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ABSTRACT

Controllable semantic image editing enables a user to change entire image at-
tributes with a few clicks, e.g., gradually making a summer scene look like it was
taken in winter. Classic approaches for this task use a Generative Adversarial Net
(GAN) to learn a latent space and suitable latent-space transformations. However,
current approaches often suffer from attribute edits that are entangled, global im-
age identity changes, and diminished photo-realism. To address these concerns,
we learn multiple attribute transformations simultaneously, integrate attribute re-
gression into the training of transformation functions, and apply a content loss
and an adversarial loss that encourages the maintenance of image identity and
photo-realism. We propose quantitative evaluation strategies for measuring con-
trollable editing performance, unlike prior work, which primarily focuses on qual-
itative evaluation. Our model permits better control for both single- and multiple-
attribute editing while preserving image identity and realism during transforma-
tion. We provide empirical results for both natural and synthetic images, high-
lighting that our model achieves state-of-the-art performance for targeted image
manipulation.

1 INTRODUCTION

Semantic image editing is the task of transforming a source image to a target image while modifying
desired semantic attributes, e.g., to make an image taken during summer look like it was captured
in winter. The ability to semantically edit images is useful for various real-world tasks, including
artistic visualization, design, photo enhancement, and targeted data augmentation. To this end,
semantic image editing has two primary goals: (i) providing continuous manipulation of multiple
attributes simultaneously and (ii) maintaining the original image’s identity as much as possible while
ensuring photo-realism.

Existing GAN-based approaches for semantic image editing can be categorized roughly into two
groups: (i) image-space editing methods directly transform one image to another across do-
mains (Choi et al., 2018; 2020; Isola et al., 2017; Lee et al., 2020; Wu et al., 2019; Zhu et al.,
2017a;b), usually using variants of generative adversarial nets (GANs) (Goodfellow et al., 2014).
These approaches often have high computational cost, and they primarily focus on binary attribute
(on/off) changes, rather than providing continuous attribute editing abilities. (ii) latent-space edit-
ing methods focus on discovering latent variable manipulations that permit continuous semantic
image edits. The chosen latent space is most often the latent space of GANs. Both unsupervised
and (self-)supervised latent space editing methods have been proposed. Unsupervised latent-space
editing methods (Härkönen et al., 2020; Voynov & Babenko, 2020) are often less effective at pro-
viding semantically meaningful directions and all too often change image identity during an edit.
Current (self-)supervised methods (Jahanian et al., 2019; Plumerault et al., 2020) are limited to ge-
ometric edits such as rotation and scale. To our knowledge, only one supervised approach has been
proposed (Shen et al., 2019) – developed to discover semantic latent-space directions for binary
attributes. As we show, this method suffers from entangled attributes and often does not preserve
image identity during manipulation.

Contributions. We propose a latent-space editing framework for semantic image manipulation that
fulfills the aforementioned primary goals. Specifically, we use a GAN and employ a joint sampling
strategy trained to edit multiple attributes simultaneously. To disentangle attribute transformations
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Figure 1: Real image manipulation on scene (top two rows, photo from Flickr) and face (bottom
two rows, unseen image from CelebA-HQ) using pretrained StyleGAN2 (Karras et al., 2019b): We
reconstruct the real images (col.1) by finding a latent vector with the best inversion result (col.2) on
StyleGAN2 (Abdal et al., 2019). After that, we transform the latent vectors for single- and multiple-
attribute manipulations (col.3-6). Note that unlike ours, the baseline method (Shen et al., 2019)
either changes image identity or confounds semantic properties, or both.

in the latent space of GANs, we integrate a regressor to predict the attributes that an image exhibits.
The regressor also permits precise control of the manipulation degree and is easily extended to
multiple attributes simultaneously. In addition, we incorporate a perceptual loss (Li et al., 2019) and
an adversarial loss that helps preserve image identity and photo-realism during manipulation.

