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ABSTRACT

The audio spectrogram is a time-frequency representation that has been widely
used for audio classification. The temporal resolution of a spectrogram depends
on hop size. Previous works generally assume the hop size should be a constant
value such as ten milliseconds. However, a fixed hop size or resolution is not al-
ways optimal for different types of sound. This paper proposes a novel method,
DiffRes, that enables differentiable temporal resolution learning to improve the
performance of audio classification models. Given a spectrogram calculated with
a fixed hop size, DiffRes merges non-essential time frames while preserving im-
portant frames. DiffRes acts as a “drop-in” module between an audio spectro-
gram and a classifier, and can be jointly optimized with the classification task. We
evaluate DiffRes on the mel-spectrogram, followed by state-of-the-art classifier
backbones, and apply it to five different subtasks. Compared with using the fixed-
resolution mel-spectrogram, the DiffRes-based method can achieve the same or
better classification accuracy with at least 25% fewer temporal dimensions on the
feature level, which alleviates the computational cost at the same time. Starting
from a high-temporal-resolution spectrogram such as one-millisecond hop size,
we show that DiffRes can improve classification accuracy with the same compu-
tational complexity.

1 INTRODUCTION

Audio classification refers to a series of tasks that assign labels to an audio clip. Those tasks in-
clude audio tagging (Kong et al., 2020), speech keyword classfication (Kim et al., 2021), and music
genres classification (Castellon et al., 2021). The input to an audio classification system is usu-
ally a one-dimensional audio waveform, which can be represented by discrete samples. Although
there are methods using time-domain samples as features (Kong et al., 2020; Luo & Mesgarani,
2018; Lee et al., 2017), the majority of studies on audio classification convert the waveform into a
spectrogram as the input feature (Gong et al., 2021b;a). Spectrogram is usually calculated by the
Fourier transform (Champeney & Champeney, 1987), which is applied in short waveform chunks
multiplied by a windowing function, resulting in a two-dimensional time-frequency representation.
According to the Gabor’s uncertainty principle (Gabor, 1946), there is always a trade-off between
time and frequency resolutions. To achieve desired resolution on the temporal dimension, it is a
common practice (Kong et al., 2021a; Liu et al., 2022a) to apply a fixed hop size between windows
to capture the dynamics between adjacent frames. With the fixed hop size, the spectrogram has a
fixed temporal resolution, which we will refer to simply as resolution.

Using a fixed resolution is not necessarily optimal for an audio classification model. Intuitively, the
resolution should depend on the temporal pattern: fast-changing signals are supposed to have high
resolution, while relatively steady signals or blank signals may not need the same high resolution for
the best accuracy (Huzaifah, 2017). For example, Figure 1 shows that by increasing resolution, more
details appear in the spectrogram of Alarm Clock while the pattern of Siren stays mostly the same.
This indicates the finer details in high-resolution Siren may not essentially contribute to the classifi-
cation accuracy. There are plenty of studies on learning a suitable frequency resolution with a similar
spirit (Stevens et al., 1937; Sainath et al., 2013; Ravanelli & Bengio, 2018b; Zeghidour et al., 2021),
but learning temporal resolution is still under-explored. Most previous studies focus on investigat-
ing the effect of different temporal resolutions (Kekre et al., 2012; Huzaifah, 2017; Ilyashenko et al.,
2019; Liu et al., 2022c). Huzaifah (2017) observe the optimal temporal resolution for audio classifi-
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cation is class dependent. Ferraro et al. (2021) experiment on music tagging with coarse-resolution
spectrograms, and observes a similar performance can be maintained while being much faster to
compute. Kazakos et al. (2021) propose a two-stream architecture that process both fine-grained
and coarse-resolution spectrogram and shows the state-of-the-art result on VGG-Sound (Chen et al.,
2020). Recently, Liu et al. (2022c) propose a spectrogram-pooling-based module that can improve
classification efficiency with negligible performance degradation. In addition, our pilot study shows
the optimal resolution is not the same for different types of sound (see Figure 10a in Appendix A.3).
The pilot study shows that when increasing resolution, the improvement on different types of sound
is not consistent, in which some of them even degrade with a higher resolution. This motivates us to
design a method that can learn the optimal resolution.

Insect

Siren

Alarm Clock
10 ms hop size

Siren
10 ms hop size

Alarm Clock
40 ms hop size

Siren
40 ms hop size

Figure 1: The spectrogram of Alarm Clock
and Siren sound with 40 ms and 10 ms
hop sizes. All with a 25 ms window size.
The pattern of Siren, which is relatively sta-
ble, does not change significantly using a
smaller hop size (i.e., larger temporal reso-
lution), while Alarm Clock is the opposite.

Besides, the potential of the high-resolution spectrogram,
e.g., with one milliseconds (ms) hop size, is still unclear.
Some popular choices of hop size including 10 ms (Böck
et al., 2012; Kong et al., 2020; Gong et al., 2021a) and
12.5 ms (Shen et al., 2018; Rybakov et al., 2022). Pre-
vious studies (Kong et al., 2020; Ferraro et al., 2021)
show classification performance can be steadily improved
with the increase of resolution. One remaining question
is: Can even finer resolution improve the performance?
We conduct a pilot study for this question on a limited-
vocabulary speech recognition task with hop sizes smaller
than 10 ms (see Figure 10b in Appendix A.3). We noticed
that accuracy can still be improved with smaller hop size,
at a cost of increased computational complexity. This in-
dicates there is still useful information in the higher tem-
poral resolution.

In this work, we believe that we are the first to demon-
strate learning temporal resolution on the audio spectro-
gram. We show that learning temporal resolution leads to efficiency and accuracy improvements
over the fixed-resolution spectrogram. We propose a lightweight algorithm, DiffRes, that makes
spectrogram resolution differentiable during model optimization. DiffRes can be used as a “drop-
in” module after spectrogram calculation and optimized jointly with the downstream task. For the
optimization of DiffRes, we propose a loss function, guide loss, to inform the model of the low
importance of empty frames formed by SpecAug (Park et al., 2019). The output of DiffRes is a
time-frequency representation with varying resolution, which is achieved by adaptively merging the
time steps of a fixed-resolution spectrogram. The adaptive temporal resolution alleviates the spec-
trogram temporal redundancy and can speed up computation during training and inference. We per-
form experiments on five different audio tasks, including the largest audio dataset AudioSet (Gem-
meke et al., 2017). DiffRes shows clear improvements on all tasks over the fixed-resolution mel-
spectrogram baseline and other learnable front-ends (Zeghidour et al., 2021; Ravanelli & Bengio,
2018b; Zeghidour et al., 2018). Compared with the fixed-resolution spectrogram, we show that using
DiffRes can achieve a temporal dimension reduction of at least 25% with the same or better audio
classification accuracy. On high-resolution spectrogram, we also show that DiffRes can improve
classifier performance without increasing the feature temporal dimensions. Our code is publicly
available 1.

2 LEARNING TEMPORAL RESOLUTION WITH DIFFRES

We provide an overview of DiffRes-based audio classification in Section 2.1. We introduce the
detailed formulation and the optimization of DiffRes in Section 2.2.1, 2.2.2, and 2.3.

