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ABSTRACT

Directly training Large Language Models (LLMs) for Multi-Agent Systems
(MAS) remains challenging due to intricate reward modeling, dynamic agent
interactions, and demanding generalization requirements. This paper explores
whether post-training techniques can effectively generalize to multi-agent scenarios
without any interactive multi-agent data. We use economic reasoning as a testbed,
leveraging its strong foundations in mathematics and game theory, its demand for
structured analytical reasoning, and its relevance to real-world applications such
as market design, resource allocation, and policy analysis. We introduce Recon
(Reasoning like an ECONomist), a 7B-parameter open-source LLM post-trained
on a hand-curated dataset of 2,100 high-quality economic reasoning problems.
Comprehensive evaluations show that Recon substantially improves economic
reasoning benchmarks and generalizes to unseen multi-agent games, exhibiting
equilibrium-seeking behavior. To our knowledge, this is the first systematic study
to demonstrate that domain-aligned post-training can induce emergent strategic
behavior in multi-agent settings. These findings underscore post-training as a
scalable route to structured reasoning and agent alignment, shedding light on the
roles of SFT and RL in cultivating emergent behaviors.
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Figure 1: Overview of Recon. Post-training on curated economic reasoning tasks enables large
language models to generalize from textbook-style problems to interactive game-theoretic settings.
Recon improves accuracy on economic benchmarks and exhibits emergent strategic behavior, achiev-
ing higher Nash equilibrium convergence and win rates in unseen multi-agent games.
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1 INTRODUCTION

Large Language Models (LLMs) have recently progressed from general-purpose text generation to
exhibiting strong reasoning capabilities across mathematics and coding, as exemplified by OpenAI’s
o1 series (OpenAI, 2024b) and DeepSeek-R1 (DeepSeek-AI, 2025). This transition has been driven
by techniques such as Chain-of-Thought (CoT) prompting, Supervised Fine-Tuning (SFT), and
Reinforcement Learning from Human Feedback (RLHF) (Wei et al., 2022; Kojima et al., 2022;
Ouyang et al., 2022; Lightman et al., 2023), culminating in the emergence of Large Reasoning Models
(LRMs) (Chen et al., 2025a; Xu et al., 2025a). A key framework in this space is Reinforcement
Learning with Verifiable Rewards (RLVR) (Lambert et al., 2025), which replaces standard reward
models with outcome-verification functions for tasks such as math solving and instruction following.
RLVR has since been extended to Medicine (Zhang et al., 2025a), SQL (Ma et al., 2025), Logic (Xie
et al., 2025), and Finance (Liu et al., 2025b; Qian et al., 2025; Zhu et al., 2025). Complementary
methods such as Su et al. (2025) and Liu et al. (2025d) extend RLVR to soft or online reward signals,
while LIMO (Ye et al., 2025), LIMR (Li et al., 2025), and s1 (Muennighoff et al., 2025) demonstrate
that post-training can elicit strong reasoning in smaller models under specialized, limited data.

In parallel, LLM-based Multi-Agent Systems (MAS) have gained prominence as platforms for
exploring complex interactions, cooperation, and emergent social behaviors (Park et al., 2023; Zhou
et al., 2024; Li et al., 2023). A pivotal objective within MAS is economic rationality—the capability
to systematically reason about incentives, trade-offs, and strategic decision-making—which underpins
effective coordination and negotiation. The STEER benchmark (Raman et al., 2024; 2025) formalizes
economic rationality by testing LLMs on foundational principles such as utility maximization,
behavioral bias, and strategic reasoning. This aligns closely with game theory, a longstanding
theoretical foundation for MAS research (Cesa-Bianchi & Lugosi, 2006; Zhang et al., 2021; Slumbers
et al., 2023; Mazumdar et al., 2025), increasingly central to evaluating LLM-based agents (Xu et al.,
2024; Zhang et al., 2024; Fan et al., 2024; Sun et al., 2025). Several recent studies have focused on
the reasoning abilities of LLM agents in these settings, highlighting both their importance and their
limitations (Piedrahita et al., 2025; Jia et al., 2025; Zhang et al., 2025b). Ongoing efforts to develop
unified economic-agent environments and benchmarks (Li et al., 2024; Duan et al., 2024; tse Huang
et al., 2025; Hua et al., 2024) further reinforce the centrality of this research direction.

Despite significant interest, directly training LLMs for multi-agent interactions remains complex and
underexplored, often hampered by challenges like dense reward modeling, unstable coordination
dynamics, and conflicting agent objectives (Du et al., 2025). Existing methods, such as multi-agent
co-training (Yue et al., 2025a) and MARFT (Liao et al., 2025), typically require extensive supervision
and tailored agent architectures, limiting their scalability and generalization potential. This prompts a
critical research question:

Can post-training techniques generalize effectively to multi-agent scenarios?

To our knowledge, this work is the first to pose and systematically investigate whether post-training
alone—without any interactive gameplay data—can induce multi-agent behavior (Figure 1). We
adopt economic reasoning as a testbed, given its structured mathematical foundations and strategic
dynamics essential to multi-agent systems. Economic tasks frequently involve intricate multi-step
reasoning, such as evaluating trade-offs, aligning incentives, and anticipating others’ behaviors—ideal
for leveraging improvements from SFT and RLVR. While previous studies primarily assess economic
rationality (Raman et al., 2024; 2025; Hua et al., 2024; Duan et al., 2024; tse Huang et al., 2025), our
work actively enhances it via targeted post-training. Additionally, real-world applications reinforce
this domain’s significance, demonstrated by simulations of heterogenous economic-agent roles using
LLMs (Hao & Xie, 2025; Li et al., 2024; Xiao et al., 2025).

In this paper, we introduce Recon, an LLM specifically designed for structured economic decision-
making. We curate a high-quality dataset comprising 2,100 examples spanning 15 critical economic
categories, including behavioral bias detections, repeated-game strategies, mechanism-design equi-
libria. This dataset builds upon and expands benchmarks such as STEER (Raman et al., 2024),
EconLogicQA (Quan & Liu, 2024), and EconNLI (Guo & Yang, 2024). Recon employs Super-
vised Fine-Tuning (SFT) and subsequent Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), fine-tuning the DeepSeek-R1-Distill-Qwen-7B model (DeepSeek-AI, 2025; Yang et al., 2024)
to enhance structured reasoning and test generalization capabilities across both single-agent and
multi-agent economic tasks.
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Recon-Eval 
Dataset

Recon-CoT 
Dataset⚗ ⚗

🔥

🔥

⚔

📊

⚔

Step 1: Dataset Curation and Reasoning Trace Distillation

Step 2: Post-Training via SFT and RL

Step 3: Model Evaluation on Reasoning, 
Self-Play, and Multi-Agent Games

Recon Dataset

🔥

🔥

🗂

Economic Benchmarks

⚗ 📊 ⚔🔥🗂

Figure 2: Pipeline of Recon. Step 1: We curate a high-quality economic dataset (Recon Dataset)
from benchmarks such as STEER, and distill reasoning traces from teacher models to construct the
Recon-CoT Dataset. Step 2: A base model is post-trained via supervised fine-tuning (Recon-SFT) on
Recon-CoT and reinforcement learning (Recon-RL) on the Recon Dataset. Step 3: The resulting
models are evaluated on reasoning benchmarks (Recon-Eval Dataset), self-play, and multi-agent
games against opponent agents.

