

STRATEGIC GENERALIZATION WITHOUT INTERACTION: CAN POST-TRAINING ALONE INDUCE MULTI-AGENT BEHAVIOR?

Anonymous authors

Paper under double-blind review

ABSTRACT

Directly training Large Language Models (LLMs) for Multi-Agent Systems (MAS) remains challenging due to intricate reward modeling, dynamic agent interactions, and demanding generalization requirements. This paper explores whether post-training techniques can effectively generalize to multi-agent scenarios *without any interactive multi-agent data*. We use economic reasoning as a testbed, leveraging its strong foundations in mathematics and game theory, its demand for structured analytical reasoning, and its relevance to real-world applications such as market design, resource allocation, and policy analysis. We introduce **Recon** (Reasoning like an ECONomist), a 7B-parameter open-source LLM post-trained on a hand-curated dataset of 2,100 high-quality economic reasoning problems. Comprehensive evaluations show that Recon substantially improves economic reasoning benchmarks and generalizes to unseen multi-agent games, exhibiting equilibrium-seeking behavior. To our knowledge, this is the first systematic study to demonstrate that domain-aligned post-training can induce emergent strategic behavior in multi-agent settings. These findings underscore post-training as a scalable route to structured reasoning and agent alignment, shedding light on the roles of SFT and RL in cultivating emergent behaviors.

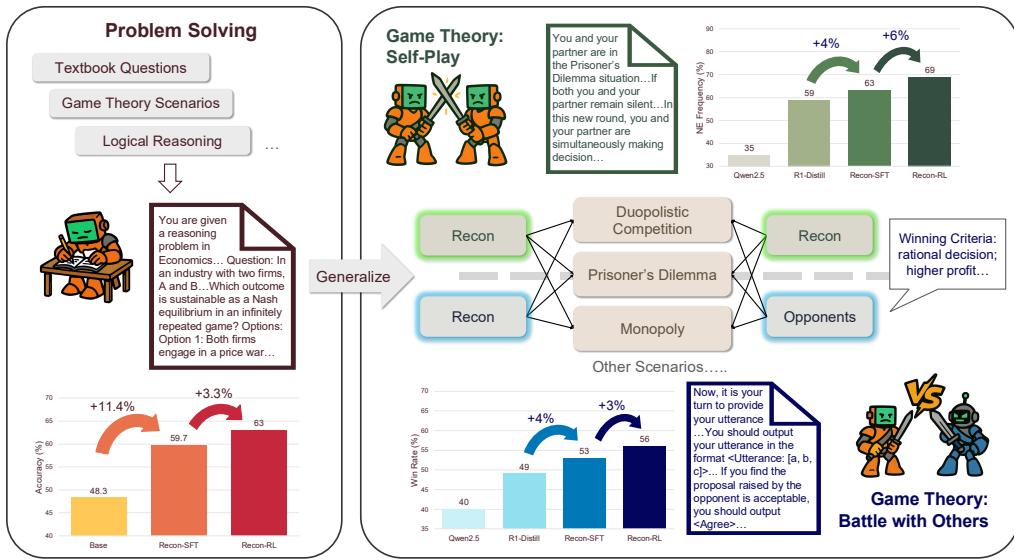


Figure 1: **Overview of Recon.** Post-training on curated economic reasoning tasks enables large language models to generalize from textbook-style problems to interactive game-theoretic settings. Recon improves accuracy on economic benchmarks and exhibits emergent strategic behavior, achieving higher Nash equilibrium convergence and win rates in unseen multi-agent games.

054
055

1 INTRODUCTION

056 Large Language Models (LLMs) have recently progressed from general-purpose text generation to
 057 exhibiting strong reasoning capabilities across mathematics and coding, as exemplified by OpenAI’s
 058 o1 series (OpenAI, 2024b) and DeepSeek-R1 (DeepSeek-AI, 2025). This transition has been driven
 059 by techniques such as Chain-of-Thought (CoT) prompting, Supervised Fine-Tuning (SFT), and
 060 Reinforcement Learning from Human Feedback (RLHF) (Wei et al., 2022; Kojima et al., 2022;
 061 Ouyang et al., 2022; Lightman et al., 2023), culminating in the emergence of Large Reasoning Models
 062 (LRMs) (Chen et al., 2025a; Xu et al., 2025a). A key framework in this space is Reinforcement
 063 Learning with Verifiable Rewards (RLVR) (Lambert et al., 2025), which replaces standard reward
 064 models with outcome-verification functions for tasks such as math solving and instruction following.
 065 RLVR has since been extended to Medicine (Zhang et al., 2025a), SQL (Ma et al., 2025), Logic (Xie
 066 et al., 2025), and Finance (Liu et al., 2025b; Qian et al., 2025; Zhu et al., 2025). Complementary
 067 methods such as Su et al. (2025) and Liu et al. (2025d) extend RLVR to soft or online reward signals,
 068 while LIMO (Ye et al., 2025), LIMR (Li et al., 2025), and s1 (Muennighoff et al., 2025) demonstrate
 069 that post-training can elicit strong reasoning in smaller models under specialized, limited data.
 070

071 In parallel, LLM-based Multi-Agent Systems (MAS) have gained prominence as platforms for
 072 exploring complex interactions, cooperation, and emergent social behaviors (Park et al., 2023; Zhou
 073 et al., 2024; Li et al., 2023). A pivotal objective within MAS is economic rationality—the capability
 074 to systematically reason about incentives, trade-offs, and strategic decision-making—which underpins
 075 effective coordination and negotiation. The STEER benchmark (Raman et al., 2024; 2025) formalizes
 076 economic rationality by testing LLMs on foundational principles such as utility maximization,
 077 behavioral bias, and strategic reasoning. This aligns closely with game theory, a longstanding
 078 theoretical foundation for MAS research (Cesa-Bianchi & Lugosi, 2006; Zhang et al., 2021; Slumbers
 079 et al., 2023; Mazumdar et al., 2025), increasingly central to evaluating LLM-based agents (Xu et al.,
 080 2024; Zhang et al., 2024; Fan et al., 2024; Sun et al., 2025). Several recent studies have focused on
 081 the reasoning abilities of LLM agents in these settings, highlighting both their importance and their
 082 limitations (Piedrahita et al., 2025; Jia et al., 2025; Zhang et al., 2025b). Ongoing efforts to develop
 083 unified economic-agent environments and benchmarks (Li et al., 2024; Duan et al., 2024; tse Huang
 084 et al., 2025; Hua et al., 2024) further reinforce the centrality of this research direction.
 085

086 Despite significant interest, directly training LLMs for multi-agent interactions remains complex and
 087 underexplored, often hampered by challenges like dense reward modeling, unstable coordination
 088 dynamics, and conflicting agent objectives (Du et al., 2025). Existing methods, such as multi-agent
 089 co-training (Yue et al., 2025a) and MARFT (Liao et al., 2025), typically require extensive supervision
 090 and tailored agent architectures, limiting their scalability and generalization potential. This prompts a
 091 critical research question:

092 *Can post-training techniques generalize effectively to multi-agent scenarios?*

093 To our knowledge, this work is the first to pose and systematically investigate whether post-training
 094 alone—without any interactive gameplay data—can induce multi-agent behavior (Figure 1). We
 095 adopt economic reasoning as a testbed, given its structured mathematical foundations and strategic
 096 dynamics essential to multi-agent systems. Economic tasks frequently involve intricate multi-step
 097 reasoning, such as evaluating trade-offs, aligning incentives, and anticipating others’ behaviors—ideal
 098 for leveraging improvements from SFT and RLVR. While previous studies primarily *assess* economic
 099 rationality (Raman et al., 2024; 2025; Hua et al., 2024; Duan et al., 2024; tse Huang et al., 2025), our
 100 work actively *enhances* it via targeted post-training. Additionally, real-world applications reinforce
 101 this domain’s significance, demonstrated by simulations of heterogenous economic-agent roles using
 102 LLMs (Hao & Xie, 2025; Li et al., 2024; Xiao et al., 2025).

103 In this paper, we introduce **Recon**, an LLM specifically designed for structured economic decision-
 104 making. We curate a high-quality dataset comprising 2,100 examples spanning 15 critical economic
 105 categories, including behavioral bias detections, repeated-game strategies, mechanism-design equi-
 106 libria. This dataset builds upon and expands benchmarks such as STEER (Raman et al., 2024),
 107 EconLogicQA (Quan & Liu, 2024), and EconNLI (Guo & Yang, 2024). Recon employs Super-
 108 vised Fine-Tuning (SFT) and subsequent Group Relative Policy Optimization (GRPO) (Shao et al.,
 109 2024), fine-tuning the DeepSeek-R1-Distill-Qwen-7B model (DeepSeek-AI, 2025; Yang et al., 2024)
 110 to enhance structured reasoning and test generalization capabilities across both single-agent and
 111 multi-agent economic tasks.

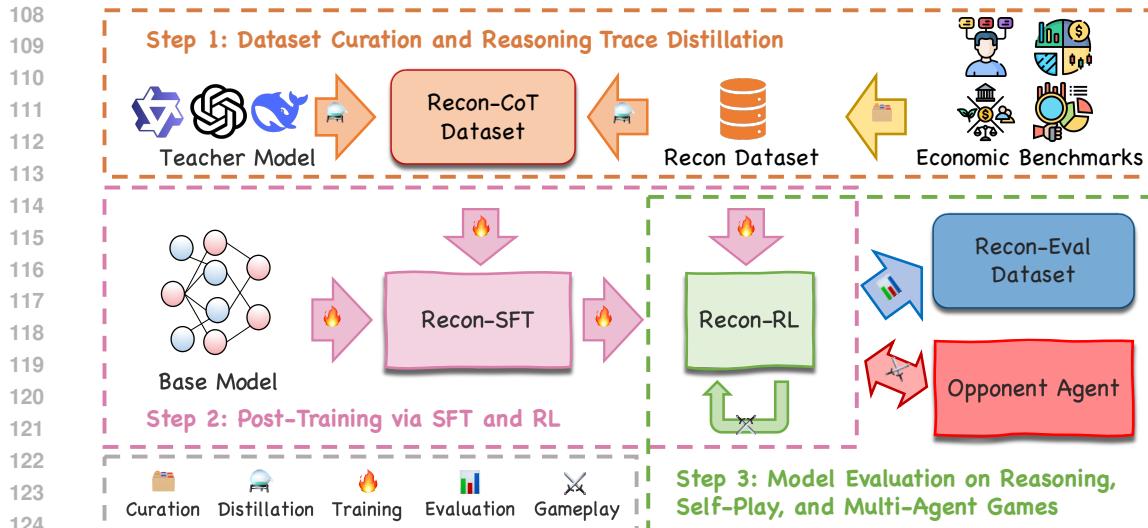


Figure 2: **Pipeline of Recon.** **Step 1:** We curate a high-quality economic dataset (Recon Dataset) from benchmarks such as STEER, and distill reasoning traces from teacher models to construct the Recon-CoT Dataset. **Step 2:** A base model is post-trained via supervised fine-tuning (Recon-SFT) on Recon-CoT and reinforcement learning (Recon-RL) on the Recon Dataset. **Step 3:** The resulting models are evaluated on reasoning benchmarks (Recon-Eval Dataset), self-play, and multi-agent games against opponent agents.

