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Abstract

We study inductive bias in Transformers in the
infinitely over-parameterized Gaussian process
limit and argue transformers tend to be biased
towards more permutation symmetric functions
in sequence space. We show that the representa-
tion theory of the symmetric group can be used
to give quantitative analytical predictions when
the dataset is symmetric to permutations between
tokens. We present a simplified transformer block
and solve the model at the limit, including accu-
rate predictions for the learning curves and net-
work outputs. We show that in common setups,
one can derive tight bounds in the form of a scal-
ing law for the learnability as a function of the con-
text length. Finally, we argue WikiText dataset,
does indeed possess a degree of permutation sym-
metry.

1. Introduction

Transformers show state-of-the-art performance on a wide
variety of tasks (Wolf et al., 2020; Dosovitskiy et al., 2021;
Chen et al., 2020; Min et al., 2022; Brown et al., 2020)
with seemingly ever-improving performance (Kaplan et al.,
2020; Henighan et al., 2020). The past year has brought
forth larger and more capable models than ever before (Jiang
et al., 2024; OpenAl, 2023; GeminiTeam, 2023), yet our
understanding of them falls behind (Goyal & Bengio, 2022;
Wen et al., 2023).

Recent works have advanced us in understanding specific
aspects and behaviors like grokking (Nanda et al., 2023;
Rubin et al., 2023; Liu et al., 2022b;a), in-context learn-
ing (Von Oswald et al., 2023; Olsson et al., 2022), and
out-of-distribution (OOD) generalization (Nam et al., 2022;
Canatar et al., 2021a). However, a unified view of the in-
ductive bias of transformers is still lacking. It has been
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claimed that understanding and designing networks with
better inductive bias is a necessary step toward Al (Goyal
& Bengio, 2022); this can also make them safer and more
suitable for deployment in high-risk situations (see for ex-
ample Bommasani et al. (2021) and European Union Al
act (EuropeanCommission, 2021)).

We approach the challenge from the infinitely over-
parameterized Gaussian process (GP) limit, where the neural
network (NN) becomes more analytically tractable but still
shares many qualitative and quantitative similarities with
finite NNs used in real life (Lee et al., 2020; Shankar et al.,
2020; Novak et al., 2018). An established correspondence
between infinitely wide NNs and Bayesian inference with
a GP (Neal, 1996; Lee et al., 2020; Welling & Teh, 2011;
Naveh et al., 2021) allows us to identify the inductive bias
of the NN in the GP limit with its Bayesian prior, thereby
yielding a demystified concrete expression for the inductive
bias. This approach has proven itself in the study of deep
fully connected networks and convolutional neural networks
(CNNSs) by enabling accurate prediction of learning curves
and explaining phenomena such as reduction of task com-
plexity due to weight sharing (Novak et al., 2018; Naveh
et al., 2021) and CNN’s utilization of hierarchical structure
in the data (Cagnetta et al., 2023).

In this work, we characterize the inductive bias by spec-
ifying how many samples will be required to learn a tar-
get function. We show that when the dataset possesses a
permutation symmetry, learnability is closely tied to the
irreducible representations (irreps) of the symmetric group.
Namely, the more symmetric the function to permutations,
as quantified below, the more learnable it is. We present
an instructive example, work through it, and show we can
accurately predict its outputs at the limit including perfor-
mance under distributional shift. We then show that our
predictions are a good approximation for wide but finite
networks; these predictions again hold OOD. We present
learnability bounds for richer networks, including a stan-
dard transformer block. Finally, we argue natural language
(NL) does have some permutation symmetry, based on an
analysis of WikiText-2 (Merity et al., 2016).

Our main contributions are:

* We give explicit analytical predictions for the outputs
and generalization performance of a NN with linear
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attention at the GP limit, in distribution and OOD. We
show how irreducible representations of the symmetric
group can be built and used for to predict learnability
in this case.

* We extend our results to a transformer block with stan-
dard softmax attention. We show experimentally the
learnability bounds found based on the dimension of
the relevant irreducible representations are tight.

* We analyze WikiText-2 and show evidence for an ap-
proximate permutation symmetry in its principal com-
ponents, suggesting that the toolbox presented can be
of use in natural language datasets.

2. Methods

This section presents the model we study and the tools used
to analyze it at the GP limit. We show how to implement
these tools to reveal the inductive bias in terms of the space
of expressible functions and their learnability by the NN.

2.1. Model
2.1.1. NEURAL NETWORK ARCHITECTURE

We study a transformer-like NN with one transformer block,
for simplicity, we do not include residual connections or
layer normalization, although these can be added. The NN is
made of an embedding layer with added learned positional
encoding (PE) p, one multi-head self-attention layer (MHA),
an MLP with one hidden layer and a final linear readout
layer.

The input to the NN is made out of L + 1 tokens £ indexed
by an upper sequence index a = 1,2, ..., L + 1 with each
token having an internal vocabulary dimension indexed by
a lower index ¢. We group these with a Greek letter sample
index p = 1,2, ..., N into a rank 3 tensor X/, where we
drop the sample index © when we discuss only a single
sample. One-hot encoding is used for the tokens, such that
[Z%); = d;,, where v = 1, ..., Ny is the token represented

by #*. Denoting the input by ¢ and the output of [’th layer
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using Einstein’s summation convention, with ® and ¢ being
some activation functions'. The NN parameters
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are all learned. For the MHA we use Npcaqs heads and the
same dimension dy, = d, = d,;,/Nheads for keys, queries,
and values. Lastly, for the hidden layer 24 we use dimen-
sion dyy which is of the same order of magnitude as the
model dimension dfs ~ d,,. Notably, consecutive affine
transformations can be combined together without loss of
generality, but they are kept in this way to align with stan-
dard notation?.

As an instructive example, we will use a linearized MHA3
O(x) = L%Hx and linear MLP ¢(z) = x, as this setting
allows for closed-form analytical predictions at the GP limit.
Note that because we remove the common softmax non-
linearity we add a division by the length to make sure the

network’s output stays O(1) and does not scale with L.

2.1.2. TASK, LOSS FUNCTION, INITIALIZATION, AND
TRAINING PROTOCOL

The task is a pretraining task, namely, predicting the con-
ditional probability for the next token given the context
p(#1+2|X). For simplicity, we limit the discussion to pre-
dicting the next token probability from a full context window
of length L + 1, and looking only at the prediction for the
unknown token, meaning we define f(X) := fL+1(X).

Mean square error (MSE) loss with weight decay is used.
The weights are initialized according to LeCun initial-
ization, meaning the weights in each layer are i.i.d with
w ~ N(0, ﬁ), and the biases are initialized to zero.
For the convenience of the analytical calculations, we will
initialize the PE as Gaussian i.i.d entries p¢ ~ N(0,1/2)

for a # L + 1, for the last token we will initialize the PE to

The training is done with uncorrected Langevin dynam-
ics (Neal, 1993), that is, gradient descent with noise 1 ~
N(0,02) added to the gradients, as a model for stochastic
gradient descent. As shown in Mingard et al. (2020); Liu
et al. (2021); Mandt et al. (2018) the result is indicative

'A common choice would be & = softmax acting on the b
index and ¢ = ReLLU

2Combining such affine transformations would also induce a
different prior in finite-sized NNs as shown in Li & Sompolinsky
(2021).

3similar to the one suggested by Von Oswald et al. (2023);
Hron et al. (2020) and recently studied by Ahn et al. (2024).
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of the outcome of SGD training. We adjust the noise and
weight decay such that following training with no data the
network’s weights distribution is the same as at initializa-
tion, as described in Naveh et al. (2021). From a Bayesian
perspective, such training protocol samples from the poste-
rior distribution of a Bayesian NN with prior induced by the
weights’ initialization distribution.

2.1.3. DATASETS

We use a mixture of hidden Markov models (HMMs) (Baum
& Petrie, 1966) as a dataset. The mixture of HMMs is
chosen for its balance between aspects of language, like
long-range dependencies and sensitivity to (elementary)
context (Xie et al., 2021), and analytical tractability. This
setting also yields a well-defined concept of distributional
shift, as the NN can be trained on a fraction of the mixture
and tested on another.

A HMM is composed of two stochastic processes, h* and z,
where a is the time-step index. The process h? is dubbed
“hidden” while z® is the observed process. The hidden
process is Markovian, with dpiqqen different states. The
observed process depends only on the hidden state at the
same time, where each of the possible [V, outputs is given
a different probability under each hidden state.

HMMs are conveniently described by stochastic emission
and transition matrices. The ¢, j entry of the transition ma-
trix 7' € Rniaden Xdniaden represent the transition probability
from the j’th hidden state to the ¢’th. Similarly, the i, j entry
of emission matrix O € R¥vocXdniaden represent the proba-
bility to emit the ¢’th output in the vocabulary when in the
7’th hidden state.

Our dataset is a mixture of HMMs with N,,. = 2 and
dhidden = 2, where the emission probabilities that define the
HMM p, q are themselves drawn from uniform distributions
p ~ U(pa,pa + w), ¢ ~ U(qa,qa + w). The transition
probabilities are constant and deterministic. The transition
and emission probabilities for a HMM in the mixture are
given in matrix form by

0 1
=)

Finally, the initial hidden state, k!, is a random variable
with equal probability for each of the two possible hidden
states.

| q
OL_p 1_q} A3)

As a primer for the discussion to follow, we point out that
the probability distribution defined by an HMM is invariant
to permutation of tokens outputted under the same hidden
state. We re-examine this point in section 3 and present
evidence for an approximate permutation symmetry in the
principal components of WikiText.