Our experimental results demonstrate clear improvements in structured reasoning and strategic
decision-making through domain-aligned post-training. Notably, models trained on economic prob-
lems display economically rational behavior in multi-agent games, despite receiving no interaction-
based supervision. This suggests that structured problem-solving can promote latent alignment with
game-theoretic principles, indicating that post-training not only enhances task-level accuracy but also
encourages emergent rational behavior. These findings provide fresh insights into the distinct roles of
SFT and RL in shaping model behavior, generalization, and alignment (Yue et al., 2025b; Chu et al.,
2025; Wang et al., 2025e; Liu et al., 2025c; Gandhi et al., 2025). Our contributions include:

• We curate a high-quality dataset of 2,100 problems across 15 economic reasoning categories
designed to assess core rationality skills.

• We introduce Recon, a 7B open-source model post-trained via SFT and GRPO for structured
economic and strategic reasoning.

• We empirically show that reasoning-oriented post-training enhances both benchmark accuracy and
generalization to unseen multi-agent settings.

• We hypothesize post-training as a scalable route to agent alignment, where economic problem-
solving effectively fosters strategic behavior.

2 RELATED WORK

Economic Agent Applications. Recent work has integrated LLMs into economic simulations and
agent-based modeling across a range of applications. Hao & Xie (2025) proposed a multi-agent
LLM framework for policy analysis, simulating heterogeneous societal groups. Li et al. (2024)
introduced EconAgent for macroeconomic modeling, demonstrating human-like decision-making in
LLM-driven agents. Xiao et al. (2025) developed TradingAgents to model financial markets with
specialized roles such as analysts and traders. Wu et al. (2025) applied LLMs to generate persuasive,
context-grounded marketing content for real estate. Lazebnik & Shami (2025) combined LLMs with
reinforcement learning to simulate tax evasion dynamics, and Yu et al. (2024) introduced FINCON, a
synthesized multi-agent system using conceptual verbal reinforcement for financial decision-making.
While these works focus on application design, our approach complements them by enhancing
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economic reasoning and decision-making capabilities through post-training—potentially improving
performance in real-world multi-agent settings.

Game-Theoretic Evaluation. Game-theoretic reasoning has become an essential evaluation
paradigm for assessing LLM performance in multi-agent scenarios. Benchmarks such as GT-
Bench (Duan et al., 2024), GameBench (Costarelli et al., 2024), and GAMABench (tse Huang
et al., 2025) evaluate strategic reasoning across cooperative, adversarial, and sequential games. Sev-
eral studies focus on negotiation: LAMEN (Davidson et al., 2024) and Abdelnabi et al. (2024)
examine stakeholder deliberation, while Hua et al. (2024) introduce a formal agent workflow for
modeling negotiation games and equilibrium behavior. GLEE (Shapira et al., 2024) provides a
unified benchmark for economic interactions, and Akata et al. (2025) study repeated games to analyze
long-term cooperation. Piedrahita et al. (2025) highlight the challenge that increased reasoning
capacity in LLMs can, seemingly paradoxically, undermine cooperation, especially in public goods
settings. Jia et al. (2025) further show that strategic performance depends more on reasoning quality
than scale, and that CoT prompting is not a universal enhancer. Zhang et al. (2025b) emphasize that
both metacognitive and strategic reasoning are essential for agent success in real-world, incomplete-
information settings like labor markets. Unlike these evaluation-oriented studies, our research
leverages post-training techniques to actively enhance LLMs’ reasoning abilities and generalize their
strategic decision-making to broader economic and multi-agent contexts.

3 METHODOLOGY

3.1 OVERALL PIPELINE

Our training pipeline comprises two core post-training stages: supervised fine-tuning (SFT) on
synthetic reasoning data, followed by reinforcement learning with verifiable rewards (RLVR) on
curated economic problems. We detail the dataset curation process in Section 4. Figure 2 provides a
schematic overview of the full pipeline, illustrating the flow from data generation to post-training and
downstream multi-agent gameplay.

3.2 BASE MODEL

We select DeepSeek-R1-Distill-Qwen-7B1 (Yang et al., 2024) as our base model due to its strong
reasoning ability, inherited from DeepSeek-R1 (DeepSeek-AI, 2025) through targeted distillation.
Among open-source models, Qwen-based (Yang et al., 2024) variants consistently outperform
comparable LLaMA-based (Grattafiori et al., 2024) counterparts on multiple benchmarks. The 7B
parameter scale offers a practical balance between performance and efficiency, making it well-suited
for fine-tuning. Furthermore, DeepSeek-R1-Distill-Qwen-7B achieves competitive results, surpassing
GPT-4o (OpenAI, 2024a) on challenging reasoning benchmarks such as MATH (Hendrycks et al.,
2021) and AIME (MAA, 2024), thus providing a robust foundation for further adaptation.

3.3 POST-TRAINING ALGORITHMS

We use SFT and GRPO as our post-training techniques. SFT aligns the model to structured reasoning
traces distilled from teacher models, providing stable initialization. GRPO further optimizes the model
via Reinforcement Learning with Verifiable Rewards, encouraging generalization in multi-agent
settings. We leave detailed descriptions to Appendices A.2 and A.3.

3.4 REWARD DESIGN

To support structured outputs during GRPO training, we develop a hierarchical, rule-based reward
function. It scores responses across three stages, format validity, answer extraction, and correctness,
while enforcing consistent use of <think> and \boxed{} conventions to align reasoning traces
with final predictions. Full logic and implementation details are provided in Appendix A.4.

1https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
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4 DATASET CURATION

Table 1: Accuracy of each model across economic reasoning categories (detailed in Appendix A.5).

Model Names Mathematical Single-Agent Multi-Agent Representing Logical
Foundations Enviornments Enviornments Other Agents Reasoning

R1-Distill-Qwen-7b 0.896 0.751 0.630 0.740 0.430
Qwen-2.5-7b-Instruct 0.875 0.775 0.514 0.680 0.650
Llama-3.1-8b-Instruct 0.619 0.637 0.309 0.569 0.350
Gemma-2-9b-it 0.828 0.798 0.375 0.639 0.590
GPT-4o 0.887 0.841 0.625 0.782 0.640
GPT-3.5-turbo 0.593 0.756 0.377 0.608 0.510

Table 2: Accuracy on specified question types from Multi-Agent Environments category (detailed in
Appendix A.5).