2.1 OVERVIEW

Let x ∈ RL denote a one-dimensional audio time waveform, where L is the number of audio
samples. An audio classification system can be divided into a feature extraction stage and a classi-
fication stage. In the feature extraction stage, the audio waveform will be processed by a function
Ql,h : RL → RF×T , which maps the time waveform into a two-dimensional time-frequency repre-

1https://anonymous.4open.science/r/diffres-8F22
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Figure 2: Audio classification with DiffRes and mel-spectrogram. Green blocks contain learnable parameters.
DiffRes is a “drop-in” module between spectrogram calculation and the downstream task.

sentation X , such as a mel-spectrogram, where X:,τ = (X1,τ , ...,XF,τ ) is the τ -th frame. Here,
T and F stand for the time and frequency dimensions of the extracted representation. We also refer
to the representation along the temporal dimensions as frames. We use l and h to denote window
length and hop size, respectively. Usually T ∝ L

h . We define the temporal resolution 1
h by frame

per second (FPS), which denotes the number of frames in one second. In the classification stage, X
will be processed by a classification model Gθ parameterized by θ. The output of Gθ is the label pre-
dictions ŷ, in which ŷi denotes the probability of class i. Given the paired training data (x,y) ∈ D,
where y denotes the one-hot vector for ground-truth labels, the optimization of the classification
system can be formulated as

arg min
θ

E(x,y)∼D L(Gθ(X),y), (1)

where L is a loss function such as cross entropy (De Boer et al., 2005). Figure 2 show an overview
of performing classification with DiffRes. DiffRes is a “drop-in” module between X and Gθ fo-
cusing on learning the optimal temporal resolution with a learnable function Fϕ : RF×T → RF×t,
where t is the parameter denoting the target output time dimensions of DiffRes, and ϕ is the learn-
able parameters. DiffRes formulates Fϕ with two steps: i) estimating the importance of each time
frame with a learnable model Hϕ: X → s, where s is a 1 × T shape row vector; and ii) warping
frames based on a frame warping algorithm, the warping is performed along a single direction on the
temporal dimension. We introduce the details of these two steps in Section 2.2.1 and Section 2.2.2.
We define the dimension reduction rate δ of DiffRes by δ = (T − t)/T . Usually, δ ≤ 1 and t ≤ T
because the temporal resolution of the DiffRes output is either coarser or equal to that of X . Given
the same T , a larger δ means fewer temporal dimensions t in the output of DiffRes, and usually less
computation is needed for Gθ. Similar to Equation 1, Fϕ can be jointly optimized with Gθ by

arg min
θ,ϕ

E(x,y)∼D L(Gθ(Fϕ(X)),y). (2)

2.2 DIFFERENTIABLE TEMPORAL RESOLUTION MODELING

Figure 2 illustrates adaptive temporal resolution learning with DiffRes. We introduce frame impor-
tance estimation in Section 2.2.1, and introduce the warp matrix construction function and frame
warping function in Section 2.2.2. Figure 4 shows an example of DiffRes on the mel-spectrogram.

2.2.1 FRAME IMPORTANCE ESTIMATION Conv1d: Cin→Cout

BatchNorm1d

LeakyReLU0.01

Conv1d: Cout→Cout

BatchNorm1d

LeakyReLU0.01

+

Figure 3: ResConv1D

We design a frame importance estimation module Hϕ to decide the propor-
tion of each frame that needs to be kept in the output, which is similar to
the sample weighting operation (Zhang & Pfister, 2021) in previous studies.
The frame importance estimation module will output a row vector s′ with
shape 1× T , where the element s′τ is the importance score of the τ -th time
frame X:,τ . The frame importance estimation can be denoted as

s′ = σ(Hϕ(X)), (3)

where s′ is the row vector of importance scores, and σ is the sigmoid func-
tion (Han & Moraga, 1995). A higher value in s′τ indicates the τ -th frame
is important for classification. We apply the sigmoid function to stabilize
training by limiting the values in s′ between zero and one. We implement Hϕ with a stack of
one-dimensional convolutional neural networks (CNNs) (Fukushima & Miyake, 1982; LeCun et al.,
1989). Specifically, Hϕ is a stack of five one-dimensional convolutional blocks (ResConv1D). We
design the ResConv1D block following other CNN based methods (Shu et al., 2021; Liu et al., 2020;
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Figure 4: Visualizations of the DiffRes using the mel-spectrogram. The part with the shaded background is the
input feature of the classifier. For more examples please refer to Figure 12 and 13 in Appendix A.8.

Kong et al., 2021b). As shown in Figure 3, each ResConv1D has two layers of one-dimensional
CNN with batch normalization (Ioffe & Szegedy, 2015) and leaky rectified linear unit activation
functions (Xu et al., 2015). We apply residual connection (He et al., 2016) for easier training
of the deep architecture (Zaeemzadeh et al., 2020). Each CNN layer is zero-padded to ensure
the temporal dimension does not change (LeCun et al., 2015). We use exponentially decreasing
channel numbers to reduce the computation (see details in Table 10). In the next frame warping
step (Section 2.2.2), elements in the importance score will represent the proportion of each input
frame that contributes to an output frame. Therefore, we perform rescale operation on s′, resulting
in an s that satisfies s ∈ [0, 1]1×T and

∑T
k=1 sk ≤ t. The rescale operation can be denoted as

š = s′∑T
i=1 s′

i

t, s = š
max(š,1) , where š is an intermediate variable that may contain elements greater

than one, max denotes the maximum operation. To quantify how active Hϕ is trying to distinguish
between important and less important frames, we also design a measurement, activeness ρ, which is
calculated by the standard derivation of the non-empty frames, given by

ρ =
1

1− δ

√∑
i∈Sactive

(si − s̄i)2

|Sactive|
, Sactive = {i | E(X:,i) > min(E(X:,i)) + ϵ}, (4)

where Sactive is the set of indices of non-empty frames, ϵ is a small value, |S| denotes the size of
set S, function E(·) calculates the root-mean-square energy (Law & Rennie, 2015) of a frame in the
spectrogram, and function min(·) calculates the minimum value within a matrix. We use δ to unify
the value of ρ for easier comparison between different δ settings. The activeness ρ can be used as an
indicator of how DiffRes behaves during training. A higher ρ indicates the model is more active at
learning the frame importance. A lower ρ such as zero indicates learning nothing. We will discuss
the learning process of DiffRes with ρ in Section 3.3.

2.2.2 TEMPORAL FRAME WARPING

We perform temporal frame warping based on s and X to calculate an adaptive temporal resolution
representation O, which is similar to the idea of generating derived features (Pentreath, 2015). Gen-
erally, the temporal frame warping algorithm can be denoted by W = α(s) and O = β(X,W ),
where α(·) is a function that convert s into a warp matrix W with shape t×T , and β(·) is a function
that applies W to X to calculate the warpped feature O. Elements in W such as Wi,j denote the
contribution of the j-th input frame X:,j to the i-th output frame O:,i. We will introduce the real-
ization of α(·) and β(·) in the following sections. Figure 11 in Appendix A.7 provides an example
of the warp matrix construction function.

