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Abstract

Machine learning force fields (MLFF) have been
proposed to accelerate molecular dynamics (MD)
simulation, which finds widespread applications
in chemistry and biomedical research. Even for
the most data-efficient MLFFs, reaching chem-
ical accuracy can require hundreds of frames
of force and energy labels generated by expen-
sive quantum mechanical algorithms, which may
scale as O(n3) to O(n7), with n proportional
to the number of basis functions. To address
this issue, we propose a multi-stage computa-
tional framework – ASTEROID, which lowers
the data cost of MLFFs by leveraging a combina-
tion of cheap inaccurate data and expensive accu-
rate data. The motivation behind ASTEROID is
that inaccurate data, though incurring large bias,
can help capture the sophisticated structures of
the underlying force field. Therefore, we first
train a MLFF model on a large amount of in-
accurate training data, employing a bias-aware
loss function to prevent the model from overfit-
ting the potential bias of this data. We then fine-
tune the obtained model using a small amount
of accurate training data, which preserves the
knowledge learned from the inaccurate training
data while significantly improving the model’s
accuracy. Moreover, we propose a variant of AS-
TEROID based on score matching for the set-
ting where the inaccurate training data are unla-
beled. Extensive experiments on MD datasets and
downstream tasks validate the efficacy of ASTER-
OID. Our code and data are available at https:
//github.com/abukharin3/asteroid.
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1. Introduction
Molecular dynamics (MD) simulation is a key technology
driving scientific discovery in fields such as chemistry, bio-
physics, and materials science (Alder & Wainwright, 1960;
McCammon et al., 1977). By simulating the dynamics of
molecules, important macro statistics such as the folding
probability of a protein (Tuckerman, 2010) or the density
of new materials (Varshney et al., 2008) can be estimated.
These macro statistics are an essential part of many im-
portant applications such as structure-driven drug design
(Hospital et al., 2015) and battery development (Leung &
Budzien, 2010). Most MD simulation techniques share a
common iterative structure: MD simulations calculate the
forces on each atom in the molecule, and use these forces to
move the molecule forward to the next state.

The fundamental challenge of MD simulation is how to
efficiently calculate the forces at each iteration. An ex-
act calculation requires solving the Schrödinger equation,
which is not feasible for many-body systems (Berezin &
Shubin, 2012). Instead approximation methods such as
the Lennard-Jones potential (Johnson et al., 1993), Density
Functional Theory (DFT, (Kohn, 2019)), or Coupled Cluster
Single-Double-Triple (CCSD(T), (Scuseria et al., 1988))
are used. CCSD(T) is seen as the gold-standard for force
calculation, but is computationally expensive. In particular,
CCSD(T) has complexity O(n7) with respect to the number
of basis functions used along with a huge storage require-
ment (Chen et al., 2020). To accelerate MD simulations
while maintaining high accuracy, machine learning based
force fields (MLFFs) have been proposed. MLFFs take a
molecular configuration as input and then predict the forces
on each atom in the molecule, consequently speeding up the
force calculation step.

Most recently, deep learning techniques for force fields have
been developed, resulting in highly accurate force fields
parameterized by large neural networks (Gasteiger et al.,
2021; Batzner et al., 2022). Despite their empirical success,
these methods suffer from a critical drawback: in order to
train state-of-the-art machine learning force field models, a
large amount of costly training data must be generated. For
example, to train a model at the CCSD(T) level of accuracy,
at least a thousand CCSD(T) calculations must be done to
construct the training set. This is computationally expensive
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(a) Prediction Error vs. Training Set Size (b) Prediction Error on CCSD(T)

Figure 1. (a) Log-log plot of the number of training points versus the prediction error for deep force fields (b) Prediction error on CCSD
labeled molecules for force fields trained on large amounts of DFT reference forces (100,000 configurations) and moderate amounts of
CCSD reference forces (1000 configurations). In both cases the model architecture used is GemNet (Gasteiger et al., 2021).

due to the method’s O(n7) cost.

A natural solution to this problem is to train on fewer
data points. However, if the number of training points is
decreased, the accuracy of the learned force fields quickly
deteriorates. In our experiments, we empirically find that the
prediction error and the number of training points roughly
follow a power law relationship, with prediction error ∝
(Number of Training Points)−1 (Müller et al., 1996; Cortes
et al., 1993). This can be seen in Figure 1a, where predic-
tion error and train set size are observed to have a linear
relationship with a slope of −1 when plotted on a log scale.

Another option is to train the force field model on less accu-
rate but computationally cheap reference forces calculated
using DFT (Kohn, 2019) or empirical force field methods
(Johnson et al., 1993). However, these algorithms intro-
duce undesirable bias into the force labels, meaning that
the trained models will have poor performance. This phe-
nomenon can be seen in Figure 1b, where models trained
on large quantities of DFT reference forces are shown to
perform poorly relative to force fields trained on moderate
quantities of CCSD(T) reference forces. Therefore cur-
rent methodologies are not sufficient for training force field
models in low resource settings, as training on either small
amounts of accurate data (i.e. from CCSD(T)) or large
amounts of inaccurate data (i.e. from DFT or empirical
force fields) will result in inaccurate force fields.