Our experimental results demonstrate clear improvements in structured reasoning and strategic decision-making through domain-aligned post-training. Notably, models trained on economic problems display economically rational behavior in multi-agent games, despite receiving no interaction-based supervision. This suggests that structured problem-solving can promote latent alignment with game-theoretic principles, indicating that post-training not only enhances task-level accuracy but also encourages emergent rational behavior. These findings provide fresh insights into the distinct roles of SFT and RL in shaping model behavior, generalization, and alignment (Yue et al., 2025b; Chu et al., 2025; Wang et al., 2025e; Liu et al., 2025c; Gandhi et al., 2025). Our contributions include:

- We curate a high-quality dataset of 2,100 problems across 15 economic reasoning categories designed to assess core rationality skills.
- We introduce Recon, a 7B open-source model post-trained via SFT and GRPO for structured economic and strategic reasoning.
- We empirically show that reasoning-oriented post-training enhances both benchmark accuracy and generalization to unseen multi-agent settings.
- We hypothesize post-training as a scalable route to agent alignment, where economic problem-solving effectively fosters strategic behavior.

2 RELATED WORK

Economic Agent Applications. Recent work has integrated LLMs into economic simulations and agent-based modeling across a range of applications. Hao & Xie (2025) proposed a multi-agent LLM framework for policy analysis, simulating heterogeneous societal groups. Li et al. (2024) introduced EconAgent for macroeconomic modeling, demonstrating human-like decision-making in LLM-driven agents. Xiao et al. (2025) developed TradingAgents to model financial markets with specialized roles such as analysts and traders. Wu et al. (2025) applied LLMs to generate persuasive, context-grounded marketing content for real estate. Lazebnik & Shami (2025) combined LLMs with reinforcement learning to simulate tax evasion dynamics, and Yu et al. (2024) introduced FINCON, a synthesized multi-agent system using conceptual verbal reinforcement for financial decision-making. While these works focus on application design, our approach complements them by enhancing

162 economic reasoning and decision-making capabilities through post-training—potentially improving
 163 performance in real-world multi-agent settings.
 164

165 **Game-Theoretic Evaluation.** Game-theoretic reasoning has become an essential evaluation
 166 paradigm for assessing LLM performance in multi-agent scenarios. Benchmarks such as GT-
 167 Bench (Duan et al., 2024), GameBench (Costarelli et al., 2024), and GAMABench (tse Huang
 168 et al., 2025) evaluate strategic reasoning across cooperative, adversarial, and sequential games. Sev-
 169 eral studies focus on negotiation: LAMEN (Davidson et al., 2024) and Abdelnabi et al. (2024)
 170 examine stakeholder deliberation, while Hua et al. (2024) introduce a formal agent workflow for
 171 modeling negotiation games and equilibrium behavior. GLEE (Shapira et al., 2024) provides a
 172 unified benchmark for economic interactions, and Akata et al. (2025) study repeated games to analyze
 173 long-term cooperation. Piedrahita et al. (2025) highlight the challenge that increased reasoning
 174 capacity in LLMs can, seemingly paradoxically, undermine cooperation, especially in public goods
 175 settings. Jia et al. (2025) further show that strategic performance depends more on reasoning quality
 176 than scale, and that CoT prompting is not a universal enhancer. Zhang et al. (2025b) emphasize that
 177 both metacognitive and strategic reasoning are essential for agent success in real-world, incomplete-
 178 information settings like labor markets. Unlike these evaluation-oriented studies, our research
 179 leverages post-training techniques to actively enhance LLMs’ reasoning abilities and generalize their
 180 strategic decision-making to broader economic and multi-agent contexts.
 181

182 3 METHODOLOGY

183 3.1 OVERALL PIPELINE

186 Our training pipeline comprises two core post-training stages: supervised fine-tuning (SFT) on
 187 synthetic reasoning data, followed by reinforcement learning with verifiable rewards (RLVR) on
 188 curated economic problems. We detail the dataset curation process in Section 4. Figure 2 provides a
 189 schematic overview of the full pipeline, illustrating the flow from data generation to post-training and
 190 downstream multi-agent gameplay.
 191

192 3.2 BASE MODEL

193 We select **DeepSeek-R1-Distill-Qwen-7B**¹ (Yang et al., 2024) as our base model due to its strong
 194 reasoning ability, inherited from DeepSeek-R1 (DeepSeek-AI, 2025) through targeted distillation.
 195 Among open-source models, Qwen-based (Yang et al., 2024) variants consistently outperform
 196 comparable LLaMA-based (Grattafiori et al., 2024) counterparts on multiple benchmarks. The 7B
 197 parameter scale offers a practical balance between performance and efficiency, making it well-suited
 198 for fine-tuning. Furthermore, DeepSeek-R1-Distill-Qwen-7B achieves competitive results, surpassing
 199 GPT-4o (OpenAI, 2024a) on challenging reasoning benchmarks such as MATH (Hendrycks et al.,
 200 2021) and AIME (MAA, 2024), thus providing a robust foundation for further adaptation.
 201

202 3.3 POST-TRAINING ALGORITHMS

204 We use SFT and GRPO as our post-training techniques. SFT aligns the model to structured reasoning
 205 traces distilled from teacher models, providing stable initialization. GRPO further optimizes the model
 206 via Reinforcement Learning with Verifiable Rewards, encouraging generalization in multi-agent
 207 settings. We leave detailed descriptions to Appendices A.2 and A.3.
 208

209 3.4 REWARD DESIGN

211 To support structured outputs during GRPO training, we develop a hierarchical, rule-based reward
 212 function. It scores responses across three stages, format validity, answer extraction, and correctness,
 213 while enforcing consistent use of `<think>` and `\boxed{}` conventions to align reasoning traces
 214 with final predictions. Full logic and implementation details are provided in Appendix A.4.
 215

¹<https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B>

216

4 DATASET CURATION

218 Table 1: Accuracy of each model across economic reasoning categories (detailed in Appendix A.5).
219

Model Names	Mathematical Foundations	Single-Agent Enviornments	Multi-Agent Enviornments	Representing Other Agents	Logical Reasoning
R1-Distill-Qwen-7b	0.896	0.751	0.630	0.740	0.430
Qwen-2.5-7b-Instruct	0.875	0.775	0.514	0.680	0.650
Llama-3.1-8b-Instruct	0.619	0.637	0.309	0.569	0.350
Gemma-2-9b-it	0.828	0.798	0.375	0.639	0.590
GPT-4o	0.887	0.841	0.625	0.782	0.640
GPT-3.5-turbo	0.593	0.756	0.377	0.608	0.510

229 Table 2: Accuracy on specified question types from *Multi-Agent Environments* category (detailed in
230 Appendix A.5).
231

Model Names	Back.	Bayes	Best	Dom.	Dom'd	Enf.	Feas.	Intp.	Iter.	Pure	Subg.	Trig.
	Ind.	Nash	Resp.	Strat.	Strat.				Rem.	Nash	Nash	
R1-Distill-Qwen-7b	0.360	0.681	0.464	0.960	0.840	0.222	0.500	0.878	0.854	0.532	0.857	0.217
Gemma-2-9b-it	0.220	0.320	0.200	1.000	0.760	0.040	0.360	0.900	0.260	0.180	0.200	0.020
LLAMA-3.1-8b-Instruct	0.000	0.235	0.157	0.408	0.500	0.020	0.580	0.820	0.420	0.000	0.360	0.200
GPT-4o	0.451	0.569	0.294	1.000	0.940	0.824	0.549	1.000	0.863	0.255	0.588	0.176
GPT-3.5-turbo	0.098	0.196	0.196	1.000	0.627	0.000	0.725	0.882	0.431	0.039	0.294	0.039

240 High-quality data is essential for effective post-training (Muennighoff et al., 2025; Ye et al., 2025; Li
241 et al., 2025), motivating our focus on careful dataset construction and analysis. Section 4.1 describes
242 our data sources, and Section 4.2 presents baseline experiments with several LLMs on existing
243 benchmarks, analyzing their performance to gain intuitions. Section 4.3 details the creation of the
244 Recon Dataset, while Section 4.4 outlines the distillation of reasoning traces for Recon-CoT.

246

4.1 DATASET SOURCE

248 We curate four datasets covering distinct facets of economic reasoning: **STEER Benchmark** (Raman
249 et al., 2024) provides ~600K multiple-choice questions across 48 microeconomic categories, spanning
250 arithmetic, probability, psychological biases, and game theory. Each question includes a prompt,
251 candidate answers, the correct label, and metadata. STEER serves as our primary benchmark for
252 general economic reasoning. **EconLogicQA** (Quan & Liu, 2024) contains 650 human-validated
253 questions inspired by real-world news. Each presents 3–4 interdependent events requiring correct
254 temporal or causal ordering, testing planning and causal consistency. **EconNLI** (Guo & Yang,
255 2024) offers 11K premise–hypothesis pairs annotated for entailment or neutrality. Derived from
256 Wikipedia, it evaluates a model’s ability to infer causal and logical relations in economic narratives.
257 **Pure-Strategy Equilibrium Games** (Fourny & Sulser Larraz, 2020-10-07) consists of 3×3 payoff
258 matrices labeled with Pure Nash and Perfectly Transparent Equilibria. To supplement STEER’s
259 noisier game-theoretic items, we convert selected matrices from this ETH Zürich dataset into natural
260 language prompts to assess equilibrium reasoning.