Warp matrix construction Function α(·) calculates the warp matrix W with s by:

Wi,j =

{
sj , if i <

∑j
k=1 sk ≤ i+ 1

0, otherwise
, (5)

where we calculate the cumulative sum of s to decide which output frame each input frame will
be warped into. The warp matrix W here can be directly used for frame warping function β(·).
However, we found the DiffRes can learn more actively if the warp matrix satisfies

∑t
j=1 Wj,: = 1,

which means each output frame is assigned an equal amount of total warp weights on input frames.
We further process W to meet this requirement with Algorithm 1 in Appendix A.6. We also provide
a vectorized version of Algorithm 1 that can be run efficiently on GPUs (see Appendix A.7).

Frame warping Function β(·) performs frame warping based on the warp matrix W . The i-th
output frame is calculated with X and the i-th row of W , given by

Oi,j = A((Xj,:)⊙ (Wi,:)), (6)

where A : R1×T → R stands for the frame aggregation function such as averaging, O is the final
output feature with shape F × t.
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Resolution encoding The final output O does not contain the resolution information at each time
step, which is crucial information for the classifier. Since the temporal resolution can be represented
with W , we construct a resolution encoding with W in parallel with frame warping. Firstly, we
construct a positional encoding matrix E with shape F × T , using the similar method described
in Vaswani et al. (2017). Each column of E represents a positional encoding of a time step. Then
we calculate the resolution encoding by E = EW⊤, where W⊤ stands for the transpose of W . The
shape of the resolution encoding is F × t. Both E and O are concatenated on the channel dimension
as the classifier input feature.

2.3 OPTIMIZATION

We propose a guide loss to provide guidance for DiffRes on learning frame importance. Since we do
not know the ground truth frame importance, we cannot directly optimize s. We introduce Lguide

as an inductive bias (Mitchell, 1980) to the system based on the assumption that an empty frame
should have a low importance score. Specifically, we propose the guide loss by

Lguide =
1

|Sempty|
∑

i∈Sempty

(
si

1− δ
− λ)+, Sempty = {i | i /∈ Sactive and i ∈ {1, 2, ..., T}}, (7)

where Sempty is a set of time indexes that have low energy, and λ is a constant threshold. Given that
the output of DiffRes has fewer temporal dimensions than X , the DiffRes layer forms an information
bottleneck (Tishby et al., 2000; Shwartz-Ziv & Tishby, 2017) that encourages DiffRes to assign
a higher score to important frames. We analyze the information bottleneck effect of DiffRes in
Section 3.3. The parameter λ is a threshold for the guide loss to take effect. This threshold can
alleviate the modeling bias toward energy. For example, if λ = 0, the importance scores of empty
frames are strongly regularized, and the model will also tend to predict low importance scores for
lower energy frames, which may contain useful information. Lbce is the standard binary cross
entropy loss function (Shannon, 2001) for classification, given by Equation 8, where ŷ is the label
prediction and N is the total number of classes.

Lbce =
1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))), (8)

The loss function of the DiffRes-based audio classification system includes our proposed guide loss
Lguide and the binary cross entropy loss Lbce, given by L = Lbce + Lguide.

3 EXPERIMENTS

We focus on evaluating DiffRes on the mel-spectrogram, which is one of the most popular features
used by state-of-the-art systems (Chen et al., 2022; Gong et al., 2022; Verbitskiy et al., 2022; Koutini
et al., 2021). We evaluate DiffRes on five different tasks and datasets (see Table 9 in Appendix A.5),
including audio tagging on AudioSet (Gemmeke et al., 2017) and FSD50K (Fonseca et al., 2021),
environmental sound classification on ESC50 (Piczak, 2015), limited-vocabulary speech recogni-
tion on SpeechCommands (Warden, 2018), and music instrument classification on NSynth (Engel
et al., 2017). All the datasets are resampled at a sampling rate of 16 kHz. Following the evaluation
protocol in the previous works (Zeghidour et al., 2021; Riad et al., 2021; Kong et al., 2020; Gong
et al., 2021b), we report the mean average precision (mAP) as the main evaluation metric on Au-
dioSet and FSD50K, and report classification accuracy (ACC) on other datasets. In all experiments,
we use the same architecture as used by Gong et al. (2021b), which is an EfficientNet-B2 (Tan
& Le, 2019) with four attention heads (13.6 M parameters). We reload the ImageNet pretrained
weights for EfficientNet-B2 in a similar way to Gong et al. (2021a;b). We also provide ablation
study on other model architectures in Appendix A.1.2. For the training data, we apply random spec-
augmentation (Park et al., 2019) and mixup augmentation (Zhang et al., 2017) following Gong et al.
(2021b). All experiments are repeated three times with different seeds to reduce randomness. We
also report the standard derivation of the repeated trails along with the averaged result. We train
the DiffRes layer with λ = 0.5 and ϵ = 1 × 10−4. For the frame aggregation function A (see
Equation 6), we use both the max and mean operations, whose outputs are concatenated with the
resolution encoding E on the channel dimension as the input feature to the classifier. The frame
importance estimation module we used in this paper is a stack of five ResConv1D (see Table 10 in
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Task name
100 FPS baseline (%) Metric FPS Change hop size (%) AvgPool (%) ConvAvgPool (%) Proposed (%)

AudioSet tagging
43.7 ± 0.1

mAP
25 38.6 ± 0.3 39.9 ± 0.2 40.1 ± 0.2 41.7 ± 0.1
50 41.8 ± 0.2 42.4 ± 0.1 42.7 ± 0.2 43.6 ± 0.1
75 42.7 ± 0.2 43.6 ± 0.0 43.5 ± 0.2 44.2 ± 0.1†

FSD50K tagging
55.6 ± 0.3

mAP
25 48.9 ± 0.4 51.4 ± 0.3 49.2 ± 0.4 56.9 ± 0.2†

50 53.3 ± 0.4 54.5 ± 0.4 52.2 ± 0.8 57.2 ± 0.2†

75 54.8 ± 0.4 55.3 ± 0.3 54.4 ± 0.2 57.1 ± 0.4†

Environmental sound
85.2 ± 0.5

ACC
25 74.6 ± 0.6 75.6 ± 0.3 72.4 ± 1.2 82.9 ± 0.5
50 82.4 ± 0.5 83.2 ± 0.3 77.3 ± 0.8 85.5 ± 0.4†

75 84.9 ± 0.3 85.2 ± 0.4† 81.8 ± 0.6 86.8 ± 0.3†

Speech recognition
97.2 ± 0.1

ACC
25 93.5 ± 0.1 94.9 ± 0.4 95.8 ± 0.3 95.0 ± 0.3
50 96.1 ± 0.1 96.0 ± 0.2 96.0 ± 0.1 96.7 ± 0.2
75 96.8 ± 0.2 96.9 ± 0.1 97.0 ± 0.1 97.2 ± 0.0†

Music instrument
79.9 ± 0.2

ACC
25 79.7 ± 0.2 78.3 ± 0.7 78.0 ± 0.5 80.5 ± 0.2†

50 79.9 ± 0.0† 79.5 ± 0.3 79.4 ± 0.3 81.0 ± 0.5†

75 79.8 ± 0.2 79.6 ± 0.3 79.7 ± 0.4 80.8 ± 0.2†

Table 1: Comparison of different temporal dimension reduction methods. The numbers under the task name
show the baseline performance. Baseline methods use fix-temporal-resolution mel-spectrogram with 10 ms
hop size. Numbers with † mean better or comparable performance compared with the 100 FPS baseline.