To address this issue, we propose to use both large
amounts of inaccurate force field data and small amounts
of accurate data to reduce the data generation cost needed
to achieve highly accurate force fields. Our motivation is
that computationally cheap data, though incurring large
bias, can help capture the sophisticated structures of the
underlying force field. Moreover, if treated properly, we
can further reduce the bias of the obtained model by taking

advantage of the accurate data.

Specifically, we propose a multi-stage computational frame-
work – datA cosST awarE tRaining of fOrce fIelDs (AS-
TEROID). In the first stage, small amounts of accurate data
are used to identify the bias of force labels in a large but
inaccurate dataset. In the second stage, the model is trained
on the large inaccurate dataset with a bias-aware loss func-
tion. This loss function generates smaller weights for data
points with larger bias, suppressing the effect of label noise
on training. The inaccurately trained model serves as a
warm start for the third stage, where it is fine-tuned on the
small and accurate dataset. Together, these stages allow the
model to learn from many molecular configurations while
incorporating highly accurate force data, significantly out-
performing conventional methods trained with similar data
generation budgets.

Beyond using cheap labeled data to boost model perfor-
mance, we also develop a method for the case where a large
amount of unlabeled molecular configurations are cheaply
available (Smith et al., 2017; Köhler et al., 2022). Without
labels, we cannot adopt the supervised learning approach.
Instead, we draw a connection to score matching, which
learns the gradient of the log density function with respect to
each data point (called the score) (Hyvärinen, 2005). In the
context of molecular dynamics, we notice that if the log den-
sity function is proportional to the energy of each molecule,
then the score function with respect to a molecule’s position
is equal to the force on the molecule. Based on this insight,
we show that the supervised force matching problem can
be tackled in an unsupervised manner. This unsupervised
approach can then be incorporated into the ASTEROID
framework, improving performance when limited data is
available.

We demonstrate the effectiveness of our framework with
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extensive experiments on different force field data sets and
downstream simulation tasks. We use two popular model
architectures, GemNet (Gasteiger et al., 2021) and EGNN
(Satorras et al., 2021), and verify the performance of our
method in a variety of settings. These experiments show that
ASTEROID can lead to significant gains when either DFT
reference forces or empirical force field forces are viewed as
inaccurate data and CCSD(T) configurations are used as ac-
curate data. In addition, we show that we can learn accurate
forces via the connection to score matching, and that using
this objective in the second stage of training can improve
performance on both DFT and CCSD(T) datasets. Finally,
we evaluate the robustness of MD simulation driven by AS-
TEROID and standard MLFFs, and find that ASTEROID
can greatly improve simulation stability.

The rest of this paper is organized as follows: Section 2
presents the background on MLFFs and training data gener-
ation, Section 3 details the ASTEROID framework, Section
4 extends ASTEROID to settings where unlabeled config-
urations are available, Section 5 presents our experimental
results, Section 6 compares our method to several related
works (Ramakrishnan et al., 2015; Ruth et al., 2022; Nandi
et al., 2021; Smith et al., 2019; Deringer et al., 2020), and
Section 7 briefly concludes the paper.

2. Background
⋄ Machine Learning Force Fields. Recent years have seen
a surge of interest in MLFFs. Much of this work has focused
on developing machine learning architectures that have phys-
ically correct equivariances, resulting in large graph neural
networks that can generate highly accurate force and energy
predictions (Gasteiger et al., 2021; Satorras et al., 2021;
Batzner et al., 2022). Two popular architectures are EGNN
and GemNet. Both models are translation invariant, rotation-
ally equivariant, and permutation equivariant. EGNN is a
smaller model and is often used when limited resources are
available. The GemNet architecture is significantly larger
and more refined than the EGNN architecture, modeling var-
ious types of inter-atom interactions. GemNet is therefore
more powerful and can achieve state-of-the-art performance,
but requires more resources to train.

It has been observed that modern MLFFs often cannot
achieve sufficient test accuracy to be reliable for MD simula-
tions (Stocker et al., 2022). Critically, the accuracy of deep
force fields such as GemNet and EGNN is highly dependent
on the size and quality of the training dataset. With limited
training data, MLFFs cannot achieve the required accuracy
for usefulness, preventing their application in settings
where data is expensive to generate (e.g. large molecules).
The amount of resources needed to train is therefore a key
bottleneck preventing the widespread use of MLFFs.