We compare our method to several popular frameworks, from existing image-to-image translation
methods (Choi et al., 2020; Wu et al., 2019; Zhu et al., 2017a) to latent space transformation-based
approaches (Shen et al., 2019; Voynov & Babenko, 2020). We mention that prior work primarily
uses qualitative evaluation like the one in Fig. 1. In contrast, we propose a quantitative evaluation to
measure controllability. Both qualitative and quantitative results provide evidence that our approach
outperforms prior work in terms of quality of the semantic image manipulation while maintaining
image identity.

2 RELATED WORK

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have significantly improved
realistic image generation in recent years (Brock et al., 2018; Jolicoeur-Martineau, 2019; Karras
et al., 2017; 2019a;b; Park et al., 2019; Zhang et al., 2018). For this, a GAN formulates a 2-player
non-cooperative game between two deep nets: (i) a generator that produces an image given a random
noise vector in the latent space, sampled from a known prior distribution, usually a normal or a
uniform distribution; (ii) a discriminator whose input is both synthetic and real data, which is to be
differentiated.

Semantic image editing seeks to automate image manipulation of semantics. Encouraged by the
success of deep nets, recent works have applied deep learning methods for semantic image editing
tasks such as style transfer (Li et al., 2017; Luan et al., 2017), image-to-image translation (Choi et al.,
2018; 2020; Isola et al., 2017; Lee et al., 2020; Wang et al., 2018; Wu et al., 2019; Zhu et al., 2017a)
and discovering semantically meaningful directions in a GAN latent space (Härkönen et al., 2020;
Jahanian et al., 2019; Plumerault et al., 2020; Shen et al., 2019; Voynov & Babenko, 2020). Note
that our task is an extended version of semantic image editing that requires more comprehensive
control to satisfy user-desired operations. Therefore, most aforementioned approaches do not meet
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Figure 2: Our overall framework (top row) and 3 training strategies different from prior work
(bottom row). In (a), G takes z and an edited latent vector separately to synthesize images.
T = {d1, ...,dN} are the trainable latent-space directions and ε represents transformation extent.
Original and edited image attributes, α and α̂, are predicted by the pre-trained regressor R. The
discriminator loss Ldisc (the discriminator D not shown due to limited space), the regression loss
Lreg, and the perceptual loss Lcontent are used to update T . We explain (b-d) in Sec. 3.2.

the requirements. Nonetheless, we categorize the approaches most relevant to our task into two
groups: (i) image editing via manipulation in image space, and (ii) image editing via latent space
navigation.

Image-space editing using GANs directly manipulates an image for targeted editing. Early
work (Isola et al., 2017) used GANs to implement semantic translations between two image do-
mains with paired data, e.g., day to night. Follow-up work focused on multi-modal (Bhattarai &
Kim, 2020; Choi et al., 2018; 2020; Lee et al., 2020; Wang et al., 2018; Wu et al., 2019) and un-
paired image domain translation (Zhu et al., 2017a). In this case, they primarily consider binary
(on/off) attribute changes, regardless of whether the process is dynamic, for example, day to night.

Latent-space editing via GANs has received an increasing amount of recent interest. Most prior
work focused on identifying semantically meaningful directions in the latent space of GANs, so
that shifting latent vectors towards these directions achieves the desired image manipulation. Re-
cent papers found semantics in the latent space of GANs, such as color transformations and camera
movements (Jahanian et al., 2019), or face attribute changes (Shen et al., 2019), such as smile. Other
work considered unsupervised methods (Härkönen et al., 2020; Voynov & Babenko, 2020) to dis-
cover interpretable latent space directions. However, additional challenges inherent to unsupervised
manipulation of the latent space arise, and have not been addressed in prior work, e.g., direction
quality with regard to degree control and image identity preservation.

