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Abstract

3D deep learning models are shown to be as vulnerable to adversarial examples
as 2D models. However, existing attack methods are still far from stealthy and
suffer from severe performance degradation in the physical world. Although 3D
data is highly structured, it is difficult to bound the perturbations with simple
metrics in the Euclidean space. In this paper, we propose a novel ϵ-isometric (ϵ-
ISO) attack to generate natural and robust 3D adversarial examples in the physical
world by considering the geometric properties of 3D objects and the invariance to
physical transformations. For naturalness, we constrain the adversarial example
to be ϵ-isometric to the original one by adopting the Gaussian curvature as a
surrogate metric guaranteed by a theoretical analysis. For invariance to physical
transformations, we propose a maxima over transformation (MaxOT) method that
actively searches for the most harmful transformations rather than random ones
to make the generated adversarial example more robust in the physical world.
Experiments on typical point cloud recognition models validate that our approach
can significantly improve the attack success rate and naturalness of the generated
3D adversarial examples than the state-of-the-art attack methods.

1 Introduction

Deep neural networks (DNNs) have achieved unprecedented performance on numerous tasks, in-
cluding 2D image classification [33, 25, 27] and 3D point cloud recognition [48, 49, 68]. However,
DNNs are vulnerable to adversarial examples [59, 20] — inputs crafted by adding imperceptible
perturbations to original examples that can cause misclassification of the victim model. Adversarial
examples are prevalent in various domains beyond images, including texts [28], speeches [84] and
3D objects [73]. As deep 3D point cloud recognition has been adopted in safety-critical applications,
such as autonomous driving [5, 85], robotics [65, 94], medical image processing [60], it has garnered
increasing attention to studying the adversarial robustness of 3D point cloud recognition models [6].

However, the existing adversarial attacks on point cloud recognition models are still far from stealthy
and suffer from drastic performance degeneration in the physical world. There is usually a trade-off
between the stealthiness and the real-world attacking performance, making it challenging to achieve
the best of both worlds. Early methods [79, 73, 42] adopt gradient-based attacks to add, remove, and
modify points, but they are limited to digital-world attacks. The KNN attack [63] and the GeoA3

attack [69] constrain the smoothness of the adversarial point clouds and reconstruct adversarial
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Figure 1: An illustration of adversarial objects crafted by KNN attack [63], GeoA3 attack [69], Mesh Attack [88]
and our ϵ-ISO attack against the PointNet model: KNN attack and GeoA3 attack can produce unnatural
adversarial objects (and often low success rates); Mesh Attack can generate a lot of distortions; while ϵ-ISO
attack improves the naturalness of the 3D adversarial sample and ensures the consistency between the intrinsic
geometric properties of the adversarial and original 3D objects [8].

meshes from the point clouds that can be 3D-printed in the physical world. Although these works
demonstrate successful physical attacks, point cloud reconstruction introduces large noises and errors,
resulting in low attack success rates and unnaturalness of the adversarial objects in the physical
world. Mesh Attack [88] is recently proposed to perturb the mesh representation of 3D objects,
which improves the success rate but often creates large distortions that can be easily detected by
humans as anomalies, as illustrated in Fig. 1. Overall, it is difficult to achieve both the naturalness
and effectiveness of 3D adversarial attacks in the physical world, which we think is largely due to the
lack of an appropriate metric to characterize the naturalness of 3D data.

To address these issues, we propose an ϵ-isometric (ϵ-ISO) attack method to generate natural and
robust 3D adversarial examples in the physical world against point cloud recognition models. The
ϵ-ISO attack improves the naturalness of the 3D adversarial example by constraining it to be ϵ-
isometric (see Definition 1) to the original one, which guarantees the consistency between the
intrinsic geometric properties of two 3D objects [8]. We theoretically demonstrate that Gaussian
curvature (see Definition 2) can be used to provide a sufficient condition to ensure that two surfaces
are ϵ-isometric. Due to the computable and differentiable nature of Gaussian curvature, we adopt it
as a new regularization loss to practically generate natural 3D adversarial examples. To improve the
robustness of 3D adversarial examples under physical transformations, we further propose a maxima
over transformation (MaxOT) method that actively searches for the most harmful transformations
rather than random ones [1] for optimization. Armed with Bayesian optimization that provides better
initialization of the transformations, MaxOT is able to find a set of diverse worst-case transformations,
leading to improved performance of the 3D adversarial examples in the physical world.