261

4.2 CURATION EXPERIMENT ANALYSIS

263 Appendix A.5 outlines our dataset curation experiment settings for assessing baseline performance
264 across various LLMs on the collected question types. Our experiment and analysis addresses three key
265 questions: (i) comparative performance of open-weight and closed-source models, (ii) the impact of
266 reasoning distillation, and (iii) identifying specific bottlenecks in economic reasoning skills. Results
267 summarized in Tables 1 and 2 yield the following insights:

268 **Closed models lead, but reasoning models narrow the gap.** Closed-source GPT-4o consistently
269 achieves top accuracy in most macro-categories, though notably, DeepSeek-R1-Distill-Qwen-7B

270 slightly surpasses GPT-4o on *Mathematical Foundations* (0.896 vs. 0.887) and *Multi-Agent Environments*
 271 (0.630 vs. 0.625). This indicates that specialized open-source reasoning models can effectively
 272 rival closed-source proprietary models on fundamental economic tasks.
 273

274 **Reasoning distillation significantly improves performance.** DeepSeek-R1-Distill-Qwen-7B out-
 275 performs all other comparable-sized open models across most macro-categories, particularly excelling
 276 in *Multi-Agent Environments*. In contrast to financial domains (Liu et al., 2025b; Qian et al., 2025;
 277 Zhu et al., 2025), where R1-style models underperform on commonsense-heavy tasks (e.g., account-
 278 ing reports), our results suggest that economic reasoning benefits more from structured, multi-step
 279 inference. This aligns with Sprague et al. (2025), who find that CoT prompting is most effective on
 280 tasks involving symbolic or logical reasoning—helping explain the advantage of System 2 thinking
 281 (Kahneman, 2011) in economic, but not financial, domains.
 282

283 **Complex game-theoretic tasks remain challenging.** Detailed examination in Table 2 reveals
 284 significant weaknesses in advanced strategic reasoning, particularly *Trigger strategies* and *Enforce-
 285 ability* in repeated games. Even the leading GPT-4o achieves limited accuracy (0.176 and 0.824
 286 respectively), while most open models fall below baseline on these long-horizon reasoning tasks.
 287

288 **DeepSeek-R1-Distill-Qwen-7B as the optimal baseline for further training.** Despite these
 289 bottlenecks, R1-Distill-Qwen-7B’s solid overall performance (macro-average 0.69) and promising
 290 baseline competence in strategic reasoning (e.g., 0.217 on *Trigger* and 0.222 on *Enforceability*)
 291 make it a strong candidate for subsequent SFT and RL fine-tuning. Its open-source accessibility
 292 and manageable scale provide an ideal foundation for enhancing economic reasoning capabilities,
 293 particularly in challenging multi-agent contexts.
 294

295 4.3 DATASET CURATION

296 **Recon Corpus Overview.** We present **Recon Dataset**, emphasizing the 15 most challenging
 297 categories identified in our benchmark analysis (Section 4.2). These include advanced game theory,
 298 behavioral biases, and logical inference. We curate total 2,100 question-answer pairs: **Training Split**
 299 (**Recon Dataset**): 1,800 questions, proportionally sampled based on empirical error rates per category
 300 (Table 6). **Evaluation Split (Recon-Eval)**: 300 held-out questions (20 per category), mirroring the
 301 training distribution.
 302

303 **Sampling Strategy.** Within each category, we remove ambiguous or low-quality items, then uni-
 304 formly sample remaining questions to meet predefined quotas (e.g., 250 questions for *Enforceability*,
 305 75 for *Certainty Effect*).
 306

307 **Prompt Template.** Each question employs a structured prompt that encourages models to reason
 308 step-by-step and explicitly box their final answers. A representative example is illustrated in Figure 5.
 309

310 **Category Breakdown.** Table 6 summarizes the fifteen Recon categories, providing concise descrip-
 311 tions, data provenance, and question counts for the training set. The evaluation set replicates these
 312 proportions at one-sixth scale (20 questions per category, totaling 300).
 313

314 4.4 REASONING TRACE DISTILLATION

315 We distill *chain-of-thought* (CoT) traces from a stronger teacher and filter them for correctness.
 316

317 **Teacher Prompting.** For each of the 1,800 Recon training items, we issue the same prompt template
 318 as in Figure 5 to the teacher model **QwQ-32B** (Team, 2025). The template forces the teacher to put
 319 thinking process inside `<think> ... </think>` and to place its final choice in `\boxed{...}`
 320 so that both the trace and the answer can be extracted programmatically.
 321

322 **Filtering.** We parse the teacher’s boxed answer and compare it to the gold label. Only items the
 323 teacher answers *correctly* are kept. This yields a clean set of **868** (question, gold answer, chain-of-
 thought) triples covering all 15 Recon categories.
 324

324 **CoT Corpus.** The resulting 868 demonstrations constitute the **Recon-CoT** dataset. We use this
 325 dataset for SFT. As each trace ends with the same extraction-friendly pattern, the fine-tuned model
 326 separates reasoning from its verdict, simplifying downstream reward modeling and evaluation.
 327

328 5 MAIN RESULTS

330 5.1 MODEL CONFIGURATION

333 We conduct our experiments using DeepSeek-R1-Distill-Qwen-7B (Yang et al., 2024; DeepSeek-AI,
 334 2025) as the base model, with all training performed on a single NVIDIA H800 GPU. To enable
 335 scalable experimentation, we adopt the Unsloth library (Daniel Han & team, 2023) for memory-
 336 efficient fine-tuning and Hugging Face’s TRL framework (von Werra et al., 2020) for SFT and RL.
 337 For parameter-efficient adaptation, we employ LoRA (rank=8) (Hu et al., 2022) in both SFT and RL.
 338 During SFT, we use a batch size of 8 and a learning rate of 2e-4, with a linear learning rate scheduler
 339 and 5 warmup steps. For RL, we adopt a batch size of 32, generate 8 samples per optimization step,
 340 and apply a cosine learning rate scheduler with an initial rate of 5e-6. We initialize the RL stage from
 341 the checkpoint of the SFT-tuned model. Recon-SFT is trained for 2,700 steps. GRPO is then applied
 342 for 2,250 steps. See the analysis and plots of training dynamics in Appendix A.6.

343 5.2 EVALUATION DETAILS

345 We evaluate on three benchmarks: our held-out **Recon-Eval** (300 economic reasoning problems), the
 346 **Complete-Information Games** framework (Hua et al., 2024), and **GTBench** (Duan et al., 2024).
 347 The Complete-Information Games suite includes 5 simultaneous and 5 sequential games testing
 348 agents on (1) communication, (2) cooperation, and (3) strategic alignment. We run 20 trials per game
 349 (temperature 0.6, no workflow), where the agent plays *against itself*. Performance is measured by
 350 Nash Equilibrium frequency. GTBench focuses on strategic and logical reasoning in competitive
 351 settings. Each task is evaluated over 10 trials (temperature 0.6) using PromptAgent *against fixed*
 352 *opponents* (e.g., GPT-4o-mini), with win rate as the metric. For the two gameplay benchmarks, we
 353 evaluate four 7B models: Qwen2.5-Instruct, R1-Distill-Qwen, Recon-SFT, and Recon-RL.

354 5.3 ECONOMIC REASONING PERFORMANCE

355 Table 3 reports accuracy on our 300-item **Recon-Eval**
 356 (Section 4.3) set across training stages. Starting from the
 357 base model (**48.3%**), SFT boosts performance to **59.7%**,
 358 gaining 11.4 points, suggesting that distilled teacher traces
 359 effectively transfer structured reasoning patterns. GRPO
 360 further improves accuracy to **63.0%**, adding 3.3 points.
 361 Overall, the SFT→RL pipeline achieves a **14.7%** abso-
 362 lute gain, validating post-training as a viable strategy for
 363 aligning DeepSeek-R1-Distill-Qwen-7B with economic
 364 reasoning tasks.

365 5.4 GENERALIZATION TO STRATEGIC GAMES

366 To verify that the gains obtained from economic post-training extend beyond single-step reasoning,
 367 we evaluate the models in two unseen interactive settings, testing if economic reasoning post-training
 368 *generalizes* to strategic interaction.

369 **Frequent convergence to Nash Equilibria.** Table 4 reveals a clear monotonic gain in self-play
 370 equilibrium frequency as economic post-training is added. Relative to the R1-Distill baseline, Recon-
 371 SFT increases the proportion of equilibrated outcomes from 0.39 to 0.47 in simultaneous-move games
 372 while preserving the strong 0.79 level in sequential games. A subsequent GRPO stage raises these
 373 figures to **0.51** and **0.86**, yielding an overall mean of **0.685**, a 9.5 points improvement over R1-Distill
 374 and almost double the 0.345 attained by the non-reasoning Qwen-2.5-7B-Instruct.

Table 3: Accuracy and percentage score on **Recon-Eval** (evaluated at temperature = 0.0) for the Base Model, Recon-SFT, and Recon-RL.

Model	Accuracy	Score (%)
Base Model	145 / 300	48.30
Recon-SFT	179 / 300	59.67
Recon-RL	186 / 300	63.00

378
 379 Table 4: Nash Equilibrium frequency for self-play Table 5: GTBench win rates against GPT-4o-mini
 380 (higher is better). Settings detailed in Section 5.2. (higher is better). Settings detailed in Section 5.2.

