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A Constrained �1 Minimization Approach to
Sparse Precision Matrix Estimation

Tony CAI, Weidong LIU, and Xi LUO

This article proposes a constrained �1 minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid
p-variate random variables. The resulting estimator is shown to have a number of desirable properties. In particular, the rate of convergence
between the estimator and the true s-sparse precision matrix under the spectral norm is s

√
log p/n when the population distribution has

either exponential-type tails or polynomial-type tails. We present convergence rates under the elementwise �∞ norm and Frobenius norm.
In addition, we consider graphical model selection. The procedure is easily implemented by linear programming. Numerical performance
of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset
and is found to perform favorably compared with existing methods.

KEY WORDS: Covariance matrix; Frobenius norm; Gaussian graphical model; Precision matrix; Rate of convergence; Spectral norm.

1. INTRODUCTION

Estimation of a covariance matrix and its inverse is an im-
portant problem in many areas of statistical analysis; among
the many interesting examples are principal components analy-
sis, linear/quadratic discriminant analysis, and graphical mod-
els. Stable and accurate covariance estimation is becoming in-
creasingly important in the high-dimensional setting where the
dimension p can be much larger than the sample size n. In
this setting, classical methods and results based on fixed p and
large n are no longer applicable. An additional challenge in the
high-dimensional setting is the high computational cost. It is
important that estimation procedures be computationally effec-
tive so that they can be used in high-dimensional applications.

Let X = (X1, . . . ,Xp)
T be a p-variate random vector with co-

variance matrix �0 and precision matrix �0 := �−1
0 . Given

an independent and identically distributed random sample
{X1, . . . ,Xn} from the distribution of X, the most natural es-
timator of �0 is perhaps

�n = 1

n

n∑
k=1

(Xk − X̄)(Xk − X̄)T ,

where X̄ = n−1 ∑n
k=1 Xk. However, �n is singular if p > n and

thus is unstable for estimating �0, not to mention that its inverse
cannot be used to estimate the precision matrix �0. To estimate
the covariance matrix �0 consistently, special structures are
usually imposed, and various estimators have been introduced
under these assumptions. When the variables exhibit a certain
ordering structure, which is often the case for time series data,
Bickel and Levina (2008a) proved that banding the sample co-
variance matrix leads to a consistent estimator. Cai, Zhang, and
Zhou (2010) established the minimax rate of convergence and
introduced a rate-optimal tapering estimator. El Karoui (2008)
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and Bickel and Levina (2008b) proposed thresholding of the
sample covariance matrix for estimating a class of sparse co-
variance matrices and obtained rates of convergence for the
thresholding estimators.

Estimation of the precision matrix �0 is more involved due to
the lack of a natural pivotal estimator like �n. Assuming certain
ordering structures, methods based on banding the Cholesky
factor of the inverse have been proposed and studied (see, e.g.,
Wu and Pourahmadi 2003; Huang et al. 2006; Bickel and Lev-
ina 2008b). Penalized likelihood methods also have been in-
troduced for estimating sparse precision matrices. In particular,
the �1 penalized normal likelihood estimator and its variants,
which we call �1-MLE type estimators, have been considered
by several authors (see, e.g., Yuan and Lin 2007; d’Aspremont,
Banerjee, and El Ghaoui 2008; Friedman, Hastie, and Tibshi-
rani 2008; Rothman et al. 2008). Convergence rates under the
Frobenius norm loss were given by Rothman et al. (2008). Yuan
(2009) derived the convergence rates for sub-Gaussian distribu-
tions. Under more restrictive conditions, such as mutual inco-
herence or irrepresentable conditions, Ravikumar et al. (2008)
obtained the convergence rates in the elementwise �∞ norm and
spectral norm. Nonconvex penalties, which are usually compu-
tationally more demanding, also have been considered under
the same normal likelihood model. For example, Lam and Fan
(2009) and Fan, Feng, and Wu (2009) considered penalizing the
normal likelihood with the nonconvex SCAD penalty. The main
goal is to ameliorate the bias problem due to �1 penalization.

A closely related problem is recovery of the support of the
precision matrix, which is strongly connected to the selection
of graphical models. To be more specific, let G = (V,E) be
a graph representing conditional independence relations be-
tween components of X. The vertex set V has p components
X1, . . . ,Xp, and the edge set E consists of ordered pairs (i, j),
where (i, j) ∈ E if there is an edge between Xi and Xj. The edge
between Xi and Xj is excluded from E if and only if Xi and
Xj are independent given (Xk, k �= i, j). If X ∼ N(μ0,�0), then
the conditional independence between Xi and Xj given other
variables is equivalent to ω0

ij = 0, where we set �0 = (ω0
ij).