We conduct extensive experiments to evaluate the performance of our method on attacking typical
point cloud recognition models [48, 49, 68]. Results demonstrate that, in comparison with the alter-
native state-of-the-art attack methods [63, 69, 88], ϵ-ISO attack achieves higher success rates, while
making the generated adversarial examples more natural and robust under physical transformations.
A physical-world experiment is conducted by 3D-printing the adversarial meshes and re-scanning the
objects for evaluation, which also validates the effectiveness of our method.

2 Related work

Deep learning on 3D point clouds. Deep 3D point cloud recognition [48, 21, 74, 76, 81, 50, 61]
has emerged in recent years with various applications in many fields, such as 3D object classifica-
tion [55, 37, 83, 86], 3D scene segmentation [22, 67, 77, 26], and 3D object detection in autonomous
driving [97, 78]. One of the pioneering works is PointNet [48], which directly applies a multilayer
perceptron to learn point features and aggregates them in an efficient way using a max-pool module.
PointNet++ [49] and a large number of later works [13, 43, 80] are built on PointNet to further
capture fine-grained local structure information from the neighborhood of each point. Recently, some
works have focused on designing special convolutions on 3D domains [2, 39, 44, 62] or developing
graph neural networks [18, 52, 53, 68] to improve point cloud recognition.

3D adversarial attacks. Following the previous studies on adversarial machine learning in the 2D
image domain [59, 34, 4, 10, 19, 82, 11, 12], many works [73, 3, 41] apply adversarial attacks to the
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3D point cloud domain. Xiang et al. [73] proposed point generation attacks by adding a limited number
of synthetic points to the point cloud. Recently, more studies [70, 93] use gradient-based attack
methods to identify key points from the point cloud for deletion. More point perturbation attacks [24,
45, 91, 9] learn to perturb the xyz coordinates of each point through a C&W framework [4] based
on metrics defined in the Euclidean space. Zhao et al. [92] attack by the isometric transformations
in the Euclidean space such as rotation. It is worth noting that we consider isometric mappings
between surfaces, which is essentially different from [92]. Later works [35, 87] further apply iterative
gradient methods to achieve more advanced adversarial perturbations. Besides, other works consider
generative models [96], 3D data attacks [64, 57], adversarial robustness [89, 58], attacks against
LIDAR [36, 30], autonomous driving [56, 90], backdoor attacks [38, 75], etc., in the 3D domain.
However, the existing attacks on 3D point cloud recognition are still far from stealthy and the only
three methods that consider the physical-world attacks [63, 69, 88] are not very effective. In this
paper, we surpass the performance of previous methods by proposing a novel ϵ-isometric (ϵ-ISO)
attack method to generate natural and robust 3D adversarial examples in the physical world.

3 Methodology

We now formally present ϵ-ISO attack. We first present the general problem formulation, and
then describe how ϵ-ISO attack enhances the imperceptibility and robustness of the generated 3D
adversarial samples, respectively.

3.1 Problem formulation

To generate 3D adversarial objects in the physical world, it is more straightforward to perturb the mesh
representation of 3D objects rather than point clouds [88] since the reconstruction process can incur
large errors [63, 69]. A mesh M = (V,F) is an approximate shape representation of its underlying
surface, where V := {vi}nv

i=1 is the set of nv vertices of xyz coordinates, and F := {zi}
nf

i=1 is the set
of nf triangle faces represented by the indices of vertices. We let S denote a differentiable sampling
process such that P := S(M) ∈ X is the point cloud obtained by randomly sampling on the mesh
surface, where X is the set of all point clouds. We let y ∈ Y denote the corresponding ground-truth
label of M as well as P .