3 METHOD

3.1 PROBLEM STATEMENT

We consider controllable semantic image editing via latent space navigation in GANs. We begin
with a fixed GAN model that consists of a generator G and a discriminator D. The input of G
is a latent vector z ∈ Rm from a latent space Z . Here, m is the dimensionality of the latent
space. GivenN attributes, we aim to discover semantically meaningful latent-space GAN directions,
T = {d1, . . . ,dN}, to manipulate the attributes of synthetic images G(z) with an assigned step
size ε = {ε1, . . . , εN}, where di ∈ Rm for all i ∈ {1, . . . , N}. In the end, each attribute of an
edited image can be changed with the corresponding degree ε fromα = {α1, . . . , αN}, the original
attributes of G(z) predicted by a regressor R.
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3.2 PROPOSED APPROACH

We provide an overview of our method in Fig. 2 (a), and further illustrate how our approach differs
from prior work in Fig. 2 (b-d).

Overview. As shown in Fig. 2 (a), we employ a GAN model consisting of a generator G and a
discriminator D (not shown due to limited space), as well as a regressor R, all of which are pre-
trained. Our goal is to find latent directions T that provide attribute specific image edits. At each
training step, G takes z and an edited latent vector referred to as z′. We follow prior work which
suggests that direction vectors in latent space of GANs permit image editing (Jahanian et al., 2019).
Formally, given a transformation degree ε, we obtain the latent-space edit as z′ = z + Tε =

z +
∑N
i=1 εidi. G provides the recovered and edited images G(z) and G(z′), which are separately

processed by the regressor R to predict attribute values. The original attributes of G(z) are α =
R(G(z)). The (pseudo-) ground truth and predicted attribute of G(z′) are α′ and α̂′, respectively,
where α′ = α+ ε and α̂′ = R(G(z′)).

Intuitively, the goal of T is to transform z by adding semantically meaningful information such
that the corresponding output image G(z′) exhibits attribute changes ε from α. In practice, we
normalize the range of attribute values to [0,1], i.e., both α and α′ ∈ [0,1]. During training, we
maintain the unit range by controlling the given ε. Formally, ε is drawn from a distribution Dε
uniform in [−1, 1]N while considering the constraint that 0 ≤ α+ ε ≤ 1.

Objective function. To find T we minimize the weighted objective:

min
T
L , λ1Lreg + λ2Ldisc + λ3Lcontent. (1)

Note, the objective is only used for optimizing T , while the other modules remain fixed. Hyperpa-
rameters λ1, λ2, and λ3 adjust the loss terms.

The regression lossLreg assesses whether T performs the transformations indicated by ε. We express
the regression loss via a binary cross entropy:

Lreg = Ez∼Z,ε∼Dε
[−α̂′ logα′ − (1− α̂′) log (1−α′)]. (2)

Note thatα′ is from the distribution generated by z and ε. Please refer to the appendix C.1 for more
details on this distribution.

The second loss term Ldisc is computed using the discriminator D and measures the quality of the
generated images, i.e.,

Ldisc = Ez′∼Z′|z [log(1−D(G(z′)))] . (3)

Here we refer to the domain of z′ via Z ′, which is conditioned on z. We write this using Z ′|z.

Lastly, we use a content loss Lcontent, often also referred to as perceptual loss. It is designed to
estimate the distance between two images and it is employed to maintain the image identity during
the transformation. Specifically, we use the content loss term

Lcontent = Ez∼Z,z′∼Z′|z
∑

i∈Dcontent

‖Fi(G(z′))− Fi(G(z))‖22, (4)

where Fi(·) denotes a feature function which extracts intermediate features from images. Dcontent
indicates the layers of a pre-trained model which are used as features. We approximate the afore-
mentioned expectations by empirical sampling. We defer algorithm details to Appendix A.

Joint-distribution sampling and training. The regressor operates in a multi-label setting, i.e.,
each data possesses multiple attributes. To ensure the disentanglement of attribute edits we sample
synthetic images from the entire data distribution and find all transformations at once (illustrated in
Fig. 2 (b,c) right). In contrast, Shen et al. (2019) prepare training samples on the two opposing data
subsets with regards to an attribute, e.g., no clouds vs. many clouds, and find the directions with N
one-vs-one classifiers (sketched in Fig. 2 (b,c) left).