Model Names Back. Bayes Best Dom. Dom’d Enf. Feas. Intp. Iter. Pure Subg. Trig.
Ind. Nash Resp. Strat. Strat. Rem. Nash Nash

R1-Distill-Qwen-7b 0.360 0.681 0.464 0.960 0.840 0.222 0.500 0.878 0.854 0.532 0.857 0.217
Gemma-2-9b-it 0.220 0.320 0.200 1.000 0.760 0.040 0.360 0.900 0.260 0.180 0.200 0.020
LLaMA-3.1-8b-Instruct 0.000 0.235 0.157 0.408 0.500 0.020 0.580 0.820 0.420 0.000 0.360 0.200
GPT-4o 0.451 0.569 0.294 1.000 0.940 0.824 0.549 1.000 0.863 0.255 0.588 0.176
GPT-3.5-turbo 0.098 0.196 0.196 1.000 0.627 0.000 0.725 0.882 0.431 0.039 0.294 0.039

High-quality data is essential for effective post-training (Muennighoff et al., 2025; Ye et al., 2025; Li
et al., 2025), motivating our focus on careful dataset construction and analysis. Section 4.1 describes
our data sources, and Section 4.2 presents baseline experiments with several LLMs on existing
benchmarks, analyzing their performance to gain intuitions. Section 4.3 details the creation of the
Recon Dataset, while Section 4.4 outlines the distillation of reasoning traces for Recon-CoT.

4.1 DATASET SOURCE

We curate four datasets covering distinct facets of economic reasoning: STEER Benchmark (Raman
et al., 2024) provides ∼600K multiple-choice questions across 48 microeconomic categories, spanning
arithmetic, probability, psychological biases, and game theory. Each question includes a prompt,
candidate answers, the correct label, and metadata. STEER serves as our primary benchmark for
general economic reasoning. EconLogicQA (Quan & Liu, 2024) contains 650 human-validated
questions inspired by real-world news. Each presents 3–4 interdependent events requiring correct
temporal or causal ordering, testing planning and causal consistency. EconNLI (Guo & Yang,
2024) offers 11K premise–hypothesis pairs annotated for entailment or neutrality. Derived from
Wikipedia, it evaluates a model’s ability to infer causal and logical relations in economic narratives.
Pure-Strategy Equilibrium Games (Fourny & Sulser Larraz, 2020-10-07) consists of 3×3 payoff
matrices labeled with Pure Nash and Perfectly Transparent Equilibria. To supplement STEER’s
noisier game-theoretic items, we convert selected matrices from this ETH Zürich dataset into natural
language prompts to assess equilibrium reasoning.

4.2 CURATION EXPERIMENT ANALYSIS

Appendix A.5 outlines our dataset curation experiment settings for assessing baseline performance
across various LLMs on the collected question types. Our experiment and analysis addresses three key
questions: (i) comparative performance of open-weight and closed-source models, (ii) the impact of
reasoning distillation, and (iii) identifying specific bottlenecks in economic reasoning skills. Results
summarized in Tables 1 and 2 yield the following insights:

Closed models lead, but reasoning models narrow the gap. Closed-source GPT-4o consistently
achieves top accuracy in most macro-categories, though notably, DeepSeek-R1-Distill-Qwen-7B
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slightly surpasses GPT-4o on Mathematical Foundations (0.896 vs. 0.887) and Multi-Agent Environ-
ments (0.630 vs. 0.625). This indicates that specialized open-source reasoning models can effectively
rival closed-source proprietary models on fundamental economic tasks.

Reasoning distillation significantly improves performance. DeepSeek-R1-Distill-Qwen-7B out-
performs all other comparable-sized open models across most macro-categories, particularly excelling
in Multi-Agent Environments. In contrast to financial domains (Liu et al., 2025b; Qian et al., 2025;
Zhu et al., 2025), where R1-style models underperform on commonsense-heavy tasks (e.g., account-
ing reports), our results suggest that economic reasoning benefits more from structured, multi-step
inference. This aligns with Sprague et al. (2025), who find that CoT prompting is most effective on
tasks involving symbolic or logical reasoning—helping explain the advantage of System 2 thinking
(Kahneman, 2011) in economic, but not financial, domains.

Complex game-theoretic tasks remain challenging. Detailed examination in Table 2 reveals
significant weaknesses in advanced strategic reasoning, particularly Trigger strategies and Enforce-
ability in repeated games. Even the leading GPT-4o achieves limited accuracy (0.176 and 0.824
respectively), while most open models fall below baseline on these long-horizon reasoning tasks.

DeepSeek-R1-Distill-Qwen-7B as the optimal baseline for further training. Despite these
bottlenecks, R1-Distill-Qwen-7B’s solid overall performance (macro-average 0.69) and promising
baseline competence in strategic reasoning (e.g., 0.217 on Trigger and 0.222 on Enforceability)
make it a strong candidate for subsequent SFT and RL fine-tuning. Its open-source accessibility
and manageable scale provide an ideal foundation for enhancing economic reasoning capabilities,
particularly in challenging multi-agent contexts.

4.3 DATASET CURATION

Recon Corpus Overview. We present Recon Dataset, emphasizing the 15 most challenging
categories identified in our benchmark analysis (Section 4.2). These include advanced game theory,
behavioral biases, and logical inference. We curate total 2,100 question-answer pairs: Training Split
(Recon Dataset): 1,800 questions, proportionally sampled based on empirical error rates per category
(Table 6). Evaluation Split (Recon-Eval): 300 held-out questions (20 per category), mirroring the
training distribution.

Sampling Strategy. Within each category, we remove ambiguous or low-quality items, then uni-
formly sample remaining questions to meet predefined quotas (e.g., 250 questions for Enforceability,
75 for Certainty Effect).

Prompt Template. Each question employs a structured prompt that encourages models to reason
step-by-step and explicitly box their final answers. A representative example is illustrated in Figure 5.

Category Breakdown. Table 6 summarizes the fifteen Recon categories, providing concise descrip-
tions, data provenance, and question counts for the training set. The evaluation set replicates these
proportions at one-sixth scale (20 questions per category, totaling 300).

4.4 REASONING TRACE DISTILLATION

We distill chain-of-thought (CoT) traces from a stronger teacher and filter them for correctness.

Teacher Prompting. For each of the 1,800 Recon training items, we issue the same prompt template
as in Figure 5 to the teacher model QwQ-32B (Team, 2025). The template forces the teacher to put
thinking process inside <think> ... </think> and to place its final choice in \boxed{...}
so that both the trace and the answer can be extracted programmatically.

