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Abstract

We propose Referral-Augmented Retrieval001
(RAR), a simple technique that concatenates002
document indices with referrals, i.e. text from003
other documents that cite or link to the given004
document, to provide significant performance005
gains for zero-shot information retrieval. The006
key insight behind our method extends an in-007
tuition from classical web retrieval: referrals008
provide a more complete, multi-view repre-009
sentation of a document, much like incom-010
ing page links in PageRank provide a compre-011
hensive idea of a webpage’s importance. We012
formulate this classically-rooted intuition as013
a general augmentation and find that it em-014
pirically works across various new domains015
and retrieval methods, outperforming mod-016
ern generative text expansion techniques such017
as DocT5Query (Nogueira et al., 2019) and018
Query2Doc (Wang et al., 2023) — a 37%019
and 21% absolute improvement on ACL pa-020
per retrieval Recall@10, respectively, while021
also eliminating expensive model training and022
inference. We also analyze different methods023
for multi-referral aggregation and show that024
RAR enables up-to-date information retrieval025
without re-training. We believe RAR can help026
revive and re-contextualize this classic infor-027
mation retrieval intuition in the age of neural028
retrieval, unlocking new retrieval gains by com-029
bining untapped corpus structure with the se-030
mantic advantages of modern pretrained trans-031
formers.032

1 Introduction033

Zero-shot information retrieval, a task in which034

both test queries and corpora are inaccessible at035

training time, closely mimics real-world deploy-036

ment settings where the distribution of text changes037

over time and the system needs to continually adapt038

to new queries and documents. Prior work (Thakur039

Figure 1: Our referral augmentation method improves
zero-shot document retrieval across a variety of models
and datasets.

et al., 2021) finds that without access to train- 040

ing on in-domain query-document pairs or task- 041

specific document relations, most dense models 042

dramatically underperform simple sparse models 043

like BM25, pointing to poor generalization. At 044

the same time, sparse models struggle to reconcile 045

different surface forms, leading to the so-called 046

lexical gap between queries and documents in dif- 047

ferent tasks. 048

While the zero-shot setting lacks query- 049

document pairs, our key insight is to leverage intra- 050

document relations that provide multiple views of 051

the same information to provide a more comprehen- 052

sive representations of the concepts in a document. 053

We propose Referral-Augmented Retrieval (RAR), 054

a simple technique that augments the text of each 055

document in a retrieval index with passages from 056

other documents that contain citations or hyper- 057

links to it. This use of intra-document information 058

is reminiscent of Google’s BackRub and PageR- 059

ank algorithms In the age of pretrained models, we 060

revisit this classical intuition on new, dense retriev- 061

ers such as SimCSE and DPR (Gao et al., 2021; 062

Karpukhin et al., 2020), as well as new domains 063
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Figure 2: Illustration of the Referral-Augmented Retrieval (RAR) process. RAR augments text from documents
that refer to the original document into its index (right), which allows it to correctly retrieve the target document for
a wider range of queries (left) compared to standard methods. This example uses text around citations as queries,
from the citation recommendation task (Gu et al., 2022).