In this paper, we focus on the challenging targeted attacks against deep 3D point cloud classification
models [48, 49, 68]. Given a point cloud classifier f : X → Y , the goal of the attack is to generate
an adversarial mesh Madv = (Vadv,F) for the original one M with vertex perturbations such that
the sampled point cloud Padv := S(Madv) will be misclassified by f as the target class y∗(̸= y).
In general, the perturbation should be small to make the adversarial mesh Madv inconspicuous
under human inspection. Thus, the optimization problem of generating the adversarial mesh can be
generally formulated as

min
Madv

Lf (S (Madv) , y
∗) + β · R (Madv,M) , (1)

where Lf is the loss that facilitates the misclassification of Padv to y∗, R is the regularization term
that minimizes a perceptibility distance between Madv and M, and β is a balancing hyperparameter
between these two losses. In this paper, we try to develop a stealthy and robust attack method by
proposing a new regularization loss R based on Gaussian curvature with theoretical guarantees to
remain the naturalness as well as a new attacking loss Lf to enhance the robustness of the generated
3D adversarial objects under physical transformations. R and Lf will be introduced in the following.

3.2 ϵ-ISO attack

Most of the existing 3D adversarial attacks only consider the constraints R defined in the Euclidean
space [15, 81, 23]. The generated adversarial examples have noticeable point outliers that cause
spikes to appear on the object’s surface, thus losing the naturalness. Moreover, the outliers are more
easily removed and defended against. The main reason is that the existing methods do not consider
the geometric properties of the 3D objects. In differential geometry, isometric mapping guarantees the
consistency of the intrinsic geometric features of two objects [8]. Therefore, we propose a constraint
loss R based on ϵ-isometric mapping to restrict the naturalness of 3D adversarial objects. We first
give the definition of ϵ-isometric below.
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Figure 2: An illustration of ϵ-isometric attack. (a): Original mesh. (b) and (c): Adversarial meshes generated
by KNN & GeoA3 attack and Mesh Attack, respectively. They consider only the constraints defined in the
Euclidean space, and the curve lengths (shown as the black curves) of the generated adversarial examples differ
significantly from those of the original samples, which do not satisfy ϵ-isometric and lose naturalness. (d):
Adversarial mesh generated by ϵ-ISO. We consider the geometric features of 3D objects and constrain the 3D
adversarial example to be ϵ-isometric to the original one, such that the curve lengths of the generated adversarial
samples vary little and have naturalness.

Definition 1. Let S and S̃ denote two surfaces of R3. A diffeomorphism φ : S → S̃ is called an
ϵ-isometric mapping if there exists a constant n such that it takes any local curve C in S to a curve
C̃ = φ(C) in S̃ satisfying (1 − nϵ)s(C) < s(C̃) < (1 + nϵ)s(C) where s(·) is the length. The
surfaces S and S̃ are then said to be ϵ-isometric.

As shown in Fig. 2, Fig. 2(a) is the original mesh, Fig. 2(b) is the adversarial mesh generated by KNN
attack and GeoA3 attack, and Fig. 2(c) is the adversarial mesh generated by Mesh Attack. These
three methods only consider the constraints defined in the Euclidean space, and the curve lengths of
the generated adversarial samples differ greatly from those of the original samples, which are not
ϵ-isometric and lose naturalness. Fig. 2(d) is the adversarial mesh generated by our proposed ϵ-ISO
attack. We consider the geometric features of 3D objects to generate natural adversarial examples by
constraining them to be ϵ-isometric to the original examples (i.e., the curve length of the resulting
adversarial examples varies very little). However, it is intractable to directly optimize the adversarial
mesh to be ϵ-isometric as the original one. Therefore, we give the definition of the Gaussian curvature
of the surface from [8].
Definition 2. Let S be a surface of R3 parameterized by r := r(u, v) = [x(u, v), y(u, v), z(u, v)],
where (u, v) ∈ R2. We let ru, rv denote the partial derivatives of r w.r.t. u and v, ruu, ruv, rvv
denote the second partial derivatives of r, and ∧, ⟨·, ·⟩ denote the outer product and inner product,
respectively. The parametrization thus defines unit normal vectors n := ru∧rv