⋄ Data Generation Cost. The training data for MLFFs
can be generated by a variety of force calculation methods.
These methods exhibit an accuracy cost tradeoff: accurate
reference forces from methods such as CCSD(T) require
high computational costs to generate reference forces, while
inaccurate reference forces from methods such as DFT and
empirical force fields can be generated fairly quickly. Con-
cretely, CCSD(T) is highly accurate but has O(n7) com-
plexity, DFT is less accurate with complexity O(n3), and
empirical force fields are inaccurate but could have complex-
ity as low as O(n) (Lin et al., 2019; Ratcliff et al., 2017).
CCSD(T) is typically viewed as the gold standard for cal-
culating reference forces, but its computational costs often
make it impractical for MD simulation (it has been esti-
mated that “a nanosecond-long MD trajectory for a single
ethanol molecule executed with the CCSD(T) method would
take roughly a million CPU years on modern hardware”)
(Chmiela et al., 2018). Due to this large expense, MLFF
training data is typically generated first with MD simulations
driven by DFT or empirical force fields. These simulations
generate a large number of molecular configurations, and
then CCSD(T) reference forces are computed for a small
portion of these configurations. Therefore, a large amount
of inaccurately labeled molecular configurations are often
available along with the accurate CCSD(T) labeled data.

3. ASTEROID
To reduce the data generation cost needed to train MLFFs,
we propose a multi-stage training framework, ASTEROID,
to learn from a combination of both cheaply available inac-
curate data and more expensive accurate data.

Preliminaries. For a molecule with k atoms, we
denote a configuration (the positions of its atoms in
3D) of this molecule as x ∈ R3k, its respective
energy as E(x) ∈ R, and its force as F (x) ∈
R3k. We denote the accurately labeled data as DA =
{(xa

1 , e
a
1 , f

a
1 ), ..., (x

a
N , eaN , fa

N )} and the inaccurately la-
beled data as DI = {(xn

1 , e
n
1 , f

n
1 ), ..., (x

n
M , enM , fn

M )},
where (xa

i , e
a
i , f

a
i ) represents the position, potential energy,

and force of the ith accurately labeled molecule, (similarly
(xn

j , e
n
j , f

n
j ) for the jth inaccurately labeled data). Con-

ventional methods train a force field model E(·; θ) with
parameters θ on the accurate data by minimizing the loss

min
θ

L(DA, θ) =
(1− ρ)

3N

N∑
i=1

ℓf (f
a
i ,∇xE(xa

i ; θ))+

ρ

N

N∑
i=1

ℓe(e
a
i , E(xa

i ; θ)),

(1)

where ℓf is the loss function for the force prediction, and
ℓe is the loss function for the energy prediction. Here the
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Figure 2. Asteroid workflow diagram. In stage 1, ASTEROID uses the accurate data to estimate the bias in the inaccurate data. In stage 2,
the MLFF is trained in a bias-aware manner on the inaccurate data. In stage 3, the MLFF is fine-tuned on the accurate data.

force is denoted by ∇xE(x; θ), i.e., the gradient of the
energy E(x; θ) w.r.t. to the input x. In practice, most of the
emphasis is placed on the force prediction, e.g. ρ = 0.001.

3.1. Bias Identification

The goal of ASTEROID is to leverage cheap MD simulation
data to boost MLFF accuracy. However, the approximation
algorithms used to generate cheap data DI introduce a large
amount of bias into some force labels fn, which may signif-
icantly hurt accuracy. Motivated by this phenomenon, we
aim to identify the most biased force labels so that we can
avoid overfitting the bias during training. To do so, we use
small amounts of accurately labeled data DA to identify the
levels of bias in the inaccurate dataset DI . Specifically, we
train a force field model by minimizing L(DA, θ) (Eq. 1),
the loss over the accurate data, to get parameters θ0. Al-
though the resulting model E(·; θ0) will not necessarily
have good prediction performance because of the limited
amount of training data, it can still help estimate the bias
of the inaccurate data. For every configuration xn

j in the
inaccurate dataset DI , we suspect it to have a large bias if
there is a large discrepancy between its force label fn

j and
the force label predicted by the accurately trained model
∇xE(xn

j ; θ0). We can therefore use this discrepancy as a
surrogate for bias, i.e. B(xn

j ) = ∥∇xE(xn
j ; θ0)− fn

j ∥1.

3.2. Bias-Aware Training with Inaccurate Data

In the second stage of our framework, we train a force field
model E(·; θinit) from scratch on large amounts of inaccu-
rately labeled data DI . Although this data can effectively
capture the intrinsic problem structure, the high levels of
bias on some data points may propagate to the final model
and harm generalization performance. To avoid over-fitting
to the biased force labels, we use a bias-aware loss function
that weighs the inaccurate data according to their bias. In
particular, we use the weights wj = exp(−B(xn

j )/γ) for
configuration xn

j , where γ is a hyperparameter to be tuned.

In this way, low-bias points are given higher importance
and high-bias points are treated more carefully. We then
minimize the bias-aware loss function

min
θ

Lw(DI , θ) = (1−ρ)

M∑
i=1

wi · ℓf (fn
i ,∇xE(xn

i ; θ))

+ ρ

M∑
i=1

wi · ℓe(eni , E(xn
i ; θ)) (2)

to get parameters θinit, resulting in the initial estimate of the
MLFF E(·; θinit).

3.3. Fine-Tuning over Accurate Data

The model E(·; θinit) contains information useful to the
force prediction problem, but may still contain bias because
it is trained on inaccurately labeled data DI . Therefore, we
further refine it using accurately labeled data DA. Specifi-
cally, we use E(·; θinit) as initialization for our final stage,
in which we fine-tune the model over the accurate data by
minimizing L(DA, θfinal) (Eq. 1). The full ASTEROID
framework is illustrated in Figure 2.