Appendix A.5) with a total 82 371 of parameters. We calculate the mel-spectrogram with a Han-
ning window, 25 ms window length, 10 ms hop size, and 128 mel-filterbanks by default. We list
our detailed hyperparameters setting in Table 8 (Appendix A.5). We also encourage readers to read
through Figure 12 and Figure 13 in Appendix A.8 for examples of DiffRes on the mel-spectrogram.

3.1 ADAPTIVELY COMPRESS THE TEMPORAL DIMENSION

Compression of mel-spectrogram temporal dimension can lead to a considerable speed up on train-
ing and inference (see Figure 5), thus it is a valuable topic for efficient classification (Huang &
Leanos, 2018) and on-device application (Choi et al., 2022). The experiments in this section aim
to evaluate the effectiveness of DiffRes in compressing temporal dimensions and maintaining pre-
cision. We compare DiffRes with three temporal dimension reduction methods: i) Change hop
size (CHSize) reduces the temporal dimension by enlarging the hop size. The output of CHSize
has a fixed resolution and may lose information between output frames.; ii) AvgPool is a method
that performs average pooling on a 100 FPS spectrogram to reduce the temporal dimensions. Avg-
Pool also has a fixed resolution, but it can aggregate information between output frames by pooling;
iii) ConvAvgPool is the setting that the 100 FPS mel-spectrogram will be processed by a stack of
ResConv1D (mentioned in Section 2.2.1), followed by an average pooling for dimension reduc-
tion. ConvAvgPool has a total of 493 824 parameters and we provide the detailed structure in Ta-
ble 10 (Appendix A.5). Based on a learnable network, ConvAvgPool has the potential of learning
more suitable features and temporal resolution implicitly.

Baseline comparisons Table 1 shows our experimental result. The baseline of this experiment is
performed on mel-spectrogram without temporal compression (i.e., 100 FPS) and the baseline result
is shown under each task name. When reducing 25% of the temporal dimension (i.e., 75 FPS), the
proposed method can even considerably improve the baseline performance on most datasets, except
on speech recognition tasks where we maintain the same performance. We assume the improvement
comes from the data augmentation effect of DiffRes, which means divergent temporal compression
on the same data at different training steps. With a 50 FPS, four out of five datasets can maintain
comparable performance. With only 25 FPS, the proposed method can still improve the FSD50K
tagging and music instrument classification tasks, which indicates the high temporal redundancy
in these datasets. Our proposed method also significantly outperforms other temporal dimension
reduction baselines. With fixed resolution and fewer FPS, the performance of CHSize degrades
more notably. AvgPool can outperform CHSize by aggregating more information between output
frames. Although ConvAvgPool has an extra learnable neural network, it does not show significant
improvements compared with AvgPool. ConvAvgPool even has an inferior performance on FSD50K
and environmental sound classification tasks. This indicates employing a neural network for feature
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learning is not always beneficial. Also, by comparison, the interpretability of our proposed method
is much better than ConvAvgPool (see Figure 9).

On variable-length audio data Note that the proposed method even improves the mAP perfor-
mance by 1.3% with only 25 FPS on the FSD50K dataset. This is because the audio clip durations
in the FSD50K have a high variance (see Table 9). In previous studies (Gong et al., 2021a;b; Kong
et al., 2020), a common practice is padding the audio data into the same duration in batched training
and inference, which introduces a considerable amount of temporal redundancy in the data with a
significantly slower speed. By comparison, DiffRes can unify the audio feature shape regardless of
their durations. Model optimization becomes more efficient with DiffRes. As a result, the proposed
method can maintain an mAP of 55.6 ± 0.2 on the FSD50K, which is comparable to the baseline,
with only 15 FPS and 28% of the original training time. This result shows that DiffRes provides a
new mind map for future work on classifying variable-length audio files.

3.2 LEARNING WITH SMALLER HOP SIZE

Previous studies have observed that a higher resolution spectrogram can improve audio classification
accuracy (Kong et al., 2020; Ferraro et al., 2021). However, a hop size smaller than 10 ms has not
been widely explored. This is partly because the computation becomes heavier for a smaller hop
size. For example, with 1 ms hop size (i.e., 1000 FPS), the time and space complexity for an
EfficientNet classifier will be 10 times heavier than with a common 10 ms hop size. Since DiffRes
can control the temporal dimension size, namely FPS, working on a small hop size spectrogram
becomes computationally friendly. Table 2 shows model performance can be considerably improved
with smaller hop sizes. AudioSet and environment sound dataset achieve the best performance on
6 ms and 1 ms hop size, and other tasks benefit most from 3 ms hop sizes. In later experiments, we
will use these best hop size settings on each dataset.

Hop size 10 ms 6 ms 3 ms 1 ms

FPS (Dimension reduction rate) 100 (0%) 100 (40%) 100 (70%) 100 (90%)

AudioSet tagging 43.7 ± 0.1 44.1 ± 0.1 43.8 ± 0.0 43.7 ± 0.1
Environmental Sound Classification 85.2 ± 0.4 87.2 ± 0.3 88.0 ± 0.6 88.4 ± 0.5

Speech recognition 97.2 ± 0.1 97.6 ± 0.0 97.9 ± 0.1 97.8 ± 0.1
Music instrument 79.9 ± 0.2 81.3 ± 0.3 81.8 ± 0.2 80.6 ± 0.4

Average 76.5 ± 0.2 77.6 ± 0.2 77.9 ± 0.1 77.5 ± 0.2

Table 2: Learning with high temporal resolution spectrograms. FPS is controlled at 100, so the computational
complexity of the classifier is the same in all hop-size settings. Results are reported in the percentage format.

Comparing with other learnable front-ends The DiffRes is learnable, so the Mel+DiffRes setting
as a whole can be viewed as a learnable front-end. Table 3 compares our proposed method with
SOTA learnable front-ends, our best setting is denoted as Mel+DiffRes (Best), which achieves the
best result on all datasets. For a fair comparison, we control the experiment setup to be consistent
with Zeghidour et al. (2021) in Mel+DiffRes. Specifically, we change the backbone to EfficientNet-
B0 (5.3 M parameters) without ImageNet pretraining. We also remove spec-augment and mixup,
except in AudioSet, and change our Mel bins from 128 to 40, except in the AudioSet experiment
where we change to 64. The result shows Mel+DiffRes can outperform SOTA learnable front-
end (Zeghidour et al., 2021; Ravanelli & Bengio, 2018b; Zeghidour et al., 2018) by a large margin.