2.2. Theory

First, we present the correspondence between an infinite
transformer-like NN and a Gaussian process (GP), known
as the neural network Gaussian process correspondence
(NNGP) (Lee et al., 2018; Hron et al., 2020). To discuss the
inductive bias in terms of functions rather than individual
samples, we study the resulting GP averaged over datasets
and its spectral decomposition. The null space is identified
as the space of inexpressible functions, and the eigenvalues
are interpreted as a measure of learnability for their corre-
sponding eigenfunctions. Capitalizing on the permutation
symmetry of the kernel eigenvalue problem, we use tools
from representation theory to provide upper bounds on the
scaling of eigenvalues with context length.

As shown in Hron et al. (2020) when dj, Nyeaqs — 00 the
distribution of NN outputs induced by the initialization dis-
tribution converges to a GP f(z) ~ GP(0, k) with k being
the kernel of the NN. The kernel k(X,Y") is the covariance
between samples given by

k(X,Y) =Ee [fo(X)fo(Y)], 4)

where © stands for the NN parameters, drawn from the
initialization distribution defined in 2.1.2. Following our
training protocol, this correspondence carries over to the
trained NN, such that the trained NN is equivalent to the
result of Bayesian inference with the NNGP as prior (Naveh
etal., 2021).

While exact GP inference is generally hard, we can get an
insight into the learning process by looking at the continuum
limit where GP regression is averaged over all possible
datasets of size N. For a large NV, a continuum kernel can
be used in an approximation known as the equivalent kernel
(EK) (Silverman, 1984; Sollich & Williams, 2004; Cohen
et al., 2021). We can define the EK integral operator K
associated with the continuum kernel,

KU’(X) = EYNptrain [k(X’ Y)U(Y)] ) (5)
where piain 1S the training distribution.

The inductive bias can now be understood by looking at the
expression for the predictor (the output of the NN, averaged
over the possible initializations) under the EK approxima-
tion on the eigenbasis of K

Eeo [f@(X*)} = ; mgi@i@(*) (6)

where o2 is the variance of the noise added to the gradients,
or the observation uncertainty from a Bayesian perspec-
tive; ;s are the eigenfunctions; \;’s are the corresponding
eigenvalues and g; is the projection of g(x) on ¢; given by
the inner product

(9(2),0i(2))2 = Ezmpaaa [9(2)0i(2)] - (7)
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We can give equation 6 an intuitive interpretation: The
architecture and dataset dictate both the learnability and
expressibility. All eigenfunctions corresponding to A = 0
will not be expressible by the NN. For the expressible eigen-
functions, learnability for the eigenfunction ¢; is dictated
by the quantity

L. — (f(@), i(@))arnp| _ A |
(W), ei(@)enp | Xi+0?/N

Where the last equality is given by using the EK predictor for
f () calculated on the same distribution p(z) as the inner
product, recovering the result of (Simon et al., 2023) (for ef-
fective ridge § = o%). With this matching EK predictor, the
learnability 0 < L < 1 acts as a filter, passing almost noth-
ing when N < ¢2\~! and passing the information from
the target almost perfectly when N > o2 \~1. We see that
learning the feature ¢;(z) requires N ~ o2\~ samples,
predicting a performance improvement at that scale.

®)

Accordingly, predicting the learning of the NN is reduced
to solving the eigenvalue problem for the EK kernel corre-
sponding to the NN

Kgoi (X) = EYNptrain [k(X7 Y)‘)Oi (Y)] = Ap; (X)’ ©)
and finding the projections of the target on the eigenbasis.

We now turn to use symmetry to simplify the eigenvalue
problem. The fact that the NN defined in 2.1, never explic-
itly acts in sequence space (that is, the weights do not carry
a sequence index) and the PE is drawn i.i.d guarantees a
permutation symmetry between all the tokens but the last
one* .

2.2.1. SYMMETRY AND REPRESENTATION THEORY

We start with an intuitive understanding of the role of sym-
metries and give a precise formulation later in this section.
A fuller introduction and examples are given in Appendix B.
For a simple example where our use of representation the-
ory amounts to a simple discrete Fourier transform, and
introduction to permutation symmetry in appendix A.

Symmetries can greatly simplify the eigenvalue problems
like equation 9 above. We say an operator like K is sym-
metric under the action of a group G if

v.g € Gv k(fgag'g) = k(f; :'j) &pdata(fg) = pdata(f);
(10)
where Z, is the result of acting with a symmetry action g
on 7, e.g. rotating & or permuting the entries of Z. Such an

“This is also true for the NTK (Jacot et al., 2018) and we expect
similar results to hold in that setting.

Sthe last token is “signaled out” at inference time as the only
one who’s output is desired. For a single transformer block, it is
therefore sufficient to use only the last token as a query, and it is
thereby not symmetric to the other tokens.

[ —
dimy = 1
N dimg=2
e

Figure 1. (Illustration of diagonalization using symmetries) The
figure illustrates the direct sum (block) structure described in Prop.
2.1. Each color-shaded block represents an irrep, and each solid
color represents a multiplicity block within the irrep. All elements
outside the multiplicity blocks vanish, both between different ir-
reps and within an irrep. The symmetry actions g € G can mix
multiplicity blocks as indicated by the arrows. Since all multiplic-
ity blocks inside an irrep are linked by the symmetry actions they
are all degenerate .

action is formalized through a representation of the group,
we give a precise definition in Prop. 2.1 . A symmetry, as
described in equation 10, means we are allowed to act with a
symmetry action g € G but our model will stay invariant to
this action. In the context of the eigenvalue problem in equa-
tion 9, such an action can be viewed as mixing different
eigenfunctions ¢; () (say by rotating the inputs x, such that
the outputs ¢, (&) overlaps with ¢, (x) for i # j) without
changing the eigenvalues. This scenario implies, that all the
eigenvalues of the mixed eigenfunctions must be identical,
i.e. degenerate. Moreover, all eigenfunctions must either be
members of such degenerate blocks, or in the simplest case
be transformed back to themselves under the action of the
symmetry group. See Fig 1.

If we study precisely how a symmetry group mixes the func-
tions, we can identify the above-mentioned blocks in the
space of expressible functions. The blocks would be a prop-
erty of the symmetry group itself and would hold for any
kernel satisfying equation 10. Formally, the blocks corre-
spond to the irreps of the group over the space of expressible
functions (see Prop. 2.1). These can be understood as the
minimal spaces of functions that mix with one another. The
functions in those spaces cannot be “untangled” under the
symmetry, hence the name irreducible.

Proposition 2.1. Recalling results from Tung (1985); Ful-
ton & Harris (2004). Given linear transformations {Tg|g €
G} which constitute a representation of G (Vg1,g2 €
G, Ty.g9, =14, 1y,) and a model symmetric under the ac-
tion of a group G, i.e. satisfying equation 10 with x, = Tgx.
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It holds that: The kernel operator can be decomposed into
a direct sum, where each summand corresponds to an ir-
rep of G (shaded blocks in Fig.1). For an irrep R that
appears Qg times in K (said to have a multiplicity QR),
each such block consists of Qg different eigenvalues, each
with m-fold degeneracy, equal to the dimension of the irrep
(dimpg). As a corollary, each irrep of multiplicity 1 gives
exact eigenvectors of the kernel. For an irrep of multiplicity
QRg, finding the spaces of the irrep allows one to diagonalize
in the Qi x Qg (multiplicity) space for each irrep individu-
ally; these spaces are guaranteed not to mix different irreps
under the kernel.

Going back to a more intuitive level, multiplicity means
different sets of functions mix in the same way, but not
between themselves. To separate these sets into eigenspaces
the eigenvalue problem in the 2 x Qi multiplicity space
needs to be solved in other means, but we are guaranteed
we need to solve it in only one such multiplicity block, as
all blocks are guaranteed to be degenerate (one solid color
square of each color in Fig 1).

Degeneracy not only allows us to simplify the problem but
also to give an asymptotic upper bound on the eigenvalues.
Mercer’s theorem (Konig, 1986) guarantees K has a finite
trace, which can be thought of as a fixed budget. Since
all the eigenvalues are positive, they must share this fixed
budget; leading to Prop. 2.2.

Proposition 2.2. Under the same conditions as Prop 2.1
and given the kernel is normalized, the trace is given by

Ex"“pdata [k(x,x)] ~ 1 (11)

An eigenvalue ) belonging to a space corresponding to an
irrep R, is bound from above, A = O(dimgl) where dimpg
is the dimension of R.

Since the kernel’s trace is fixed to unity, and all eigenvalues
in an irrep are degenerate (equal), the eigenvalues are upper
bounded by one over the number of such eigenvalues, as
they have to sum up to at most 1.

We can now state formally the symmetry of our model as
symmetry under the action of the symmetric group in L
symbols St i.e. k(Ts, X, T, Y) = k(X,Y) where T, is
a representation of any element sy, € Sy, that acts naturally
on the sequence index . Following Prop. 2.1,2.2 and the
symmetry manifested in the model, we are interested in the
irreps of the symmetric group.

Irreps of the symmetric group Sy, are uniquely labeled by
partitions of L to integers, written as ordered sets from the
largest part to the smallest, such that the sum of the parts is

We note this is a symmetry of the prior distribution and this is
all that is required for our theory. The posterior distribution need
not have this symmetry, as is often the case with learned positional
encoding.