Transformation module T . We study two types of transformations T : (i) global and (ii) local. A
global transformation T refers to a semantic latent-space transformation identical for all z during
inference. This is illustrated via parallel red dashed arrows in Fig. 2 (d) left. These global directions
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Figure 3: Comparison of image-space editing approaches with respect to “removing clouds”
(top), “enhancing night” (middle) and “adding snow” (bottom). The original images (col.1) are
followed by a given editing task. From (a-e): (a) CycleGAN (Zhu et al., 2017a), (b) StarGAN
v2 (Choi et al., 2020), (c) RelGAN (Wu et al., 2019), (d) DRIT++ (Lee et al., 2020), and (e) Ours.

+ Smile +Age

+ Night + Snow

Original (a) (b)

Original
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Figure 4: Comparison of latent-space editing approaches on StyleGAN2. (a) Shen et al. (2019);
(b) Voynov & Babenko (2020); (c) Ours. Original synthetic image (col.1); edited results of a seman-
tic manipulation noted on top (col.2-4; col.5-7). Shen & Zhou (2021) mention that “age,” “gender,”
and “glasses” directions are hard to disentangle potentially due to data bias, while our results suggest
a better direction disentanglement.

are commonly used (Härkönen et al., 2020; Jahanian et al., 2019; Shen et al., 2019; Viazovetskyi
et al., 2020). However, a globally identical direction might not serve all data. In contrast, a local
transformation T is a function of z which provides various directions for different z (in Fig. 2 (d)
right, shown via non-parallel red arrows). Formally, di = f iθ(z), where f iθ is implemented via a
deep net. In Sec. 4 we show that the local transformation T succeeds on failure cases of the global
transformation.

4 EXPERIMENTS

We introduce datasets, implementation details, evaluation metrics, and show results next.

Datasets. We evaluate the proposed approach on two types of datasets: (i) face datasets –
FFHQ (Karras et al., 2019a), CelebA (Liu et al., 2018) and CelebA-HQ (Karras et al., 2017), com-
monly used in prior work (Härkönen et al., 2020; Karras et al., 2017; 2019a;b; Shen et al., 2019;
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Viazovetskyi et al., 2020). (ii) natural scene datasets – Transient Attribute Database (Laffont et al.,
2014) and MIT Places2 data (Zhou et al., 2017), which contain attributes suitable for continuous
semantic image editing. We briefly introduce the scene datasets:

• Transient Attribute Database (Laffont et al., 2014): It contains 8,571 scene images with 40 at-
tributes in 5 categories including lighting (e.g., “bright”), weather (e.g., “cloudy”) , seasons (e.g.,
“winter”), subjective impressions (e.g., “beautiful”), and additional attributes (e.g., “dirty”).
Each attribute is annotated with a real-valued score between 0 and 1, where 0 indicates absence
of the attribute.

• MIT Places2 data (Zhou et al., 2017): Using the provided category annotations (i.e., in-
door/outdoor and natural/artificial), we select the natural outdoor scenes, obtaining a total of
144,543 images.

Implementation details. We choose λ1 = 10, λ2 = 0.05, λ3 = 0.05 in Eq. (1) and compute the
perceptual loss using the conv1 2, conv2 2, conv3 2, conv4 2 activations in a VGG-19 network (Si-
monyan & Zisserman, 2014) pre-trained on the ImageNet dataset (Russakovsky et al., 2015). We
train T for 50k iterations with a batch size of 4. An Adam optimizer is used with a learning rate
of 1e-4. For the latent space Z in the proposed method we use the W space of StyleGAN2 and
the Z space of PGGAN. For the attribute regressor R, we adopt a ResNet-50 (He et al., 2016) for
attribute prediction on the Transient Attribute (Laffont et al., 2014) and the CelebA (Liu et al., 2018)
data. The last fully connected layer in the ResNet-50 is replaced by a linear layer with an output
dimension of 40. We train the regressors for 500 epochs and use the weights with the best validation
mean squared error (MSE) on CelebA and the best test MSE on the Transient Scene Database. The
GAN follows the StyleGAN2 architecture and is pretrained with 200k iterations on a union of the
two natural scene datasets using a resolution of 256 × 256. The training batch size is 32 and an
Adam optimizer is used with a learning rate of 2e-3. For the face datasets, we use FFHQ pre-trained
weights1 of StyleGAN2, and CelebA-HQ weights of PGGAN2.