|ru∧rv| of the surface S. We

denote the eigenvalues of the coefficient matrix of the Weingarten map
[

L M
M N

] [
E F
F G

]−1

as k1 and k2, where E = ⟨ru, ru⟩, F = ⟨ru, rv⟩ and G = ⟨rv, rv⟩ are coefficients of the first
fundamental form and L = ⟨ruu,n⟩, M = ⟨ruv,n⟩ and N = ⟨rvv,n⟩ are coefficients of the second
fundamental form. The Gaussian curvature is defined as K = k1k2 = LN−M2

EG−F 2 .

Remark 1. The Gaussian curvature intrinsically measures the bending degree of the surface reflected
by the Gaussian mapping. Let the area element of the surface S be dA = ⟨ru ∧ rv,n⟩ dudv and the

area element under the Gaussian mapping g :
S ∈ R3 → S2

r(u, v) → n(u, v)
be dA′ = ⟨nu ∧ nv,n⟩ dudv.

From nu ∧ nv = Kru ∧ rv (proof in Appendix D), we obtain

lim
D→P

Area (g(D))

Area (D)
= lim

D→P

∫
g(D)

dA′∫
D
dA

= lim
D→P

∫
D
KdA∫

D
dA

= K(P ). (2)

Eq. (2) illustrates that the geometric meaning of Gaussian curvature is the ratio of the area of the
domain at the point P on the surface S and the area of the domain at the corresponding point under
the Gaussian mapping, i.e., the bending degree of the surface reflected by the Gaussian mapping.

Based on Definitions 1 and 2, we have the following theorem.
Theorem 1 (proof in Appendix A). Let S and S̃ denote two surfaces of R3; φ : S → S̃ denote a
diffeomorphism that takes a point v in S to point v′ = φ(v) in S̃; and K(·) be the Gaussian curvature
of the points. If |K(v)−K(v′)| < ϵ for any point v, then the surfaces S and S̃ are ϵ-isometric.

4



Theorem 1 indicates that to make two surfaces ϵ-isometric, one can constrain their Gaussian curvatures.
Since the Gaussian curvature is computable and differentiable w.r.t. vertices, we adopt it to constrain
the naturalness of 3D adversarial meshes as

RGauss (Madv,M) =
1

nv

∑
v∈V,v′=φ(v)∈Vadv

∥K (v′)−K(v)∥22 , (3)

where φ(·) is the corresponding mapping between vertices in V and Vadv. We follow the Gauss-
Bonnet formula [7] to calculate the Gaussian curvature of the vertices as

K(v) =
2π −

∑
i∈N(v) θi(v)

A(v)
, (4)

where A(·) is the area of the vertex neighborhood, i.e., the area of the polygonal region joined by the
consecutive midpoints of triangles incident on the vertex of interest, N(v) is the set of faces containing
v, and θi(v) is the interior angle of the face at vertex v. Note that the value of

∑
i∈N(v) θi(v) for a

plane is 2π and the Gaussian curvature is 0. The more curved the surface, the smaller the value of∑
i∈N(v) θi(v) and the larger the Gaussian curvature.

In addition, we prevent the generated adversarial meshes from self-intersecting by using the Laplace
loss [16], denoted as RLap (Madv), which represents the distance between a vertex and its nearest
neighbor’s center of mass, and the edge length loss [66], denoted as Redge (Madv), which represents
the smoothness of the surface. Thus, the overall regularization term can be expressed as:

R (Madv,M) = λ1 · RGauss (Madv,M) + λ2 · RLap (Madv) + λ3 · Redge (Madv) , (5)

where λ1, λ2 and λ3 are balancing hyperparameters.