4. ASTEROID for Unlabeled Data
In several settings, molecular configurations are generated
without force labels, either because they are not generated
via MD simulation (e.g. normal mode sampling, (Smith
et al., 2017)) or because the forces are not stored during
the simulation (Köhler et al., 2022). Although these un-
labeled configurations may be cheaply available, they are
not generated for the purpose of learning force fields and
have not been used in existing literature. Here, we show
that the unlabeled configurations can be used to obtain an
initial estimate of the force field, which can then be further
fine-tuned on accurate data. More specifically, we consider
a molecular system where the number of particles, volume,
and temperature are constant (NVT ensemble). Let x refer
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to a molecule’s configuration and E(x) refer to the corre-
sponding potential energy. It is known that x follows a
Boltzmann distribution, i.e.

p(x) =
1

Z
exp

(
− 1

kβT
E(x)

)
,

where Z is a normalizing constant, T is the temperature,
and kβ is the Boltzmann constant. In practice, configura-
tions generated using normal mode sampling (Unke et al.,
2021) or via a sufficiently long NVT MD simulation follow
a Boltzmann distribution. However, the Boltzmann distri-
bution is still a strong assumption, which may not hold in
some industrial settings. Nonetheless, it can still serve as a
reasonable approximation in these conditions.

Recall that we model the energy E(x) as E(x; θ), and the
force can be calculated as F (x; θ) = ∇xE(x; θ). It follows
from Hyvärinen (2005) that we can learn the score function
of the Boltzmann distribution using score matching, where
the score function is defined as the gradient of the log density
function ∇xlog p(x). In our case, we observe that the force
on a configuration x is proportional to the score function, i.e.,
F (x) ∝ ∇xlog p(x). Therefore, we can use score matching
to learn the forces by minimizing the unsupervised loss

L(θ) = Ep(x)

[
1

β
Tr[∇xF (x; θ)] +

1

2
||F (x; θ)||2

]
, (3)

where β = 1
kβT

. A derivation can be found in Appendix
A.1. Although this objective allows us to solve the
force matching problem in an unsupervised manner, the
unsupervised loss is difficult to optimize in practice. To
reduce the cost of solving Eq. 3, we adopt sliced score
matching (Song et al., 2020). Sliced score matching takes
advantage of random projections to significantly reduce the
cost of solving Eq. 3, allowing us to apply score matching
to large neural models such as GemNet.

In our experiments, we find that score matching does not
match the accuracy of CCSD(T) force labels. Instead, we
can think of score-matching as a form of inaccurate training.
We therefore use score matching as an alternative to stages
one and two of the ASTEROID framework. That is, we
minimize Eq. 3 to get θinit, after which the model is fine-
tuned on the accurate data.

5. Experiments
For our main experiments, we evaluate ASTEROID on
MLFF datasets and downstream MD simulation tasks. For
ASTEROID, we consider three settings: using DFT data
to enhance CCSD(T) training, using empirical force field
data to enhance CCSD(T) training, and using unlabeled con-
figurations to enhance CCSD(T) training. In each setting,
we evaluate the performance of ASTEROID and standard
training over a variety of data generation budgets.

5.1. Datasets and Models

For the CCSD(T) data, we use MD17@CCSD, which con-
tains 1,000 configurations labeled at the CCSD(T) and
CCSD level of accuracy for five molecules (Chmiela et al.,
2017). For DFT data, we use the MD17 dataset, which con-
tains molecular configurations labeled at the DFT level of
accuracy (Chmiela et al., 2017). For the empirical force field
data, we generate 100,000 configurations for each molecule
using the OpenMM empirical force field software (Eastman
et al., 2017). For the unlabeled datasets, we use MD17 with
the force labels removed.

The MD17 datasets do not release the computational cost
of data generation, but when we replicate their experiments,
we find that CCSD(T) labels cost roughly 40 times more
than DFT labels. However, the difference in cost between
CCSD(T) and DFT labels may change drastically depending
on the implementation of each method. Therefore we evalu-
ate the performance of ASTEROID when CCSD(T) force
labels are 20, 40, and 80 times more expensive than DFT
force labels. Note that the cost of empirical force labels is
essentially negligible (more than 10,000 times cheaper) com-
pared to CCSD(T) labels (Folmsbee & Hutchison, 2021).

In each setting, we compare standard training with 250, 450,
650, or 850 CCSD(T) training samples with ASTEROID.
For ASTEROID, we use either 1000, 2000, or 4000 DFT
datapoints (corresponding to cost ratios of 20:1, 40:1, and
80:1 for DFT and CCSD(T) labels), and 200, 400, 600, or
800 CCSD(T) data points. The computational budget of
standard training and ASTEROID are therefore equivalent.
A validation set of size 50 and a test set of size 500 are used
in all experiments.