Filtering. We parse the teacher’s boxed answer and compare it to the gold label. Only items the
teacher answers correctly are kept. This yields a clean set of 868 (question, gold answer, chain-of-
thought) triples covering all 15 Recon categories.

6
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CoT Corpus. The resulting 868 demonstrations constitute the Recon-CoT dataset. We use this
dataset for SFT. As each trace ends with the same extraction-friendly pattern, the fine-tuned model
separates reasoning from its verdict, simplifying downstream reward modeling and evaluation.

5 MAIN RESULTS

5.1 MODEL CONFIGURATION

We conduct our experiments using DeepSeek-R1-Distill-Qwen-7B (Yang et al., 2024; DeepSeek-AI,
2025) as the base model, with all training performed on a single NVIDIA H800 GPU. To enable
scalable experimentation, we adopt the Unsloth library (Daniel Han & team, 2023) for memory-
efficient fine-tuning and Hugging Face’s TRL framework (von Werra et al., 2020) for SFT and RL.
For parameter-efficient adaptation, we employ LoRA (rank=8) (Hu et al., 2022) in both SFT and RL.
During SFT, we use a batch size of 8 and a learning rate of 2e-4, with a linear learning rate scheduler
and 5 warmup steps. For RL, we adopt a batch size of 32, generate 8 samples per optimization step,
and apply a cosine learning rate scheduler with an initial rate of 5e-6. We initialize the RL stage from
the checkpoint of the SFT-tuned model. Recon-SFT is trained for 2,700 steps. GRPO is then applied
for 2,250 steps. See the analysis and plots of training dynamics in Appendix A.6.

5.2 EVALUATION DETAILS

We evaluate on three benchmarks: our held-out Recon-Eval (300 economic reasoning problems), the
Complete-Information Games framework (Hua et al., 2024), and GTBench (Duan et al., 2024).
The Complete-Information Games suite includes 5 simultaneous and 5 sequential games testing
agents on (1) communication, (2) cooperation, and (3) strategic alignment. We run 20 trials per game
(temperature 0.6, no workflow), where the agent plays against itself. Performance is measured by
Nash Equilibrium frequency. GTBench focuses on strategic and logical reasoning in competitive
settings. Each task is evaluated over 10 trials (temperature 0.6) using PromptAgent against fixed
opponents (e.g., GPT-4o-mini), with win rate as the metric. For the two gameplay benchmarks, we
evaluate four 7B models: Qwen2.5-Instruct, R1-Distill-Qwen, Recon-SFT, and Recon-RL.

5.3 ECONOMIC REASONING PERFORMANCE

Table 3: Accuracy and percentage score
on Recon-Eval (evaluated at tempera-
ture = 0.0) for the Base Model, Recon-
SFT, and Recon-RL.

Model Accuracy Score (%)
Base Model 145 / 300 48.30
Recon-SFT 179 / 300 59.67
Recon-RL 186 / 300 63.00

Table 3 reports accuracy on our 300-item Recon-Eval
(Section 4.3) set across training stages. Starting from the
base model (48.3%), SFT boosts performance to 59.7%,
gaining 11.4 points, suggesting that distilled teacher traces
effectively transfer structured reasoning patterns. GRPO
further improves accuracy to 63.0%, adding 3.3 points.
Overall, the SFT→RL pipeline achieves a 14.7% abso-
lute gain, validating post-training as a viable strategy for
aligning DeepSeek-R1-Distill-Qwen-7B with economic
reasoning tasks.

5.4 GENERALIZATION TO STRATEGIC GAMES

To verify that the gains obtained from economic post-training extend beyond single-step reasoning,
we evaluate the models in two unseen interactive settings, testing if economic reasoning post-training
generalizes to strategic interaction.

Frequent convergence to Nash Equilibria. Table 4 reveals a clear monotonic gain in self-play
equilibrium frequency as economic post-training is added. Relative to the R1-Distill baseline, Recon-
SFT increases the proportion of equilibrated outcomes from 0.39 to 0.47 in simultaneous-move games
while preserving the strong 0.79 level in sequential games. A subsequent GRPO stage raises these
figures to 0.51 and 0.86, yielding an overall mean of 0.685, a 9.5 points improvement over R1-Distill
and almost double the 0.345 attained by the non-reasoning Qwen-2.5-7B-Instruct.
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Table 4: Nash Equilibrium frequency for self-play
(higher is better). Settings detailed in Section 5.2.

Game Qwen2.5 R1-Distill Recon-SFT Recon-RL

Simultaneous
Prisoner’s Dilemma 0.85 0.95 1.00 1.00
Stag Hunt 0.50 0.50 0.45 0.60
Battle of Sexes 0.20 0.10 0.15 0.20
Wait-Go Game 0.15 0.25 0.70 0.65
Duopolistic Competition 0.15 0.15 0.05 0.10
Avg. (Simul.) 0.37 0.39 0.47 0.51
Sequential
Escalation 0.15 0.95 0.85 1.00
Monopoly 0.95 0.95 0.90 0.95
Hot-Cold 0.05 0.65 0.90 0.95
Draco 0.40 0.75 0.75 0.90
Trigame 0.05 0.65 0.50 0.50
Avg. (Seq.) 0.32 0.79 0.78 0.86
Overall Avg. 0.35 0.59 0.63 0.69

Table 5: GTBench win rates against GPT-4o-mini
(higher is better). Settings detailed in Section 5.2.

Game Qwen2.5 R1-Distill Recon-SFT Recon-RL

breakthrough 0.40 0.10 0.20 0.30
connect4 0.20 0.40 0.40 0.30

first sealed auction 0.30 0.40 0.50 0.50
kuhn poker 0.70 0.30 0.70 0.70

liars dice 0.30 0.30 0.60 0.40
negotiation 0.00 0.70 0.80 0.90

nim 0.70 0.00 0.00 0.00
pig 1.00 0.90 0.50 0.80

prisoners dilemma 0.00 1.00 1.00 1.00
tictactoe 0.40 0.80 0.60 0.70

Overall Avg. 0.40 0.49 0.53 0.56

Because Nash equilibria embody mutual best responses, more frequent convergence implies the model
is better at (i) anticipating the incentives of the other agent and (ii) selecting undominated strategies.
We therefore interpret the jump in equilibrium rate as quantitative evidence that post-training injects a
transferable equilibrium prior: the model has internalized economic rationality principles that apply
even to games it never saw during training.