L. For example, a partition to L could be (L —1,1) or (L —
4,2,1,1). To decompose the space of expressible functions
we use the extensive literature on the representations of
the symmetric group; a less formal introduction is given in
Appendix B, and a formal treatment is given in Appendix C.

Since the input is one-hot encoded, every target function
will be a multilinear polynomial in the input tokens; that
is, fixing all other variables we will remain with a linear
function of z for some particular @, 7. This fact can be seen
by considering each variable ¢ can only take on values
{0,1} so ()" = af for 0 < n € Z. We thus wish to
consider the decomposition of multilinear polynomials to
irreps of the symmetric group.

Theorem 2.1. The space of homogeneous multilinear poly-
nomials in n variables of degree d can be fully decomposed
into min{d + 1,n — d + 1} unique irreps of S, labeled by
the partitions (n — k, k) for0 < k < d,n — d.

See proof in appendix C. We can therefore expand any
analytic function into polynomials and decompose them
into the irreps of the symmetric group.

The dimension of the &’th irrep (dimy) of the form (L—k, k)

scale as dimy, = ﬁ ~ LF. We can now quantita-
tively define a measure for symmetry to permutations: the
more symmetric a function is, the less it may mix with
other functions, and the smaller the dimension of the irreps
it belongs to (smaller k). Going back to the definition of
learnability in equation 8 we see that the number of samples
required to learn a function in the representation (L — k, k)
is asymptotically bounded from below by

N ~ A(L{k’k)ﬁ = Q(LY). (12)

We therefore see that the more symmetric a function is to
permutations (smaller k) the more learnable it is.

2.3. Example: Linear Activations

In this example, we choose ®(x) = L%rlx and linear MLP
¢(x) = x, as previously noted in 2.1.1 and solve the eigen-
value problem presented in the previous section. Note the
linear activation functions ®, ¢ do not imply a linear NN
as the attention layer is inherently non-linear. While this
example is a minimal transformer like NN, our dataset al-
ready goes beyond the landscape of complete permutation
invariance and demonstrates how the tools presented above
can be adapted to richer datasets where the permutation

invariance is partially broken.

2.3.1. EXPRESSIBILITY
First, we want to identify the space of functions spanned by
w; with A; # 0, the space of expressible functions.

Claim 1. The space of functions expressible by the model
stated in section 2.1 is spanned by the linear functions of
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{x$}L_ | multiplied by linear functions of x“ ™, which is a

2L + 2 dimensional space.

The kernel function corresponding to our NN is given by

1 1
k X Y —'L—‘rl —L+1 —’(1 . —'b 6(1 b
(X,Y) = TTe agl +5)?

13)
One-hot encoding not only implies multilinearity of the
outputs, but also guarantees multilinearity of the kernel in
the inner product of two vectors (% - i7°)" = (2% - i/°) for
0 < n € Z. In this example, it means only linear terms in
the context window a,b = 1, ..., L are present.

We can further restrict the model’s expressibility in our
case, by considering large context windows L > 1. In that
case, we can approximate the kernel given in equation 13
by summing only up to L, and dropping sub-leading contri-
butions in % We show these indeed give only sub-leading
corrections in appendix F. These simplifications result in

4 » ﬂl-ﬁ“ 1
k(X,Y) =@t L+18LQZ( T+ 1

a,b=1

(14)
Finally, Since our particular model uses a vocabulary of size
2 the entries of a one-hot vector are completely determined
by one another z§ = 1 — ¢, allowing us to write it using
only the first entry. As can be seen in equation 9, the only
X dependence in the 1.h.s comes from the kernel k(X,Y),
thus for the equality to hold for every X, the eigenfunction
i (X) of \; # 0 must be in the space of functions spanned
by k(X,-). For example, if k(X,Y) is linear in X only
linear functions will be expressible. Based on this argument
(formally given by the representer theorem (Scholkopf et al.,
2001)), we may conclude the space of expressible functions
is spanned by linear functions of {z¢}%L_, multiplied by
linear functions of :rf +la space of dimension 2L + 2.

2.3.2. LEARNABILITY

Moving from expressibility to learnability requires knowl-
edge of the full spectrum of the kernel. While this problem
is generally hard, we will use the representation theory tools
developed above to simplify it. We would like to decompose
the zeroth and first-degree multilinear polynomial to irreps.

Claim 2. The space of expressible functions of the model
described above can be decomposed into irreps as follows.
A trivial representation (dim = 1) of multiplicity 6 and a
standard representation (dim = L/2 — 1) of multiplicity 4.

Starting from the largest structure, notice the kernel is a
product of two terms (2,5 in equation D.1). The 2 part is
diagonalized in the basis

a(@FTy = gkt p(Fl ) = (1 — 2f ), (15)

which leads to multiplicity 2 for all irreps involved; one
belonging to the a block and one to the b block of 2.

Moving on to the B term, as expected from the general
argument presented in the previous section, we find it is
symmetric under the action of the permutation in the sym-
metric group Sy, on the set of tokens in the context window
{x%}L_,. The full S;, symmetry is not, however, presented
in the probability distribution of our chosen dataset, as to-
kens have different emission probabilities under different
hidden states. Nevertheless, a smaller symmetry is pre-
served, allowing permutations only within the same hid-
den states. Since the transition between hidden states is
deterministic, we find that all odd (even) tokens belong
to the same hidden state and can be permuted between
themselves, giving rise to the smaller symmetry group
SE/Q X Si"/"; := S 7 as a symmetry of K.

As discussed in the previous subsection, in this example,
only polynomials up to first degree can have non-vanishing
eigenvalues. First degree polynomials are decomposed to
two irreps (see theorem 2.1), namely the trivial (L/2) and
standard representation (L/2 — 1, 1). The trivial representa-
tion has dimension 1 with multiplicity 4: one for the even
subspace and one for the odd subspace, times 2 for the mul-
tiplicity from (. The standard representation has dimension
L/2 — 1 with multiplicity 4, broken down in the same way
as before. For zeroth degree polynomials (constants) only
the trivial representation exists, of multiplicity 2: again, the
coming from 2(. The process of concretely writing down
the functions that span the space can be simplified further
using the cyclic sub-group C'p, 5, this process is details in
appendix D.

Using symmetries and the partition to 2(, 5 we are able to
reduce the eigenvalue problem to two® 3 x 3 spaces of the
trivial representation, which are diagonalizable in closed
form, and a diagonalized 2L — 4 dimensional space of the
standard representation. We can repeat the same procedure
for polynomials of any order and decompose them to irreps
(see appendix B for a discussion of the method, and an
example); thereby allowing us to expand the results to a
wider class of NNs including non-linear and deeper NNs.

Gathering the results of this section, Given: (1) equation 6,
together with the (2) learnable target given in equation 1.8,
the (3) eigendecomposition given in equations D.3, 1.7, and
the (4) eigendecomposition of the two 3 x 3 spaces spanned
by the basis in equation I.1. One can predict accurately
the output of the model described in section 2.1 with linear
activation functions in the GP limit. Additionally, One can
make accurate predictions for the generalization loss, even
under a distributional shift.

" Assuming L is even for simplicity
80ne for the a block and one form the b block
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Figure 2. Left: (theory vs. experiment) Two sections, along constant N (in blue) and L (in red), of the MSE loss as shown in the center.
We find good agreement between our theoretical predictions (calculated for the train and test distributions) and exact inference with a GP,
equivalent to inference with an infinitely wide NN. Stars indicate the experimental MSE loss calculated on the test dataset, where the
majority of samples are OOD w.r.t to training dataset. Center: (learnability scaling law) Prediction for the generalization MSE. We
see the learnability threshold as a diagonal valley (marked by the dashed line) of constant N/ L ratio as a consequence of having target
eigenvalues of scaling A\ ~ L', This is the onset of the regime where there are enough datapoints to use the full potential of the context
length. Right: (linear MLP predictions extend to non-linear MLP) Projections of the exact GP inference predictor with non-linear
MLP on the basis vectors {¢} specified in equation 1.1, together with the theoretical prediction for the projection for a GP with linear
MLP as a function of the number of training points. The predictions for the transformer block with linear attention and linear MLP are

useful for non-linear MLP as well.

3. Experimental Results

In this section, the theory is compared to numerical ex-
periments. We start by comparing our predictions for the
example of linear activation functions with exact Bayesian
inference using the NNGP prior, which is equivalent to the
output of a NN train with Langevin dynamics. We predict
the performance OOD and show good agreement with ex-
periments. The N-L scaling law is shown and the kernel
for erf activation function is shown to give a similar predic-
tor per N. We then move on to real, wide but finite, NN
with non-linear activation functions trained by SGD. We
show nontrivial predictions such as OOD performance car-
ryover from the linear MLP to the non-linear MLP case. We
then present the kernel’s spectrum of an NN with standard
softmax attention and show that the scaling law bounds
derived on the eigenvalues become tight. Lastly, we analyze
WikiText-2 and show that at leading order correlations the
dataset does indeed appear to be permutation symmetric to
a good approximation.

3.1. Linear Activation Functions

On the left of Fig. 2 the predictions for the loss as a
function of N and L are presented, together with exact
Bayesian inference, showing good agreement both on train
(p~U(0.4,0.4+10715), ¢ ~ U(0.5,0.5+10715)) and
test (p,q ~ U(0, 1)) distribution loss. For details on the
analytical predictions for the loss see Appendix E.

