DIRECTIONS; (b)
a single or a mixture of area lights, implemented using
Blender’s AREA light type and denoted as AREA1 and AR-
EAS; and (c) real-world indoor or outdoor lighting using
publicly available HDR light probe images. This way, we
ensure that the lighting conditions are varied and realistic.

Results and discussions Table 1 reports the quantitative
evaluations, and Fig. 6 displays the qualitative results of the
re-rendered image and estimated illumination. Our method
consistently outperforms the baselines across most illumi-
nation types, particularly excelling in complex lighting con-
ditions such as DIRECTIONS and real-world HDR maps.
These results demonstrate the robustness and effectiveness
of our approach in accurately estimating lighting and main-
taining high-quality rendered images.

Figure 7 and Table 2 quantitatively evaluate the rendered
image quality when additional objects are inserted. For
this evaluation, we render a pair of images using Blender:
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Figure 6. Qualitative results on synthetic images. In each image block, the left side shows the re-rendered scene after illumination
optimization, the upper right displays the estimated lighting in latitude-longitude format, and the bottom right presents the error map
between the input and re-rendered shadow planes.
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Figure 7. Qualitative results of virtual object insertion on syn-
thetic images. Our approach produces more coherent shadow ef-
fects when blending additional objects with the original scenes.

one with only the shadow-casting object used for illumina-
tion estimation and another with additional objects for re-
rendering evaluation. After blending the virtual objects with
the original image, we assess the rendering quality on the

w/o reparameterization w/o pruning Ours-full Reference
PSNR = 33.43 PSNR = 36.32 PSNR = 36.99

Figure 8. Ablation Study. Our reparameterization and pruning
strategies enhance SG optimization and improve rendering quality.
Close-up views are sharpened for better visualization.

shadow plane. As shown in Table 2, our method achieves
more accurate shadow plane rendering, indicating the co-
herence of rendered shadows. Figure 7 further confirms that
our method renders more photorealistic shadow effects.



Table 1. Quantitative evaluation on re-rendered image quality
and estimated lighting accuracy using synthetic images. Our
method outperforms the baselines, particularly in scenarios with
dominant light sources such as DIRECTIONS, PINE, and RURAL.

Image Env. map
Illumination Method PSNR↑ SSIM↑ LPIPS↓ Ang err.↓
DIRECTION1 SS03 [27] 19.64 0.924 0.22 -

SS03+ [27] 19.41 0.931 0.12 -
SH21 [28] 19.35 0.927 0.20 -
Ours 27.79 0.962 0.04 -

DIRECTIONS SS03 [27] 27.67 0.961 0.21 -
SS03+ [27] 27.65 0.965 0.17 -
SH21 [28] 27.31 0.967 0.20 -
Ours 34.49 0.982 0.06 -

AREA1 SS03 [27] 34.80 0.986 0.11 71.46
SS03+ [27] 34.40 0.984 0.12 73.96
SH21 [28] 34.80 0.986 0.11 71.21
Ours 36.30 0.996 0.03 80.55

AREAS SS03 [27] 35.41 0.986 0.14 80.31
SS03+ [27] 35.42 0.985 0.14 80.44
SH21 [28] 34.93 0.987 0.14 80.25
Ours 38.00 0.997 0.04 85.07

CAYLEY SS03 [27] 30.44 0.983 0.19 41.36
SS03+ [27] 33.70 0.987 0.15 68.19
SH21 [28] 31.34 0.986 0.15 43.33
Ours 36.99 0.996 0.05 9.61

PINE SS03 [27] 32.18 0.981 0.21 40.04
SS03+ [27] 33.45 0.985 0.16 56.90
SH21 [28] 31.68 0.986 0.20 47.83
Ours 40.46 0.998 0.06 16.95

RURAL SS03 [27] 21.71 0.953 0.06 51.38
SS03+ [27] 21.58 0.961 0.06 66.86
SH21 [28] 21.70 0.954 0.06 44.54
Ours 30.98 0.991 0.02 16.53

Table 2. Quantitative evaluation on virtual object insertion.
Our method delivers more consistent shadow effects when blend-
ing virtual objects with real scenes.

DIRECTIONS AREAS CAYLEY
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SS03 [27] 26.07 0.940 0.22 32.47 0.978 0.17 30.66 0.977 0.21
SS03+ [27] 25.91 0.944 0.20 32.42 0.976 0.17 33.09 0.983 0.17
SH21 [28] 25.67 0.947 0.22 32.23 0.980 0.17 31.21 0.982 0.19
Ours 31.44 0.967 0.09 31.44 0.993 0.06 32.80 0.993 0.06

Figure 9. Our pruning strategy results in a varying number of SGs
after optimization. More SGs are retained under more complex
lighting conditions. (Top) Image rendered by compositing all SGs.
(Bottom) Image arrays rendered by individual SGs.