Economic rationality carries over to competitive play. The same inductive bias manifests in the
strategic game setting. From Table 5, we can observe that Recon-SFT already secures the highest
mean win rate among 7B models (0.53). GRPO again provides a consistent lift to 0.56, winning or
drawing in 8 of 10 tasks. The biggest relative gains appear in negotiation (+0.20) and breakthrough
(+0.20), two games that demand extended look-ahead and adaptive bidding abilities never explicitly
included in our training corpus. When compared to the non-reasoning model Qwen-2.5-7B-Instruct,
the Recon-RL model has a much higher win rate, verifying the idea that reasoning ability helps a
model succeed in a strategic game scenario.

Such improvements cannot be explained by pattern memorization or combinatorial search (perfor-
mance on nim is unchanged); instead, they indicate that the economic-reasoning skills learned offline
translate into more general strategic behavior against a strong, unseen opponent. The fact that every
DeepSeek checkpoint, including Recon-RL, scores low on nim, whose solution is a single XOR
invariant rather than an incentive-driven best-response problem, underscores this boundary: our
post-training injects an equilibrium-seeking bias, not ready-made combinatorial tricks. Thus the miss
on nim refines our claim that economic post-training chiefly benefits tasks where strategic reasoning,
not rote formula recall, is decisive.

5.5 EMERGENT BEHAVIORS FROM POST-TRAINING IN MULTI-AGENT GAMES

A qualitative comparison between the Recon-RL and Recon-SFT traces on the Draco sequential
game (see Figures 6 and 7) reveals several systematic, post-training behaviors:

Explicit strategic modelling. Recon-RL spontaneously constructs the game tree, labels subgames,
and appeals to solution concepts such as “subgame-perfect Nash equilibrium” and “backward induc-
tion.” Recon-SFT, in contrast, walks through payoff lines informally and never names the underlying
equilibrium logic.

Iterative search and self-correction. The RL model exposes a lengthy “trial-and-error” chain of
thought—simulating each branch, spotting contradictions, and revising intermediate conclusions
before converging on the optimal path.

Taken together, these observations suggest that the SFT stage acquires the foundational knowledge
for solving the strategic scenarios, while the GRPO stage teaches the model to simulate the solution
procedure a trained economist would follow, rather than merely memorizing answer patterns. The
richer internal search and tighter adherence to formal terminology provide a plausible mechanism for
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the quantitative gains reported in Tables 3 and 4 and for the improved win-rates on unseen interactive
benchmarks (Section 5.3).

6 INSIGHTS AND FUTURE WORK

6.1 POST-TRAINING FOR AGENT ALIGNMENT

The jump from single-shot, textbook economics to interactive, adversarial games in Section 5.4 is
striking. We propose two complementary mechanisms that can explain this out-of-domain generaliza-
tion and discuss their broader implications.

Structured prompts ⇒ modular latent policies. The Recon template enforces an explicit think|act
separation. This mirrors the inner-rollout / outer-commitment loop required in game playing: search
over hypothetical branches, then output a single move. We conjecture that the template therefore
trains a policy-over-thoughts module that can be invoked verbatim when the same model is asked to
play against another agent, yielding more systematic tree construction and self-correction.

Outcome-aligned reward ⇒ an “equilibrium prior”. GRPO optimizes a scalar signal that is
proportional to final correctness. The easiest way for the model to guarantee a non-zero return is
therefore to plan backwards: select undominated steps that survive any continuation. Over thousands
of problems, this trains a bias toward mutual best responses. When dropped into a multi-player
environment, the same bias manifests as (i) rejecting dominated moves, (ii) gravitating toward
equilibrium outcomes.

Why is this behavior meaningful? Scalable alignment. Aligning models to “cooperative and
rational” behavior usually relies on costly human annotation. Our results indicate that single-agent,
verifiable datasets already inject a sizable portion of that inductive bias. Transparency. The richer,
self-correcting chains of thought exposed after GRPO give practitioners a transparent window into
the model’s decision process, facilitating post-hoc auditing and safety checks.

6.2 FUTURE WORK

Workflow Integration. We plan to investigate whether integrating multi-agent workflows, such as
negotiation and equilibrium resolution frameworks (Hua et al., 2024), can further enhance interactive
reasoning and cooperative capabilities.

Broader Microeconomic Generalization. We aim to investigate whether post-training on a wider
range of microeconomic scenarios—such as bargaining, market clearing, or taxation—can elicit
stronger and more stable agentic behaviors.

Cross-Domain Transfer. We also aim to investigate whether our post-training approach can
generalize beyond economic reasoning to induce other sophisticated aspects of human cognition,
such as social cooperation, psychological biases, or ethical decision-making. Demonstrating such
broader cognitive generalization would reinforce the potential of domain-aligned post-training as a
versatile method for eliciting complex human-like behaviors in language models.

7 CONCLUSION

We present Recon, a 7B open-source model post-trained for economic reasoning that exhibits strategic
generalization. Leveraging a curated dataset of 2,100 problems and a two-stage SFT+GRPO pipeline,
Recon achieves a 14.7% improvement on single-agent economic benchmarks and increases Nash
equilibrium convergence by 9.5 points in interactive multi-agent games. Our findings suggest that
domain-aligned post-training offers a scalable route to economic rationality and induces strategic
behavior in previously unseen multi-agent settings.
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LLMS USAGE STATEMENT

We clarify that LLMs were used solely as auxiliary tools for paper writing, restricted to two purposes:
(i) refining the manuscript’s exposition for clarity and conciseness, and (ii) generating preliminary
schematic elements for visualizations of methodological pipelines.
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learning. https://github.com/huggingface/trl, 2020.

Shaobo Wang, Yantai Yang, Shuaiyu Zhang, Chenghao Sun, Weiya Li, Xuming Hu, and Linfeng
Zhang. Drupi: Dataset reduction using privileged information. arXiv preprint arXiv:2410.01611,
2024.

Shaobo Wang, Xiangqi Jin, Ziming Wang, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong
Li, Conghui He, Xuming Hu, and Linfeng Zhang. Data whisperer: Efficient data selection for
task-specific llm fine-tuning via few-shot in-context learning. Annual Meeting of the Association
for Computational Linguistics, 2025a.

Shaobo Wang, Hongxuan Tang, Mingyang Wang, Hongrui Zhang, Xuyang Liu, Weiya Li, Xuming
Hu, and Linfeng Zhang. Gnothi seauton: Empowering faithful self-interpretability in black-box
transformers. International Conference on Learning Representations, 2025b.

Shaobo Wang, Yantai Yang, Qilong Wang, Kaixin Li, Linfeng Zhang, and Junchi Yan. Not all
samples should be utilized equally: Towards understanding and improving dataset distillation.
Synthetic Data for Computer Vision Workshop at CVPR, 2025c.

Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, and Linfeng
Zhang. Dataset distillation with neural characteristic function: A minmax perspective. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025d.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025e.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zichen Wen, Yifeng Gao, Shaobo Wang, Junyuan Zhang, Qintong Zhang, Weijia Li, Conghui He, and
Linfeng Zhang. Stop looking for important tokens in multimodal language models: Duplication
matters more. arXiv preprint arXiv:2502.11494, 2025.

Jibang Wu, Chenghao Yang, Simon Mahns, Chaoqi Wang, Hao Zhu, Fei Fang, and Haifeng
Xu. Grounded persuasive language generation for automated marketing. arXiv preprint
arXiv:2502.16810, 2025.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024a.

Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and Junyang Lin.
Rethinking data selection at scale: Random selection is almost all you need. arXiv preprint
arXiv:2410.09335, 2024b.

Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. Tradingagents: Multi-agents llm financial trading
framework. arXiv preprint arXiv:2412.20138, 2025.

15

https://openreview.net/forum?id=DI4gW8viB6
https://github.com/huggingface/trl


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025a.

Furui Xu, Shaobo Wang, Luo Zhongwei, and Linfeng Zhang. Rethinking dataset pruning from a
generalization perspective. In The Future of Machine Learning Data Practices and Repositories at
ICLR 2025, 2025b.

Xinrun Xu, Yuxin Wang, Chaoyi Xu, Ziluo Ding, Jiechuan Jiang, Zhiming Ding, and Börje F.
Karlsson. A survey on game playing agents and large models: Methods, applications, and
challenges, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yuechen Jiang, Yupeng Cao, Zhi Chen,
Jordan Suchow, Zhenyu Cui, Rong Liu, et al. Fincon: A synthesized llm multi-agent system with
conceptual verbal reinforcement for enhanced financial decision making. Advances in Neural
Information Processing Systems, 37:137010–137045, 2024.

Shengbin Yue, Siyuan Wang, Wei Chen, Xuanjing Huang, and Zhongyu Wei. Synergistic multi-agent
framework with trajectory learning for knowledge-intensive tasks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 25796–25804, 2025a.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025b.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Advancements in Large Language Models. Transformer-based architectures (Vaswani et al.,
2017) underpin modern NLP. When scaled to billions of parameters, these models exhibit strong
generalization, follow predictable scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), and
demonstrate potential toward AGI (Bubeck et al., 2023; Feng et al., 2024). This scaling has yielded
increasingly capable models such as OpenAI o1 (OpenAI, 2024b), Qwen-3 (Yang et al., 2025),
LLaMA 4 (Llama Team, 2025), and DeepSeek-R1 (DeepSeek-AI, 2025). To further enhance the
efficiency and interpretability of LLMs, researchers have proposed a range of adaptation strategies,
including model compression via pruning and quantization (Lin et al., 2024; Kumar et al., 2024;
Liang et al., 2025a; Shen et al., 2025c), inference acceleration through layer skipping (Shen et al.,
2025a;b), data distillation (Zhao et al., 2020; Wang et al., 2024; 2025d; Guo et al., 2024; Wang et al.,
2018; 2025c), data selection (Xia et al., 2024a;b; Wang et al., 2025a; Xu et al., 2025b), token pruning
and merging (Wang et al., 2025b; Bolya et al., 2022; Wen et al., 2025; Liu et al., 2025a; 2024),
theoretical analyses of representation power (Chen et al., 2025b;c; Liang et al., 2025b), and advances
in interpretability and mechanistic understanding (Bereska & Gavves, 2024; Wang et al., 2025b;
Covert et al., 2022). These developments underscore the increasing importance of understanding,
optimizing, and governing the behavior and performance of large language models.

A.2 SUPERVISED FINE-TUNING

Supervised Fine-Tuning (SFT) adapts pretrained models to specific tasks by imitating input–output
pairs, effectively aligning models with structured reasoning when high-quality demonstrations are
available (Muennighoff et al., 2025; Ye et al., 2025). We distill outputs from strong reasoning models
(e.g., DeepSeek-R1 (DeepSeek-AI, 2025), QwQ-32B (Team, 2025)) containing both reasoning traces
and final answers, training the model to generate solutions with coherent thought processes.

Let DSFT = {(xi, yi)}Ni=1 denote the fine-tuning dataset of size N , where xi is the input prompt and
yi is the target output. In our formulation, each output is a tuple yi = (ci, ai), where ci represents
the step-by-step reasoning and ai the final answer. The training objective minimizes the negative
log-likelihood of the output tokens:

LSFT(θ) = −E(x,y)∼DSFT [log pθ(y | x)] ,

where θ are the model parameters and pθ(y | x) is the conditional probability of generating y given x.
The loss is computed only over the output tokens y, excluding the prompt x.

To reinforce structured reasoning, we standardize the output format by enclosing the reasoning process
ci within special <think> and </think> tokens. This explicit markup helps the model distinguish
intermediate steps from final outputs and provides structure that is beneficial for downstream reward
modeling. Overall, SFT provides a strong initialization that enhances reasoning generalization and
stabilizes subsequent RL stage.

A.3 GRPO

We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our reinforcement
learning post-training algorithm. GRPO improves efficiency by eliminating the need for a value
function and instead estimates advantages from a group of sampled outputs. For each input query q,
drawn from the data distribution Dq, a group of G responses {o1, o2, . . . , oG} is sampled from the
old policy πθold . The current policy πθ is then optimized by maximizing the following objective:

JGRPO(θ) = Eq∼Dq,{oi}G
i=1∼πθold (·|q)

[
1

G

G∑
i=1

min
{
wiAi, clip(wi, 1−ϵ, 1+ϵ)Ai

}
− β KL(πθ∥πref)

]
,

where wi :=
πθ(oi|q)
πθold (oi|q)

.

Here, πθ(oi|q) denotes the probability of generating response oi given query q under the current
policy, and πθold(oi|q) is the probability under the old policy used for sampling. The advantage Ai
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reflects the relative quality of each response and is computed as the normalized reward within the
group:

Ai =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
,

where ri is the scalar reward assigned to output oi. The KL penalty encourages stability by penalizing
deviations from a reference policy πref, and is defined as:

KL(πθ∥πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1.

The hyperparameter ϵ controls the clipping threshold for policy ratio updates, while β scales the KL
regularization strength.

A.4 DETAILED REWARD DESIGN

To align model outputs with structured behavior, we design a hierarchical, rule-based reward function
for GRPO training, inspired by DeepSeek-R1 (DeepSeek-AI, 2025). The reward evaluates each
response across three stages: structural formatting, parseability, and correctness.

We follow DeepSeek’s usage guidance2 by prepending a <think> token to each response, prompting
the model to first generate a reasoning trace, followed by a boxed final answer. Omitting this token
degrades both coherence and accuracy.