We implement our method on GemNet and EGNN. For
GemNet we use the same model parameters as Gasteiger
et al. (2021). For EGNN, we use a 5-layer model and an
embedding size of 128. When training with inaccurate data,
we train with a batch size of 16 and stop training when the
validation loss stabilizes. In the fine-tuning stage, we use a
batch size of 10 and train for a maximum of 2000 epochs.
To tune the bias aware loss parameter γ, we search in the
set {0.1, 0.5, 1.0, 2.0} and select the model with the lowest
validation loss. Comprehensive experimental details are
deferred to Appendix A.2.

5.2. Enhancing Force Fields with DFT

We display the results for using DFT data to enhance
CCSD(T) training in Figure 3 for GemNet and Figure 4
for EGNN. From these figures, we can see that ASTER-
OID can outperform standard training for all amounts of
data and cost ratios. Using larger amounts of inaccurate
data can significantly reduce prediction error, but the 20:1
cost ratio already has large performance gains over standard
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training. When applied to GemNet in low resource settings,
ASTEROID reduces the average prediction error by 39.4%
and improves sample efficiency by a factor of 2. For EGNN,
ASTEROID improves prediction error by 56% and increases
sample efficiency by more than 3 times. The large perfor-
mance increase for EGNN may be due to the fact that the
EGNN architecture has less inductive bias than GemNet,
and therefore may struggle to learn the structures of the
underlying force field with only a small amount of data.

5.3. Enhancing Force Fields with Empirical Force
Calculation

We present the results for empirical force field in Table 1.
Due to limited space, we only display the results for the case
where 200 accurate data points are used. The remaining re-
sults for GemNet can be found in Appendix A.3. Again we
find that ASTEROID significantly outperforms the super-
vised baseline, improving prediction accuracy by 36% for
GemNet and by 17% for EGNN. The good performance on
empirical force fields indicates that ASTEROID is relatively
robust to the label noise on the inaccurate data.

Table 1. Test MAE of ASTEROID with empirical force field data.
The results are measure in kcal/mol/Å, averaged across dimensions
and atoms. The training set for the fine-tuning stage contains
200 molecules labeled at the CCSD(T) level. “Malo.” refers to
malonaldehyde and “Standard Tr.” refers to standard training.

Aspirin Benzene Malo. Toluene Ethanol

GemNet
Standard Tr. 1.554 0.083 0.801 0.591 0.348
ASTEROID 0.843 0.048 0.516 0.337 0.301

EGNN
Standard Tr. 1.897 0.297 1.466 0.777 0.840
ASTEROID 1.314 0.268 1.341 0.664 0.637

5.4. Enhancing Force Fields with unlabeled Molecules

We first verify that our proposed score matching approach
can learn the forces on unlabeled molecules by comparing
the prediction accuracy of models trained by score matching
with models trained on supervised data (DFT and empirical
force fields). We measure prediction accuracy on CCSD(T)
datasets and show the results in Figure 5. Surprisingly, we
find that the prediction error of score matching is between
that of DFT and empirical force fields. This indicates that
relatively accurate force predictions can be obtained by only
solving the unsupervised loss in Eq. 3.

Next we apply ASTEROID to settings where unlabeled data
is available by fine-tuning the model obtained from score
matching. We present the results in Table 2, where we find
that ASTEROID can improve prediction accuracy by 18%
for GemNet and 4% for EGNN. If unsupervised data can

be generated cheaply (i.e. through normal mode sampling),
then our approach can be used to boost the performance
of MLFFs with little additional cost.

Table 2. Accuracy of ASTEROID with unlabeled molecular config-
urations. The results are measure in kcal/mol/Å, averaged across
dimensions and atoms. The training set for the fine-tuning stage
contains 200 CCSD(T) labeled molecules.

Aspirin Benzene Malo. Toluene Ethanol

GemNet
Standard Tr. 1.554 0.083 0.801 0.591 0.348
ASTEROID 0.928 0.093 0.629 0.475 0.314

EGNN
Standard Tr. 1.897 0.297 1.466 0.777 0.840
ASTEROID 1.756 0.305 1.382 0.740 0.823

5.5. MD simulation

It has been observed that low test errors are not sufficient
for obtaining stable MD simulation dynamics (Stocker
et al., 2022). To ensure that ASTEROID can be used for
MD simulations, we evaluate the performance of MLFFs
trained by ASTEROID in downstream MD simulation tasks.
First, we demonstrate that ASTEROID-trained MLFFs can
produce stable dynamics, while MLFFs trained on DFT
data and empirical force fields diverge. Using the Atomic
Simulation Environment (ASE) (Larsen et al., 2017), we
simulate the behavior of a benzene molecule using forces
calculated by a MLFF trained with ASTEROID, an MLFF
trained on DFT data only, and the Lennard-Jones empirical
force field. We simulate the molecule with Langevin
dynamics, where the steps size is 0.5 femtoseconds, the
temperature is 500K, the friction coefficient is 0.002, and
the maximum number of time steps is 10000. The results
of these simulations can be seen in Figure 6a, where
ASTEROID is able to produce stable dynamics. On the
other hand, the error compounding of the DFT trained
MLFF and the Lennard-Jones potential results in diverged
simulations and unlikely molecular configurations.