with referral links like the Semantic Scholar cita-064

tion graph (Lo et al., 2020) and Wikipedia entity065

graph (Hasibi et al., 2017).066

For both the paper retrieval and entity re-067

trieval settings, we find that RAR significantly im-068

proves zero-shot retrieval performance for both069

sparse and dense models. For instance, RAR070

outperforms generative text expansion techniques071

such as DocT5Query (Nogueira et al., 2019) and072

Query2Doc (Wang et al., 2023) by up to 37% and073

21% Recall@10, respectively, on ACL paper re-074

trieval from the S2ORC corpus (Lo et al., 2022).075

Moreover, RAR’s augmentation occurs entirely076

at indexing time and hence allows for a training-077

free method to update a retrieval system with new078

views of existing documents (e.g., a trending news079

story that causes users to search for a public fig-080

ure by the name of the scandal they were in), re-081

contextualizing the strengths of this classical idea082

in new ways (more in Section 5.2). We also find083

that our method scales well as the number of refer-084

rals increases and is easy to update.085

Another example of insights from re-086

contextualization comes from comparing087

RAR to popular modern query and document088

expansion techniques (Nogueira et al., 2019; Gao 089

et al., 2022; Wang et al., 2023). Text expansion 090

techniques effectively surface hard positives, 091

passages that are very lexically different but 092

semantically equivalent, including conceptual 093

transformations (e.g., mapping a claim to a piece 094

of contradictory evidence), the addition of new 095

information, and alternative formulations with 096

different word choice or scope. While some of 097

these transformations are theoretically learnable, 098

existing dense retrievers are often not robust 099

to them, so explicitly augmenting documents 100

and queries with their equivalent counterparts 101

significantly improves the encoded representations. 102

As an added bonus, the text-to-text nature of 103

these hard positive pairs allows them to be both 104

model-agnostic and interpretable. This observation 105

motivates further research into improving retrieval 106

not by training a more expressing encoder, but by 107

simply discovering more hard positives. 108

2 Related Work 109

Sparse and dense retrieval Following the suc- 110

cess of BERT (Devlin et al., 2019), a variety 111
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Figure 3: We evaluate referral augmentation on zero-shot paper retrieval, retrieving papers given masked in-text
citations, (top) and entity retrieval, retrieving wiki articles on each titular entity given free text queries about the
entity (bottom).

of BERT-based dense encoder models have been112

proposed for information retrieval. Karpukhin113

et al. (2020) propose DPR, fine-tuning on query-114

document pairs from MS MARCO (Bajaj et al.,115

2018); Gao et al. (2021) propose SimCSE, fine-116

tuning using supervision from NLI datasets with117

entailment pairs as positives and contradiction118

pairs as hard negatives; and Izacard et al. (2021)119

propose Contriever, fine-tuning using random120

crops and MoCo (He et al., 2020) to scale to a121

large number of negatives. However, Thakur et al.122

(2021) show that term-frequency sparse methods123

like BM25 remain a strong baseline in the zero-124

shot IR setting.125

Hyperlinks for web retrieval One classic line126

of work explores the utility of hyperlink anchor127

text in improving site discovery for search engines.128

McBryan, Brin and Page, and Kleinberg’s seminal129

papers on internet search systems mention using130

incoming links as a marker of a given page’s rele-131

vance as well as storing the linking anchor text as132

metadata (McBryan, 1994; Brin and Page, 1998;133

Kleinberg, 1999); Craswell and Hawking imple-134

ment a site retriever using BM25 on this metadata, 135

combining all incoming anchor texts for a page 136

into an "anchor document" (Craswell et al., 2001), 137

and this method is refined for web search tasks in 138

the following years using ad hoc combinations of 139

anchor and content-based rankings as well as mul- 140

tiple retrieval passes for query expansion (West- 141

erveld et al., 2001; Eiron and McCurley, 2003; 142

Arguello et al., 2021; Koolen and Kamps, 2010; 143

Dou et al., 2009). Twenty years after these seminal 144

works, we find that longer passage-length refer- 145

rals improve the context of deep pretrained trans- 146

former encoders in analogous ways to the gains of 147

statistical rankers from word- and phrase-length 148

anchor texts (Craswell et al., 2001; Westerveld 149

et al., 2001). Compared to these influential works 150

from classical IR, we generalize the idea of refer- 151

ral augmentation in a model-agnostic (e.g. both 152

sparse and dense retrieval) and domain-agnostic 153

(e.g. ACL, Arxiv, Wikipedia) way. (we empirically 154

compare anchor texts and full referrals in Section 155

B in the Appendix) Further, while traditional an- 156

chor texts are formatted as a few words without 157
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corresponding context, RAR can leverage the full158