Thus, for Gaussian distributions, recovering the structure of the
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graph G is equivalent to estimating the support of the precision
matrix (Lauritzen 1996). Liu, Lafferty, and Wasserman (2009)
recently showed that for a class of non-Gaussian distribution
called nonparanormal distribution, the problem of estimating
the graph also can be reduced to estimating the precision ma-
trix. In an important article, Meinshausen and Bühlmann (2006)
convincingly demonstrated a neighborhood selection approach
to recovering the support of �0 in a row-by-row fashion. Yuan
(2009) replaced the lasso selection by a Dantzig-type modifica-
tion, where first the ratios between the off-diagonal elements ωij

and the corresponding diagonal element ωii were estimated for
each row i and then the diagonal entries ωii were obtained given
the estimated ratios. Convergence rates under the matrix �1

norm and spectral norm losses were established.
In this article, we study estimation of the precision ma-

trix �0 for both sparse and nonsparse matrices, without restrict-
ing to a specific sparsity pattern. We also consider graphical
model selection. We introduce a new method of constrained
�1-minimization for inverse matrix estimation (CLIME). Rates
of convergence in the spectral norm, as well as the elemen-
twise �∞ norm and Frobenius norm, are established under
weaker assumptions and shown to be faster than those given
for the �1-MLE estimators when the population distribution has
polynomial-type tails. A matrix is called s-sparse if there are at
most s nonzero elements on each row. We show that when �0

is s-sparse and X has either exponential-type or polynomial-
type tails, the error between our estimator �̂ and �0 satisfies
‖�̂−�0‖2 = OP(s

√
log p/n) and |�̂−�0|∞ = OP(

√
log p/n),

where ‖ · ‖2 and | · |∞ are the spectral norm and elementwise
l∞ norm, respectively. We discuss properties of the CLIME es-
timator for estimating banded precision matrices. The CLIME
method also can be adopted for the selection of graphical mod-
els, with an additional thresholding step. The elementwise �∞
norm result is instrumental for graphical model selection.

Besides having desirable theoretical properties, the CLIME
estimator is computationally very attractive for high-dimen-
sional data. It can be obtained one column at a time by solving
a linear program, and the resulting matrix estimator is formed
by combining the vector solutions (after a simple symmetriza-
tion). No outer iterations are needed, and the algorithm is easily
scalable. An R package of our method has been developed and
is publicly available on the Web. Here we investigate the numer-
ical performance of the estimator using both simulated and real
data. In particular, we apply the procedure to analyze a breast
cancer dataset. The results show that the procedure performs
favorably compared with existing methods.

The rest of the article is organized as follows. In Section 2,
after introducing basic notations and definitions, we present
the CLIME estimator. We establish the theoretical properties,
including the rates of convergence, in Section 3, and discuss
graphical model selection in Section 4. We consider the numer-
ical performance of the CLIME estimator in Section 5 through
simulation studies and a real data analysis. We provide further
discussions on the connections and differences between our re-
sults and those of related work in Section 6. We relegate the
proofs of our main results to Section 7.

2. ESTIMATION VIA CONSTRAINED �1 MINIMIZATION

In the compressed sensing and high-dimensional linear re-
gression literature, it is now well understood that constrained �1
minimization provides an effective way to reconstruct a sparse
signal (see, e.g., Donoho, Elad, and Temlyakov 2006; Candès
and Tao 2007). A particularly simple and elementary analy-
sis of constrained �1 minimization methods was given by Cai,
Wang, and Xu (2010). In this section, we introduce a method
of constrained �1 minimization for inverse covariance ma-
trix estimation. We begin with basic notations and defini-
tions. Throughout, for a vector a = (a1, . . . ,ap)

T ∈ R
p, we

define |a|1 = ∑p
j=1 |aj| and |a|2 =

√∑p
j=1 a2

j . For a matrix

A = (aij) ∈ R
p×q, we define the elementwise l∞ norm |A|∞ =

max1≤i≤p,1≤j≤q |aij|, the spectral norm ‖A‖2 = sup|x|2≤1 |Ax|2,

the matrix �1 norm ‖A‖L1 = max1≤j≤q
∑p

i=1 |aij|, the Frobe-

nius norm ‖A‖F =
√∑

i,j a2
ij, and the elementwise �1 norm

‖A‖1 = ∑p
i=1

∑q
j=1 |ai,j|. I denotes a p × p identity matrix. For

any two index sets T and T ′ and matrix A, we use ATT ′ to de-
note the |T| × |T ′| matrix with rows and columns of A indexed
by T and T ′, respectively. The notation A 
 0 indicates that A
is positive definite.