Baselines. We compare our approach to several popular image-to-image translation ap-
proaches (Choi et al., 2020; Wu et al., 2019; Zhu et al., 2017a) and latent space direction discovery
methods (Shen et al., 2019; Voynov & Babenko, 2020). Since Choi et al. (2020); Shen et al. (2019);
Zhu et al. (2017a) cannot deal with continuous attributes, we split the data into 2 domains using a
threshold value of 0.5 for each of the 40 attributes. Afterward, the models are trained on 2 contrast
domains, e.g., with or without a certain attribute. We use the official code of all baseline methods
and rigorously follow their training steps. Note that work by Voynov & Babenko (2020) is unsuper-
vised, i.e., the latent-space directions are human interpreted. To avoid bias during the selection of
directions, we use the attribute regressor to automatically identify the most significant directions that
can edit predetermined attributes. The details of preparing the baselines are given in Appendix C.2.

Evaluation metrics. There is no good numerical metric to evaluate image editing (Shen et al.,
2019; Voynov & Babenko, 2020). In an attempt to address this concern, we automate quantitative
evaluation based on a property that editing of attributes should maintain image identity. To achieve
this, we employ a popular image identity recognition model3 pre-trained on the VGGface2 data (Cao
et al., 2018). Cosine similarity is used to represent the similarity between paired original and edited
images (Cao et al., 2018). In addition, we evaluate changes of the other independent attributes using
the pre-trained regressor.

4.1 RESULTS ON NATURAL SCENE DATASETS

Comparison to image-to-image translation: As shown in Fig. 3 (a-d), we observe image-to-image
translation to perform poorly when editing image details (e.g., removing clouds). Moreover, some-
times artifacts (orange spots in (a) and (b)) are introduced. In contrast, our model shows overall
compelling transfer performance on all these attributes.

Comparison to latent-space translation: Inspecting Fig. 1, we observe our approach to improve
upon work by Shen et al. (2019) in attribute edit quality and number of artifacts. Similarly, in

1https://github.com/rosinality/stylegan2-pytorch
2https://pytorch.org/hub
3https://github.com/ox-vgg/vgg face2
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Figure 6: Real image synthesis with multiple attributes. Shen et al. (2019) (top row); ours
(bottom row): original real image (col.1); inverted result (col.2) from Abdal et al. (2019); edited
results (col.3-7) with target attribute changes shown at the bottom.

Fig. 4, we notice that our method performs well in attribute editing, and has a better ability to
preserve image identity when adding “night” and “snow.” We show additional analysis and results
in Appendix D and E.1.

Quantitative evaluation: We follow a user study proposed by Kowalski et al. (2020) to evaluate
controllability of our scene edits. Concretely, given an image I = G(z), we generate paired images
(I+, I−) that have opposing values for attribute n. 40 users took the test to answer: (a) the presence
and strength of the attribute n in I+, and (b) if I+ and I− are identical when ignoring the attribute.
Both types of questions have options on a 5-level scale from 0 (“not at all”) to 1 (“totally”). Ideally,
the response to question (a) should be 1 while we expect replies for (b) to be 0. We test performance
of image editing with “clouds”, “sunrise&sunset”, “night” and “snow” attributes. A question ex-
ample and statistical results over 50 image pairs are shown in Fig. 5. Statistical evidence supports
our claim that the proposed approach performs well with regards to image edits while maintaining
image identity.

4.2 RESULTS ON FACE DATASETS

Manipulation results on StyleGAN2: The comparison on real images shown in Fig. 1 suggests that
our method works well for attribute edits. Further, the synthetic image edit results in Fig. 4 indicate
that our edits are disentangled, while the baselines unexpectedly add “glasses” when aging the face.
To increase the task difficulty, we edit real images with multiple attribute changes simultaneously.
Results are summarized in Fig. 6, which highlights the controllability of our edits.