sentence- or passage-level context containing the159

referral as a semantic augmentation, which better160

suits modern neural IR approaches (e.g. SimCSE161

sentence embedding) with stronger semantic un-162

derstanding.163

Hyperlinks and citations for contrastive train-164

ing One previous line of work explores using165

hyperlinks and citations for training retrievers, us-166

ing referrals indirectly as a way of constructing a167

dataset of paired passages for contrastive learning.168

Entity retrieval models Mitra et al. (2017) and Wu169

et al. (2022) explore pre-training using the anchor170

text portion of a linking sentence as a pseudo-query171

for query-document pre-training, among other pre-172

training objectives, and explore different kinds of173

relevance classes based on whether the link is mu-174

tual. State-of-the-art paper retrieval approaches175

(Gu et al., 2022) (Cohan et al., 2020) similarly fine-176

tune using (citing paper’s title + abstract + citing177

passage, cited paper’s title + abstract) pairs. In con-178

trast, we focus on using hyperlinks and citations to179

build training-free document augmentations that180

work with any off-the-shelf encoder. This direction181

is also orthogonal to our work, since we find empir-182

ically that a stronger embedding space (e.g. trained183

via data mined from anchor text) can still benefit184

from our RAR method of document expansion, as185

seen in Table 6 in the Appendix.186

Query and document expansion Query expan-187

sion techniques were originally proposed to de-188

crease the lexical gap between queries and docu-189

ments, using relevance feedback as well as exter-190

nal knowledge banks like WordNet (Miller, 1995),191

whereas document expansion techniques such as192

Doc2Query and DocT5Query (Nogueira et al.,193

2019) were intended to add additional context and194

surface key terms. Some work also explores sparse195

retrievers with learned document term weights196

(Formal et al., 2021) and late interaction models197

(Khattab and Zaharia, 2020), which can be seen198

as performing implicit document expansion. How-199

ever, most state-of-the-art dense retrievers (Gao200

et al., 2021; Karpukhin et al., 2020) do not perform201

any expansion, and in this work we have shown202

that they benefit significantly from referrals.203

Model updating and editing An ongoing line204

of work (Meng et al., 2023; Cao et al., 2021)205

studies fact editing for language models, which 206

are resource-intensive to modify and trained on 207

data that quickly becomes outdated. Retrieval sys- 208

tems trivially admit document edits and the addi- 209

tion of new documents without training, and we 210

have found that hard negatives and referrals extend 211

this property to support multiple document views. 212

These benefits can reach end-to-end generation via 213

retriever-augmented language models (Ram et al., 214

2023; Guu et al., 2020). 215

3 Method 216

3.1 Preliminaries 217

Formally, given a set of queries Q and documents 218

D, retrieval can be described as the task of learning 219

a similarity function sim (q, d) between a query 220

q ∈ Q and a document d ∈ D, where top-k re- 221

trieval is equivalent to finding the ordered tuple 222

(d1, ..., dk) where 223

sim (q, d1) ≥ ... ≥ sim (q, dk) 224

≥ sim (q, d) ∀d /∈ {d1, ..., dk} 225

For dense models, similarity is typically com- 226

puted as the dot product between the encodings 227

of queries, where the encoder is shared: 228

sim (q, d) := f(q) · f(d) 229

We can formally define a hard positive as a pair 230

of highly relevant passages {x1, x2} that should 231

be mapped to the same point in embedding space, 232

which in effect imposes a correction on top of a 233

given encoder f where f(x1) ̸= f(x2). We dis- 234

cuss a unifying viewpoint on other expansion meth- 235

ods (Doc2Query, HyDE, Query2Doc (Nogueira 236

et al., 2019; Gao et al., 2022; Wang et al., 2023)) 237

in Section 6 in the Appendix. 238

3.2 Referrals 239

In RAR, we directly use document-to-document 240

relations in the corpus metadata as hard positives, 241

obtaining up to ℓ pairs ({qi(d), d})ℓi=1 for each 242

d ∈ D which are sentences in other documents 243

containing citations or hyperlinks to the current 244

document d. We experiment with three different 245

referral integration methods: 246

1. Concatenation: d̃ := [d, q1(d), ..., qℓ(d)] 247

2. Mean f̃(d) := 1
ℓ+1 [f(d) +

∑
i f(qi(d))] 248
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3. Shortest path ˜sim (q, d) :=249