We now define our CLIME estimator. Let {�̂1} be the solu-
tion set of the following optimization problem:

min‖�‖1 subject to:
(1)

|�n� − I|∞ ≤ λn, � ∈ R
p×p,

where λn is a tuning parameter. In (1), we do not impose the
symmetry condition on �, and as a result the solution is not
symmetric in general. The final CLIME estimator of �0 is ob-
tained by symmetrizing �̂1 as follows. Write �̂1 = (ω̂1

ij) =
(ω̂1

1, . . . , ω̂
1
p). The CLIME estimator �̂ of �0 is defined as

�̂ = (ω̂ij), where
(2)

ω̂ij = ω̂ji = ω̂1
ijI{|ω̂1

ij| ≤ |ω̂1
ji|} + ω̂1

jiI{|ω̂1
ij| > |ω̂1

ji|}.
In other words, between ω̂1

ij and ω̂1
ji, we take the one with

smaller magnitude. Clearly, �̂ is a symmetric matrix; moreover,
Theorem 1 shows that it is positive definite with high probabil-
ity.

The convex program (1) can be further decomposed into p
vector minimization problems. Let ei be a standard unit vector
in R

p with 1 in the ith coordinate and 0 in all other coordinates.
For 1 ≤ i ≤ p, let β̂ i be the solution of the following convex
optimization problem:

min |β|1 subject to |�nβ − ei|∞ ≤ λn, (3)

where β is a vector in R
p. The following lemma shows that

solving the optimization problem (1) is equivalent to solv-
ing the p optimization problems (3), that is, {�̂1} = {B̂} :=
{(β̂1, . . . , β̂p)}. This simple observation is useful for both im-
plementation and technical analysis.

Lemma 1. Let {�̂1} be the solution set of (1), and let {B̂} :=
{(β̂1, . . . , β̂p)}, where β̂ i are solutions to (3) for i = 1, . . . ,p.

Then {�̂1} = {B̂}.
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Figure 1. Plot of the elementwise �∞ constrained feasible set
(shaded polygon) and the elementwise �1 norm objective (dashed dia-
mond near the origin) from CLIME. The log-likelihood function as in
Glasso is represented by the dotted line.

To illustrate the motivation of (1), let us recall the method
based on �1 regularized log-determinant program (cf. Banerjee,
Ghaoui, and d’Aspremont 2008; d’Aspremont, Banerjee, and
El Ghaoui 2008; Friedman, Hastie, and Tibshirani 2008) as fol-
lows, which we call Glasso after the algorithm that efficiently
computes the solution:

�̂Glasso := arg min
�
0

{〈�,�n〉 − log det(�) + λn‖�‖1}. (4)

The solution �̂Glasso satisfies

�̂−1
Glasso − �n = λnẐ,

where Ẑ is an element of the subdifferential ∂‖�̂Glasso‖1. This
leads us to consider the following optimization problem:

min‖�‖1 subject to:
(5)

|�−1 − �n|∞ ≤ λn, � ∈ R
p×p.

However, the feasible set in (5) is very complicated. By mul-
tiplying the constraint with �, such a relaxation of (5) leads
to the convex optimization problem (1), which can be solved
easily. Figure 1 illustrates the solution for recovering a 2 by 2
precision matrix [ x z

z y ], and here we consider only the plane x
(= y) versus z for simplicity. The point where the feasible poly-
gon meets the dashed diamond is the CLIME solution �̂. Note
that here, as in Glasso, the log-likelihood function is a smooth
curve, rather than the polygon constraint in CLIME.

3. RATES OF CONVERGENCE

In this section, we investigate the theoretical properties of the
CLIME estimator and establish the rates of convergence under
different norms. Write �n = (σ̂ij) = (σ̂ 1, . . . , σ̂ p), �0 = (σ 0

ij ),

and EX = (μ1, . . . ,μp)
T . It is conventional to split the techni-

cal analysis into two cases according to the moment conditions
on X.