Final answers are extracted via string matching, with a strong preference for \boxed{} formatting.
To address formatting inconsistencies in the Qwen family, we penalize deviations from the expected
structure, encouraging alignment between reasoning and final predictions. Our reward design is
illustrated for multiple-choice example questions (Figure 5), where answers follow the format
\boxed{Option X: full choice text}.

Formally, our hierarchical reward function comprises three stages:

• Stage-A (Format Check): Each response must contain exactly one </think> tag, and any
\boxed{} answer must appear afterward. Violations of these constraints incur a format penalty.

• Stage-B (Answer Extraction): We attempt to extract the first boxed answer appearing after
</think>. If unavailable, we fallback to the first occurrence of an alternative format such as
Option X. Inability to extract any answer incurs a parse penalty.

• Stage-C (Correctness Grading): If the extracted answer exactly matches the reference answer,
we assign a high positive reward. A partial reward is given if only the option number matches (e.g.,
both indicate ”Option 2”). Incorrect answers receive a negative penalty.

The explicit reward values assigned are summarized as follows. Let r(o) denote the reward for a
model output o:

r(o) =



+5 exact match,
+2 partial match,
−3 incorrect answer,
−4 format violation,
−5 parse failure.

This hierarchical, rule-based scoring framework ensures determinism, interpretability, and efficient
reward signal propagation, effectively supporting the acquisition of correct economic reasoning
behaviors during RL post-training.

A.5 CURATION EXPERIMENT SETTING

Models. We evaluate six models: closed-source GPT-4o (OpenAI, 2024a), GPT-3.5-Turbo (Ope-
nAI, 2022); and open-weight DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI, 2025), Qwen-2.5-7B-
Instruct (Yang et al., 2024), Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Gemma-2-9B-It
(Team et al., 2024).

2https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B#
usage-recommendations
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Question Pool. We sample 50 questions per category from STEER (48 categories) (Raman et al.,
2024), and 50 each from EconLogicQA (Quan & Liu, 2024) and EconNLI (Guo & Yang, 2024),
yielding a 2,500-question pool spanning 50 categories. These are grouped into five macro-categories:

• Mathematical Foundations: Tests whether a model can handle the “nuts-and-bolts” of economic
analysis: basic arithmetic, optimization under simple constraints, probability calculations, and
short chains of deductive logic. Typical items range from computing a quick sum in add sub to
working out an expected value in compute expectations.

• Single-Agent Environments: Casts the model as a lone decision-maker who weighs costs, benefits,
and risk. Besides testing the classical Von Neumann–Morgenstern axioms, the block challenges the
model to sidestep behavioral pitfalls such as the sunk cost fallacy or the endowment effect.

• Multi-Agent Environments: Shifts to strategic settings where pay-offs depend on how others act.
Questions may ask for the optimal first move in a sequential game (backward induction) or for
designing a punishment scheme that sustains cooperation in an infinitely repeated game (trigger
strategies).

• Representing Other Agents: Treats the model as a social planner or mechanism designer who
must aggregate many individual preferences into a single decision. Examples include checking
whether a social ranking is Pareto efficient (pareto sc) or selecting the winner under a simple
plurality voting rule.

• Logical Reasoning: Adds domain-specific deductive tests from EconLogicQA and EconNLI,
asking the model to order socioeconomic events coherently or decide whether one economic event
logically entails another.

The categories—Mathematical Foundations, Single-Agent Environments, Multi-Agent Environments,
and Representing Other Agents—are sourced from STEER. Logical Reasoning is derived from
EconLogicQA and EconNLI.

Drilling down on Multi-Agent Environments. Table 2 unpacks the single “Multi-Agent” bar into
its five game-theoretic sub-modules so we can clearly see where the models trip up.

• Normal-form games: simultaneous-move interactions presented as payoff matrices. Items range
from picking a dominant/dominated strategy (Dom. Strat. and Dom’d Strat.) to computing a
pure-nash equilibrium.

• Extensive-form games: sequential play laid out as game trees. Typical questions ask for the
optimal first action via backward induction (Back. Ind.) or for identifying a subgame-perfect Nash
(Subg. Nash).

• Infinitely repeated games: long-horizon interactions that hinge on credible punishment. Here, the
model must judge feasibility (Feas.), enforceability (Enf.), or design a trigger (Trig.) strategy.

• Bayesian games: strategic choice when pay-offs depend on hidden types; the flagship task is
computing a Bayes-Nash equilibrium.

These finer-grained results intend to reveal a universal weakness in advanced game theory concepts,
especially regarding extensive-form games and infinitely repeated games.

Inference Protocol. Open models are run via vLLM (Kwon et al., 2023) on identical NVIDIA
T4G Tensor Core GPU instances; closed models via OpenAI API. Each prompt requests an answer
enclosed in \boxed{...} plus free-form reasoning. An example question prompt when querying
the tested models is shown in Figure 4.

Evaluation Metric. A response is marked correct if the boxed answer matches the gold label.
Accuracy is computed via exact match. Table 1 summarizes results by macro-category. Table 2 delves
into the results for Multi-Agent Environments category.

A.6 TRAINING DYNAMICS

Figure 3 illustrates that the SFT loss decreases steadily and converges smoothly, whereas GRPO
reward trends upward and stabilizes around a positive mean, suggesting effective alignment and
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Figure 3: Training dynamics for SFT (a) and RL (b).

successful reward-guided optimization despite early variance. Furthermore, we observe that SFT
provides essential economic knowledge and reasoning priors that enable stable RL optimization. In
contrast, our attempts to run RL directly from the base model, despite careful tuning, did not yield full
convergence. This underscores the significance of SFT as a vital warm-start, particularly in domains
beyond mathematics and coding.

Example Dataset Curation Experiment Question Prompt

Question:
In a high-stakes acquisition, two competing investors, Alex and Taylor, are negotiating with a
major corporation for exclusive rights. The negotiations are structured over three rounds,
where each investor alternates in making decisions. Alex makes the first move. If Alex
finalizes the negotiation in the first round, they will secure a profit of 31709.805571865647
and Taylor will receive 70026.13028485939. Should Alex choose to continue the negotiations,
Taylor can either decide to finalize in the second round or push the decision back to Alex. If
Taylor chooses to finalize in the second round, Alex will receive 36394.29786932465 and
Taylor will secure 47402.72116860709. If Taylor decides against finalizing and returns
the decision to Alex, Alex can choose to end the negotiations with the agreed terms, or
let the corporation impose their final terms. If Alex decides to finalize, their profit would
be 99028.19689989614 while Taylor’s would be 83676.14380026297. If the corporation
ends up setting the final terms, Alex will receive 99028.19689989614 and Taylor will get
83676.14380026297. Given this scenario, what should be Alex’s strategy in the very first
round?