3.3 Improving the robustness under physical transformations

Besides concerning the naturalness of 3D adversarial examples, we further enhance their robustness
under physical transformations, such as 3D rotations, affine projections, cutouts, etc. A common
method is the expectation over transformation (EOT) algorithm [1], which optimizes the adversarial
example over the distribution of different transformations. However, it is still challenging to maintain
the attacking performance under various physical transformations. As shown in the experiments, after
using the EOT algorithm, there are still some transformations that the generated adversarial examples
are not robust to, leading to a reduction of the attack success rate.

To address this issue, our key insight is to consider the worst-case transformations rather than their ex-
pectation, since if the adversarial examples are resistant to the most harmful physical transformations,
they can also resist much weaker transformations, inspired by adversarial training [46]. Therefore,
we propose a maxima over transformation (MaxOT) algorithm to actively search for physical
transformations that maximize the misclassification loss. The loss function Lf is thus formulated as:

Lf (S(Madv), y
∗) = max

T∗⊂T
Et∈T∗Lce (t(S(Madv)), y

∗) , (6)

where T contains all possible transformations, T ∗ is a subset of transformations in T , and Lce is the
cross-entropy loss. Note that in Eq. (6) we consider a subset of transformations T ∗ rather than a
single one because the loss landscape w.r.t. transformations is largely non-convex and contains many
local maxima [14]. Thus we aim to find a set of diverse worst-case transformations. By integrating
Eq. (6) into Eq. (1), it forms a minimax optimization problem, where the inner maximization aims
to find physical transformations that maximize the cross-entropy loss, while the outer minimization
aims to optimize the adversarial example with the worst-case transformations.

3.3.1 Bayesian optimization

To solve problem (6), we search for the worst-case transformations one by one. Given an initialized
transformation, we perform gradient-based optimization to update the transformation parameters
(e.g., angles for rotations). However, randomly selecting initialized transformations is ineffective
since the random initialization may drop into regions of weak transformations, which limits the
exploration of the space of all transformations. To address this issue, we propose to adopt the
Bayesian optimization [17, 54] to better break the dilemma between exploration and exploitation to
find more appropriate initialized transformations.
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Figure 3: Adversarial objects obtained by KNN attack, GeoA3 attack, Mesh Attack, and our ϵ-ISO attack
against the PointNet model. The KNN and GeoA3 attack produce adversarial samples with dense irregular
deformations. The Mesh Attack produces distortions and self-intersecting surfaces (i.e., black surfaces). None
of them guarantees naturalness, while ϵ-ISO attack is more natural.

Bayesian optimization is an efficient method for solving global optimization problems consisting of
two key components: a surrogate model, such as a Gaussian process (GP) [51] or a Bayesian neural
network (BNN) [32], which models the unknown objective; and an acquisition function α(·), which
is maximized by balancing exploitation and exploration to recommend the next query location. We
choose GP as a surrogate model, which provides a Bayesian posterior distribution to describe the
unknown function Lce (t(S(Madv)), y

∗). We use the expected improvement (EI) [29, 47] acquisition
function, which measures the expected improvement of each point with respect to the current best
value. Then, the unknown function is sampled by maximizing the acquisition function to better
explore the space of all transformations by selecting the next query point in the region where the
prediction is high and the model is very uncertain.

As shown in the overall algorithm (in Appendix B), we update the Bayesian posterior distribution of
the objective f using the observations obtained from the previous iterations in the gradient descent
process. Then, we maximize the EI acquisition function αEI (t;Dn) to find the initial transformation.
From the initialization, we optimize the transformation parameters by gradient-based method to solve
problem (6). This process is repeated for the number of transformations in the MaxOT algorithm.