We also compare the MD simulations generated using
ASTEROID with those generated using standard training,
where both MLFFs are trained with a data budget equivalent
to 250 CCSD(T) points. Inspired by Stocker et al. (2022),
we run MD simulations with varying step sizes on the aspirin
molecule to evaluate robustness. In Figure 6b we plot the
proportion of simulations that converge with varying simu-
lation step sizes. We define a simulation as converged if the
maximum pairwise distance between atoms remains within
a specified threshold. For each step size, we report the result
over 20 Langevin dynamics simulations, each with a length
of one picosecond. The ASTEROID framework is able to
maintain steady performance across step sizes, and almost
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(a) Benzene (b) Aspirin (c) Ethanol (d) Malonaldehyde (e) Toluene

Figure 3. Main results for GemNet when DFT data is viewed as inaccurate. The ratio refers to the number of DFT calculations that are
equivalent to one CCSD(T) calculation. The results are measure in kcal/mol/Å, averaged across dimensions and atoms.

(a) Benzene (b) Aspirin (c) Ethanol (d) Malonaldehyde (e) Toluene

Figure 4. Main results for EGNN when DFT data is viewed as inaccurate. The legend is the same as in Figure 3.

Figure 5. Prediction errors of models tested on CCSD(T) data.
Models are not fine-tuned on the CCSD(T) data.

all the simulations converge. In contrast, the simulations
powered by standard MLFFs fail with larger step sizes.

Figures 6a and 6b show the advantages of ASTEROID go
beyond reducing test error and allow for stable simulations
to be run over 3 times as fast as standard MLFFs. Interest-
ingly, Stocker et al. (2022) find that to train robust MLFFs,
much more training data than the amount needed for low test
error should be used. ASTEROID provides a cost-efficient
way to increase the size of the dataset, therefore enhancing
robustness at a low data cost.

5.6. Analysis

⋄ Ablation Study We study the effectiveness of each
component of ASTEROID. Specifically, we investigate the

(a) Benzene molecule during MD simulation. Note
that we use a non-linear time scale for clarity.

(b) Proportion of converged simulations (Aspirin).

Figure 6. MD simulation analysis for ASTEROID.
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importance of bias-aware training (BAT) and fine-tuning
(FT) when compared with standard training. The results for
Gemnet can be seen in Table 3. As shown in Table 3, each of
ASTEROID’s components is effective and complementary
to one another. We find that bias-aware training is most
helpful with GemNet, where it reduces test error by 6.5%
on average, possibly due to the fact that GemNet has more
capacity to overfit harmful data points than EGNN.

Table 3. Ablation study for ASTEROID on Gemnet. The inaccu-
rate data is DFT labeled configurations and the accurate dataset
contains 200 CCSD(T) labeled configurations. “AST.” refers to
ASTEROID.

Aspirin Benzene Malo. Toluene Ethanol

Standard Tr. 1.554 0.074 0.776 0.566 0.351
AST. w/o FT 4.670 3.252 2.726 3.342 5.107
AST. w/o BAT 1.095 0.064 0.347 0.309 0.183
ASTEROID 0.908 0.059 0.338 0.306 0.176

⋄ Sensitivity We also investigate the sensitivity of ASTER-
OID to the hyperparameters γ. We use a data budget of 250
CCSD(T) points. From Figure 7a we can see that ASTER-
OID is robust to the choice of hyperparameters, outperform-
ing standard training in every setting.

⋄ Size of inaccurate data. To demonstrate that ASTER-
OID can exploit varying amounts of inaccurate data, we
plot the performance of ASTEROID with different cost ra-
tios. This can be seen in Figure 7b, where a budget of
250 CCSD(T) points is used. ASTEROID performs best
when large amounts of inaccurate data are available but still
increases the accuracy by 20% when the cost ratio is small.

(a) Sensitivity study for γ
(ethanol). The red line repre-
sents standard training.

(b) Performance with different
cost ratios between DFT and
CCSD(T) (ethanol).

Figure 7. Ablation and sensitivity studies for ASTEROID.

6. Discussion
There are several works which we compare ASTEROID
with. Quantitative results are shown in Table 4. Implemen-
tation details can be found in Appendix A.4.

⋄∆-ML (Ramakrishnan et al., 2015; Bogojeski et al., 2020),
learns the difference between inaccurate (DFT) and accu-
rate (CCSD(T)) force predictions, therefore speeding up

MD simulation while maintaining high accuracy. However,
this approach requires a DFT calculation to be done dur-
ing inference, greatly increasing inference time compared
to ASTEROID or standard MLFFs (Folmsbee & Hutchi-
son, 2021). In addition, ∆-ML requires paired DFT and
CCSD(T) labels for all molecules in the dataset, which
may not be available. For some molecules in MD17 such
a paired dataset is available, and we implement a ∆-ML
method based on Bogojeski et al. (2020) on GemNet.