min{ sim (q, d), ( sim (q, qi(d)))
ℓ
i=1}250

We find in Section 5.2 that for sparse models, con-251

catenation performs the best, while for dense mod-252

els, mean aggregation performs the best, although253

shortest path achieves the best top 1 accuracy (Re-254

call@1) since it preserves the high granularity of255

separate referrals, and use these settings when re-256

porting overall results.257

4 Experiments258

4.1 Setup259

Paper retrieval Paper retrieval is the task of re-260

trieving papers most likely to be cited in a given261

passage. We partition a corpus of papers into dis-262

joint candidate and evaluation sets — papers in263

the candidate set represent older, known papers264

we want to retrieve, while papers in the evalua-265

tion set represent newer papers whose body text266

may cite those older papers, each citation induc-267

ing a retrieval task with a ground truth. Following268

the classic setup of local citation recommendation269

(LCR) (Gu et al., 2022), we represent each candi-270

date paper via its concatenated title and abstract,271

and construct a query from each sentence in an272

evaluation papers referencing a candidate paper273

(with the citation masked). To evaluate the effects274

of augmenting a candidate document at indexing275

time, we compile referrals consisting of citing sen-276

tences in other candidate papers.277

We compare performance with and without aug-278

mentation on ACL and ArXiv papers from the279

S2ORC corpus (Lo et al., 2020), as well as the280

open-domain RefSeer corpus. ACL and ArXiv pa-281

per retrieval tasks were partitioned such that papers282

published in 2018 or before comprised the candi-283

date set, and papers in 2019 comprised the evalua-284

tion set, filtering to only include candidate papers285

that were cited at least once. In-text citations were286

masked out in both queries and referrals; queries287

consisted of just the citing sentence, whereas re-288

ferrals used a 200-token window centered around289

the masked in-text citation. Documents were aug-290

mented with a uniform random sample of up to291

ℓ = 30 referrals.292

Entity retrieval Entity retrieval is the task of293

retrieving the most relevant entities from a knowl-294

edge base given a text query. We evaluate on the295

DBPedia entity retrieval task, which represents 296

each entity (associated with a Wikipedia page) via 297

its concatenated name and summary, and contains 298

freeform text queries. To augment a candidate 299

document, we compile referrals consisting of sen- 300

tences from the pages of other entities that link 301

to the the document. We used the 2017 English 302

Wikipedia dump preprocessed with WikiExtractor 303

(Attardi, 2015) and extract hyperlinks via a HTML 304

parser, again including a random sample of up to 305

30 referrals per document. 306

Models For the retriever, we use BM25 (Robert- 307

son et al., 2009) as a sparse baseline and (su- 308

pervised) SimCSE (Gao et al., 2021) and DPR 309

(Karpukhin et al., 2020), contrastively fine-tuned 310

BERT encoders, as dense baselines. Supervised 311

SimCSE is contrastively fine-tuned from a pre- 312

trained BERT on MNLI and SNLI with contradic- 313

tion pairs as hard negatives (Gao et al., 2021), and 314

DPR is contrastively fine-tuned on 5 QA datasets 315

(NQ, TriviaQA, WebQuestions, CuratedTREC, 316

SQuAD) with mined BM25 pairs as hard nega- 317

tives (Karpukhin et al., 2020). We also evaluate 318

on BM25 + CE, which adds a cross-encoder to the 319

BM25 model (Wang et al., 2020) and was found 320

to be the best-performing zero-shot retriever from 321

the BEIR evaluation (Thakur et al., 2021). For 322

paper retrieval, we also evaluate the effect of us- 323

ing referrals with Specter (Cohan et al., 2020), a 324

domain-specific encoder pre-trained and fine-tuned 325

on scientific text. 326

4.2 Results 327

Paper retrieval From Table 1, we see that a re- 328

triever augmented with referrals outperforms the 329

base retriever for all sparse and dense models, with 330

significant improvement on both Recall@1 and Re- 331

call@10 on all datasets (including an extremely 332

large 100% improvement on ACL) for BM25 + 333

RAR compared to regular BM25. We see that 334

alongside surfacing more relevant information to 335

increase recall, referrals also greatly increase the 336

specificity to generate much better top-1 retrieved 337

candidates, pointing to the fact that referring ci- 338

tations referencing a paper are often more clear, 339

concise, and well-specified than the abstract of the 340

paper itself. 341

5



RefSeer ACL ArXiv

Recall@10 (Recall@1)