The 2d manifold of the analytical prediction for the (OOD
generalization) loss computed on a mixture of HMMs drawn
from p,q ~ U(0, 1), as a function of N, L is presented in

Fig. 2 center. As shown in Appendix D, only functions that
belong to the trivial representation contribute to spanning
the target. Four out of six corresponding eigenvalues scale
as A\ ~ 1 and the other two scales as A\ ~ L~!. Resulting
in the scaling law N ~ 1/X o L This result appears as a
connected valley of minimal loss when holding N constant,
i.e. aconstant N o< L ratio.

Lastly, we compare the GP predictor for a network with
non-linear MLP ¢(x) = erf(z) (in reference to equation 1)
to that of the linear example solved above. To the right
in Fig 2, the exact GP inference (computed for non-linear
MLP) predictions projected on to the {} basis vectors in
equation I.1 are compared with analytical predictions for
a network with linear MLP as a function of the number
of samples in the dataset. They match very well in terms
of learnability as seen by the rate at which the projection
coefficients reach their asymptotic value . We see the NN
with non-linear MLP follows the same trend and learns a
similar predictor to the one with linear MLP.

3.2. Finite Neural Networks and Natural Language

While the example of linear activation functions can be fully
understood one may wonder whether the conclusions carry
over to more common scenarios, here we address these
concerns. The doubts we will try to dispel are

* While there is an established correspondence between
Bayesian inference with a GP and an infinite NN, does
a finite NN, trained with SGD with a finite learning
rate show similar results?

* Could it be that the OOD generalization is a result of
the limited expressibility and or the GP limit?
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Figure 3. Left: (Predicted OOD generalization matches experiment) Finite NN and exact GP inference (cyan and blue respectively),
optimal predictions (red) and ground truth (dashed light red) as a function of the ground truth target for the sample. We see good agreement
between predictions and experiment in distribution and OOD. The performance OOD is only slightly worse than in distribution, as
indicated by the spread around the ground truth. Center: (the scaling bounds are tight for eigenvalues of softmax attention) The
spectrum of the empirical kernel of a network with softmax attention as a function of the context length (L). The scaling with L is bound
tightly by the scaling deduced from the dimension of the corresponding irrep of the symmetric group. The light dashed lines serve only
as a guide to the eye for the scaling law; they are not predictions for specific values. Right: (evidence for approximate permutation
symmetry in WikiText) The triangle shows the cosine similarity induced by the Frobenius inner product between the linear features of
WikiText C** and C*'¥' for the k’s indicated on the boundary. We see all sampled k # 0 are similar to one another but different from
k = 0 as predicted by the irrep decomposition. The Empirical CDF plot shows the CDF for the eigenvalues of those sampled matrices.
Different k’s for k& # 0 are almost identical. £ = 0 has a distinct distribution.

* Are the bounds derived using the dimension of the
corresponding irreps tight?

* Among other tasks, transformers are widely used in
NLP, is NL permutation symmetric to any degree?

The first result involves again a non-linear MLP with erf
activation function and linearized MHA. The NN is trained
on 8,000 samples drawn from the mixture p, g ~ U(0,0.4)
with SGD with a mini-batch size of 50 and a learning rate of
103 for 10, 000 epochs. In figure 3 left, the output of the
NN, together with exact Bayesian inference with the NNGP
prior, the optimal predictor, and the ground truth, are shown
as a function of the ground truth target value; each point on
the plot can be thought of as correlation between the output
and the true value. The performance OOD only starts to
decline slightly around 0.8, matching well with the exact
GP predictions despite the finite size and SGD training. It
remains to be seen whether these results hold for a large
transformer.

In the center panel of Fig. 3 we see the spectrum of the
kernel matrix as defined in equation 4, for a NN with
® = softmax and ¢(x) = x. The scaling of the eigen-
values is improved such that the eigenvalues in the trivial
irrep scale as L° and the eigenvalues in the standard irrep
scale as L', meaning, they take the maximum scaling pos-
sible based on the degeneracy of the irrep. Comparing these
values to those of a fully connected network (FCN) can
give a view from infinity on the advantages transformers
have over FCNs. For our dataset and task, the target func-
tion belongs to the trivial representation of the symmetric

groups, this means that the network with & = softmax can
learn the target in N = ©(1) samples. On the other hand,
an FCN will need N = O(L) samples, as its symmetry
group would be the sign-symmetric group, where all L lin-
ear functions are degenerate (Yang & Salman, 2020). Such
a result extends further to settings used to study in-context
learning (Von Oswald et al., 2023), as they too aggregate
symmetrically over context, allowing transformers to gain
significant advantage over FCNs.

Finally, we present some evidence suggesting NL does pos-
sess an approximate permutation symmetry, at least up to
linear correlations. We examine the (first order) correlations
in WikiText-2 at the basis of the cyclic permutation irreps
(for experimental details see appendix H)

ij}c’ = E x ~WikiText—2 [X;zvakXJl?ka'} : (16)

2 —1,..L
Vb .— exp (i”ak), Z I a7

If permutation symmetry were to hold, we would expect all
C** correlation matrices with k # 0 to be interchangeable,
as they are all part of the standard irrep. We quantify this
quality by the cosine similarity induced by Frobenius inner
product and by their spectrum. As shown in Fig. 3 right,
there is indeed a large similarity in the standard irrep. This
similarity does not exist with the trivial irrep (k = 0). The
spectrum of the different correlation matrices inside the
standard irrep is almost identical as well, as indicated by the
eigenvalue CDF in the same figure. This similarity, again,
does not exist between the two irreps (i.e. £k = 0,k # 0).
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4. Discussion

In this work, we analyzed a family of transformer-like mod-
els and showed that their inductive bias can be understood
using the representation theory of the symmetric group when
the dataset possesses permutation symmetry. In this setting,
we derived a scaling law for the number of data samples
required to learn a target as a function of the context length.
We showed these predictions are generic and hold with
added non-linear activation functions, as well as OOD.

Critically, the above results depend on a permutation sym-
metric dataset” while some settings do have this exact sym-
metry like transformers for sets (Lee et al., 2019; Kim et al.,
2021) or setting studied for ICL (Power et al., 2022; Von Os-
wald et al., 2023), natural language does not seem to have it
prima facie. We have shown that, in fact, first-order correla-
tions in WikiText-2 seem to largely manifest this symmetry.
This means that when learning linear targets or up to O(L)
samples, such models will be bound by the scaling laws
discussed above. One such linear function (in the context
tokens) that is relevant to NLP is the copying heads dis-
cussed in Olsson et al. (2022), while induction heads would
be second order in the context tokens. This fact motivates
examining the correlations in NL to second order, as a con-
crete mechanism for in-context learning can already appear
there; we leave this for future work.

Notwithstanding, some conclusions can be carried from a
symmetric dataset to an arbitrary one. Assume the target
is one of the eigenfunctions of the kernel when diagonal-
ized on a permutation symmetric measure p(z), namely
y(x) = p¢(x), we may substitute into equation 8 a predictor
f(z) attained by inference with the same GP on a different,
possibly non-symmetric dataset Dy = {x,,, y(z,)} 1.
The learnability with the new f(x) can nevertheless be
bounded (Lavie & Ringel, 2024)

< MNEpy [0 (a)]

Ly
o2

(18)

suggesting N ~ A, '0%/E,.p,[6? ()] samples will be
required to learn ¢, from Dy when measuring learnability
on p(z).

Lastly, while our work accounts for the implicit inductive
bias of the architecture, it does not address other sources of
inductive bias, like finite learning rate (Lewkowycz et al.,
2020; Beugnot et al., 2022; Mohtashami et al., 2023) and
finite size corrections to the GP limit. As recent works
have shown (Seroussi et al., 2023; Bordelon & Pehlevan,
2023; Segadlo et al., 2022; Li & Sompolinsky, 2021; Pacelli
et al., 2023; Dyer & Gur-Ari, 2019; Aitchison et al., 2021),
the GP limit is used as a starting point for more advanced

“Though the solved linear example shows permutation symme-
try between subsets in the sequence is also powerful

methods that study finite size corrections and capture impor-
tant phenomena like representation learning. Studying such
corrections is left to future work.

4.1. Related Works

Inductive bias. The term spectral bias was coined by Ra-
haman et al. (2019), referring specifically to the Fourier
spectrum. The term has since been used to describe other
forms of inductive bias, including those coming from the
spectrum of the corresponding kernel (eigenvalue decom-
position) (Bordelon et al., 2020; Cao et al., 2021; Canatar
et al., 2021b). The form of inductive bias studied in this
paper has been extensively studied for fully connected net-
works (FCNs): for data uniformly distributed on a hyper-
sphere (Basri et al., 2019; Bietti & Bach, 2021; Azevedo
& Menegatto, 2014; Scetbon & Harchaoui, 2021) and non-
uniformly (Basri et al., 2020), and for Gaussian and uniform
distribution on the hypercube (Yang & Salman, 2020). Bi-
etti et al. (2021) have studied how additional symmetries
above the rotational symmetry of FCNs can reduce sample
complexity and Tahmasebi & Jegelka (2023) generalized
these results. In the context of CNNs symmetries were
used to design better inductive bias (see Cohen & Welling
(2016)), and their corresponding kernels’ spectra were an-
alyzed as well (Bietti, 2021; Xiao, 2022; Cagnetta et al.,
2023; Geifman et al., 2022) showing how their inductive
bias is beneficial for learning a range of tasks. To the best of
our knowledge, our work is the first to study inductive bias
of transformers from the perspective of symmetries in the
infinite width (GP) limit. Recently an empirical work has
characterized some aspects of the inductive bias of trans-
formers (Bhattamishra et al., 2023); our work complements
it and can be seen as a theoretical explanation. Lastly, Fu
et al. (2023) has studied random feature attention under lim-
iting assumptions (no positional encoding, limited depth);
our work approaches the challenge from a the perspective of
symmetry & representation theory and its results are valid
for a more general family of models.