Game	Qwen2.5	R1-Distill	Recon-SFT	Recon-RL	Game	Qwen2.5	R1-Distill	Recon-SFT	Recon-RL
<i>Simultaneous</i>									
Prisoner’s Dilemma	0.85	0.95	1.00	1.00	breakthrough	0.40	0.10	0.20	0.30
Stag Hunt	0.50	0.50	0.45	0.60	connect4	0.20	0.40	0.40	0.30
Battle of Sexes	0.20	0.10	0.15	0.20	first_sealed.auction	0.30	0.40	0.50	0.50
Wait-Go Game	0.15	0.25	0.70	0.65	kuhn_poker	0.70	0.30	0.70	0.70
Duopolistic Competition	0.15	0.15	0.05	0.10	liars.dice	0.30	0.30	0.60	0.40
Avg. (Simul.)	0.37	0.39	0.47	0.51	negotiation	0.00	0.70	0.80	0.90
<i>Sequential</i>									
Escalation	0.15	0.95	0.85	1.00	nim	0.70	0.00	0.00	0.00
Monopoly	0.95	0.95	0.90	0.95	pig	1.00	0.90	0.50	0.80
Hot-Cold	0.05	0.65	0.90	0.95	prisoners_dilemma	0.00	1.00	1.00	1.00
Draco	0.40	0.75	0.75	0.90	tictactoe	0.40	0.80	0.60	0.70
Trigame	0.05	0.65	0.50	0.50	Overall Avg.				0.56
Avg. (Seq.)	0.32	0.79	0.78	0.86	Overall Avg.				0.40
Overall Avg.	0.35	0.59	0.63	0.69	0.49				0.53

395 Because Nash equilibria embody mutual best responses, more frequent convergence implies the model
 396 is better at (i) anticipating the incentives of the other agent and (ii) selecting undominated strategies.
 397 We therefore interpret the jump in equilibrium rate as quantitative evidence that post-training injects a
 398 *transferable equilibrium prior*: the model has internalized economic rationality principles that apply
 399 even to games it never saw during training.

400 **Economic rationality carries over to competitive play.** The same inductive bias manifests in the
 401 strategic game setting. From Table 5, we can observe that Recon-SFT already secures the highest
 402 mean win rate among 7B models (0.53). GRPO again provides a consistent lift to **0.56**, winning or
 403 drawing in 8 of 10 tasks. The biggest relative gains appear in *negotiation* (+0.20) and *breakthrough*
 404 (+0.20), two games that demand extended look-ahead and adaptive bidding abilities never explicitly
 405 included in our training corpus. When compared to the non-reasoning model Qwen-2.5-7B-Instruct,
 406 the Recon-RL model has a much higher win rate, verifying the idea that reasoning ability helps a
 407 model succeed in a strategic game scenario.

408 Such improvements cannot be explained by pattern memorization or combinatorial search (perfor-
 409 mance on *nim* is unchanged); instead, they indicate that the economic-reasoning skills learned offline
 410 translate into more general strategic behavior against a strong, unseen opponent. The fact that every
 411 DeepSeek checkpoint, including Recon-RL, scores low on *nim*, whose solution is a single XOR
 412 invariant rather than an incentive-driven best-response problem, underscores this boundary: our
 413 post-training injects an equilibrium-seeking bias, not ready-made combinatorial tricks. Thus the miss
 414 on *nim* refines our claim that economic post-training chiefly benefits tasks where strategic reasoning,
 415 not rote formula recall, is decisive.

417 5.5 EMERGENT BEHAVIORS FROM POST-TRAINING IN MULTI-AGENT GAMES

419 A qualitative comparison between the Recon-RL and Recon-SFT traces on the *Draco* sequential
 420 game (see Figures 6 and 7) reveals several systematic, post-training behaviors:

422 **Explicit strategic modelling.** Recon-RL spontaneously *constructs the game tree*, labels subgames,
 423 and appeals to solution concepts such as “subgame-perfect Nash equilibrium” and “backward induc-
 424 tion.” Recon-SFT, in contrast, walks through payoff lines informally and never names the underlying
 425 equilibrium logic.

426 **Iterative search and self-correction.** The RL model exposes a lengthy “trial-and-error” chain of
 427 thought—simulating each branch, spotting contradictions, and revising intermediate conclusions
 428 before converging on the optimal path.

429 Taken together, these observations suggest that the SFT stage acquires the foundational knowledge
 430 for solving the strategic scenarios, while the GRPO stage teaches the model to *simulate the solution*
 431 *procedure* a trained economist would follow, rather than merely memorizing answer patterns. The
 richer internal search and tighter adherence to formal terminology provide a plausible mechanism for

432 the quantitative gains reported in Tables 3 and 4 and for the improved win-rates on unseen interactive
 433 benchmarks (Section 5.3).

436 6 INSIGHTS AND FUTURE WORK

438 6.1 POST-TRAINING FOR AGENT ALIGNMENT

440 The jump from *single-shot, textbook* economics to *interactive, adversarial* games in Section 5.4 is
 441 striking. We propose two complementary mechanisms that can explain this out-of-domain generaliza-
 442 tion and discuss their broader implications.

444 **Structured prompts \Rightarrow modular latent policies.** The Recon template enforces an explicit *think|act*
 445 separation. This mirrors the *inner-rollout / outer-commitment* loop required in game playing: search
 446 over hypothetical branches, then output a single move. We conjecture that the template therefore
 447 trains a *policy-over-thoughts* module that can be invoked verbatim when the same model is asked to
 448 play against another agent, yielding more systematic tree construction and self-correction.

450 **Outcome-aligned reward \Rightarrow an “equilibrium prior”.** GRPO optimizes a scalar signal that is
 451 proportional to *final correctness*. The easiest way for the model to guarantee a non-zero return is
 452 therefore to plan *backwards*: select undominated steps that survive any continuation. Over thousands
 453 of problems, this trains a bias toward *mutual best responses*. When dropped into a multi-player
 454 environment, the same bias manifests as (i) rejecting dominated moves, (ii) gravitating toward
 455 equilibrium outcomes.

456 **Why is this behavior meaningful?** **Scalable alignment.** Aligning models to “cooperative and
 457 rational” behavior usually relies on costly human annotation. Our results indicate that *single-agent,*
 458 *verifiable* datasets already inject a sizable portion of that inductive bias. **Transparency.** The richer,
 459 self-correcting chains of thought exposed after GRPO give practitioners a transparent window into
 460 the model’s decision process, facilitating post-hoc auditing and safety checks.

462 6.2 FUTURE WORK

464 **Workflow Integration.** We plan to investigate whether integrating multi-agent workflows, such as
 465 negotiation and equilibrium resolution frameworks (Hua et al., 2024), can further enhance interactive
 466 reasoning and cooperative capabilities.

468 **Broader Microeconomic Generalization.** We aim to investigate whether post-training on a wider
 469 range of microeconomic scenarios—such as bargaining, market clearing, or taxation—can elicit
 470 stronger and more stable agentic behaviors.

472 **Cross-Domain Transfer.** We also aim to investigate whether our post-training approach can
 473 generalize beyond economic reasoning to induce other sophisticated aspects of human cognition,
 474 such as social cooperation, psychological biases, or ethical decision-making. Demonstrating such
 475 broader cognitive generalization would reinforce the potential of domain-aligned post-training as a
 476 versatile method for eliciting complex human-like behaviors in language models.

478 7 CONCLUSION

481 We present **Recon**, a 7B open-source model post-trained for economic reasoning that exhibits strategic
 482 generalization. Leveraging a curated dataset of 2,100 problems and a two-stage SFT+GRPO pipeline,
 483 Recon achieves a 14.7% improvement on single-agent economic benchmarks and increases Nash
 484 equilibrium convergence by 9.5 points in interactive multi-agent games. Our findings suggest that
 485 domain-aligned post-training offers a scalable route to economic rationality and induces strategic
 behavior in previously unseen multi-agent settings.

486 LLMs USAGE STATEMENT
487488 We clarify that LLMs were used solely as auxiliary tools for paper writing, restricted to two purposes:
489 (i) refining the manuscript's exposition for clarity and conciseness, and (ii) generating preliminary
490 schematic elements for visualizations of methodological pipelines.
491492 REFERENCES
493494 Sahar Abdelnabi, Amr Gomaa, Sarath Sivaprasad, Lea Schönherr, and Mario Fritz. Cooperation,
495 competition, and maliciousness: LLM-stakeholders interactive negotiation. In *The Thirty-eight*
496 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
497 URL <https://openreview.net/forum?id=59E19c6yrN>.498 Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge, and Eric Schulz. Playing
499 repeated games with large language models. *Nature Human Behaviour*, pp. 1–11, 2025. doi: 10.
500 1038/s41562-025-02172-y. URL <https://doi.org/10.1038/s41562-025-02172-y>.
501502 Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety - a review. *Transactions*
503 *on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=ePUVetPKu6>. Survey Certification, Expert Certification.
504505 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
506 Hoffman. Token merging: Your vit but faster. *arXiv preprint arXiv:2210.09461*, 2022.
507508 Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
509 Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
510 Early experiments with gpt-4, 2023.511 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, Learning, and Games*. Cambridge University
512 Press, 2006.
513514 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
515 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
516 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025a.
517518 Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational limits
519 of state-space models and mamba via the lens of circuit complexity. In *The Second Conference*
520 *on Parsimony and Learning (Proceedings Track)*, 2025b. URL <https://openreview.net/forum?id=bImlLT3r62>.522 Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Universal approximation of
523 visual autoregressive transformers. *arXiv preprint arXiv:2502.06167*, 2025c.
524525 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
526 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
527 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.528 Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
529 Wenjie Li, Joshua M Clymer, and Arjun Yadav. Gamebench: Evaluating strategic reasoning
530 abilities of LLM agents. In *Language Gamification - NeurIPS 2024 Workshop*, 2024. URL
531 <https://openreview.net/forum?id=qrzKE533Jr>.
532533 Ian Covert, Chanwoo Kim, and Su-In Lee. Learning to estimate shapley values with vision trans-
534 formers. *arXiv preprint arXiv:2206.05282*, 2022.535 Michael Han Daniel Han and Unslloth team. Unslloth, 2023. URL <http://github.com/unslothai/unslloth>.
536538 Tim Ruben Davidson, Veniamin Veselovsky, Michal Kosinski, and Robert West. Evaluating lan-
539 guage model agency through negotiations. In *The Twelfth International Conference on Learning*
540 *Representations*, 2024. URL <https://openreview.net/forum?id=3ZqKxMHcAg>.