BM25 0.545 (0.260) 0.265 (0.115) 0.555 (0.335)
+ RAR 0.590 (0.335) 0.505 (0.200) 0.710 (0.430)

SimCSE 0.315 (0.095) 0.160 (0.065) 0.345 (0.140)
+ RAR 0.355 (0.155) 0.355 (0.115) 0.385 (0.120)

Table 1: Paper retrieval results with citation referrals. RAR greatly improves paper retrieval performance for both
sparse and dense models on all metrics, sometimes doubling the absolute performance.

nDCG@1 nDCG@10 Recall@10

BM25 0.4030 0.2739 0.1455
+ RAR 0.4851 0.2799 0.1348

BM25 + CE 0.4254 0.3282 0.1798
+ RAR 0.4478 0.3283 0.1949

DPR 0.3350 0.2559 0.1562
+ RAR 0.3538 0.2610 0.1612

Table 2: Entity retrieval results with hyperlink referrals, on the DBPedia task. RAR improves entity retrieval
performance on both sparse and dense models.

Entity retrieval We evaluate model performance342

with and without referrals in Table 2. We see343

that referrals again significantly elevate perfor-344

mance for both sparse and dense models across the345

board. The gain is particularly large for nDCG@1,346

which we hypothesize is due to the occasionally347

extremely high similarity of referring sentences348

with some queries.349

We note that hyperlink referrals do not increase350

performance as much as the respective citation re-351

ferrals on the paper retrieval task, suggesting that352

linking sentences may be less consistent and less353

directly informative than citing ones. Intuitively,354

different citations of a given scientific work are typ-355

ically similar in spirit, while the relevance relations356

implied by different hyperlinks may be more tan-357

gential. However, this is not necessarily a fair com-358

parison, as the Wikipedia-based query and corpus359

distributions also vary much more and encompass360

more diverse fields of knowledge.361

5 Analysis 362

5.1 Referrals outperform other 363

augmentations 364

In Table 3, we show that referral augmentation 365

strongly outperforms query and document augmen- 366

tation techniques exemplified by DocT5Query and 367

Query2Doc. Generative models like DocT5Query 368

fail to capture the more complex text distribution 369

on domains like scientific papers and generate qual- 370

itatively nonsensical or trivial queries, whereas re- 371

ferrals leverage gold quality reformulations of the 372

paper directly from document-to-document links. 373

5.2 Referral aggregation methods 374

Aggregating dense representations is a well-known 375

problem (Izacard and Grave, 2022; Jin et al., 2022; 376

Lin et al., 2022), and is usually resolved via con- 377

catenation or taking a sum or average. We propose 378

three such methods: text concatenation, mean rep- 379

resentation, and shortest path (details in section 380

3.2), which we will denote by referrals concat, re- 381

ferrals mean, referrals sp. Note that BM25 does not 382

support mean aggregation since it does not yield 383

vector embeddings. 384

We include the shortest path method as a means 385
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Recall@1 MRR@10 Recall@10

BM25 0.13 0.177 0.29
+ RAR 0.35 0.4088 0.53

+ DocT5Query 0.0 0.036 0.155
+ DocT5Query + RAR 0.345 0.4022 0.525

+ Query2Doc 0.14 0.1940 0.32
+ Query2Doc + RAR 0.38 0.4279 0.52

Table 3: Paper retrieval, referrals vs. other augmentation techniques (Recall@10). We bold the best result on any
single augmentation strategy, as well as any results on stacked augmentations that show further gains over that
single augmentation. Overall, we find that referrals greatly outperform other augmentation techniques, and further
that referrals can stack with Query2Doc to achieve even better performance.