Front-end Mel TD-fbank SincNet LEAF Mel+DiffRes Mel+DiffRes (Best)

Parameters 0 51 k 256 448 82 k 82 k

AudioSet tagging 96.8 ± 0.1 96.5 ± 0.1 96.1 ± 0.0 96.8 ± 0.1 97.0 ± 0.0 97.5 ± 0.0
Speech recognition 93.6 ± 0.3 89.5 ± 0.4 91.4 ± 0.4 93.6 ± 0.3 95.4 ± 0.2 97.9 ± 0.1
Music instrument 70.7 ± 0.6 66.3 ± 0.6 67.4 ± 0.6 70.2 ± 0.6 78.5 ± 0.7 81.8 ± 0.2

Average 87.0 ± 0.3 84.1 ± 0.4 85.0 ± 0.3 86.9 ± 0.3 90.3 ± 0.3 92.4 ± 0.1

Table 3: Comparison with SOTA learnable front-ends. All the methods use 100 FPS. Results are reported in the
percentage format. Mel+DiffRes controls the experimental settings mentioned in Section 3.2 to be consistent
with Mel, TD-fbank, SincNet, and LEAF. Mel+DiffRes (Best) use the best possible settings.
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Computational cost We assess the one-second throughput of different front-ends on various FPS
settings to compare their computational efficiency. We control the FPS of Mel and LEAF by av-
erage pooling. The computation time is measured between inputting waveform and outputting la-
bel prediction (with EfficientNet-B2). We use 128 filters in LEAF (Zeghidour et al., 2021) for a
fair comparison with 128 mel-filterbanks in Mel and DiffRes. As shown in Figure 5, our proposed
DiffRes only introduces marginal computational cost compared with Mel. The state-of-the-art learn-
able front-end, LEAF, is about four times slower than our proposed method. The majority of the cost
in computation in LEAF comes from multiple complex-valued convolutions, which are computed in
the time-domain with large kernels (e.g., 400) and a stride of one.

3.3 ANALYSIS FOR THE LEARNING OF DIFFRES

Learning activeness DiffRes does not explicitly learn the optimal frame importance score because
the ground truth frame importance is not available. Instead, DiffRes is optimized with the guid-
ance of guide loss Lguide (Equation 7), which is a strong assumption we introduced to the model.
Figure 6 shows the trajectories of the DiffRes learning activeness (defined in Section 2.2.1) during
the optimization with different FPS settings on the speech recognition task in Table 1. According
to the final converged value, DiffRes with a smaller FPS tend to be more active at learning frame
importance. This is intuitive since smaller FPS leads to more information bottleneck effects (Saxe
et al., 2019) in DiffRes. With a 25 FPS, the activeness even keeps increasing with more training
steps, indicating the active learning of DiffRes. Figure 7 shows the guide loss curve during training
with different FPS settings. Intuitively, when the FPS is small, a model needs to preserve more
non-empty frames and fewer empty frames for better accuracy. This assumption is aligned with our
experiment result, which shows the model tends to have a lower guide loss with a smaller FPS.

Data augmentation and regularization effect As reflected in the curve of ρ and Lguide in Figure 6
and 7, DiffRes is optimized along with the classifier during training. Hence DiffRes may produce
different outputs for the same training data at different epochs. This is equivalent to performing data
augmentation on the audio data. We suppose this is the main reason for the improved performance
shown in Table 1. Also, DiffRes reduces the sparsity of the audio feature by adaptive temporal
compression. This is equivalent to performing an implicit regularization (Neyshabur, 2017; Arora
et al., 2019) on the feature level, which is beneficial for the system efficiency.

Ablation studies We perform the ablation study on AudioSet (Gemmeke et al., 2017), the largest
audio dataset by far. The ablation study is performed on the mel-spectrogram with 10 ms hop size
and a 75% DiffRes dimension reduction rate (i.e., 25 FPS). Figure 8 shows the value of guide loss,
activeness, and mean average precision (mAP) with different training steps and ablation setups. As
the red solid line shows, if we remove the guide loss, the DiffRes activeness becomes very high,
but the mAP becomes worse. Meanwhile, the value of guide loss increases gradually, which is
counter-intuitive because the empty frames should not have high important scores. This indicates
guide loss is an effective prior knowledge we can introduce to the system. As the dotted green
line shows, if we remove the resolution encoding, the curve of guide loss and activeness almost
show no changes, while the mAP degrades 1.15%. This indicates resolution encoding is crucial
information for the classifier. If we remove the max aggregation function (see the dotted black line),
both the activeness and the mAP have a notable degradation. As shown by the green solid line, if
we do not apply Algorithm 1, the DiffRes activeness will converge to a small value, which means
DiffRes is not working active enough, indicating Algorithm 1 is crucial for DiffRes to take effects.
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Figure 8: The ablation study on AudioSet tagging task with 10 ms hop size and 75% dimension reduction
rate. Three figures visualize the guide loss, DiffRes activeness ρ, and the mean average precision (mAP),
respectively, with different training steps and ablation setups.

For a more detailed analysis of different hyper-parameter values in the guide loss, please refer to
Appendix A.1.1. We also provide a weakness analysis of DiffRes in Appendix A.4.

4 RELATED WORKS

Neural-network based methods have been successfully applied on audio classification and achieved
state-of-the-art performance, such as the pretrained audio neural networks (PANNs) (Kong et al.,
2020), pretraining, sampling, labeling, and aggregation based audio tagging (PSLA) (Gong et al.,
2021b), and audio spectrogram transformer (AST) (Gong et al., 2021a). We will cover two related
topics on audio classification in the following sections.

Learnable audio front-ends In recent years, learning acoustic features from waveform using train-
able audio front-ends has attracted increasing interest from researchers. Sainath et al. (2013) in-
troduced one of the earliest works that propose to jointly learn the parameter of filter banks with
a speech recognition model. Later, SincNet (Ravanelli & Bengio, 2018b) proposes to learn a set
of bandpass filters on the waveform and has shown success on speaker recognition (Ravanelli &
Bengio, 2018b;a). Most recently, (Zeghidour et al., 2021) proposes to learn bandpass, and low-
pass filtering as well as per-channel compression (Wang et al., 2017) simultaneously in the audio
front-end and shows consistent improvement in audio classification. Different from existing work on
learnable audio front-ends, which mostly focus on the frequency dimension, our objective is learning
the optimal temporal resolution. We show that our method can outperform existing audio front-ends
for audio classification on both accuracy and computation efficiency (see Table 3 and Figure 5).
Note that our proposed method can also be applied after most learnable front-ends (Zeghidour et al.,
2021), which will be our future direction.

Learning feature resolution with neural networks One recent work on learning feature resolu-
tion for audio classification is DiffStride (Riad et al., 2021), which learns stride in convolutional
neural network (CNN) in a differentiable way and outperforms previous methods using fixed stride
settings. By comparison, DiffStride needs to be applied in each CNN layer and can only learn a sin-
gle fixed stride setting, while DiffRes is a one-layer lightweight algorithm and can personalize the
best temporal resolution for each audio during inference. Recently, Gazneli et al. (2022) proposed
to use a stack of one-dimension-CNN blocks to downsample the audio waveform before the audio
classification backbone network, e.g., Transformer, which can learn temporal resolution implicitly
for audio classification. In contrast, DiffRes can explicitly learn temporal resolution on the feature
level with similar interpretability as mel-spectrogram.