Understanding transformers. A large body of knowledge
has accumulated regarding understanding specific phenom-
ena related to transformers like grokking (Liu et al., 2022a;b;
Rubin et al., 2023; Nanda et al., 2023), in-context learn-
ing (Olsson et al., 2022; Garg et al., 2022; Akyiirek et al.,
2022; Von Oswald et al., 2023). Other works focused on
other aspects like signal propagation (Cowsik et al., 2024;
Noci et al., 2022) and OOD generalization (Nam et al.,
2022). Our work focuses directly on the transformers’ in-
ductive bias and characterizes it at the GP limit.
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Towards Understanding Inductive Bias in Transformers: A View From Infinity

A. Introduction to Key Concepts in Representation Theory for Eigenvalue Problems

Symmetries can greatly simplify the above eigenvalue problem. Let G be a symmetry group, we say the eigenvalue problem
possesses this symmetry provided

Vge G, k(Tyz, Ty y) = k(z,y) (A.1)
pdata(Tg 17) = pdata(x)

where the linear transformations (7)) are some faithful representation of G (i.e. T4Ty = Ty and T,T, = Id iff gg' is the
identity element of 7).

As a concrete example and to make contact with the terminology in the main text, consider the case where z € R?
which we express in polar coordinates x = (r,, cos(0,), 7, sin(f,)), and p(x) effectively discretizes 6 and fixes r (i.e.
p(x) = 8(re — YN 3L, 6(6: — 2mj/N)). Let K (,y) =
21 /N, and T};’s given by the corresponding 2 X 2 rotation matrices on .

Next we utilize G to find the spectrum of K w.r.t. p(z). To this end, we consider the space on which K acts— the
vector space of functions of x (f(x)) with the distance induced by p(x). This space is N dimensional and spanned by
[f(21),..., f(zn)] = f. The linear action of T, on x induces a linear action on function space (equivalently on f) via

T, f(z) = f(Tyx). Symmetry under G, as defined above, implies that T s all commute with K. Consequently eigenspaces
of K are invarlant under all Tj’s.

The above guides us to look for the minimal vector spaces which are invariant under all Tg’s. These are known as
irreducible representations (irreps). The group Z is known to have N distinct irreducible representations of dimension 1
labelled by k& € {27/N, 4w /N, ..., 2w }. The corresponding invariant spaces are simply the discrete Fourier mode vectors
Ty = [e2™F/N 4mik/N 1], Tt can be checked that all T},’s leave each of these spaces/vectors invariant. This implies K
is diagonal on the v}, ba51s Allowing more complicated radlal dependence, say by taking p(x) with §(r — 1) replaced by
1[6(r — 1) + &(r — 2)], the resulting blocks of K associated with each irrep would be 2 x 2. Equivalently stated each block
would contain the irrep at multiplicity 2. Furthermore, for non-abelian G (e.g. augmenting Zy with reflections), irreps of
dimension larger than 1 generally appear.

B. A Gentle Introduction to The Use of Symmetry in Kernel Learning and The Symmetric Group

Spectral properties of kernels with respect to the data measure, provide a detailed description of the implicit bias of
infinitely wide neural networks. However, diagonalizing a generic kernel operator on a generic measure is challenging. For
fully connected networks and rotation symmetric datasets, this difficulty is largely lifted. In fact for uniform data on the
hypersphere closed-form expressions for the spectrum and eigenfunctions exist (Cohen et al., 2021; Canatar et al., 2021b),
the latter being hyperspherical harmonics. These results follow directly from studying the representation theory of the
orthogonal group acting on multivariate polynomials.

For transformer models like the ones introduced above, the analog task is to find representations of the symmetric group
acting on multivariate polynomials. Below we provide several concrete examples of such representations, flesh out their
implications on spectral bias, and provide a road map for deriving higher representations.

As a starting point consider a kernel K (z,y) where z,y € R? and some generic dataset measure p(z). Let Sy denote the
symmetric group (the group of all possible permutations) on 1,2, ..., d where an element o € Sy acts on x as [07]; = T4 (;)
(i.e. the natural action). Assuming K (z,y) = K(ox,oy) and p(x) = p(cz) we wish to solve the following eigenvalue
problem

[ )k mes) = rertz) B.1)
to simplify the problem, let us assume that k(x, y) contains powers of x and y only up to some finite degree ¢. In that case,
any o (x) with non-zero A must be at most a ¢’th order multivariate polynomial.

To proceed with finding the spectrum and eigenfunctions, we first address the question of what are the irreducible
representations of the symmetric group acting on finite degree polynomials. Irreducible representations (irreps) of the
symmetric group are labelled by partitions of d which we denote by (dy,ds, ...,dy) such that d; > dy > ... > dj, and
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>k A = d. These partitions are in one-to-one correspondence with Young Diagrams wherein one simply draws a row of
boxes of length d;, followed by a left aligned row of boxes of length d; etc...

Conveniently, there is a direct way of constructing an irrep from its Young diagram (see Fulton & Harris (2004)). As shown
in theorem 2.1, particularly relevant here are Young diagrams of the form (n — k, k). Considering those, the first step
is finding all standard Young Tableaux associated with the Young diagram. Standard Young Tableaux are assignments
of integers between 1..d, with no repetitions, to the boxes of the Young Diagram such that all columns and rows are of
increasing order. For instance, for the case (d — 2, 2) and d = 6 these would be

5|6\ 1]3 4|6\

3 34|5\ 125|6\ 124|6\ B2)
214 215 216 34 3

24|5\ 123|6\ 123|5\ 123|4\
3|6 415 416 56

An important observation here, true for any (d — k, k), is that the lower row completely determines the upper one. Indeed
the upper row must consist of all integers besides those in the lower row, arranged in strictly increasing order. We may thus
denote such tableaux by their set of lower row integers 1, o, .., ¢ (although some combinations may be disallowed). We
next associated a monomial of the form x;, z;,...z;, with each such standard Young Tableaux!'® ''. To proceed with the
construction we further consider the group of column permutations C' C S, wherein we only allow switching of pairs along
columns. We then construct the following polynomial element from the monomial

Ml(x)il”ik = Z sign(o)xyiy Loy, (B.3)
ceC

it then follows (see appendix C) that these k’th degree polynomials span the irreps (d — k, k), where the action of Sy
amounts to its natural action on the indices x. Notably this basis is typically not an orthonormal one. Furthermore, the same

representation may appear with any power of z;, namely M (™) = > occ sign(o)xyy xl ,m € N, however for discrete
measures some of these may collapse onto one another or to the trivial representation. For instance if x; € {+1, —1},M (2m)

is just a constant and M ?m+1) = A7),

One notable example of a (d — k, k) representation is the standard representation (d — 1, 1) equivalent to the natural action
on

Span{z; — xo}le (B.4)

this representation is also equivalent to considering the discrete Fourier modes

on(x) = Zei%’“j/da:j ke{l,2,..,d—1} (B.5)
J

but omitting x—o(z) (the trivial representation). The different k£ numbers, via e2mik/d

dimensional-irreps of the cyclic group (Z,, C 5).

, can also be understood as one-

Another relevant irrep is the trivial one, corresponding to symmetric (multivariate) polynomials. These are spanned by the
Schur polynomials which are again in one-to-one correspondence with Young Diagrams, via however a different association
than the one above. Up to an order of, say order 3, these are spanned by 1, >, 24,3 0, T35, 3 ;s Tijy D iy, TiTjThs
Zi;éj:k T;T T, Zi##k T;T Tk,

Another low dimensional representation is the sign representation of the symmetric group, associated with alternating
polynomials (polynomials which are anti-symmetric with respect to exchanging any two variables). All such polynomials
are of degree higher than that of the Vandermonde polynomial (m1<;<;<d,n—d(z; — 2;)), thus having a degree higher than
n—14n—2+..+0=mn(n—1)/2. Due to their high order they would not appear for any ¢ < d. We conjecture that
these would be exponentially suppressed in d for any NNGP or NTK kernel.

19Similar to the construction of Specht modules from Young tabloids(Fulton & Harris, 2004).

""In the next appendix, where we prove theorem 2.1 we take a different approach for the construction of the irreps of the Symmetric
group. Here we effectively directly associate monomials with Young Tabloids, while in the next appendix, we use the Young symmetrizers
as projectors to irrep spaces without the need for such a less formal, yet more intuitive, association between tabloids and monomials.
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The above irreps and their associations with polynomials, facilitate the construction of low order polynomial representations.
For instance, let us assume that z; € {+1, —1} and consider all possible polynomials up to second order. These are spanned
by three trivial representations (i.e. (d) partition/Young-Diagram)

d
1, in; Z T3l (B.6)
i=1

1<i<j<d,n—d
two d — 1 dimension standard representations ((d — 1, 1))

or(x) ke{l.d-1} B.7)

d
(Z x) or(z) ke{l.d—1}
i=1

and one (d — 1)(d — 2)/2 — 1 dimension ((d — 2, 2)) representation spanned by
@ij(x) = 2iw; — ow; — iwy + xomy, b =min[{k}i_\{i,j}],1 <i<j#3 (B.8)

Given a measure (p(x)) which respects the symmetry, any two polynomials associated with distinct representation would be
orthogonal. However, their normalization and the orthogonality relations within the same representations would vary based
on the measure.