to take advantage of different referrals represent-386

ing distinct views of a given document that should387

not necessarily be aggregated as a single mean em-388

bedding — while citations are fairly consistent,389

hyperlinks to a given article sometimes focus on390

unrelated aspects of its content (e.g. referencing a391

famous painting by its painter vs. by its host mu-392

seum) which may be best represented by different393

locations in query space.394

Results We evaluate them in Table 4 and find395

that text concatenation performs the best for BM25396

but poorly for SimCSE, which we hypothesize is397

due to the fact that repetition and concatenation of398

text improves the approximation of a target query399

(inverse term frequency) distribution for BM25,400

but results in a distorted dense representation since401

dense models approach text sequentially and in402

particular a long string of referring sentences in a403

row is very much out of their training distribution.404

For dense models, mean and shortest path ag-405

gregation performs the best for Recall@10 and Re-406

call@1, respectively. We hypothesize that this is407

due to the “smearing" effect of averaging many dif-408

ferent representations which leads to more robust409

document representations generally, but possibly at410

the cost of the high precision resulting from some411

referrals being an almost-perfect match for some412

queries at evaluation time. We conclude that for413

the retrieval task, concatenation for sparse models414

and mean for dense models results in the best over-415

all performance, and use this configuration when416

reporting the main results in Table 1.417

5.3 Referrals allow for training-free 418

modifications to the representation space 419

One advantage of retriever models over large 420

knowledge-base-like language models is the ability 421

to easily add, remove, and otherwise update docu- 422

ments at inference time with no further fine-tuning. 423

While knowledge editing and patching is an active 424

area of research for large language models (Meng 425

et al., 2023; Cao et al., 2021), all state of the art 426

methods require costly optimization and remain 427

far from matching the convenience and precision 428

of updating a retriever-mediated information store, 429

one reason search engines still dominate the space 430

of internet-scale information organization. 431

We suggest that referrals naturally extend this 432

property of retrievers, allowing not just documents 433

but the conceptual relations between documents 434

and thus the effective representation space to be 435

updated without optimization. On top of adding 436

newly available documents to a retrieval index, we 437

can add their hyperlinks and citations to our collec- 438

tion of referrals, which not only improves retrieval 439

performance on new documents but also contin- 440

ually improves the representations of older docu- 441

ments with knowledge of new trends and structure. 442

To demonstrate the impact of this in a realistic 443

setting, in Table 5 we show the improvement of 444

SimCSE on paper retrieval (evaluating on queries 445

constructed from papers published in 2020) when 446

given additional referrals collected from the meta- 447

data of ACL papers released in 2019, compared 448

to only referrals from papers up to 2018.1 We see 449

1Specifically, we add the in-text citations of later layers to
the pool of referrals, from which we randomly resample up to
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Recall@1 MRR@10 Recall@10

BM25 0.115 0.157 0.265
+ RAR concat 0.200 0.2677 0.505
+ RAR sp 0.093 0.1406 0.255

SimCSE 0.065 0.0869 0.160
+ RAR concat 0.060 0.0989 0.190
+ RAR mean 0.000 0.111 0.355
+ RAR sp 0.115 0.158 0.265

Table 4: Paper retrieval results, comparing different referral aggregation methods. We find that concatenation
works best for the sparse model BM25, while mean works well for the dense model SimCSE and shortest-path
achieves the best top-1 performance for SimCSE.

ACL

SimCSE 0.325
+ RAR (up to 2018) 0.615
+ RAR (up to 2019) 0.665

Table 5: Paper retrieval on 2020 papers with differ-
ent referral cutoff years (Recall@10). We find that an
updated referral pool improves referral-augmented re-
trieval.

that augmenting from an updated pool of referrals450

improves performance by a significant margin.451

Beyond adapting to newly available documents,452

referrals also open up the possibility of modifying453

document relationships for a variety of applica-454

tions. Human-in-the-loop corrections or addi-455

tions can be immediately taken into account by456

adding them as gold referrals, including adjusting457

a retrieval system to take trending keywords into458

account without changing the underlying document459

content. Personalized referrals such as mapping460

"favorite movie" to "Everything Everywhere All461

At Once" can also be recorded as a user-specific462

referral and can be updated at any time. Similarly,463

temporary relations for frequently changing la-464

bels such as the “channel of the top trending video465

on YouTube" or “Prime Minister of the UK" can be466

kept up to date using referrals. Clearly, we find that467

referrals unlock new abilities for retrieval systems468

beyond general improvements to performance.469

ℓ = 30 per document when building the retrieval index; the to-
tal number of citations is unchanged for most documents that
already have 30 referrals available from the original dataset.