Figure 8 studies the effectiveness of our reparameteri-
zation and adaptive pruning optimization strategies. With-
out reparameterization, the SG amplitude can become neg-
ative, leading to unstable optimization. Without pruning,
SGs with low amplitude and high sharpness may persist,
negatively affecting the quality of the re-rendered shadow

Table 3. Quantitative evaluation on re-rendered image quality
using real-world images. Our method outperforms baselines in
most real-world scenarios, even when the assumption of a shadow
plane with uniform albedo is unmet.

3D-PRINT1 3D-PRINT2 PHOTOGRAMETRY1 PHOTOGRAMETRY2 MONO
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SS03 [27] 27.08 0.983 28.41 0.986 22.31 0.588 25.68 0.696 11.11 0.271
SS03+ [27] 29.90 0.984 29.74 0.986 22.42 0.590 25.82 0.703 10.89 0.266
SH21 [28] 30.06 0.985 30.78 0.985 22.50 0.589 25.80 0.703 11.69 0.270
Ours 33.82 0.995 32.52 0.995 22.46 0.591 25.94 0.713 10.59 0.268

plane. By combining both strategies, our method more ac-
curately reproduces the shading of the shadow plane.

Figure 9 shows that our method is insensitive to the ini-
tial number of SGs, as the optimization ultimately retains
only the necessary SGs. More complex lighting conditions
require a greater number of SGs. For example, 8 SGs re-
main when there is a single directional light source, while
44 SGs are retained when there is a combination of direc-
tional and area light sources in the case of CAYLEY.

The discrete environment map-based method optimizes
3072 parameters, even for a low-resolution 16 × 64 map.
In contrast, our optimization starts with 1536 parameters
(256 SGs with 6 parameters each) and eventually reduces to
fewer parameters (e.g., 48 parameters for 8 SGs). Despite
using fewer parameters, our method achieves better render-
ing quality, thanks to the compact SG representation.

4.2. Evaluations on real-world images

Capture setups We evaluate our lighting estimation on
real-world images across three scenarios, each differing in
how the scene geometry is obtained. (3D Print) First,
we place a 3D-printed object on a matte whiteboard. In
this setup, the geometry of the scene object is known, and
the shadow plane’s albedo is uniform. The object and
shadow plane are positioned in front of an OLED dis-
play that illuminates the scene, and the raw image is cap-
tured with an iPhone 13 Pro. Intrinsic camera parameters
are calibrated using a checkerboard in Metashape [2], and
the perspective-n-points algorithm [22] is used to estimate
the object pose. Correspondence points are manually se-
lected from the mesh and the captured image using Mesh-
lab [1]. (Photogrammetry) Second, we capture outdoor
scenes from multiple viewpoints. The camera parameters,
shadow-casting object geometry, and shadow plane normal
are estimated using Metashape [2]. One of the multi-view
images is then used for illumination estimation. (Monoc-
ular Estimation) Third, we use a portrait image captured
in natural, uncontrolled conditions sourced from the In-
ternet. In this scene, the human body casts a shadow on
the ground. We recover the human body geometry as a
SMPL-X mesh [26] using a monocular human body shape
estimation method [34], estimate the ground surface normal
using a monocular normal estimation method [3], and treat
the camera as orthographic.
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Figure 10. Qualitative results on re-rendered image and estimated lighting using real-world images. The layout of each image block
follows the format shown in Fig. 6.

Figure 11. Virtual object insertion on real-world images. (Top
row) Captured real-world images. (Bottom row) Images with
blended virtual objects. The estimated surrounding lighting en-
ables rendering photorealistic and coherent shadow effects for in-
serted virtual objects.

Results and discussions Figure 10 and Table 3 present
the qualitative and quantitative results of re-rendered im-
age quality using real-world images. Consistent with the
results on synthetic images, our method achieves superior
re-rendering quality of the shadow plane. Despite violating
the uniform albedo assumption, our method remains effec-
tive even when the shadow plane is textured. Further, al-
though our method requires known scene geometry, it can
work with a rough shape estimated from a single image,
especially when the shadow caster has strong prior infor-
mation, such as human bodies.

Figure 11 shows the qualitative results of inserting vir-
tual objects into captured real-world images. Our method

produces coherent shadow effects for virtually inserted ob-
jects in various real-world scenarios. The shadows rendered
by our method can be either hard or soft, depending on the
lighting conditions. This flexibility ensures they align well
with the specific lighting of each scene, leading to a seam-
less integration of virtual and real objects.

5. Concluding remarks
We have proposed an effective method for estimating sur-
rounding illumination based on the appearance of shad-
ows. Our approach leverages the SG illumination repre-
sentation and SG-based rendering equation. Despite using
fewer parameters, the compactness of SG parameterization
allows for more accurate illumination estimation and higher
shadow plane re-rendering quality than methods based on
discrete illumination representation. Through comprehen-
sive experiments on both synthetic and real-world images
across various lighting conditions and scenarios, we have
demonstrated the robustness and superiority of our method.

Future work Our results highlight the potential of using
cast shadows as a reliable cue for SG illumination estima-
tion. However, it relies on the assumption that most scene
components are known, which limits its applicability. In
the future, we aim to integrate our method into an inverse
rendering pipeline, where all scene components are jointly
estimated from multi-view images.
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