Turning to the spectrum, it then follows from standard representation theory arguments that a kernel with ¢ = 2 has 6
generally distinct eigenvalues. Three generally-non-degenerate eigenvalues are associated with linear combinations of
the 3 trivial representations. Two, generally distinct sets, of d — 1-degenerate eigenvalues associated with the two linear
combinations of the two standard representations. Last, one (d — 1)(d — 2)/2 — 1 degenerate eigenvalue associated with the
(d — 2, 2) representations.

Finally, we note that the eigenfunctions associated with the two standard representations can mix in a limited manner.
Following the assignment of k£ numbers (or equivalently eigenvalues with respect to the subgroup of .S’ consisting of cyclic
permutations of the indices), each basis element we used is also an irrep of the cyclic group. Hence two different values of k
cannot be mixed. In addition, other elements in the permutation group are capable of shifting between these k& values, hence
the linear combinations are constant as a function of k. As the eigenfunctions associated with one of the d — 1-degenerate
eigenvalue can be written as ayy, + b(D ,; ;)¢ where a, b are k independent coefficients. The corresponding eigenfunction
associated with the other d — 1-degenerate eigenvalues is simply the orthogonal one.

C. Decomposition of multilinear polynomials to irreps of the symmetric group

Definition C.1 (Partition). A partition of 7 is an ordered set of positive integers A = (A1, Ag, ..., Ay, ) such that {)\i};il CN,
Z?il/\i =nand A\ > X > ... 2>\, > 1.

Theorem C.2. Irreps of the symmetric group of n symbols S,, are uniquely labeled by partitions of n (Fulton & Harris,
2004)

Definition C.3 (Young Diagram). A Young diagram ©, of a partition A of n is a diagram where one draws a row of \;
boxes for each element in lambda starting with A;, with each subsequent element below it. For example given the partition
A = (3,2, 1) the Young diagram is

O, = (C.1)

Definition C.4 (Young Tableau). A Young Tableau ©F associated with a Young diagram © with n boxes is a filling where
each box is filled with an integerl, ..., n with no repetitions (definition vary, here we follow (Sagan, 2001)). For example
some of the Young Tableaux associated with the Young diagram from the previous example are:

3 537917_ 5

= (C2)

of = , 04 =

BEEE

’%Cﬁl\?

’CO[\DH
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Definition C.5 (Standard Young Tableau). A standard Young tableau is a Young tableau where the rows and columns
increase to the right and to the bottom respectively (Again definitions vary, here we follow (Sagan, 2001)). For example, @lj\
and © in equation C.2 are standard Young tableaux but ©Y is not.

Definition C.6 (Canonical Young Tableau). A canonical Young tableau @f is a standard Young tableau where the numbers
1, ..., A1 appear in the first row, the numbers A; + 1, ..., Ao appear is the second row and so on. For example, the @f
in equation C.2 is the canonical Young tableau.

Definition C.7 (Rows and columns subgroups). Given a Young tableau ©% of partition A and assignment p, we define the
rows subgroup R which leave invariant the (unordered) sets of numbers appearing in the same row of ©%. Similarly, we
define columns subgroup C§ which leave invariant the (unordered) sets of numbers appearing in the same column of ©7%.
Definition C.8 (Permutation action on the multilinear polynomials). Let 7 be linear representations of the the symmetric
group S,, on the multilinear polynomials, such that the permutation acts naturally on the variables indices. E.g. let o € S,
be a permutation, and let P(z1, ..., 7,) = 122 be a multilinear polynomial, then 7 (s) P = (1) Z4(2)-

Define the groups of row and column actions on the multilinear polynomials
Ry ={T(o)lo e R}, CF={T(o)lo €5} (€3)

Definition C.9 (Row symmetrizer, column anti-symmetrizer and young symmetrizer). Define the row symmetrizer, column
anti-symmetrizer and Young symmetrizer linear operators:

=Y (C4)
reRry

CY =) sign(c)e (C.5)
ceCy

YP =CPRY (C.6)

Theorem C.10. Young symmetrizers associated with standard Young tableaux are projectors to irrep spaces of the symmetric
group (Fulton & Harris, 2004)

Lemma C.11. If there exists a transposition t* € C¥ that leaves a monomial M unchanged, M vanishes under the action
of the column anti-symmetrizer - A
It e Cf st. t*M =M — C{M =0.

Proof. Let ©X be a standard Young tableau of a partition A. Let C’f be the column anti-symmetrizer associated with ©7F.
Let M (x1, 2, ..., 2,) be a multilinear monomial in the variables 1, o, ..., x,. Let t* € C} be a transposition such that
t*M = M. A transposition is an involution, that means, it is a bijection from the group to itself and t*t* = e, where e is the
identity element. Right multiplication with ¢* maps any element ¢; € C% from the column group to ¢; = ¢;t* such that

sign(c;)e; M = sign(c;t™t™)e;t"t* M = sign(c;t*)e;t* M = —sign(c;)c; M. (C.7
We have constructed a unique pairing between each ¢; € C} and ¢; € CY such that ¢; # ¢; and sign(c;)e;M =
—sign(c;)c; M that is
Ve, € CF Flej € CF s.t. ¢; # ¢ Asign(e;)e;M = —sign(cj)c,; M.
That means the terms in the sum cancel in pairs C’f\) M=> cec? sign(c)eM = 0. ]

Lemma C.12. All multilinear monomials in n variables, vanish when acted upon with a column anti-symmetrizer that
corresponds to a Young tableau with more than 2 rows

Proof. Let M(z1, %2, ..., ©,) be a multilinear monomial in the variables z1, 2, ..., z,,. Let ©X be a standard Young tableau
of a partition A that has more than 2 rows. The first column in ©% gives raise to at least 3 transpositions (ab), (bc), (ac).
Since each variable must either appear in M (x1, xo, ..., z,) to a single power or zeroth power, out of the 3 variables
Tq, Tp, T at least two must appear to the same power. Because the product of our variables is not ordered, at least one of
the 3 transpositions leaves M (z1, 2, ..., T, ) unchanged. Applying lemma C.11, M (x1, x2, ..., ;) must vanish under the
action. |
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Lemma C.13. All multilinear monomials of degree d in n variables, vanish when acted upon with a column anti-symmetrizer
associated with a partition (n — k, k) for k > min{d,n — d}.

Proof. for k > {d,n — d} there exists a column transposition (ab) € C% where both x,, z;, appear in the monomial to
zeroth power, therefore the transposition (ab) leaves it unchanged. Applying lemma C.11, the monomial must vanish under
the action. ]

Remark C.14. The multilinear monomial can be thought of as picking specific boxes in the Young tableau, one can then
permute inside the rows, writing down the numbers that appear in the chosen boxes as the indices in the monomial. Finally
one can act with the column permutations, while adding their signs, on the monomials found by the rows actions. Summing
up all terms gives the result of acting with the Young symmetrizer on the monomial. The necessary conditions above for
C’fM = ( translate to being able to pick d boxes such that at most one box is picked in every column, and no column has
more than one box unpicked in it.

Lemma C.15. There exists a multilinear monomial of degree d in n variables, that does not vanish when acted upon with a
Young symmetrizer associated with a partition (n — k, k) for every k such that 0 < k < d,n — d.

Proof. Let M = Hle x; be a multilinear monomial of degree d in n variables. Let G(C;L_ kok) be the canonical Young
tableau associated with the partition (n — k, k) for 0 < k < d,n —d,

O _kp) = : (C.8)

n—k+1|n—k+2 c. n

We now verify Y(n ey M #0:

The row symmetrizer sums positive elements, therefore the sum cannot vanish

P=R{ o M= > rM#0. (C.9)
TGR(C;_k’k)

Since {z;}"_, are independent variables all elements in the sum above are linearly independent (up to identical elements).
We may conclude it is sufficient to show a single element doesn’t vanish to prove C’ (n—k k)P doesn’t vanish, since C k)
includes the trivial element. In particular, we will show that for » = e the summand M = M does not vanish under the
action of the column symmetrizer.

The column symmetrizer CA*(C;L_ o) is a sum of closed, independent, column transpositions and their products. All non-trivial
transpositions, when acting on M specifically, create linearly independent elements, therefore the sum of such transpositions
acting on M cannot vanish.

We may conclude CA’(Cn_ & k)P includes at least one non vanishing term (that is M) and therefore f/((;:_ & k)M # 0. |

Definition C.16 (Hook Length). The hook length & (i, j) of a box, where ¢ (j) denotes the row (column) of the box in the
Young diagram O, is the number of boxes to the right of the 7, j’th box in the 7’th row, plus the number of boxes below the
box in the j’th column plus one.

Lemma C.17. The dimension of an irrep associated with a partition (n — k, k) is dimy = W'
n—2k+1

Proof. using the hook length formula (Fulton & Harris, 2004)

n!
Hi,jE/\ hk(%]) .

20
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The product in the denominator equals

. (n—k+1)! (n—k+1)! n+1\ (n+1)!
h = — 2k)! k! -— =kl = — 7 (C.10
H A(:) (n— 26) < 2kt 1) n—2k+1 k )n—oky1 ©10
LIEA upper row with nothing below [OWeT TOW v
upper row with boxes below
Resulting in
. n! &
dimy = Gy ~
*n—2k+1
|

Theorem 2.1. The space of homogeneous multilinear polynomials in n variables of degree d can be fully decomposed into
min{d + 1,n — d + 1} unique irreps of S,, labeled by the partitions (n — k, k) for 0 < k < d,n —d.