6 Conclusion 470

We propose a simple method to capture implicit 471

hard positives using intra-document citations and 472

hyperlinks as referrals to provide alternate views 473

of a given document, and show that referral aug- 474

mentation yields strong model- and task-agnostic 475

gains for zero-shot retrieval that outperforms pre- 476

vious text expansion techniques while also being 477

less expensive. We also explore applications of 478

hard positives as training-free modifications to the 479

representation space, allowing new views of docu- 480

ments to be dynamically added to reflect updated 481

world context, human-in-the-loop corrections, and 482

personalized and temporary labels for documents. 483

One perspective on our referral augmentation 484

results is evidence that an index that incorporates 485

multiple views per document may be better suited 486

for the retrieval of high-quality, atomic documents 487

that may nevertheless each be relevant to a variety 488

of different situations. It is also apparent that often 489

these views may not be apparent from the doc- 490

ument text itself — for example, a paper may be 491

commonly referenced as the progenitor of a follow- 492

up work, of which it obviously has no knowledge. 493

Our work offers a preliminary look at a simple way 494

to collect some of these nonobvious multiple views 495

from the corpus itself, as well as the aggregation 496

problem that subsequently arises. Our work thus 497

suggests that the more general problem of fully 498

capturing these distinct facets of each document 499

— and efficiently determining which facet is most 500

relevant to a given query — may be an important 501

next step for robust retrieval. 502
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Limitations503

The main limitation is that document-to-document504

links are not always available: referrals can be505

used with corpora such as academic papers and506

web-based articles, but not individual passages of507

books or emails. Here, an effective multi-view re-508

trieval system may need to surface implicit referral-509

like structure, such as the inferred relationships510

between scenes and characters in a novel, possibly511

using generative techniques.512

We also note that the concatenation and short-513

est path aggregation methods lead to longer and514

more documents, respectively, in linear fashion515

in ℓ, the number of referrals per augmented docu-516

ment. Thus, the augmentation trades off memory517

and speed for more relevant retrieved documents.518

This is tractable (and insignificant compared to the519

costs of generative expansion methods) with our520

choice of ℓ = 30 and fast max inner product search521

algorithms, but does impose a soft upper bound522

on the number of referrals it is feasible to take523

into account, especially for highly cited and linked524

documents.525

Risks526

The authors foresee no significant risks with the527

research presented in this paper.528
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A Unifying perspective on expansion703

methods704

Under the framework defined in section 3,705

the query generation technique DocT5Query706

(Nogueira et al., 2019) corresponds to generating ℓ707

hard positive pairs ({qi(d), d})ℓi=1 for each d ∈ D,708

each of which is a question about that document709

generated by a T5 model (Raffel et al., 2020). For710

inference, they apply BM25 on the expanded docu-711

ments d̃ := [d, q1(d), ..., qℓ(d)] where [·, ·] denotes712

concatenation.713

Similarly, the hypothetical document genera-714

tion techniques HyDE and Query2Doc (Gao et al.,715

2022; Wang et al., 2023) correspond to generating ℓ716

hard positive pairs ({q, di(q)}ℓi=1 at inference time717

for a given query q, each of which is a hypothetical718

document generated by InstructGPT (Ouyang et al.,719

2022) to answer the query. For inference, HyDE720

uses the mean dense encoding between each hy-721

pothetical document f̃(q) := 1
ℓ+1 [q +

∑
i di(q)],722

whereas Query2Doc applies BM25 on the aug-723

mented query q̃ := [q, d1(q), ..., dℓ(q)] (they use724

ℓ = 1, and repeat the original query q a total of725

n = 5 times to emphasize its relative importance).726

B Referral augmentation for task-specific727

models728

We additionally compare against Specter, a state-729

of-the-art task-specific paper retrieval model with730

Recall@1 MRR@10 Recall@10

Specter 0.084 0.136 0.280
+ RAR 0.106 0.169 0.341

Table 6: Paper retrieval results for Specter on ACL.
We find that referral augmentation helps even when
referrals were used for task-specific model training.