Quantitative evaluation: We measure the changing degrees of the other independent attributes and
the image identity when editing attributes with various degrees ε̂. Here ε̂ is a predicted changing
degree on a target attribute byR. For a thorough comparison, we evaluate the performance on 3 seg-
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Smile Hair color Smile + Hair color

|ε̂| (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9]

Shen et al. .202
± 5e-2

.204
± 6e-2

.224
± 4e-2

.256
± 1e-2

.272
± 2e-2

.277
± 2e-2

.299
± 5e-3

.318
± 1e-2

.329
± 3e-2

Voynov et al. .115
± 6e-3

.211
± 4e-2

.277
± 7e-3

.162
± 1e-2

.166
± 3e-2

.177
± 9e-3

.155
± 4e-3

.220
± 4e-2

.284
± 2e-2

Ours .085
± 4e-2

.084
± 3e-3

.098
± 4e-3

.075
± 7e-4

.083
± 5e-3

.084
± 5e-3

.088
± 7e-3

.111
± 4e-3

.134
± 4e-3

Table 1: Quantitative evaluation of numerical changes on the other semantically independent
attributes (lower is better). (first row) edited attributes; (second row) the absolute changing range
of the edited attributes; (bottom three rows) averages (up) and standard deviations (down) in each
row.

Smile Hair color Smile + Hair color

|ε̂| (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9]

Shen et al. .918
± 4e-3

.916
± 1e-3

.907
± 5e-3

.887
± 3e-2

.877
± 4e-2

.874
± 4e-2

.877
± 6e-3

.819
± 3e-2

.801
± 4e-2

Voynov et al. .979
± 2e-3

.896
± 4e-3

.869
± 9e-3

.955
± 6e-2

.909
± 4e-2

.904
± 3e-2

.940
± 9e-3

.829
± 4e-2

.811
± 3e-2

Ours .995
± 7e-4

.994
± 1e-3

.992
± 9e-4

.993
± 5e-4

.993
± 1e-4

.993
± 2e-4

.992
± 9e-4

.986
± 2e-3

.984
± 4e-4

Table 2: Quantitative evaluation on image identity preservation (higher is better). Notation is
identical to Tab. 1.

ments according to the absolute value of ε̂, i.e., |ε̂| in the range of (0, 0.3], (0.3, 0.6] and (0.6, 0.9].
Evaluation on “smile,” “hair color,” and “smile+hair color” attributes are shown in Tab. 1 and Tab. 2.
The “hair color” attribute includes “blond” and “black” colors where we average the results on both
cases. For multiple attribute editing, “smile + hair color,” we evaluate the case that both the two tar-
geted attributes change within the |ε̂| range. We use around 1k original images, generate 10k edited
images with regard to each target attribute, and repeat the experiment 3 times. The averaged results
and the standard deviations presented in Tab. 1 and Tab. 2 suggest that our model outperforms the
baselines with regard to disentanglement and image identity preservation.

Manipulation results on PGGAN: For PGGAN, we use local transformations parameterized by
three-layer perceptrons with leaky ReLU activations. We show the detailed MLP architecture in
Appendix B.1. Editing results in Fig. 7 suggest that the proposed approach is able to continuously
edit faces with various semantic attributes. We also study the differences between local and global
directions in Fig. 11. Particularly, a global T (in Fig. 11 (a)) is a matrix where each column i is given
by di. For a local T (in Fig. 11 (b)) di is given by a fully-connected layer with identical input and
output dimensions. Fig. 11 (c) and (d) use the MLP components with the aforementioned structure.
We use Lreg to train T in (c), while the total loss L is used for (d). The results in Fig. 11 indicate
that a local T , with either linear or MLP structure works well for face attribute edits. Moreover, our
loss L stabilizes the training process of T .

(a) + Black hair (b) + Smile
Figure 7: Continuous editing results on PGGAN (Karras et al., 2017) with the “black hair” (left)
and the “smile” (right) attribute.
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Original (a) Global 𝑻
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(b) Local 𝑻
Linear + ℒ

(d) Local 𝑻
MLP + ℒ

(c) Local 𝑻
MLP  + ℒ!"#

+ Smile:

Figure 8: Comparison of global and local transformations on PGGAN. Original synthetic images
(col.1); the edited results on enhancing “smile” (col.2-5): (a) a global T , (b) a local T , with linear-
layer direction functions, (c) a local T with MLP direction functions trained via Lreg loss only, and
(d) a local T with MLP direction functions training via the entire loss L.