540 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
 541 *arXiv preprint arXiv:2501.12948*, 2025.

542

543 Shangheng Du, Jiabao Zhao, Jinxin Shi, Zhentao Xie, Xin Jiang, Yanhong Bai, and Liang He. A
 544 survey on the optimization of large language model-based agents. *arXiv preprint arXiv:2503.12434*,
 545 2025.

546 Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
 547 Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. GTBench: Uncovering the strategic reasoning
 548 capabilities of LLMs via game-theoretic evaluations. In *The Thirty-eighth Annual Conference on*
 549 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=ypggxWIV2>.

550

551 Caoyun Fan, Jindou Chen, Yaohui Jin, and Hao He. Can large language models serve as rational
 552 players in game theory? a systematic analysis. *Proceedings of the AAAI Conference on Artificial*
 553 *Intelligence*, 38(16):17960–17967, Mar. 2024. doi: 10.1609/aaai.v38i16.29751. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29751>.

555

556 Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
 557 Jiaxuan You. How far are we from agi: Are llms all we need? *Transactions on Machine Learning*
 558 *Research*, 2024.

559 Ghislain Fourny and Felipe Sulser Larraz. Dataset with 200 million 3-by-3 strategic games for
 560 comparing perfectly transparent equilibria with nash equilibria, 2020-10-07.

561

562 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
 563 behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv*
 564 *preprint arXiv:2503.01307*, 2025.

565 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 566 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 567 models. *arXiv e-prints*, pp. arXiv–2407, 2024.

568

569 Yue Guo and Yi Yang. Econnli: Evaluating large language models on economics reasoning. In
 570 *Findings of the Association for Computational Linguistics ACL 2024*, pp. 982–994, 2024.

571

572 Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards
 573 lossless dataset distillation via difficulty-aligned trajectory matching. In *The Twelfth International*
574 Conference on Learning Representations, 2024.

575

576 Yuzhi Hao and Danyang Xie. A multi-llm-agent-based framework for economic and public policy
 577 analysis. *arXiv preprint arXiv:2502.16879*, 2025.

578

579 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 580 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 581 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*
 582 *(Round 2)*, 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

583

584 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 585 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 586 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

587

588 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 589 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

590

591 Wenyue Hua, Ollie Liu, Lingyao Li, Alfonso Amayuelas, Julie Chen, Lucas Jiang, Mingyu Jin,
 592 Lizhou Fan, Fei Sun, William Wang, et al. Game-theoretic llm: Agent workflow for negotiation
 593 games. *arXiv preprint arXiv:2411.05990*, 2024.

594

595 Jingru Jia, Zehua Yuan, Junhao Pan, Paul E McNamara, and Deming Chen. Large language model
 596 strategic reasoning evaluation through behavioral game theory. *arXiv preprint arXiv:2502.20432*,
 597 2025.

598

599 Daniel Kahneman. Thinking, fast and slow. *Farrar, Straus and Giroux*, 2011.

594 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 595 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 596 *arXiv preprint arXiv:2001.08361*, 2020.

597 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 598 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 599 22199–22213, 2022.

600 Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
 601 sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
 602 *arXiv preprint arXiv:2411.04330*, 2024.

603 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 604 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 605 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 606 Systems Principles*, 2023.

607 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 608 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
 609 Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
 610 Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
 611 Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.

612 Teddy Lazebnik and Labib Shami. Investigating tax evasion emergence using dual large lan-
 613 guage model and deep reinforcement learning powered agent-based simulation. *arXiv preprint
 614 arXiv:2501.18177*, 2025.

615 Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem.
 616 CAMEL: Communicative agents for "mind" exploration of large language model society. In
 617 *Advances in Neural Information Processing Systems*, volume 36, pp. 51991–52008, 2023.

618 Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. EconAgent: Large language model-
 619 empowered agents for simulating macroeconomic activities. In *Proceedings of the 62nd Annual
 620 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15523–
 621 15536, August 2024.

622 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint
 623 arXiv:2502.11886*, 2025.

624 Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear ap-
 625 proximations: A novel pruning approach for attention matrix. In *The Thirteenth International
 626 Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=sgbI8Pxwie>.

627 Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
 628 all you need as programmable computers. In *The 28th International Conference on Artificial
 629 Intelligence and Statistics*, 2025b.

630 Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement
 631 fine-tuning. *arXiv preprint arXiv:2504.16129*, 2025.

632 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 633 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
 634 International Conference on Learning Representations*, 2023.

635 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 636 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 637 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 638 87–100, 2024.

639 Ting Liu, Liangtao Shi, Richang Hong, Yue Hu, Quanjun Yin, and Linfeng Zhang. Multi-stage
 640 vision token dropping: Towards efficient multimodal large language model. *arXiv preprint
 641 arXiv:2411.10803*, 2024.

648 Xuyang Liu, Zichen Wen, Shaobo Wang, Junjie Chen, Zhishan Tao, Yubo Wang, Xiangqi Jin, Chang
 649 Zou, Yiyu Wang, Chenfei Liao, et al. Shifting ai efficiency from model-centric to data-centric
 650 compression. *arXiv preprint arXiv:2505.19147*, 2025a.

651

652 Zhaowei Liu, Xin Guo, Fangqi Lou, Lingfeng Zeng, Jinyi Niu, Zixuan Wang, Jiajie Xu, Weige Cai,
 653 Ziwei Yang, Xueqian Zhao, et al. Fin-r1: A large language model for financial reasoning through
 654 reinforcement learning. *arXiv preprint arXiv:2503.16252*, 2025b.

655 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 656 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 657 2025c.

658

659 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 660 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025d.

661 AI @ Meta Llama Team. The llama 4 herd: The beginning of a new era of natively multimodal ai in-
 662 novation. <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>,
 663 2025. Accessed: April 5.

664

665 Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. Sql-r1: Training nat-
 666 ural language to sql reasoning model by reinforcement learning. *arXiv preprint arXiv:2504.08600*,
 667 2025.

668 MAA. American invitational mathematics examination - aime. In
 669 *American Invitational Mathematics Examination - AIME* 2024, Febru-
 670 ary 2024, 2024. URL <https://maa.org/math-competitions/american-invitational-mathematics-examination-aime>.

671

672 Eric Mazumdar, Kishan Panaganti, and Laixi Shi. Tractable multi-agent reinforcement learning
 673 through behavioral economics. In *The Thirteenth International Conference on Learning Represen-
 674 tations*, 2025. URL <https://openreview.net/forum?id=stUKwWBuBm>.

675

676 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 677 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 678 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

679 OpenAI. Introducing chatgpt. <https://openai.com/index/chatgpt/>, 2022. Accessed:
 680 November 30.

681

682 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024a. Accessed:
 683 May 14.

684 OpenAI. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024b.

685

686 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
 687 Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Ja-
 688 cob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
 689 Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language models to follow in-
 690 structions with human feedback. In Sammi Koyejo, S. Mohamed, A. Agarwal, Danielle
 691 Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Sys-
 692 tems 35*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

693

694 Joon Sung Park, Joseph C. O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 695 Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer,
 696 Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), *Proceedings of the 36th Annual ACM
 697 Symposium on User Interface Software and Technology, UIST 2023*, pp. 2:1–2:22. ACM, 2023. doi:
 698 10.1145/3586183.3606763. URL <https://doi.org/10.1145/3586183.3606763>.

699

700 David Guzman Piedrahita, Yongjin Yang, Mrinmaya Sachan, Giorgia Ramponi, Bernhard Schölkopf,
 701 and Zhijing Jin. Corrupted by reasoning: Reasoning language models become free-riders in
 702 public goods games. 2025. URL https://zhijing-jin.com/files/papers/2025_SanctSim.pdf.

702 Lingfei Qian, Weipeng Zhou, Yan Wang, Xueqing Peng, Han Yi, Jimin Huang, Qianqian Xie, and
 703 Jianyun Nie. Fino1: On the transferability of reasoning enhanced llms to finance. *arXiv preprint*
 704 *arXiv:2502.08127*, 2025.

705 Yinzhu Quan and Zefang Liu. Econlogicqa: A question-answering benchmark for evaluating
 706 large language models in economic sequential reasoning. In *Findings of the Association for*
 707 *Computational Linguistics: EMNLP 2024*, pp. 2273–2282, 2024.

708 Narun Raman, Taylor Lundy, Thiago Amin, Jesse Perla, and Kevin Leyton-Brown. Steer-me: As-
 709 sessing the microeconomic reasoning of large language models. *arXiv preprint arXiv:2502.13119*,
 710 2025.

711 Narun Krishnamurthi Raman, Taylor Lundy, Samuel Joseph Amouyal, Yoav Levine, Kevin Leyton-
 712 Brown, and Moshe Tennenholtz. STEER: Assessing the economic rationality of large language
 713 models. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=nU1mtFDtMX>.

714 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 715 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 716 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

717 Eilam Shapira, Omer Madmon, Itamar Reinman, Samuel Joseph Amouyal, Roi Reichart, and
 718 Moshe Tennenholtz. Glee: A unified framework and benchmark for language-based economic
 719 environments. *arXiv preprint arXiv:2410.05254*, 2024.

720 Xuan Shen, Weize Ma, Yufa Zhou, Enhao Tang, Yanyue Xie, Zhengang Li, Yifan Gong, Quanyi
 721 Wang, Henghui Ding, YWei Wang, et al. Fastcar: Cache attentive replay for fast auto-regressive
 722 video generation on the edge. *arXiv preprint arXiv:2505.14709*, 2025a.

723 Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
 724 Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
 725 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 20409–20417,
 726 2025b.

727 Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan, Tong
 728 Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. In *Proceedings of*
 729 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 20418–20426, 2025c.

730 Oliver Slumbers, David Henry Mguni, Stefano B. Blumberg, Stephen Marcus McAleer, Yaodong
 731 Yang, and Jun Wang. A game-theoretic framework for managing risk in multi-agent systems.
 732 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
 733 Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023*, volume
 734 202 of *Proceedings of Machine Learning Research*, pp. 32059–32087. PMLR, 2023. URL
 735 <https://proceedings.mlr.press/v202/slumbers23a.html>.