4 Experiments

4.1 Experimental setup

Dataset. We use the ModelNet40 [71] dataset in our experiments. This dataset contains 12,311
CAD models with 40 common object semantic categories in the real world. We use the official
split [48, 49], where 9,843 examples are used for training and the remaining 2,468 examples are used
for testing. We follow [88] and get closed manifolds. For adversarial attacks, we follow [69] and
take all the instances of the 40 categories that are well classified in the ModelNet40 testing set.

Victim models. Following [69, 88, 40], we select three commonly used point cloud classification
networks as the victim models, i.e., PointNet [48], PointNet++ [49], and DGCNN [68].

Evaluation metrics. To quantitatively evaluate the effectiveness of our proposed ϵ-ISO attack, we
measure the attack success rate (ASR). Besides, to measure the imperceptibility of different attack
methods, we use the Chamfer distance Dc [15] and Gaussian curvature distance Dg (i.e., Eq. (3)) as
evaluation metrics. We also report the attack success rates on several existing defenses [79, 95, 72]
and under the physical world to further validate the superiority of our ϵ-ISO attack.

Implementation details. We use Adam [31] to optimize the objective of our proposed ϵ-ISO attack.
We use a fixed learning schedule of 250 iterations, where the learning rate and momentum are
respectively set as 0.01 and 0.9. We assign the weighting parameters λ1 = 1.0, λ2 = 0.2 and
λ3 = 0.8. The balancing parameter β is initialized as 1,500 and automatically adjusted by conducting
10 runs of binary search following [4]. We uniformly sample 1,024 points from the adversarial mesh.
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Table 1: Quantitative results of KNN attack, GeoA3 attack, Mesh Attack, and our proposed ϵ-ISO attack against
different models. Our proposed ϵ-ISO attack outperforms all existing methods in terms of attack success rate
(ASR) and imperceptibility. We adopt the Chamfer distance Dc [15] and Gaussian curvature distance Dg as the
evaluation metrics.

Model PointNet PointNet++ DGCNN
ASR Dc Dg ASR Dc Dg ASR Dc Dg

KNN 14.78% 0.0034 0.0096 6.24% 0.0027 0.0122 4.17% 0.0036 0.0125
GeoA3 19.65% 0.0066 0.0037 11.20% 0.0192 0.0031 8.24% 0.0172 0.0042

Mesh Attack 88.10% 0.0054 0.0048 94.79% 0.0045 0.0046 66.79% 0.0051 0.0055
ϵ-ISO 98.45% 0.0031 0.0004 99.58% 0.0040 0.0004 84.16% 0.0032 0.0009

78.47%

77.90%

78.64%

78.48%

70.72%

69.34%

Figure 4: The attack success rate w.r.t number of iterations curves of EOT and MaxOT against PointNet,
PointNet++, and DGCNN. Our proposed MaxOT algorithm can lead to a higher attack success rate with a small
number of iterations than that of EOT with a large number of iterations.

4.2 Pseudo physical attack

In this section, we compare our proposed ϵ-ISO attack with existing methods [63, 69, 88] that generate
adversarial objects under the setting of white-box targeted attack, including the KNN attack [63],
GeoA3 attack [69], and Mesh Attack [88]. In Table 1, we compare different methods under the
measures of attack success rate (ASR), Chamfer distance Dc [15] and Gaussian curvature distance
Dg . Our proposed ϵ-ISO attack outperforms all existing methods in terms of attack success rate and is
almost optimal in terms of Chamfer distance Dc and Gaussian curvature distance Dg , the evaluation
metrics for measuring imperceptibility. These comparisons confirm the effectiveness of our proposed
regularization term based on Gaussian curvature, to simultaneously achieve the strongest adversarial
attack and the most natural perturbations.