Options:
Option 1: Alex should finalize the negotiation
Option 2: Alex should continue and pass the negotiation to Taylor

Choose the correct option and explain your reasoning. Please reason step by step, and put
your final answer within \boxed{}.

Figure 4: Example question prompt for backward induction used in the Dataset Curation Experiment.
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Table 6: Categories, Distributions, and Descriptions of Recon Training Dataset

Class Description Source Count Proportion
Enforceability Incentive compatibility in long-

term relationships
Repeated Game 250 13.9%

Backward Induction Optimal choice in sequential de-
cisions

Sequential Game 250 13.9%

Trigger Punishment-based strategies to
enforce cooperation

Repeated Game 250 13.9%

Feasibility Sustainability of payoff alloca-
tions

Repeated Game 150 8.3%

Auction Risk Risk preferences in bidding con-
texts

One-shot Game 150 8.3%

Endowment Effect Overvaluation of owned assets Behavioral 75 4.2%
Certainty Effect Preference for guaranteed out-

comes over probabilistic ones
Behavioral 75 4.2%

Time Inconsistency Dynamic inconsistency in in-
tertemporal choices

Behavioral 25 1.4%

Budget Balance Financial balance in risk-sharing
settings

Risk Management 50 2.8%

Condorcet Criterion Majority rule consistency in vot-
ing

Majority Vote 25 1.4%

Bayes Nash Strategic reasoning under proba-
bilistic uncertainty

Probability 50 2.8%

EconLogicQA Stepwise logical reasoning in
economics

Logic 150 8.3%

EconNLI Economic causal inference in
natural language

Logic 100 5.6%

Pure Nash Existence and identification of
pure strategy equilibria

Game Theory 100 5.6%

PTE Perfect Transferable Equilibrium
decision logic

Game Theory 100 5.6%

Total 1800 100%
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Example Recon Training Dataset Question Prompt

You are given a reasoning problem in Economics. Please reason step by step to solve it.

Then, give your final answer using the format \boxed{Option X: full choice text}.

You must include both the option number and the full text of your chosen answer.

Question:
Consider a duopoly where two firms, A and B, sell a homogeneous product. Each firm can
choose between undercutting the competitor’s price (compete) or colluding to maintain a
high price (collude). In each period, if both firms compete, each earns $43334.64; if both
collude, each earns $98183.38; if firm A competes while firm B colludes, A earns $77043.33
and B earns $56330.53. Conversely, if firm B competes while A colludes, B earns $77043.33
and A earns $56330.53. Assuming firms discount future payoffs with a discount factor of
0.44, which of the following strategies can be sustained as an enforceable outcome in a Nash
equilibrium of an infinitely repeated game?

Options:
Option 1: Firms A and B compete on price in each period indefinitely.
Option 2: Firms A and B collude to maintain high prices in each period indefinitely.
Option 3: Firms A and B take turns competing and colluding in alternating periods.
Option 4: Firm A competes and Firm B colludes indefinitely.

Figure 5: Example question prompt used in the Recon training dataset.
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Example Draco Game Output of Recon-RL

Okay, so I’m trying to figure out what choice Alice should make to maximize her reward in
this game. Let me start by understanding the rules thoroughly.
From the game rules, it seems like this is a sequential game where Alice and Bob take turns
making choices. The rewards depend on the sequence of choices they make. Let me break
down each scenario...

Hmm, so it’s a bit complex because the rewards depend on the sequence of choices. Alice
has to consider Bob’s possible responses and her own subsequent choices.

Let me try to represent this as a game tree to visualize the possible outcomes...

Now, I need to analyze the optimal strategies for both players. Since it’s a sequential game,
we can use backward induction to find the subgame perfect Nash equilibrium...

Let’s start from the end of the game and work our way back...

Wait, no. Let me correct that. If Bob chooses choice2, he gets 2, but Alice can get 3 or 2.
Wait, actually, the payoffs are from Alice and Bob’s perspective.

Wait, in Subgame 1: Alice chooses choice1, Bob chooses choice2, then Alice chooses
choice1: Alice gets 2, Bob gets 2...

Wait, that’s conflicting. Let me clarify...

So, comparing Bob’s payoffs: - If Bob chooses choice1: Bob gets 5.
- If Bob chooses choice2: Bob gets 3.

Therefore, Bob’s best response is to choose choice1 because 5 ¿ 3.

So, if Alice chooses choice2, Bob will choose choice1, resulting in Alice getting 4 and Bob
getting 5.

Now, let’s summarize:
- If Alice chooses choice1: Both get 5.
- If Alice chooses choice2: Alice gets 4, Bob gets 5.

Comparing these, Alice would prefer to choose choice1 to get 5 instead of 4.

Therefore, Alice’s optimal choice is choice1.

Figure 6: Example Draco game (Hua et al., 2024) output of Recon-RL. Some important game theory
terminology employed by the model is bolded for reference.
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Example Draco Game Output of Recon-SFT

Alright, so I’m trying to figure out the best move for Alice in this sequential game. Let me
break it down step by step.

First, I’ll list out all the possible scenarios and their corresponding rewards. It might help to
visualize it as a tree or a table...

Hmm, so it’s a bit complex because there are multiple rounds here. Let me see if I can figure
out the optimal strategy for both players...

Starting with the first move, Alice has to choose either choice1 or choice2 without knowing
Bob’s choice. So, let’s consider each possibility...

Now, considering that both players are trying to maximize their rewards, they’ll probably
anticipate each other’s moves...

Wait, no. If Alice chooses choice2, Bob can choose choice1, which gives him 5, which is
better than 3. So Bob would definitely choose choice1 if Alice chooses choice2 first...

But wait, if Alice chooses choice1, Bob can choose choice2, leading to a two-round game.
In that case, Alice can get either 2 or 3. But 3 is better than 2, so she would choose choice2,
resulting in Alice:3, Bob:4...

But wait, Bob can choose choice2 if Alice chooses choice1, leading to a lower reward for
Alice. So, maybe Alice should consider that Bob will try to minimize her reward...

Wait, but if Alice chooses choice2, Bob gets 5. If Alice chooses choice1, Bob can get 5 as
well. So, Bob’s reward is the same in both cases, but Alice’s reward is higher if she chooses
choice2...

Wait, that changes things. So, if Alice chooses choice1, Bob’s best response is to choose
choice1, resulting in both getting 5...

If Alice chooses choice2, Bob chooses choice1, giving Alice 4 and Bob 5.

So, Alice can get either 5 or 4, depending on her choice.

Since 5 is better than 4, Alice should choose choice1.

Therefore, the best move for Alice is to choose choice1, leading to both players getting 5.

Figure 7: Example Draco game (Hua et al., 2024) output of Recon-SFT. Some important game theory
terminology employed by the model is bolded for reference.
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