Recall@10

BM25 (doc only) 0.643

BM25, doc + anchor texts 0.643
BM25, doc + referrals 0.671

BM25, anchor texts only 0.420
BM25, referrals only 0.614

Table 7: Full hyperlink referrals outperform the ablated
anchor text formulation.

pretraining on scientific text and contrastive fine- 731

tuning specifically on pairs of papers that cite each 732

other (Cohan et al., 2020). We find in Table 6 that 733

referral augmentation still helps by a large margin 734

for the task-specific model, so we consider the uses 735

of citations for referral augmentation and training 736

orthogonal. 737

C Anchor texts vs. referrals 738

We ablate the hyperlink referral format for entity 739

retrieval to use just the anchor text, resembling 740

the anchor text setup explored in classical web 741

retrieval (Craswell et al., 2001; Westerveld et al., 742

2001). In Table 7, we find that augmenting docu- 743

ments with referrals boosts performance, and we 744

can even replace documents entirely with refer- 745

rals and preserve most of the information value — 746

anchor texts achieve neither. 747

D Effect of number of referrals 748

We ablate the number of referrals in paper retrieval, 749

and show in Table 9, that there is a monotonic 750

improvement in retrieval performance with more 751

referrals. Note that the improvement has dimin- 752

ishing returns, partially due to a smaller number 753

pool of papers actually having enough citations to 754

benefit. 755
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Query [CITATION] showed that BLEU shows
high correlation with human scores for
grammaticality and meaning preservation
and SARI shows high correlation with hu-
man scores for simplicity.

We leverage the bi-directional Gated Re-
current Units (GRU) [CITATION] to cap-
ture the longterm dependency.

BM25 ✗ TerrorCat: a Translation Error
Categorization-based MT Quality
Metric

✗ Implicit Discourse Relation Detection via
a Deep Architecture with Gated Relevance
Network

BM25 + RAR ✓ Optimizing Statistical Machine Transla-
tion for Text Simplification

✓ Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Ma-
chine Translation

BM25 + DocT5Query ✗ There’s No Comparison: Reference-less
Evaluation Metrics in Grammatical Error
Correction

✗ Deep multi-task learning with low level
tasks supervised at lower layers

BM25 + Query2Doc ✗ TerrorCat: a Translation Error
Categorization-based MT Quality
Metric

✗ Implicit Discourse Relation Detection via
a Deep Architecture with Gated Relevance
Network

Table 8: Qualitative BM25-based paper retrieval results
using different augmentations. In these examples, only
RAR retrieval correctly yields the cited paper.

Recall@1 Recall@10

BM25 0 0.097
+ RAR (≤ 10 referrals) 0.130 0.371
+ RAR (≤ 20 referrals) 0.156 0.424
+ RAR (≤ 30 referrals) 0.177 0.477

SimCSE 0.065 0.160
+ RAR (≤ 5 referrals) 0.105 0.295
+ RAR (≤ 30 referrals) 0.115 0.355

Table 9: Paper retrieval results on different numbers of
referrals on ACL. We find that performance increases
across the board with the number of referrals used.

E Qualitative examples756

We include some qualitative examples of paper and757

entity retrieval and respective retrieved documents758

for different methods in Table 8.759

F Licenses760

The ACL and ArXiv queries (in-text citations) and761

documents (papers) are from S2ORC, which is762

provided under an ODC-By 1.0 License; RefSeer763

is provided under a CC BY-NC-SA 3.0 Unported764

License; and DBPedia is provided under a CC BY-765

SA 3.0 License. WikiExtractor is available under766

a GNU Affero General Public License v3.0. All767

data and artifacts are used as intended.768
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