736 Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
 737 Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
 738 thought helps mainly on math and symbolic reasoning. *International Conference on Learning*
 739 *Representations*, 2025.

740 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 741 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. *arXiv*
 742 *preprint arXiv:2503.23829*, 2025.

743 Haoran Sun, Yusen Wu, Yukun Cheng, and Xu Chu. Game theory meets large language models: A
 744 systematic survey. *arXiv preprint arXiv:2502.09053*, 2025.

745 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 746 Bhupatiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 747 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 748 2024.

749 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 750 <https://qwenlm.github.io/blog/qwq-32b/>.

756 Jen tse Huang, Eric John Li, Man Ho LAM, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenxiang
 757 Jiao, Xing Wang, Zhaopeng Tu, and Michael Lyu. Competing large language models in multi-agent
 758 gaming environments. In *The Thirteenth International Conference on Learning Representations*,
 759 2025. URL <https://openreview.net/forum?id=DI4gW8viB6>.

760 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 761 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 762 *systems*, 30, 2017.

764 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 765 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 766 learning. <https://github.com/huggingface/trl>, 2020.

768 Shaobo Wang, Yantai Yang, Shuaiyu Zhang, Chenghao Sun, Weiya Li, Xuming Hu, and Linfeng
 769 Zhang. Drupi: Dataset reduction using privileged information. *arXiv preprint arXiv:2410.01611*,
 770 2024.

771 Shaobo Wang, Xiangqi Jin, Ziming Wang, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong
 772 Li, Conghui He, Xuming Hu, and Linfeng Zhang. Data whisperer: Efficient data selection for
 773 task-specific llm fine-tuning via few-shot in-context learning. *Annual Meeting of the Association*
 774 *for Computational Linguistics*, 2025a.

776 Shaobo Wang, Hongxuan Tang, Mingyang Wang, Hongrui Zhang, Xuyang Liu, Weiya Li, Xuming
 777 Hu, and Linfeng Zhang. Gnothi seauton: Empowering faithful self-interpretability in black-box
 778 transformers. *International Conference on Learning Representations*, 2025b.

779 Shaobo Wang, Yantai Yang, Qilong Wang, Kaixin Li, Linfeng Zhang, and Junchi Yan. Not all
 780 samples should be utilized equally: Towards understanding and improving dataset distillation.
 781 *Synthetic Data for Computer Vision Workshop at CVPR*, 2025c.

783 Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, and Linfeng
 784 Zhang. Dataset distillation with neural characteristic function: A minmax perspective. *Proceedings*
 785 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025d.

786 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv*
 787 *preprint arXiv:1811.10959*, 2018.

789 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 790 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 791 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025e.

792 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and
 793 Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 794 *neural information processing systems*, 35:24824–24837, 2022.

796 Zichen Wen, Yifeng Gao, Shaobo Wang, Junyuan Zhang, Qintong Zhang, Weijia Li, Conghui He, and
 797 Linfeng Zhang. Stop looking for important tokens in multimodal language models: Duplication
 798 matters more. *arXiv preprint arXiv:2502.11494*, 2025.

800 Jibang Wu, Chenghao Yang, Simon Mahns, Chaoqi Wang, Hao Zhu, Fei Fang, and Haifeng
 801 Xu. Grounded persuasive language generation for automated marketing. *arXiv preprint*
 801 *arXiv:2502.16810*, 2025.

803 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 804 Selecting influential data for targeted instruction tuning. *arXiv preprint arXiv:2402.04333*, 2024a.

805 Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and Junyang Lin.
 806 Rethinking data selection at scale: Random selection is almost all you need. *arXiv preprint*
 807 *arXiv:2410.09335*, 2024b.

809 Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. Tradingagents: Multi-agents llm financial trading
 809 framework. *arXiv preprint arXiv:2412.20138*, 2025.

810 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 811 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 812 learning. *arXiv preprint arXiv:2502.14768*, 2025.

813 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 814 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 815 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025a.

816 Furui Xu, Shaobo Wang, Luo Zhongwei, and Linfeng Zhang. Rethinking dataset pruning from a
 817 generalization perspective. In *The Future of Machine Learning Data Practices and Repositories at
 818 ICLR 2025*, 2025b.

819 Xinrun Xu, Yuxin Wang, Chaoyi Xu, Ziluo Ding, Jiechuan Jiang, Zhiming Ding, and Börje F.
 820 Karlsson. A survey on game playing agents and large models: Methods, applications, and
 821 challenges, 2024.

822 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 823 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 824 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

825 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 826 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 827 2025.

828 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 829 reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

830 Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yuechen Jiang, Yupeng Cao, Zhi Chen,
 831 Jordan Suchow, Zhenyu Cui, Rong Liu, et al. Fincon: A synthesized llm multi-agent system with
 832 conceptual verbal reinforcement for enhanced financial decision making. *Advances in Neural
 833 Information Processing Systems*, 37:137010–137045, 2024.

834 Shengbin Yue, Siyuan Wang, Wei Chen, Xuanjing Huang, and Zhongyu Wei. Synergistic multi-agent
 835 framework with trajectory learning for knowledge-intensive tasks. In *Proceedings of the AAAI
 836 Conference on Artificial Intelligence*, volume 39, pp. 25796–25804, 2025a.

837 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 838 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv
 839 preprint arXiv:2504.13837*, 2025b.

840 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 841 overview of theories and algorithms. In *Handbook of Reinforcement Learning and Control*, pp.
 842 321–384. Springer, 2021.

843 Sheng Zhang, Qianchu Liu, Guanghui Qin, Tristan Naumann, and Hoifung Poon. Med-rlvr:
 844 Emerging medical reasoning from a 3b base model via reinforcement learning. *arXiv preprint
 845 arXiv:2502.19655*, 2025a.

846 Simpson Zhang, Tennison Liu, and Mihaela van der Schaar. Agents require metacognitive and
 847 strategic reasoning to succeed in the coming labor markets. *arXiv preprint arXiv:2505.20120*,
 848 2025b.

849 Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Wenshan Wu, Ting Song, Man
 850 Lan, and Furu Wei. LLM as a mastermind: A survey of strategic reasoning with large language
 851 models. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=iMqJsQ4evS>.

852 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
 853 *arXiv preprint arXiv:2006.05929*, 2020.

854 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
 855 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. SOTAPIA: Interac-
 856 tive evaluation for social intelligence in language agents. In *The Twelfth International Confer-
 857 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=mM7VurbA4r>.

864 Jie Zhu, Qian Chen, Huaixia Dou, Junhui Li, Lifan Guo, Feng Chen, and Chi Zhang. Dianjin-
865 r1: Evaluating and enhancing financial reasoning in large language models. *arXiv preprint*
866 *arXiv:2504.15716*, 2025.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918

A APPENDIX

919

A.1 ADDITIONAL RELATED WORK

920 **Advancements in Large Language Models.** Transformer-based architectures (Vaswani et al., 921 2017) underpin modern NLP. When scaled to billions of parameters, these models exhibit strong 922 generalization, follow predictable scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), and 923 demonstrate potential toward AGI (Bubeck et al., 2023; Feng et al., 2024). This scaling has yielded 924 increasingly capable models such as OpenAI o1 (OpenAI, 2024b), Qwen-3 (Yang et al., 2025), 925 LLaMA 4 (Llama Team, 2025), and DeepSeek-R1 (DeepSeek-AI, 2025). To further enhance the 926 efficiency and interpretability of LLMs, researchers have proposed a range of adaptation strategies, 927 including model compression via pruning and quantization (Lin et al., 2024; Kumar et al., 2024; 928 Liang et al., 2025a; Shen et al., 2025c), inference acceleration through layer skipping (Shen et al., 929 2025a;b), data distillation (Zhao et al., 2020; Wang et al., 2024; 2025d; Guo et al., 2024; Wang et al., 930 2018; 2025c), data selection (Xia et al., 2024a;b; Wang et al., 2025a; Xu et al., 2025b), token pruning 931 and merging (Wang et al., 2025b; Bolya et al., 2022; Wen et al., 2025; Liu et al., 2025a; 2024), 932 theoretical analyses of representation power (Chen et al., 2025b;c; Liang et al., 2025b), and advances 933 in interpretability and mechanistic understanding (Bereska & Gavves, 2024; Wang et al., 2025b; 934 Covert et al., 2022). These developments underscore the increasing importance of understanding, 935 optimizing, and governing the behavior and performance of large language models.

937

A.2 SUPERVISED FINE-TUNING

938 Supervised Fine-Tuning (SFT) adapts pretrained models to specific tasks by imitating input–output 939 pairs, effectively aligning models with structured reasoning when high-quality demonstrations are 940 available (Muennighoff et al., 2025; Ye et al., 2025). We distill outputs from strong reasoning models 941 (e.g., DeepSeek-R1 (DeepSeek-AI, 2025), QwQ-32B (Team, 2025)) containing both reasoning traces 942 and final answers, training the model to generate solutions with coherent thought processes.

943 Let $\mathcal{D}_{\text{SFT}} = \{(x_i, y_i)\}_{i=1}^N$ denote the fine-tuning dataset of size N , where x_i is the input prompt and 944 y_i is the target output. In our formulation, each output is a tuple $y_i = (c_i, a_i)$, where c_i represents 945 the step-by-step reasoning and a_i the final answer. The training objective minimizes the negative 946 log-likelihood of the output tokens:

$$947 \mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{(x, y) \sim \mathcal{D}_{\text{SFT}}} [\log p_{\theta}(y | x)],$$

948 where θ are the model parameters and $p_{\theta}(y | x)$ is the conditional probability of generating y given x .
949 The loss is computed only over the output tokens y , excluding the prompt x .

950 To reinforce structured reasoning, we standardize the output format by enclosing the reasoning process 951 c_i within special `<think>` and `</think>` tokens. This explicit markup helps the model distinguish 952 intermediate steps from final outputs and provides structure that is beneficial for downstream reward 953 modeling. Overall, SFT provides a strong initialization that enhances reasoning generalization and 954 stabilizes subsequent RL stage.