⋄ ANI-1ccx (Smith et al., 2019; Deringer et al., 2020)
train an MLFF on a huge DFT dataset comprised of many
molecules, and then finetune on many CCSD(T) labeled
molecules with a goal of learning a general MLFF. Notably,
the method from Smith et al. (2017) only trains on equilib-
rium states and may not work well for MD trajectory data.
To compare ANI-1ccx with ASTEROID, we evaluate the
provided model checkpoint in the zero-shot setting (as in-
tended by (Smith et al., 2019)) and when finetuned on each
MD17 molecule. Note that the data generation cost of ANI-
1ccx is much more expensive than ASTEROID, using 2,500
times more CCSD(T) data and 500 times more DFT data.

⋄ sGDML (Chmiela et al., 2019) is a kernel-based MLFF
method that has been shown to perform well when limited
training data is available by incorporating relevant physical
constraints into the MLFF.

As can be seen in Table 4, ASTEROID trained MLFFs can
achieve lower test errors than all of the baselines except
∆-ML. However, since ∆-ML requires a DFT calculation
during inference, MD simulation with ∆-ML will take
100 to 1000 times longer than with ASTEROID (Folmsbee
& Hutchison, 2021; Gasteiger et al., 2021). Therefore
ASTEROID results in the most useful force fields out of
all the baselines, while having a smaller or equivalent data
generation cost.

Table 4. Accuracy of ASTEROID compared with competitive
baselines. The GemNet implementations use a data budget of
250 CCSD(T) points. FT refers to fine-tuning ANI-1ccx on
MD17@CCSD. The ASTEROID results are for GemNet.

Aspirin Benzene Malo. Toluene Ethanol

ANI-1 1.897 0.297 1.466 0.777 0.840
ANI-1 (FT) 1.314 0.268 1.341 0.664 0.637

∆-ML 0.801 − 0.182 0.350 −
sGDML 1.727 0.097 0.923 0.478 0.902

ASTEROID 0.908 0.059 0.338 0.306 0.176

To explore the generality of ASTEROID, we further investi-
gate the setting where the inaccurate data for ASTEROID is
comprised of multiple molecules. After training such a gen-
eral purpose (but inaccurate) MLFF, we separately fine-tune
the MLFF on each of the MD17 molecules labeled at the
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Table 5. Accuracy of ASTEROID when the inaccurate data is comprised of multiple molecules.

Aspirin Benzene Malonaldehyde Toluene Ethanol

Standard Training 1.554 0.074 0.776 0.566 0.351
ASTEROID (Multi) 0.716 0.05 0.480 0.237 0.269
ASTEROID 0.908 0.059 0.338 0.306 0.176

CCSD(T) level of accuracy. This setting is very intriguing,
since it means that only one network must be pre-trained
per molecule. This approach could potentially allow for a
large reduction in the memory requirement and pre-training
time of ASTEROID.

The results for a total budget of 250 CCSD(T) data points
can be seen in Table 5. From Table 5 we can see that
training ASTEROID over multiple molecules can signifi-
cantly reduce the test error compared to standard training.
On Aspirin, Benzene, and Malonaldehyde, ASTEROID
trained over multiple molecules can perform better than AS-
TEROID for just a single molecule, likely due to the fact
that these molecules all share common structures. How-
ever for Malonaldehyde and Ethanol, training over multiple
molecules harms performance. Given the mixed perfor-
mance and the simplicity of single molecule pre-training,
it is expected that single molecule pre-training would be
favored in most scenarios.

7. Conclusion
Different from previous works on machine learning force
fields, we propose to learn MLFFs in a data cost-aware man-
ner. Specifically, we propose a new training framework,
ASTEROID, to boost prediction accuracy with cheap in-
accurate data. In addition, we extend ASTEROID to the
unsupervised setting. By learning force field structures on
the cheap data, ASTEROID only requires a small data gen-
eration budget to achieve good performance. Extensive
experiments validate the efficacy of ASTEROID.
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A. Appendix
A.1. Derivation of Score Matching for Forces

For a given molecule with conformations x1, .., xn, let us denote energy as E(x). Then the the Boltzmann/Equilibrium
distribution for the molecule is given by

p(x) =
1

Z
exp(−βE(x)),

where Z is a normalizing constant, β = 1
kβT

, kβ is the Boltzmann constant, and T is the temperature under which the
simulation is run. Then we can see that the force on a conformation x is equivalent to the score, i.e. F (x) = −∇xE(x) =
1
β∇xlog p(x). Therefore learning the force F (x) is equivalent to learning the score 1

β∇xlog p(x). Suppose we parameterize
the MLFF to directly predict the force as Fθ(x). Then the force matching loss can be written as

L(θ) = 1

2
Ex∼p(x)∥Fθ(x)− F (x)∥22 =

1

2
Ex∼p(x)∥F (x)∥22 − Ex∼p(x) [⟨Fθ(x), F (x)⟩] + 1

2
Ex∼p(x)∥Fθ(x)∥22.

The middle term can then be expanded as

Ex∼p(x) [⟨Fθ(x), F (x)⟩] =
∫
x

p(x)⟨Fθ(x), F (x)⟩dx Integration over x.