5 CONCLUSIONS

In this paper, we introduce DiffRes, a “drop-in” differentiable temporal resolution learning module
that can be applied between audio spectrogram and downstream tasks. For the training of DiffRes,
our proposed guide loss is shown to be beneficial. We demonstrate over a large range of tasks
that DiffRes can improve or maintain similar performance with 25% to 75% reduction on tempo-
ral dimensions, and can also efficiently utilize the information in high-resolution spectrograms to
improve accuracy. In future work, we will move forward to evaluate DiffRes on different kinds of
time-frequency representations with more sophisticated frame importance prediction models. Also,
we believe the idea of DiffRes can work on other time series data as well for learning optimal tem-
poral resolutions, such as video or seismic data.
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6 REPRODUCIBILITY STATEMENT

We believe that we have covered the details of our proposed method with figures (see Figures 2
to 13), algorithms (see Algorithm 1 to 3) and mathematical equations (see Equation 2 to 8). As
shown in Table 9 and 8, the hyperparameters are provided as exhaustive as we can, both in the main
text and the appendix. The realization of the LEAF module we used for throughput comparison is
https://github.com/SarthakYadav/leaf-pytorch. We also open-source our code
at https://anonymous.4open.science/r/diffres-8F22 to facilitate reproducibility.
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A APPENDIX

A.1 ABLATION STUDIES

We report ablation studies on hyper-parameters and different model architectures in Appendix A.1.1
and A.1.2, respectively. In Appendix A.1.3, we also discuss whether DiffRes only learns to remove
silent frames.

A.1.1 HYPER-PARAMETERS

In this section, we provide ablation studies and discussions on the hyper-parameters in DiffRes,
including the threshold λ mentioned in Equation 7, dimension reduction rate δ, and the ϵ used in
Equation 4. We choose to conduct the experiment on the SpeechCommands dataset since it has a
reasonable amount of data and is computationally friendly on model training compared with large
datasets such as AudioSet (Gemmeke et al., 2017). The ablation study result on hyper-parameter is
presented in Table 4.

Metric Hop size (ms) δ λ=0.0 λ=0.3 λ=0.5 λ=0.8 Average /

Accuracy (%)
3 70% 98.0 97.9 98.0 98.0 98.0± 0.0 97.8
1 90% 98.0 98.0 98.0 98.0 98.0 ± 0.0 97.8
0.5 95% 97.9 97.9 97.9 98.0 97.9 ± 0.0 97.7

Activeness ρ (%)
3 70% 32.4 29.4 28.1 30.6 30.1 ± 1.6 20.6
1 90% 42.3 42.8 43.9 42.4 42.9 ± 0.6 17.9
0.5 95% 43.1 41.6 44.7 40.5 42.5 ± 1.6 8.4

Average
importance scores

on empty frames (%)

3 70% 0.2 13.2 27.2 41.0 20.4 ± 17.6 81.1
1 90% 0.2 4.6 11.8 30.5 11.8 ± 13.4 91.6
0.5 95% 0.2 3.0 11.0 17.2 7.8 ± 7.7 102.3

Guide loss applied ✓ ✓ ✓ ✓ ✓ ✗

Table 4: Ablation study on the SpeechCommands dataset. All the experiments use 100 FPS. The baseline
performance is 97.2 ± 0.1 with 10 ms hop size and δ = 0%. We report the accuracy, activeness, and average
importance score on empty frames on different hop size, dimension reduction rate δ, guide loss, and threshold
λ settings. The column “Average” denotes the average result on each metric with four different λ values.

The effect of guide loss. Table 4 shows that even without guide loss, the model can still improve
over the baseline performance (97.2 ± 0.1) using DiffRes. At the same time, applying guide loss
can further improve the activeness ρ (see Equation 4) of DiffRes and classification performance. For
example, without the guide loss, the ρ with 3 ms, 1 ms, and 0.5 ms hop size are 20.6, 17.9, and 8.4,
respectively, while after applying guide loss, the average ρ become 32.6, 45.4, and 45.0, respec-
tively. The improvement on ρ indicates guide loss can encourage the model to better discriminate
between the importance of frames. The model classification accuracy can improve by about 0.2%
after applying guide loss, which is significant enough for the SpeechCommands dataset. Moreover,
without guide loss, the model tends to predict high-importance scores on empty frames, which is
also counterintuitive.

The effect of dimension reduction rate δ With the same hop size, a smaller δ will lead to a
larger temporal dimension in the DiffRes output feature, which also leads to heavier computational
cost (see Figure 5). Even though a smaller hop size and smaller δ tend to achieve better performance
because finer temporal details can be preserved, in practice, the exact value of δ still should be
determined by the computation limit.

The effect of guide loss threshold λ As shown in Table 4, we tried different λ on different hop
sizes. The experimental result shows model accuracy is not sensitive to λ thus the value of λ usually
does not need careful finetuning.

The effect of the small value ϵ We use ϵ in Equation 4 to control the threshold of deciding whether
each frame is active or empty. In practice, we will apply SpecAug (Park et al., 2019) on the spectro-
gram, in which the empty frames Sempty in Equation 7 will be the masked time steps. To verify ϵ is
not essential for model training, We try to construct Sempty in Equation 7 on training data with five
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different ϵ values between 1 × 10−4 and 1 × 10−8. Our result shows more than 98% training data
have the same Sempty with different ϵ values, which indicates ϵ is not an essential hyper-parameter
for model training.

A.1.2 MODEL ARCHITECTURE

To verify the generality of the proposed approach, we also conduct experiments on two more state-
of-the-art architectures, CNN6 and CNN14 (Kong et al., 2020). Experiments are conducted on the
SpeechCommands dataset with the same setting as Table 1.

Hop Size (ms) δ Frames per second EfficientNet-b2 CNN6 CNN14

10 0% 100 97.2±0.1 96.4 ± 0.1 97.9 ± 0.1

10 25% 75 97.2 ± 0.0 96.4 ± 0.0 98.0 ± 0.0
10 50% 50 96.7 ± 0.2 96.1 ± 0.1 97.7 ± 0.0
10 75% 25 95.0 ± 0.3 95.7 ± 0.1 97.1 ± 0.1

6 40% 100 97.6 ± 0.0 96.8 ± 0.0 98.1 ± 0.0
3 70% 100 97.9 ± 0.1 97.2 ± 0.1 98.1 ± 0.0
1 90% 100 97.8 ± 0.1 97.2 ± 0.0 98.1 ± 0.2

Table 5: Ablation study on the model architectures. We use δ to denote the dimension reduction rate. Large δ
indicates less computational cost.