5 CONCLUSION

We propose an effective approach to semantically edit images by transferring latent vectors towards
meaningful latent space directions. The proposed method enables continuous image manipulations
with respect to various attributes. Extensive experiments highlight that the model achieves state-of-
the-art performance for targeted image manipulation.
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APPENDIX

A. ALGORITHM

The overall procedure of the proposed method in Algorithm 1, taking local transformation T as an
example.

Algorithm 1 Training Procedure
Input: A pre-trained GAN with G, D, and input noise distribution z ∼ Z; a pre-trained regressor

R for predictions on N attributes; an initialized T ; max iteration number M .
1: for iteration m = 1, . . . ,M do
2: Sample random noise z ∼ Z , and ε
3: Compute internal attributes for a synthetic image, i.e., α = R(G(z))
4: Compute the actual shift value δ = CLIP (α+ ε, (0, 1))−α
5: Compute the transformed latent vector z′ = z + T (z)δ
6: Compute I ′ = G(z′), α′ = α+ δ
7: Compute attribute predictions α̂′ = R(I ′)
8: Compute the loss L
9: Update T

10: end for
Return: T

B. METHOD DETAILS

B.1. METHOD ON PGGAN

We apply a multi-layer perceptron (MLP) to parameterize a latent space path on PGGAN. Fig. 9
shows the MLP architecture that we use.

linear, 512

leaky ReLU (0.2)

linear, 1024

linear, 512

leaky ReLU (0.2)

𝑧

𝑑!

Figure 9: Example MLP architecture on PGGAN.

In practice, we find that normalizing the direction vector di helps preserve image identity during
manipulation on PGGAN. Formally, the transformed latent vector can be written as

z′ = z + λε
di
‖di‖

, (5)

where λ is a weight adjusting the direction scale. We set λ = 3.
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C. EXPERIMENTAL DETAILS

C.1 THE EXPECTATION IN LREG

We define the regression loss Lreg as
Lreg = Ez∼Z,ε∼Dε [−α̂′ logα′ − (1− α̂′) log (1−α′)], (6)

where α′ is from the distribution generated by z and ε. We now discuss how we derive the distri-
bution of α′. To begin, z is sampled from Z and ε is sampled from Dε. The other variables are
generated by z and ε:

z′ = z + Tε

α′ = R(G(z)) + ε

α̂′ = R(G(z′)).

As a result, the distribution of α′ is dependent on Z and Dε.

C.2 UNSUPERVISED LATENT-SPACE EDITS OF GANS

Voynov & Babenko (2020) learn a matrix where each column is a direction. Yet, Voynov & Babenko
(2020) require a human to interpret the learnt directions. To avoid bias during the selection of
directions in our comparison, we use the pre-trained attribute regressor to automatically identify
the most significant directions. Concretely, we first generate 100 images and edit them with target
attributes of various degrees. Next, we use the regressorR on the edited images to predict attributes.
We choose for an attribute edit the direction on which all the edited images have the overall highest
changing response on the target attribute.

D. ADDITIONAL ANALYSIS

D.1 GAN INVERSION PERFORMANCE

We use an optimization-based GAN inversion method (Abdal et al., 2019) to find optimal latent
vectors that can best reconstruct the real images via the generator. To examine the effect of GAN
inversion performance on our approach, we terminated the GAN inversion approach at different
training steps, i.e., 500 and 4,000 iterations. We show averaged reconstruction MSE loss in Tab. 3.
In this case, we reconstructed 20 real face images and edited their “Smile” and the “Blond hair”
attribute with 10 different degrees ε, i.e., 200 images in total for each attribute editing. Quantitative
evaluation on image identity preservation and numerical changes on the other semantically indepen-
dent attributes for the reconstructed face images are given in Tab. 4. The results in Tab. 4 suggest
that the performance of the GAN inversion method affects our method to some degree. Visualized
inversion and editing results are shown in Fig. 10. The qualitative results suggest that our method
still works remarkably well on the worse inversion image.