955

A.3 GRPO

956 We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our reinforcement 957 learning post-training algorithm. GRPO improves efficiency by eliminating the need for a value 958 function and instead estimates advantages from a group of sampled outputs. For each input query q , 959 drawn from the data distribution \mathcal{D}_q , a group of G responses $\{o_1, o_2, \dots, o_G\}$ is sampled from the 960 old policy $\pi_{\theta_{\text{old}}}$. The current policy π_{θ} is then optimized by maximizing the following objective:

$$961 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim \mathcal{D}_q, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\frac{1}{G} \sum_{i=1}^G \min \left\{ w_i A_i, \text{clip}(w_i, 1-\epsilon, 1+\epsilon) A_i \right\} - \beta \text{KL}(\pi_{\theta} \| \pi_{\text{ref}}) \right],$$

$$962 \text{where } w_i := \frac{\pi_{\theta}(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)}.$$

963 Here, $\pi_{\theta}(o_i | q)$ denotes the probability of generating response o_i given query q under the current 964 policy, and $\pi_{\theta_{\text{old}}}(o_i | q)$ is the probability under the old policy used for sampling. The advantage A_i

972 reflects the relative quality of each response and is computed as the normalized reward within the
 973 group:

$$974 \quad 975 \quad 976 \quad A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})},$$

977 where r_i is the scalar reward assigned to output o_i . The KL penalty encourages stability by penalizing
 978 deviations from a reference policy π_{ref} , and is defined as:

$$979 \quad 980 \quad \text{KL}(\pi_\theta \| \pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(o_i|q)}{\pi_\theta(o_i|q)} - \log \frac{\pi_{\text{ref}}(o_i|q)}{\pi_\theta(o_i|q)} - 1.$$

981 The hyperparameter ϵ controls the clipping threshold for policy ratio updates, while β scales the KL
 982 regularization strength.

983 A.4 DETAILED REWARD DESIGN

985 To align model outputs with structured behavior, we design a hierarchical, rule-based reward function
 986 for GRPO training, inspired by DeepSeek-R1 (DeepSeek-AI, 2025). The reward evaluates each
 987 response across three stages: structural formatting, parseability, and correctness.

988 We follow DeepSeek’s usage guidance² by prepending a `<think>` token to each response, prompting
 989 the model to first generate a reasoning trace, followed by a boxed final answer. Omitting this token
 990 degrades both coherence and accuracy.

991 Final answers are extracted via string matching, with a strong preference for `\boxed{}` formatting.
 992 To address formatting inconsistencies in the Qwen family, we penalize deviations from the expected
 993 structure, encouraging alignment between reasoning and final predictions. Our reward design is
 994 illustrated for multiple-choice example questions (Figure 5), where answers follow the format
 995 `\boxed{Option X: full choice text}`.

996 Formally, our hierarchical reward function comprises three stages:

- 997 • **Stage-A (Format Check):** Each response must contain exactly one `</think>` tag, and any
 998 `\boxed{}` answer must appear afterward. Violations of these constraints incur a format penalty.
- 999 • **Stage-B (Answer Extraction):** We attempt to extract the first boxed answer appearing after
 1000 `</think>`. If unavailable, we fallback to the first occurrence of an alternative format such as
 1001 Option X. Inability to extract any answer incurs a parse penalty.
- 1002 • **Stage-C (Correctness Grading):** If the extracted answer exactly matches the reference answer,
 1003 we assign a high positive reward. A partial reward is given if only the option number matches (e.g.,
 1004 both indicate “Option 2”). Incorrect answers receive a negative penalty.

1005 The explicit reward values assigned are summarized as follows. Let $r(o)$ denote the reward for a
 1006 model output o :

$$1007 \quad 1008 \quad 1009 \quad 1010 \quad 1011 \quad 1012 \quad 1013 \quad 1014 \quad r(o) = \begin{cases} +5 & \text{exact match,} \\ +2 & \text{partial match,} \\ -3 & \text{incorrect answer,} \\ -4 & \text{format violation,} \\ -5 & \text{parse failure.} \end{cases}$$

1015 This hierarchical, rule-based scoring framework ensures determinism, interpretability, and efficient
 1016 reward signal propagation, effectively supporting the acquisition of correct economic reasoning
 1017 behaviors during RL post-training.

1018 A.5 CURATION EXPERIMENT SETTING

1019 **Models.** We evaluate six models: closed-source **GPT-4o** (OpenAI, 2024a), **GPT-3.5-Turbo** (Ope-
 1020 nAI, 2022); and open-weight **DeepSeek-R1-Distill-Qwen-7B** (DeepSeek-AI, 2025), **Qwen-2.5-7B-**
 1021 **Instruct** (Yang et al., 2024), **Llama-3.1-8B-Instruct** (Grattafiori et al., 2024), and **Gemma-2-9B-It**
 1022 (Team et al., 2024).

1023 ²<https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B#usage-recommendations>

1026 **Question Pool.** We sample 50 questions per category from STEER (48 categories) (Raman et al.,
 1027 2024), and 50 each from EconLogicQA (Quan & Liu, 2024) and EconNLI (Guo & Yang, 2024),
 1028 yielding a 2,500-question pool spanning 50 categories. These are grouped into five macro-categories:
 1029

- 1030 • **Mathematical Foundations:** Tests whether a model can handle the “nuts-and-bolts” of economic
 1031 analysis: basic arithmetic, optimization under simple constraints, probability calculations, and
 1032 short chains of deductive logic. Typical items range from computing a quick sum in *add_sub* to
 1033 working out an expected value in *compute_expectations*.
- 1034 • **Single-Agent Environments:** Casts the model as a lone decision-maker who weighs costs, benefits,
 1035 and risk. Besides testing the classical Von Neumann–Morgenstern axioms, the block challenges the
 1036 model to sidestep behavioral pitfalls such as the *sunk_cost* fallacy or the *endowment_effect*.
- 1037 • **Multi-Agent Environments:** Shifts to strategic settings where pay-offs depend on how others act.
 1038 Questions may ask for the optimal first move in a sequential game (*backward_induction*) or for
 1039 designing a punishment scheme that sustains cooperation in an infinitely repeated game (*trigger*
 1040 strategies).
- 1041 • **Representing Other Agents:** Treats the model as a social planner or mechanism designer who
 1042 must aggregate many individual preferences into a single decision. Examples include checking
 1043 whether a social ranking is Pareto efficient (*pareto_sc*) or selecting the winner under a simple
 1044 *plurality_voting* rule.
- 1045 • **Logical Reasoning:** Adds domain-specific deductive tests from EconLogicQA and EconNLI,
 1046 asking the model to order socioeconomic events coherently or decide whether one economic event
 1047 logically entails another.

1048 The categories—Mathematical Foundations, Single-Agent Environments, Multi-Agent Environments,
 1049 and Representing Other Agents—are sourced from STEER. Logical Reasoning is derived from
 1050 EconLogicQA and EconNLI.

1052 **Drilling down on Multi-Agent Environments.** Table 2 unpacks the single “Multi-Agent” bar into
 1053 its five game-theoretic sub-modules so we can clearly see *where* the models trip up.

- 1055 • **Normal-form games:** simultaneous-move interactions presented as payoff matrices. Items range
 1056 from picking a dominant/dominated strategy (*Dom. Strat.* and *Dom'd Strat.*) to computing a
 1057 pure-nash equilibrium.
- 1058 • **Extensive-form games:** sequential play laid out as game trees. Typical questions ask for the
 1059 optimal first action via backward induction (*Back. Ind.*) or for identifying a subgame-perfect Nash
 1060 (*Subg. Nash*).
- 1061 • **Infinitely repeated games:** long-horizon interactions that hinge on credible punishment. Here, the
 1062 model must judge feasibility (*Feas.*), enforceability (*Enf.*), or design a trigger (*Trig.*) strategy.
- 1063 • **Bayesian games:** strategic choice when pay-offs depend on hidden types; the flagship task is
 1064 computing a *Bayes-Nash* equilibrium.

1065 These finer-grained results intend to reveal a universal weakness in advanced game theory concepts,
 1066 especially regarding extensive-form games and infinitely repeated games.

1068 **Inference Protocol.** Open models are run via vLLM (Kwon et al., 2023) on identical NVIDIA
 1069 T4G Tensor Core GPU instances; closed models via OpenAI API. Each prompt requests an answer
 1070 enclosed in `\boxed{...}` plus free-form reasoning. An example question prompt when querying
 1071 the tested models is shown in Figure 4.

1073 **Evaluation Metric.** A response is marked correct if the boxed answer matches the gold label.
 1074 Accuracy is computed via exact match. Table 1 summarizes results by macro-category. Table 2 delves
 1075 into the results for Multi-Agent Environments category.

1076 A.6 TRAINING DYNAMICS

1077 Figure 3 illustrates that the SFT loss decreases steadily and converges smoothly, whereas GRPO
 1078 reward trends upward and stabilizes around a positive mean, suggesting effective alignment and

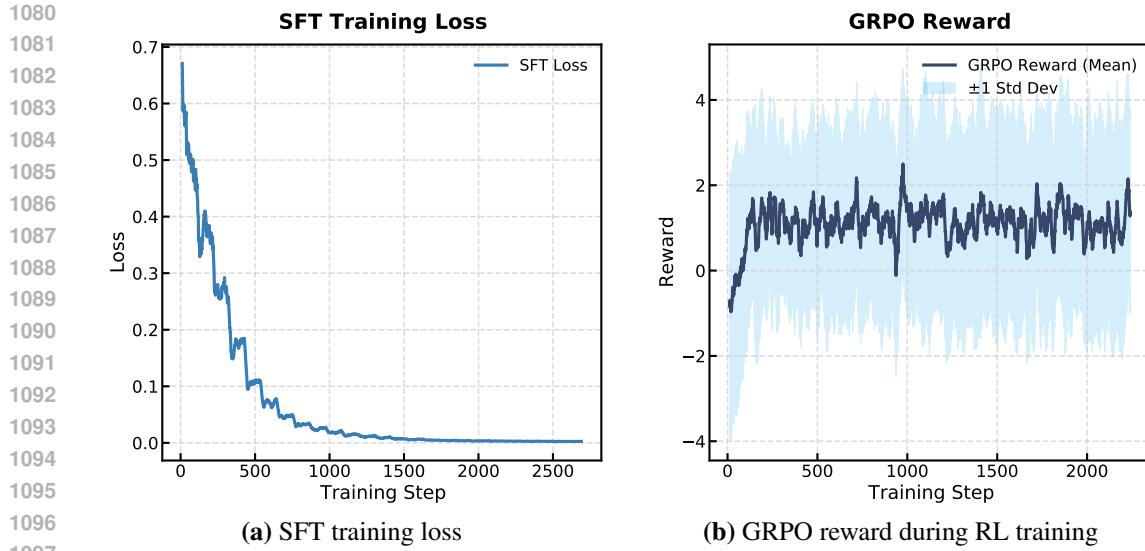


Figure 3: Training dynamics for SFT (a) and RL (b).

successful reward-guided optimization despite early variance. Furthermore, we observe that SFT provides essential economic knowledge and reasoning priors that enable stable RL optimization. In contrast, our attempts to run RL directly from the base model, despite careful tuning, did not yield full convergence. This underscores the significance of SFT as a vital warm-start, particularly in domains beyond mathematics and coding.