Table 5 shows our ablation study result on different architectures. Three results exhibit a similar
trend as Table 1 and Table 2. All three models can maintain a similar or better performance after
reducing 25% of the temporal dimensions. With the same number of frames per second, namely
the same computational cost, all the models show clear improvement with a smaller hop size. This
improvement indicates DiffRes is effective in selecting informative frames across different architec-
tures. We do not experiment with other non-neural architecture because the optimization of DiffRes
requires gradient back-propagations (LeCun et al., 2015).

A.1.3 REMOVE EMPTY FRAME OR SELECT IMPORTANT FRAME?

To study whether DiffRes learns to remove only silent frames, or if it would be also effective when
the signal has consistent energy, we design a pitch classification experiment on the NSynth dataset
following (Zeghidour et al., 2021). We will refer to this task as NSynth-Pitch. We design the pitch
classification task for the following two reasons: (i) The data in NSynth is mostly instrumental
sounds, which have stable spectral patterns and are highly redundant for the pitch classification task.
Thus NSynth-Pitch is an ideal use case of DiffRes. (ii) Our statistic shows about 19.7% frames in
this dataset are silent frames, thus any dimension reduction rate δ larger than 19.7% means DiffRes
need to remove some non-empty frames to benefit classification accuracy.

Frames per second / Dimension reduction rate 25/δ = 75% 50/δ = 50% 75/δ = 25%

AvgPool 90.5± 0.3 91.3± 0.2 92.6± 0.2

Proposed 92.1± 0.1 92.4± 0.2 92.6± 0.1

Table 6: Experiment result on the pitch classification task on the NSynth dataset. All the experiments use a 10
ms hop size. The baseline performance is 92.5± 0.2, with 10 ms hop size and 100 FPS.

Table 6 shows our result on the NSynth-Pitch task. All the settings use a dimension reduction rate
δ > 19.7%, which means DiffRes have to remove part of the non-empty frames. If we reduce the
temporal dimension with AvgPool, the performance will degrade significantly, while our proposed
method can remain similar performance even after reducing 75% temporal dimensions. This result
suggests DiffRes not only remove the silent frames but also preserves important frames for classi-
fication. The high activeness ρ (see Equation 4) in the non-empty frames shown in Figure 6 and
Table 4 also indicate the model has learned to distinguish the importance of the non-empty frames.

16



Under review as a conference paper at ICLR 2023

A.2 AUTOMATIC AUDIO CAPTIONING WITH DIFFRES

To further verify the generality of our proposed method, we conduct an extra set of experiments on
the automatic audio captioning (AAC) task (Mei et al., 2022b), which can automatically generate
natural language descriptions for audio clips. We use the architecture proposed by Mei et al. (2021)
and the same DiffRes setting introduced in Section 3 for the experiments. Our experiments are on
the AudioCaps dataset. We will try to reduce the input feature size of the AAC task and observe the
change in model performance.

We conduct experiments on AudioCaps (Kim et al., 2019), which is the largest public audio cap-
tioning dataset with around 50 000 10-second audio clips, and is divided into three splits: training,
validation and testing sets. The audio clips are annotated by humans through the Amazon Mechani-
cal Turk (AMT) crowd-sourced platform. Each audio clip in the training sets has a human-annotated
caption, while each clip in the validation and test set has five ground-truth captions.

For model evaluation, we use the metrics calculated based on n-gram matching (n-gram refers to
n consecutive words) following previous works (Liu et al., 2022d;b). BLEUn measures the preci-
sion of n-gram matching and a sentence-brevity penalty is introduced to penalize short sentences.
ROUGEl calculates an F-measure by considering the longest common subsequence between the can-
didate and ground truths. METEOR calculates uni-gram precision and recall, taking into account
the surface forms, stemmed forms, and meanings of words. CIDEr computes the cosine similarity of
weighted n-grams between candidates and references. SPICE parses each caption into scene graphs
and an F-measure is calculated based on the matching of the graphs. SPIDEr is the average of SPICE
and CIDEr and is used as the official ranking metric in DCASE challenge (Mei et al., 2022a).

δ (≈FLOPs reduction) BLEU-1 BLEU-4 METEOR ROUGEl CIDEr SPICE SPIDEr

0% 0.658 0.235 0.232 0.473 0.643 0.168 0.406
25% 0.665 0.247 0.228 0.471 0.657 0.171 0.414
50% 0.674 0.266 0.230 0.475 0.646 0.167 0.407
75% 0.659 0.252 0.225 0.478 0.649 0.164 0.407

Table 7: Applying DiffRes on the automatic audio captioning task, which exhibits a similar trend with audio
classification tasks shown in Table 1 and Table 2. By removing 25% of the input dimensions, the performance
on some metrics even got improved. After removing 75% of the input temporal dimensions with DiffRes, the
model can still retain a comparable result.

The result in Table 7 shows that applying DiffRes on the AAC task can significantly reduce the
computational cost while preserving similar performance on most of the metrics. We perform ex-
periments with four different temporal dimension reduction rate settings, including 0%, 25%, 50%,
and 75% reductions. The reduction on the temporal dimension also significantly benefits model
throughput at the same time (see Figure 5). After removing 25% temporal dimensions, the perfor-
mance of AAC even shows an improvement, which might be due to the data augmentation effect
mentioned in Section 3. After removing 75% of the input temporal dimensions, the model can still
achieve on-par results compared with the baseline 0% reduction. The 75% reduction setting can
even improve five metrics out of the total seven metrics. The result of the AAC task further indicates
our proposed method is generalizable to other similar audio tasks.
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A.3 FIGURES

Mel-spectrogram Proposed ConvAvgPool

sheila sheila sheila

Figure 9: Comparison of mel-spectrogram, DiffRes feature, and ConvAvgPool learned feature. The DiffRes
feature preserves more details in the original mel-spectrogram and is more interpretable than the ConvAvgPool
feature.
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(a) Class-wise improvement after changing hop size from 40 ms to 10 ms.
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(b) Accuracy and the classifier computational complexity with different hop
size settings on the speech recognition task. The black dotted lines show the
accuracy, and complexity with a 10 ms hop size.

Figure 10: Pilot studies. a) The mAP improvement for each class in the AudioSet after decreasing the hop
size from 40 ms to 10 ms. The violin plot on the right side shows the improvement distribution, where the
red dashed line is the median value. The inconsistency of improvement in different sound classes indicates
they need different temporal resolutions to achieve optimal classification performance. a) The accuracy can
be improved with a smaller hop size at the cost of computation. DiffRes can achieve similar improvements
without increasing computational complexity.
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A.4 WEAKNESS ANALYSIS

Table 2 shows DiffRes does not improve the model performance on 1 ms setting on most datasets.
This may be due to the insufficient receptive field of the convolutions in DiffRes, which is around 41
time steps. By comparison, the temporal dimension of X on AudioSet is t = 3333 and t = 10 000
with 3 ms and 1 ms hop size, respectively. DiffRes may not effectively capture the useful information
with only 41 temporal receptive field in this case. Future work will address this problem by designing
the resolution prediction model with a large receptive field.