Fig. 3 shows the adversarial objects generated by different methods. The KNN attack and GeoA3

attack produce dense irregular deformations on the mesh surface, losing smoothness and regularity.
The Mesh Attack creates severe deformations and spurs, which are easily perceived by humans
visually. In addition, the severe irregularities and distortions generated by the Mesh Attack can
lead to self-intersecting phenomena in the mesh of 3D objects, i.e., the black surfaces in Fig. 3.
These self-intersecting surfaces can prohibit 3D-printing the adversarial objects in the physical world.
By considering geometric features of the object instead of using metrics in the Euclidean space,
our ϵ-ISO attack produces adversarial samples without dense deformations, bursts, distortions, and
self-intersection phenomena, while are stealthy and natural.

4.3 Robustness under physical transformation

To further verify the superior robustness of our proposed MaxOT algorithm under transformations in
the physical world, we compare MaxOT to EOT. In Table 2, we compare the different methods under
rotations to calculate the attack success rate, Chamfer distance Dc and Gaussian curvature distance
Dg . Our proposed MaxOT algorithm outperforms the EOT algorithm in terms of attack success rate.
This comparison confirms our insight that the resistance to the most harmful physical transformations
is better than random ones.
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Table 2: Quantitative results of attacking different models using EOT and MaxOT. Our proposed MaxOT
algorithm outperforms the EOT algorithm in terms of attack success rate.

Model PointNet PointNet++ DGCNN
ASR Dc Dg ASR Dc Dg ASR Dc Dg

EOT 76.20% 0.0074 0.0009 74.28% 0.0094 0.0007 65.72% 0.0068 0.0041
MaxOT 82.50% 0.0074 0.0009 84.14% 0.0094 0.0006 72.40% 0.0067 0.0039

Table 3: The attack success rate of various methods against PointNet under
different defense methods. Our proposed ϵ-ISO attack performs better under
stronger defenses, and the attack success rate under DUP-Net and IF-Defence
is higher than all other attacks.

no defence SRS SOR DUP-Net IF-Defence

KNN 32.15% 24.34% 13.36% 11.25% 7.46%
GeoA3 40.87% 3.34% 33.22% 11.97% 1.04%

Mesh Attack 93.39% 87.38% 89.93% 78.28% 49.06%
ϵ-ISO 99.81% 79.85% 85.42% 78.55% 60.51%

Table 4: The success rate
of attacking the PointNet
model in the physical world
using the EOT algorithm
and our proposed MaxOT al-
gorithm.

PointNet
EOT 72.36%

MaxOT 80.12%

In Fig. 4, we give the success rate w.r.t. iterations curves for EOT and MaxOT of different victim
models. Our proposed MaxOT algorithm is always ahead of the EOT algorithm at different number of
iterations. Moreover, we note that our proposed MaxOT algorithm can lead to higher attack success
rate with a small number of iterations than that of EOT with a large number of iterations. Therefore,
our proposed MaxOT algorithm is more efficient.

4.4 Performance under defense

We further verify the effectiveness of our ϵ-ISO attack under the existing defense methods. To
evaluate the adversarial robustness of various attacks, we use the following defense methods: Simple
Random Sampling (SRS) [79], Statistical Outlier Removal (SOR) [95], DUP-Net defense [95], and
IF-Defense [72]. We give the attack success rate of various attacks under each defense method in
Table 3. Under simple defenses such as SRS and SOR, the attack success rate of Mesh Attack is
higher than our ϵ-ISO attack.

However, under more advanced and effective defenses such as IF-Defence, the attack success rate
of our ϵ-ISO attack is higher than all other attacks. This is because KNN attack and GeoA3 attack
generate adversarial objects through dense local deformation, generating outliers that are easily
detected by the defense methods. The Mesh Attack generates adversarial objects through large
anomalous deformation, resulting in fewer local outliers that have advantages under simple statistical
defenses such as SRS and SOR, but cannot effectively attack the IF-Defence with better defense
performance. Our ϵ-ISO attack produces adversarial samples without local outliers or anomalous
deformations, with better attack performance, especially under IF-Defence.