Example Dataset Curation Experiment Question Prompt

Question:

In a high-stakes acquisition, two competing investors, Alex and Taylor, are negotiating with a major corporation for exclusive rights. The negotiations are structured over three rounds, where each investor alternates in making decisions. Alex makes the first move. If Alex finalizes the negotiation in the first round, they will secure a profit of 31709.805571865647 and Taylor will receive 70026.13028485939. Should Alex choose to continue the negotiations, Taylor can either decide to finalize in the second round or push the decision back to Alex. If Taylor chooses to finalize in the second round, Alex will receive 36394.29786932465 and Taylor will secure 47402.72116860709. If Taylor decides against finalizing and returns the decision to Alex, Alex can choose to end the negotiations with the agreed terms, or let the corporation impose their final terms. If Alex decides to finalize, their profit would be 99028.19689989614 while Taylor's would be 83676.14380026297. If the corporation ends up setting the final terms, Alex will receive 99028.19689989614 and Taylor will get 83676.14380026297. Given this scenario, what should be Alex's strategy in the very first round?

Options:

- Option 1: Alex should finalize the negotiation
- Option 2: Alex should continue and pass the negotiation to Taylor

Choose the correct option and explain your reasoning. Please reason step by step, and put your final answer within `\boxed{}`.

Figure 4: Example question prompt for *backward_induction* used in the Dataset Curation Experiment.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146

Table 6: Categories, Distributions, and Descriptions of Recon Training Dataset

Class	Description	Source	Count	Proportion
Enforceability	Incentive compatibility in long-term relationships	Repeated Game	250	13.9%
Backward Induction	Optimal choice in sequential decisions	Sequential Game	250	13.9%
Trigger	Punishment-based strategies to enforce cooperation	Repeated Game	250	13.9%
Feasibility	Sustainability of payoff allocations	Repeated Game	150	8.3%
Auction Risk	Risk preferences in bidding contexts	One-shot Game	150	8.3%
Endowment Effect	Overvaluation of owned assets	Behavioral	75	4.2%
Certainty Effect	Preference for guaranteed outcomes over probabilistic ones	Behavioral	75	4.2%
Time Inconsistency	Dynamic inconsistency in intertemporal choices	Behavioral	25	1.4%
Budget Balance	Financial balance in risk-sharing settings	Risk Management	50	2.8%
Condorcet Criterion	Majority rule consistency in voting	Majority Vote	25	1.4%
Bayes Nash	Strategic reasoning under probabilistic uncertainty	Probability	50	2.8%
EconLogicQA	Stepwise logical reasoning in economics	Logic	150	8.3%
EconNLI	Economic causal inference in natural language	Logic	100	5.6%
Pure Nash	Existence and identification of pure strategy equilibria	Game Theory	100	5.6%
PTE	Perfect Transferable Equilibrium decision logic	Game Theory	100	5.6%
Total			1800	100%

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202

1203 Example Recon Training Dataset Question Prompt
 1204

1205 You are given a reasoning problem in Economics. Please reason step by step to solve it.
 1206

1207 Then, give your final answer using the format \boxed{Option X: full choice text}.
 1208

1209 You must include both the option number and the full text of your chosen answer.
 1210

1211 Question:
 1212

1213 Consider a duopoly where two firms, A and B, sell a homogeneous product. Each firm can
 1214 choose between undercutting the competitor's price (compete) or colluding to maintain a
 1215 high price (collude). In each period, if both firms compete, each earns \$43334.64; if both
 1216 collude, each earns \$98183.38; if firm A competes while firm B colludes, A earns \$77043.33
 1217 and B earns \$56330.53. Conversely, if firm B competes while A colludes, B earns \$77043.33
 1218 and A earns \$56330.53. Assuming firms discount future payoffs with a discount factor of
 1219 0.44, which of the following strategies can be sustained as an enforceable outcome in a Nash
 1220 equilibrium of an infinitely repeated game?
 1221

1222 Options:
 1223

- 1224 Option 1: Firms A and B compete on price in each period indefinitely.
- 1225 Option 2: Firms A and B collude to maintain high prices in each period indefinitely.
- 1226 Option 3: Firms A and B take turns competing and colluding in alternating periods.
- 1227 Option 4: Firm A competes and Firm B colludes indefinitely.

1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 5: Example question prompt used in the Recon training dataset.

1242
1243
1244
1245
1246
1247

1248 Example Draco Game Output of Recon-RL

1250 Okay, so I'm trying to figure out what choice Alice should make to maximize her reward in
1251 this game. Let me start by understanding the rules thoroughly.

1252 From the game rules, it seems like this is a **sequential game** where Alice and Bob take turns
1253 making choices. The rewards depend on the sequence of choices they make. Let me break
1254 down each scenario...

1255 Hmm, so it's a bit complex because the rewards depend on the sequence of choices. Alice
1256 has to consider Bob's possible responses and her own subsequent choices.

1258 Let me try to represent this as a **game tree** to visualize the possible outcomes...

1260 Now, I need to analyze the optimal strategies for both players. Since it's a **sequential game**,
1261 we can use **backward induction** to find the **subgame perfect Nash equilibrium**...

1263 Let's start from the end of the game and work our way back...

1265 Wait, no. Let me correct that. If Bob chooses *choice*₂, he gets 2, but Alice can get 3 or 2.
1266 Wait, actually, the payoffs are from Alice and Bob's perspective.

1267 Wait, in Subgame 1: Alice chooses *choice*₁, Bob chooses *choice*₂, then Alice chooses
1268 *choice*₁: Alice gets 2, Bob gets 2...

1270 Wait, that's conflicting. Let me clarify...

1272 So, comparing Bob's payoffs: - If Bob chooses *choice*₁: Bob gets 5.
1273 - If Bob chooses *choice*₂: Bob gets 3.

1275 Therefore, Bob's best response is to choose *choice*₁ because 5 > 3.

1277 So, if Alice chooses *choice*₂, Bob will choose *choice*₁, resulting in Alice getting 4 and Bob
1278 getting 5.

1279 Now, let's summarize:

- If Alice chooses *choice*₁: Both get 5.
- If Alice chooses *choice*₂: Alice gets 4, Bob gets 5.

1283 Comparing these, Alice would prefer to choose *choice*₁ to get 5 instead of 4.

1285 Therefore, Alice's optimal choice is *choice*₁.

1288 Figure 6: Example Draco game (Hua et al., 2024) output of Recon-RL. Some important game theory
1289 terminology employed by the model is bolded for reference.

1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301
1302

Example Draco Game Output of Recon-SFT

1304
1305 Alright, so I'm trying to figure out the best move for Alice in this **sequential game**. Let me
1306 break it down step by step.

1307
1308 First, I'll list out all the possible scenarios and their corresponding rewards. It might help to
1309 visualize it as a tree or a table...

1310
1311 Hmm, so it's a bit complex because there are multiple rounds here. Let me see if I can figure
1312 out the optimal strategy for both players...

1313
1314 Starting with the first move, Alice has to choose either *choice*₁ or *choice*₂ without knowing
1315 Bob's choice. So, let's consider each possibility...

1316
1317 Now, considering that both players are trying to maximize their rewards, they'll probably
1318 anticipate each other's moves...

1319
1320 Wait, no. If Alice chooses *choice*₂, Bob can choose *choice*₁, which gives him 5, which is
1321 better than 3. So Bob would definitely choose *choice*₁ if Alice chooses *choice*₂ first...

1322
1323 But wait, if Alice chooses *choice*₁, Bob can choose *choice*₂, leading to a two-round game.
1324 In that case, Alice can get either 2 or 3. But 3 is better than 2, so she would choose *choice*₂,
1325 resulting in Alice:3, Bob:4...

1326
1327 But wait, Bob can choose *choice*₂ if Alice chooses *choice*₁, leading to a lower reward for
1328 Alice. So, maybe Alice should consider that Bob will try to minimize her reward...

1329
1330 Wait, but if Alice chooses *choice*₂, Bob gets 5. If Alice chooses *choice*₁, Bob can get 5 as
1331 well. So, Bob's reward is the same in both cases, but Alice's reward is higher if she chooses
1332 *choice*₂...

1333
1334 Wait, that changes things. So, if Alice chooses *choice*₁, Bob's best response is to choose
1335 *choice*₁, resulting in both getting 5...

1336
1337 If Alice chooses *choice*₂, Bob chooses *choice*₁, giving Alice 4 and Bob 5.

1338
1339 So, Alice can get either 5 or 4, depending on her choice.

1340
1341 Since 5 is better than 4, Alice should choose *choice*₁.

1342
1343 Therefore, the best move for Alice is to choose *choice*₁, leading to both players getting 5.

1344
1345
1346
1347
1348
1349 Figure 7: Example Draco game (Hua et al., 2024) output of Recon-SFT. Some important game theory
terminology employed by the model is bolded for reference.