A.5 DATASET AND EXPERIMENT DETAILS

Dataset Learning rate Epoch Batchsize Learning rate scheduler
(start epoch, gamma, every n epoch) GPU(s)

Audioset 1.0× 10−4 30 22 (11, 0.5, 5) 4
FSD50K 5.0× 10−4 40 15 (21, 0.5, 5) 1
ESC50 2.5× 10−4 80 32 (41, 0.95, 1) 1

SpeechCommands 2.5× 10−4 60 128 (25, 0.9, 1) 1
NSynth 1.0× 10−4 30 48 (11, 0.85, 1) 1

Table 8: Hyper-parameter setting. We run all the experiments with an ADAM optimizer (Kingma & Ba, 2014)
and GeForce RTX 2080 Ti GPU(s).

Task Audio
tagging

Audio
tagging

Environmental
sound

Speech
recognition

Music
instrument

Dataset AudioSet FSD50K ESC50 SpeechCommands NSynth

Classes 527 200 50 35 11
Train examples 1 912 134 36 799 2000 84 771 289 205
Test examples 18 887 10 231 - 10 700 12 678

Duration (mean,std) 9.91, 0.50 7.63, 7.82 5.00, 0.00 0.98, 0.07 4.00, 0.00
Pad to length 1000 3000 500 98 400

Evaluation metric mAP mAP Accuracy Accuracy Accuracy
5-fold cross-validation - - ✓ - -

Class re-balancing ✓ ✓ - - -
SpecAug ✓ ✓ ✓ ✓ ✓

Table 9: Detailed information of the datasets we used in this paper. We perform padding to unify the data
length. The last row shows the mel-spectrogram temporal dimension we used for batched training.

Frame importance estimation module Hϕ ConvAvgPool Encoder

Parameters (k) 82.4 493.8
Kernel size 5 5

ResConv1D blocks
(input chnanel, onput chnanel) (128, 64), (64, 32), (32, 16), (16, 8), (8, 1) (128, 128), (128, 128), (128, 128)

Table 10: The structure of the frame importance estimation module and the front-end structure of ConvAvg-
Pool (baseline method in Table 1). The structure of ResConv1D is discussed in Section 2.2.1
.
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A.6 ALGORITHM FORMULATION OF DIFFRES

Algorithm 1: Inplace warp matrix update

Inputs : W in Equation 5. W satisfies
∑t,T

i=1,j=1 Wi,j ≤ t.

Output: The updated W that satisfies both
∑t

i=1 Wi,: = 1 and
∑t,T

i=1,j=1 Wi,j ≤ t.
1 i← 1; j ← 1; s← 0 ▷ i, j for indexing, s store the sum value in each row.
2 while i < t and j < T do
3 if Wi,j > 0 then
4 s← s+Wi,j ; ▷ Add up the weights in row i.
5 j ← j + 1; ▷ Move to the next column in row i.
6 else
7 Wi,j ← 1− s; ▷ Assign a weight to Wi,j to make

∑
Wi,: = 1

8 Wi+1,j ←Wi+1,j −Wi,j ; ▷ The assigned weight is taken from Wi+1,j .
9 i← i+ 1; ▷ Move to row i+ 1 in column j.

10 s← 0; ▷ Moved to the next row. Reset the row sum value.

Algorithm 2: Perform audio classification with the DiffRes layer

Inputs : x ∈ RL: One-dimensional waveform. Fϕ: DiffRes layer. Gθ: Classifier backbone.
Output: ŷ: Classification result.

1 XF×T ←− Ql,h(x); ▷ Project input to the Fourier domain with fixed temporal resolution.
2 OF×t, EF×t ←− Fϕ(X); ▷ DiffRes layer (see Algorithm 3). EF×t is the resolution encoding.
3 ŷ ←− Gθ(O, E); ▷ Classifier forward propagation.
4 if training then
5 loss = Lbce + Lguide; ▷ Lguide is the loss function for DiffRes (See Equation 7)
6 backprop;

Algorithm 3: DiffRes layer Fϕ

Inputs : X ∈ RF×T : Fix-time-resolution spectrogram. E ∈ RF×T : Positional encoding.
Hϕ: Frame importance estimation network. t ∈ Z: Target temporal dimensions.

Output: O ∈ RF×t: Two-dimensional representation with adaptive temporal resolution.
E ∈ RF×t: Resolution encoding.

1 s1×T ←− Norm(σ(Hϕ(X))); ▷ Calculate frame importance (see Equation 3).
2 W t×T ←− α(s); ▷ Construct a warp matrix (see Equation 5 and Algorithm 1).
3 OF×t ←− β(X,W ); ▷ Warping frames with the warp matrix (see Equation 6).
4 EF×t ←− EW⊤; ▷ Encode the information of W into E
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A.7 FAST IMPLEMENTATION OF ALGORITHM 1

We provide a pure matrix operation-based version of Algorithm 1 for efficient model optimization
on GPUs. Given the output of Equation 5, W0, we will process it into a matrix W with the same
shape so that

∑t
i=1 Wi,: = 1 and

∑t,T
i=1,j=1 Wi,j ≤ t. Figure 11 provides an example of the fast

implementation discussed in this section.

!
[0.3,0.9,0.8]
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1 0 0
0 1 1

#-
0.3 0 0
0 0.9 0.8
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&
0 0.7 0
0 0 0

'
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- → .! → .
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(12)
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/ = 3, 1 = 2

Pad

(
−1, 1
−1, 1

Figure 11: An example of the Algorithm 1 vectorized implementation. The number inside the parentheses
means the equation number.

First, we calculate the cumulative sum of the distance between one and the total input weight as-
signed to each output frame, given by

P = cumsum(1t −
T∑

W0)1
⊤
T , (9)

where 1t denotes the all-one column vector with shape t. For each row in W0, only the first non-
negative element and the first zero after the last non-negative element need update (see Algorithm 1).
And we locate those elements by performing the following convolution: convolving (no padding)
M with a kernel K of shape t× 2, given by

Q = Conv1D(M ,K), K =

−1 1
−1 1
... ...
−1 1


t×2

, M = sgn(W0), (10)

where sgn(·) stands for a sign function. We pad a column of zero on the first row of the output Q.
The output Q ∈ {0, 1,−1} is a matrix with shape t × T . Then we calculate the value that needs
updates with P and Q, given by

U = P ⊙ (−Q)+,V =

[
0T

P1:t−1 ⊙Q+
2:t

]
(11)

where P1:t−1 = (Pij)i∈[1:t−1],j∈[1,t] denotes slicing of the matrix row, 0T is the all-zero row vector
with length T , and ⊙ denotes element-wise multiplication. Note that here the start index of a matrix
is one. U and V store the values that need addition and subtraction for each element in W0. The
final warp matrix is calculated by

W = U − V +W0. (12)
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A.8 EXAMPLES

Fix-temporal-resolution 
mel-spectrogram
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Frame importance
estimation

Warp Matrix

Adaptive-temporal-resolution
spectrogram

(25 FPS)

Resolution encoding

sheila left forward

Figure 12: Examples of DiffRes adaptive-temporal-resolution spectrogram on the SpeechCommands dataset.
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Figure 13: Examples of DiffRes adaptive-temporal-resolution spectrogram on the AudioSet dataset.
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