Proof. Let O be a standard Young tableau of a partition \. Let R%,C%, Y} be the row symmetrizer, column anti-
symmetrizer and Young symmetrizer (respectively) of the ©F.
Let { M2} be the set of all multilinear monomials in n variables of degree d.

{M2} is a basis for the space of multilinear polynomials in n variables of degree d. That means Span{M¢} is the space of
multilinear polynomials in n variables of degree d.

Span{M¢} is closed under the action of R%. Therefore, if VM € {MZ}, C?M = 0, then VP € Span{MZ}, Y/ P = 0.

Using lemmas C.12,C.13 we see that all P € Span{M¢} vanish under the action of the Young symmetrizers associated
with a Young diagram with more than 2 rows or more than min{d, n — d} boxes on the second row.

Based on lemma C.15 and theorem C.10 each of the irreps (n — k, k) 0 < k < d,n — d appears at least once in the
decomposition of Span{ M2} into irreps of the symmetric group.

Span{M¢} is (7}) dimensional.

Summing the dimension of the irreps (lemma C.17)

min{d,n—d}
(n—k+1)!
k=0 k! n—2k+1 d
Since the sum of dimensions of irreps equals the dimension of the space each irrep appears only once. ]

D. Linear example

In section 2.3.1 we have found the kernel can be written in be simplified down to a scalar form

L
1
. 72 Z (zf9) + (1 —2f) (1 — oY)
RXY) =5 (@ g™+ (L=ar™) (L= ™) ' R
1 1 ’
2 +ﬁ2(l‘[fyil+(1—${f') (1—yil))+z
a=1

B

revealing the space of expressible function to be the zeroth and first-degree polynomials of the tokens in the context (part B)
window multiplied by the last token(part 2(). We followed up by applying the Thm. 2.1, to reveal they are composed of
standard and trivial irreps.

Turning to the space of the standard irrep, it can be further decomposed to one-dimensional irreps of the cyclic subgroup
known as the Fourier modes, thereby acquiring eigenvectors of ‘B. Putting these together with the eigenvectors of 2
a(@EHL), (L1 we find 2(L — 2) eigenvectors of the kernel (given explicitly in equation D.3).
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The eigenvalues are all independent of k& € {1,2,...(L/2 — 1)} since all the k¥ modes belong to the same irrep, and only
differ by O(1) factor from one another based on the difference between odd and even and the a, b subspaces

1

A Akla s AR AR o T3 (D.2)
full expressions are given by
L/2 0 L+l L/2 L/2-1
SDde(X) ZOdd Z TSy 2s 1 Pra (X) Zeven Z Ty 38 D.3
epi0) " \igzi an(0) ~ gzt ™
with Zp44, Zp4d, Zgven | Ziem being appropriate normalization constants.
Following the same procedure we find the trivial representation is spanned by
L/2 L/2
~odd Zx% 17 ~even ) _ Z$%s7 (ﬁc(X) = 1. (D.4)
s=1

By a Gram—Schmidt like-process, we find a good basis for the space of permutation invariant functions ¢ ., gp({ o, With
* = {a, b}; the definitions are given in equation I.1. The diagonalization in the multiplicity spaces of the trivial irrep can
now be carried out numerically or analytically in closed form as it can be written as two 3 X 3 matrices.

D.1. Learnable target

So far, the whole process has been task-independent, the last component required to predict the output of the NN is the
projections of the target onto the eigenvectors, which depend on the target function and the training distribution. Since the
task requires estimating a parameter not accessible to the network, the projections can never span the true target function,
instead even as N — oo the network will learn a different function which we dub the learnable target given by > . gip;(z).
We denote the projections by g, g1, ge.«, gk " ,gi"f“ for g goo o P gok < weve“ respectively, where * = {a, b}. This
projections depend on the parameters of the training distribution p,, q,, w, L. Keeping only leading orders of w, % we find

9389, ggve™ vanish for all k, and g . are constants w.r.t w, L while

F_ Lw?nt o = Lw’n; +v;
T VL2w?pf + Lot 77 VL2wps + Lw?oy —|—§;’

¥, &r, where x = {a,b} and x = {+, —}, are detailed in appendix I.

g (D.5)

the definitions of n}, v}, pk, o

E. Out of distribution predictions under EK approximation

We would like to compute the mean square loss (MSE) on an arbitrary data distribution pga¢, When training on a data
distribution pyai, for which we know the EK predictor.

Under EK approximation MSE loss can be computed by

ExpanEo |(fo (X) = 9 (X)] = ExepyBo |(fo (X) = g(X))*] =

= Exwpans [Eo [£3 ()] = 2Eo [fo (X)) g (X) + ¢* (X)] ~ Exupann, [Ee [fo (X)) — 2Ee [fo (X)) g (X) +¢° (X)] =

2
A Yy
=Ex~ Y -2 9 X 2(X) |,
X~ Paaia ;Aﬁag/z\,gw(x)} ;Ai+02/Ngso(:c)g( )+ 9% (X)
(E.1)
Where the approximation on the second line is dropping the EK variance
Ee [fo (X)) = Ee [fo (X)]* + Var[fe (X)] = Ee [fo (X)) (E.2)
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One can in fact calculate this quantity easily within the GP framework but we found the approximation to be good enough
as is and chose to drop it for simplicity. This result is exact when using an ensemble, or when using the EK predictor itself
as the predictor.

By the spectral theorem, are guaranteed ¢; () to be orthogonal w.r.t. an inner product defined with pi,ain as a weighting
function as defined in equation 7. Therefore, choosing pqata = Ptrain Simplifies equation E.2 to

)\i ? 2 )\’L 2
= S ) 922 N E3
;<A1+U2/N> 9i ;)\i—ko’Q/NgZ+<g’g>X’\‘Ptmin’ ( )

as (i, ¢;) = 0;;, with J;; being the Kronecker delta.

Now, if we wish to compute the loss under distributional shift all we have to do is take the expectation value in equation E.2
w.r.t. a new distribution pgata = Ptest 7 Ptrain

Ptrain

Ai 1 Ai
195 \Pi> Pj —2) 9 v ) - E4
ZZ:ZJ: )\2 + 02/N 1 + 0-2/Ng 9i <(‘0 S0-7>X"/Ptest zz: >‘z + 02/Ng <80 g>X~ptest + <g g>X~Ptest ( )

Notably, the eigenfunctions that were orthonormal under the inner product induced by the training distribution are no longer
necessarily orthonormal under the test distribution, and the object G;; := (¢;, ¢;) Xopros €40 DE identified as their Gram
matrix. Nevertheless, the elements of the Gram matrix can be evaluated as sums or integrals, analytically or numerically. In
our case, we evaluated the elements of G;; for the full parameter space of p,, g,, w analytically.

F. Sub-leading corrections from ' *!

The terms left out during the approximation are

1
8L2

ZxL+1a+Z 1_$L+1 1-y +Z$a L+1+Zl_x L+1)+“ (F.1)
a=1

ot 3Pty 43 ( — 2ty (1 -y + 1]

k(l) (X Y) ($L+1yL+1 + (1 _ xL-‘rl) (1 _ yL+1)) .

All the vectors chdd (X), @it (X) gozdbd(X ), ¥is"(X) in the standard representation get no corrections at all as their
matrix elements with all basis vectors vanish.

Moving on to the two 3 x 3 blocks of the trivial representation, <p5“7 @ P0.a (<par b> o) can only have non-vanishing matrix

elements with the ¢, 4 (¢cp). These terms are at most O (%) furthermore, they are second-order corrections in the
eigenvalue perturbation and are therefore sub-leading.

Last . o (¢¢,5) can get corrections to the diagonal term, but they will be at most O (%) while the leading term is O (1).

G. Large structure decomposition and non-linearities

One can write the kernel of the network when applying non-linearities in the form:
RX,Y) =Y RS @M g RE (Yl Ayt ). (G.1)
for some {k;™', kL} . Since all k% possess the permutation symmetry they will be diagonalized in the same basis as

the symmetry operator. Suppose <ij ({xq le) is a non-degenerate eigenfunction of the symmetry operator, we have that
KLyp;=\E ;¢ simplifying the kernel eigenvalue problem to

K (p/*'0f) = X (9T ef) (G.2)

where {<pL}"_1 are known, forming blocks of size n. Note that this is not a simple tensor product structure \;; # )\iL 'H)\JL

as w1 is not independent of {z*}L_;.
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Figure 4. Left: (Similarity measure between C** and C M5 on WikiText) the cosine similarity induced by the Frobenius inner product
between the linear features of WikiText C** and C*'*' for the k’s indicated on the boundary. We see all sampled k # 0 are similar to one
another but different from k = 0 as predicted by the irrep decomposition. Center: (Similarity measure between C'** and C M+ ona
permutation symmetric baseline dataset) The baseline dataset is created by sampling words from WikiText with frequencies as in
WikiText, but with to sequential order. The underlying distribution of baseline is therefore completely permutation symmetric in sequence
space. We display the same quantity as the figure on the left, this time calculated on the baseline dataset. We see all sampled &k # 0 are
very similar, measurably more so then the same features of WikiText. Yet, comparing the differences between the datasets to the similarity
gap of ~ 0.6 between k = 0 and all ¥’ # 0, the results for WikiText and the baseline dataset are remarkably similar, suggesting an
approximate permutation symmetry. Right: (Comparing the spectra of C** between WikiText and the permutation symmetric
baseline) The similarity between ks with k 7 0 is again seen in the spectra. One notably difference between the baseline and WikiText is
the spectrum of C°° which differs along almost all the scale of eigenvalues, showing the principle components do capture information
about sequence dependence, information that does not exist in the baseline.