Table 3: Averaged MSE loss of reconstructing 20 real face images. The GAN inversion
method (Abdal et al., 2019) was trained and terminated at 4k and 500 iterations with averaged
MSE loss in the right column.

Training iterations MSE

4k iters 1657.40
500 iters 3096.75

D.2 ABLATION STUDY

We conduct an ablation study with single- and joint-distribution training strategies in our method.
Specifically, single-distribution sampling refers to learn one attribute direction at a time. In contrast,
joint-distribution training means to train multiple attribute directions simultaneously. Fig. 11 shows
the visualized results with the two training strategies on the face and the scene dataset. We observe
that the model with the single-distribution training strategy generates more unexpected changes as
the manipulation degree is getting large, e.g., darker scene colors by the model trained for a single
attribute, shown in Fig. 11 (b).
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Table 4: Quantitative evaluation of identity preservation (ID) and attribute changes (Attr). We
edited two attributes for the real face images, i.e., “Smile” (col.2-7) and “Blond hair” (col.8-13).

Smile Blond hair
ID (↑) Attr (↓) ID (↑) Attr (↓)

|ε̂| (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9] (0, .3] (.3, .6] (.6, .9]
4k iters .997 .994 .986 .077 .108 .147 .988 .979 .94 .1 .112 .16
500 iters .996 .99 .982 .087 .138 .165 .978 .936 .914 .122 .158 .185

Original

50
0 

ite
rs

4k
ite

rs

+ Smile− Smile

Inversion Editing results

Figure 10: Visual comparisons of “Smile” editing with different reconstructed images: (col.1)
Original image; (col.2) reconstructed images with 500 (top) and 4k (bottom) inversion optimization
steps; (col.3-6) results of editing the “Smile” attribute.

E. ADDITIONAL RESULTS

E.1 SCENE IMAGE EDITS ON STYLEGAN2

We show more results of our method on continuous scene image edits in Fig. 12 - 15. The seman-
tically edited attributes include “clouds” (Fig. 12), “brightness” (Fig. 13), “snow” (Fig. 14), and
“summer” (Fig. 15).

F. BROADER IMPACT

From an application perspective, our method is effective and efficient with regard to image manip-
ulation and photo-realism, which we hope will contribute to 2D and 3D controllable image editing
tasks. Moreover, usage of deep nets to learn mappings between spaces is still not well understood,
e.g., mappings between low-dimensional space and image space in classification and generation
tasks. We hope our method provides inspiration for representation learning and a first step for a new
view with regard to deep net interpretability.

Obviously, we are aware of the dangers of automated image manipulation. Similar to deepfake tasks
whose aim is to produce fabricated images and videos that appear to be real, improper use of image
manipulation approaches might raise negative issues with regard to information security, property,
etc. Beyond that, edited image detection techniques Wang et al. (2019a;b) are proposed recently to
avoid the aforementioned issues, which promotes growth in both domains.
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(a) Visual comparisons of single- and
joint-distribution sampling on the face dataset
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(b) Visual comparisons of single- and
joint-distribution sampling on the scene dataset

Figure 11: Visual comparisons of single- and joint-distribution training. Single-distribution
training refers to train one attribute direction at a time, while joint-distribution training means to
train multiple attribute directions simultaneously.

Figure 12: Additional results. Continuous image edits using StyleGAN2 (Karras et al., 2019b) on
the “clouds” attribute.

Figure 13: Additional results. Continuous image edits using StyleGAN2 (Karras et al., 2019b) on
the “brightness” attribute.

Figure 14: Additional results. Continuous image edits using StyleGAN2 (Karras et al., 2019b) on
the “snow” attribute.
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Figure 15: Additional results. Continuous image edits using StyleGAN2 (Karras et al., 2019b) on
the “summer” attribute.
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