=

∫
x

p(x)

d∑
i=1

(
1

β

dlog p(x)

dxi
Fθ(x)i)dx Expansion of inner product.

=
1

β

d∑
i=1

∫
x

dp(x)

dxi
Fθ(x)idx Simplify and move summation.

=
1

β

d∑
i=1

∫
xi−

∫
xi

Fθ(x)idp(x)dxi−
Integrate over xi.

=
1

β

d∑
i=1

∫
xi−

(
Fθ(x)idp(x)|+∞

−∞ −
∫
xi

p(x)dFθ(x)i

)
dxi−

Partial inegration.

= − 1

β

d∑
i=1

∫
xi−

∫
xi

p(x)
dFθ(x)i
dxi

dxidxi−
Normality assumption.

= − 1

β

d∑
i=1

Ex∼p(x)

[
dFθ(x)i
dxi

]
= − 1

β
Ex∼p(x) [Tr [∇xFθ(x)]] .

Therefore we have the loss

L(θ) = Ex∼p(x)

[
1

β
Tr [∇xFθ(x)] +

1

2
∥Fθ(x)∥22

]
.

The first term in the loss disappears as it is not dependent on θ.

A.2. Experimental Details

In this section, we go over the experimental details.

GemNet Training Details. To train the bias identification method, we train a freshly initialized model with a batch size of
10 on the accurate dataset for 2000 epochs. To train the inaccurate model, we train a freshly initialized model with the bias
aware loss function and batch size 16 over the inaccurate dataset. Finally, to finetune the inaccurately trained model, we
train a model with a batch size of 10 on the accurate dataset for 2000 epochs. In each stage of training, we use the following
hyperparamers:

• Evaluation Interval: 1 epoch

• Decay steps: 1200000
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• Warmup steps: 10000

• Decay patience: 50000

• Decay cooldown: 50000

The rest of the parameters are the same as used in Gasteiger et al. (2021).

EGNN Training Details. The EGNN training setup is similar to GemNet. To train the bias identification method, we train a
freshly initialized model with a batch size of 10 on the accurate dataset for 2000 epochs. To train the inaccurate model, we
train a freshly initialized model with the bias aware loss function and batch size 32 over the inaccurate dataset. Finally to
finetune the inaccurately trained model, we train a with a batch size of 10 on the accurate dataset for 2000 epochs. In each
stage of training we use the following hyperparamers:

• Evaluation Interval: 1 epoch

• Learning rate: 10−4 for inaccurate training, 10−5 for finetuning

• num layers: 5

• embedding size: 128

A.3. Additional Results

Here we include additional results for ASTEROID when empirical force field data is viewed as inaccurate. For the baseline
model we use GemNet. The ASTEROID framework again leads to consistent gains across all amounts of data.

(a) Benzene (b) Aspirin (c) Malonaldehyde

(d) Toluene (e) Ethanol

Figure 8. Main results for GemNet when empirical force field data is viewed as inaccurate.

A.4. Baseline Implementations

⋄ ANI1-ccx. In order to have a fair comparison with Smith et al. (2019), we consider two ANI-1ccx based baselines. In the
first baseline, we take the provided ANI-1ccx checkpoint and analyze its zero-shot performance on the MD17 dataset. For
the second ANI-1ccx baseline, we finetune ANI-1ccx separately on each molecule in MD17 until the validation loss has
converged.
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⋄ ∆-ML for GemNet. For a fair comparison with ASTEROID, we implement ∆-ML on GemNet and the MD17 molecules.
Given a molecular configuration x, it’s corresponding DFT force labels f i, and the CCSD(T) force labels fa, optimize the
supervised loss

min
θ

L∆(x, θ) = ℓf (f
a, f i +∇xE(x; θ)). (4)

We then optimize this loss over all train configurations for a given molecule, using an energy loss similar to (1). During
inference, we predict the CCSD(T) force labels as f i +∇xE(x; θ), which requires the DFT force label to be computed.

Since the mapping between DFT labeled configurations and MD-17 labeled configurations is not explicitly given, we must
find it ourselves. For every point in the CCSD(T) dataset, we find the closest point to it in the DFT dataset. For each of the
molecules listed in Section 6, the difference between the CCSD(T) configuration and closest DFT configuration is 1× 10−5.
For Benzene and Ethanol, we find that such a mapping is not available.

A.5. ASTEROID Toy Example

We have added a new result using a two-layer MLP with 128 hidden units each and synthetic data. This experiment shows
that ASTEROID can significantly improve generalization error in more general settings. In this experiment, we generate a
biased dataset of 2000 points according to Y = AX + b, where where X ∼ N(0, 1) has dimension 16, b is the bias, and A
is a randomly generated Gaussian matrix of dimension 16× 16. The bias b is chosen uniformly from the set [0, 2, 4, 8, 16].
We also generate varying levels of accurate data according to Y = AX , where X ∼ N(0, 1). We then evaluate the test
MAE of ASTEROID and standard training over a variety of accurate data sizes. We find that ASTEROID significantly
outperforms standard training.

Figure 9. Asteroid toy example.
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