H. WikiText-2 Symmetry Experiment Details

Here we give some of the details about the WikiText-2 symmetry experiment. We started with tokenizing and trimming:
each sample was tokenized and trimmed to . = 101 tokens. We removed any sample that was shorter than 101 tokens,
leaving us with about 10, 000 samples.

If the dataset is permutation invariant, Ideally, one would now want to perform principal component analysis (PCA) and find
a set of generically IV, different states, each with degeneracy L — 1 for k = 1, ..., L — 1 belonging to the standard irrep,
and another set of generically non-degenerate Ny, different states, for & = 0 belonging to the trivial irrep. The PCA matrix
would be

C;ljb = Ex~WikiText—2 [XLaXJb] ) (H.1)

where a, ¢ and b, j can be understood as some “flattened” super index of a (L - Nyoc) X (L - Nyoc) dimensional matrix.

Moving on to Fourier space

éfjk/ = EXNWikiText72 {ngakX;ka/} ) (HZ)
1t a=1,.., L
ak ; r
_ 2 . H.3
V eXp(ZLa>) k:O,7L_1 ( )

One would then expect to find a block diagonal matrix where C‘fj"'/ = Ofork # k' and CtF = C‘fj/k/ for k. k' €
{1,...L —1}.

However, since the number of samples N < L - Ny, Ny, One cannot expect to find a block diagonal structure. Both the
ranks of the matrix C and the block C**" are determined by N, such that rank C = rankCkF* = N , so the off-block-
diagonal elements must not vanish to make the equality possible. A well-studied similar setting is that of the Wishart
ensemble in random matrix theory (Potters & Bouchaud, 2020; Akemann et al., 2015). Even with N < L - Ny, we may
still expect CFF = (:”fjlk/ for k, k" € {1,..., L — 1}, but we would have to consider the noise due to the finite sampling.

To measure whether C’fjk = C’fjlk' for k, k' € {1,..., L — 1} we present in the main text the cosine similarity induced by the
Frobenius inner product and compare the spectrum’s empirical cumulative distribution function (ECDF). Here we give a
more detailed plot of the similarity, where the cosine similarity value is written on top of each corresponding square
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It is important to noted our results support the hypothesis WikiText-2 has an approximate permutation symmetry, but not
an exact one. We create a baseline dataset where the word frequencies are identical to those in WikiText-2, but are drawn
uniformly over the sequence, i.e. the underlying distribution is exactly permutation symmetric. One can see it shows
greater similarity between k, k' # 0 blocks than the one found on WikiText-2. We can also see the information contain in
WikiText-2 principal components goes beyond the frequency of words, merely by the fact the results are not identical. We
also compare the empirical eigenvalue CDF, showing agreement on the spectra of C** for k # 0 but a significant difference
for k = 0.

In principle, using this method, one can look at correlations up to an arbitrary order, e.g. the third-order correlator would be

Coe = Exwikitext—2 [X{ XPX[] . (HA4)

I. Full expressions of quantities in the main text
Here we provide the full expressions for some of the quantities defined in the main text and in Appendix D.

The basis chosen for the trivial representation is

1 L+1
(Z)oo=(E)e)
Pe,b % 1- $1L+1
Codd+ceven

+ 1 L+1 L o o
(@o,a)(X)_<Zo*a>( ay” )1 st ( 2 )
+ = ’ L1 | T | codd ceven
©o.b % 1—x L pt (bf%

»b -

- @D
(SDOMI) (X) _ (Z3a> ( JI{/+1 )1 (Oéa) LZ/QmQS—l _ (ngd>
Pou L 1—a2l )L a) \ & cpdd
0,b L
L/2
(E- )
. — T —
(/Bb ; civen
with
o :*242%(](1(]9(1 + Ga — 2)(pa + qa) — 12w (paS +pa2(7Qa - 2) +paQa(7qa - 8) + (Qa - 2)‘](12) + ..
¢ 48(pa + ¢ + w)
oo 2w (L = 16)pa® + qa((L — 16)qq + 18) 4 po (18 — 44q,)) + 2w + .. 12)
48(pa + qa + w)
-+ ((L — 14)pa + (L — 14)(1(1 + 6) + (L — 8)w4
48(pa + qa + U))
8 _=36(pa + ) (Pa — D)pa® + (40 — 1)¢a*) — 18w (5pa® + Pa®(3¢a — 4) + Pada(3da —4) + ¢a*(52a —4)) + ..
¢ 72(pa + o + w)
oo F 6w (pa((L — 12)qq + 10) — 15pa® + 5q4(2 — 3¢a)) + 3w (L — 18)pa + (L — 18)qq + 8) + (L — 18)w*
72(pa + o +w)
(L3)
= — _24(pa - 1)(Qa - 1)(pa + Qo — 2)(pa + Qa) + ..
48(]911 + 4a +w — 2)
e — 12w (paS +pa2(7Qa - 8) +pa(Qa - 2)(7Qa - 6) + (Qa - 6)(‘](1 - 2)Qa - 4) + ...
48 -2
(Pa + qa +w —2) (14)

o+ 202 (L((pa — 2)Pa + (da — 2)qa +2) — 2 (8Pa® + Pa(22¢a — 29) + qa(8¢a — 29) +20)) + ...
48(pa + o +w — 2)
oo+ 203 (L(pa + qa — 2) — 2(Tpa + Tqa — 11)) + (L — 8)w?*
48(pa + qa +w — 2)
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36(pa + ga — 2) (Pa(Pa — 1)? + (qa — 1)%¢) + ...
72(pa + o +w — 2)
wo. 18w (5pa® + Pa®(3¢a — 14) + Pa(9a(3qa — 8) + 12) + qa(qa(5ga — 14) + 12) — 4) + ...
72(pa + Qe +W— 2)
oo £ 6W? (L(Pa(—Ga) + Pa + ¢a — 1) + 15pa® + 4pa(3ga — 8) + ¢a(15¢a — 32) +22) + ...
T2 + g b w—2)
T 3w3(L(pa +qa — 2) — 2(9pa + 99, — 14)) — ((L - 18)11]4)
72(pa + Qg + W — 2)

By =

(1.5)

odd __ 3 (pa2 + Qaz) + 3w(pa + Qa) + 2w?
o 3(pa + ga + )
ceven _ (2P +w) (240 + w)
¢ 2(Pa + ¢a + w)
C(gdd _ 3w(pa + o — 1) +3(pa — 1)pa +3(qa — 1)qa + 2uw?
3(pa + qo +w —2)
coven _ 2Pa(20a +w — 1) + 2ga(w — 1) + (w — 2)w
Q(Pa+%+w—2)

(1.6)

N = 5 (- pa) i+ (- a0) @) + Ow)]

even 1
k,a — ]2 [2paQa (]- —Pa+1-— Qa) + O(w)] »

L 17
A = 57z [2(Pa (1=pa)* + 40 (1= 0) *) + O(w)]

even 1

kb = SI2 [2 (1 =pa) (1 = qa) (Pa + qa) + O(w)]

To leading order in %, w, the spanning coefficients of the learnable target are given by

odd __ even

gk,* - 07 gk,* =0
Lw?nf _ Lw?n; + v,
b g* = )
VL2w?pt + Lot VL2wtps + Lw?or + &5 (1.8)

Pala qa + Pa — 2paqa

9e,a = —F/—, Geb = 5
/pa;rqa \/2(1*pa+1*Qa)

gh =

with

9
o =88(pa + q2)° (L9)
040 = —576(pa + 4a)*((Pa — 1)pa + (¢ — 1)¢a)

Mg = 2(Pa — 2)Pa + 2(da — 2)qa +4
e = 2(Pa — 2)Pa + 2(qa — 2)qa + 4 (L.10)
U(;r,b = 576(pa + qa — 2)3((pa = Dpa+ (92 — 1)qa)

Noa = —72Pada(Pa — ¢a)* (Pa + da)
Voo = 864Pada(Pa — ¢a)?(Pa + 4a) ((Pa — 1)Pa + (¢a — 1)qa)

Po.a = 10368paga(pa — ¢a)? (Pa + a)® (L11)
0p0 = —248832paga(Pa — 4a)*(Pa + @a)*(Pa — Dpa + (40 — 1)da)

£0.0 = 1492992p0qa (Pa — 4a)* (Pa + 4a) ((Pa — DPa + (4o — 1)qa)”

26



Towards Understanding Inductive Bias in Transformers: A View From Infinity

Moo = —72(Pa = 1)(¢a — 1)(Pa — ¢a)*(Pa + @a — 2)

Voo = 864(pa — 1)(¢a — 1)(Pa — ¢a)*(Pa + ¢a — 2)((Pa — 1)pa + (¢ — 1)¢a)

Po.a = —10368(pa — 1)(¢a — 1)(Pa — ¢a)*(Pa + da — 2)° (L12)
040 = 248832(pa — 1)(ga — 1)(Pa — ¢a)*(Pa + qa — 2)*((Pa — Dpa + (¢a — 1)qa)

§.a = —1492992(pa — 1)(ga — 1)(Pa — ¢a)?(Pa + 4o — 2)*(Pa — 1)Pa + (¢a — 1)¢a)?
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