4.5 Physical attack

We randomly select 100 instances in Table 2, 50 of which are generated by the MaxOT algorithm and
the other 50 are the corresponding instances generated by the EOT algorithm. The selected meshes
are printed by the Stratsys J850 Prime 3D printer and scanned by the EinScan-SE 3D scanner. The
attack success rate in the physical world is shown in Table 4, where our algorithm almost completely
maintains the effect of the pseudo physical world attack. None of the previous algorithms could
maintain the pseudo physical world attack well in the physical world because the dense deformation
and self-intersection phenomena would interfere with the scanning and prevent the scanner from
correctly scanning the surface of the adversarial samples generated by their algorithms. In contrast,
the surface of the adversarial sample produced by our ϵ-ISO attack is smooth and natural and can be
scanned correctly by the scanner, preserving the adversarial effect. In addition, the improvement on
the attack success rate of our proposed MaxOT algorithm against the EOT algorithm is also reflected
in the physical world. Our proposed MaxOT algorithm is necessary to improve the robustness of
the adversarial sample under the transformation of the physical world. The adversarial meshes, 3D
printed physical meshes, and scanned point clouds are shown in Fig. 5.
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Adversarial
Mesh

Physical
Mesh

Scanned
Point Cloud

Prediction bed → stool
(✔)

chair → cup
(✔)

table → piano
(✔)

bookshelf → curtain
(✔)

tent → vase
(✔)

table → bench
(✔)

Figure 5: Visualization of the ϵ-ISO attack in the physical world. The adversarial mesh is randomly selected
from Table 2. After 3D-printing and scanning, the point cloud obtained from the scanning is used to attack the
PointNet. A green check mark indicates a successful attack. The adversarial samples we generated are natural
and stealthy, and because of their smoothness and naturalness, can be scanned correctly by the 3D-scanner,
maintaining the adversarial effect in the physical world.

Figure 6: The effects of the penalty parameter λ1 of the Gaussian curvature consistency regularization term.
When λ1 is large, the attack success rate decreases rapidly. When λ1 is small, the naturalness of the adversarial
objects is worse. The default λ1 = 1 gives the best result for balancing the attack success rate and stealthiness.

4.6 Ablation studies

To investigate the effect of the penalty parameter λ1 of the Gaussian curvature consistency regulariza-
tion term on the attack success rate and imperceptibility metrics, we adjust the value of λ1 to perform
quantitative and qualitative experiments. The plots in Fig. 6 show that when λ1 is tuned high, the
attack success rate decreases rapidly. When λ1 is adjusted lower, the values of the evaluation metrics
increase and deteriorate rapidly. The qualitative visualization results in Appendix C demonstrate the
irregularity of the 3D objects as λ1 is turned down. Our default value of λ1 = 1 gives the best result
for balancing the attack success rate and stealthiness. To investigate the effectiveness of Bayesian
optimization to find the initial transformations, we test the attack success rate for randomly selecting
the initial transformation in the MaxOT algorithm. As shown in Appendix C, the improvement of
using Bayesian optimization over random initialization in the MaxOT algorithm is significant. This
confirms the importance of Bayesian optimization methods in our approach. More ablation studies
can be found in Appendix C.

5 Conclusion

In this paper, we propose a novel ϵ-isometric (ϵ-ISO) attack method to generate natural and robust 3D
adversarial examples in the physical world. We improve the naturalness of 3D adversarial examples
by constraining it to be ϵ-isometric to the original one. Through a theoretical analysis, we adopt

9



the Gaussian curvature as the surrogate metric. We further propose a maxima over transformation
(MaxOT) algorithm armed with Bayesian optimization that actively searches for the most harmful
transformations rather than random ones to make the generated adversarial example more robust
in the physical world. Extensive Experiments on typical point cloud recognition models validate
the effectiveness of our approach in terms of attack success rate and naturalness compared to the
state-of-the-art methods. A potential negative societal impact of our work in that the malicious
adversaries may adopt our method to generate 3D adversarial objects in the physical world, which
can cause severe security/safety consequences for real-world applications. Thus it is imperative to
develop more robust 3D recognition models, which we leave to future work.
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