(C1) Exponential-type tails: Suppose that there exist some
0 < η < 1/4 such that log p/n ≤ η and

Eet(Xi−μi)
2 ≤ K < ∞ for all |t| ≤ η, for all i,

where K is a bounded constant.
(C2) Polynomial-type tails: Suppose that for some γ, c1 > 0,

p ≤ c1nγ , and for some δ > 0,

E|Xi − μi|4γ+4+δ ≤ K for all i.

For �1-MLE type estimators, the convergence rates in the
case of polynomial-type tails typically are much slower than
those in the case of exponential-type tails (see, e.g., Raviku-
mar et al. 2008). We show that our CLIME estimator attains the
same rates of convergence under either of the two moment con-
ditions and significantly outperforms �1-MLE type estimators
in the case of polynomial-type tails.

3.1 Rates of Convergence Under Spectral Norm

We begin by considering the uniformity class of matrices,

U := U (q, s0(p))

=
{

� :� 
 0, ‖�‖L1 ≤ M, max
1≤i≤p

p∑
j=1

|ωij|q ≤ s0(p)

}

for 0 ≤ q < 1, where � =: (ωij) = (ω1, . . . ,ωp). Similar pa-
rameter spaces were used by Bickel and Levina (2008b) to esti-
mate the covariance matrix �0. Note that in the special case of
q = 0, U (0, s0(p)) is a class of s0(p)-sparse matrices. Let

θ = max
ij

E[(Xi − μi)(Xj − μj) − σ 0
ij ]2 =: max

ij
θij.

The quantity θij is related to the variance of σ̂ij, and the max-
imum value θ captures the overall variability of �n. It is easy
to see that under either (C1) or (C2), θ is a bounded constant
depending only on γ, δ,K.

The following theorem gives the rates of convergence for the
CLIME estimator �̂ under the spectral norm loss.

Theorem 1. Suppose that �0 ∈ U (q, s0(p)).
(a) Assume that (C1) holds. Let λn = C0M

√
log p/n, where

C0 = 2η−2(2 + τ + η−1e2K2)2 and τ > 0. Then

‖�̂ − �0‖2 ≤ C1M2−2qs0(p)

(
log p

n

)(1−q)/2

, (6)

with probability greater than 1 − 4p−τ , where C1 ≤ 2(1 +
21−q + 31−q)41−qC1−q

0 .
(b) Assume that (C2) holds. Let λn = C2M

√
log p/n, where

C2 = √
(5 + τ)(θ + 1). Then

‖�̂ − �0‖2 ≤ C3M2−2qs0(p)

(
log p

n

)(1−q)/2

, (7)

with probability greater than 1−O(n−δ/8 +p−τ/2), where C3 ≤
2(1 + 21−q + 31−q)41−qC1−q

2 .

When M does not depend on n,p, the rates in Theorem 1
are the same as those used to estimate �0 by Bickel and
Levina (2008b). In the polynomial-type tails case and when
q = 0, the rate in (7) is significantly better than the rate
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O(s0(p)

√
p1/(γ+1+δ/4)

n ) for the �1-MLE estimator obtained by
Ravikumar et al. (2008).

It would be of great interest to get the convergence rates for
sup�0∈U E‖�̂ − �0‖2

2. However, it is difficult even to prove
the existence of the expectation of ‖�̂ − �0‖2

2, because we are
dealing with the inverse matrix. We modify the estimator �̂ to
ensure that such an expectation exists and the same rates are
established. Let {�̂1ρ} be the solution set of the following opti-
mization problem:

min‖�‖1 subject to:
(8)

|�n,ρ� − I|∞ ≤ λn, � ∈ R
p×p,

where �n,ρ = �n + ρI with ρ > 0. Write �̂1ρ = (ω̂1
ijρ). Define

the symmetrized estimator �̂ρ as in (2) by

�̂ρ = (ω̂ijρ), where
(9)

ω̂ijρ = ω̂jiρ = ω̂1
ijρI{|ω̂1

ijρ | ≤ |ω̂1
jiρ |} + ω̂1

jiρI{|ω̂1
ijρ | > |ω̂1

jiρ |}.
Clearly, �−1

n,ρ is a feasible point, and thus we have ‖�̂1ρ‖L1 ≤
‖�−1

n,ρ‖L1 ≤ ρ−1p. The expectation E‖�̂ρ − �0‖2
2 is then well

defined. The other motivation to replace �n with �n,ρ comes
from our implementation, which computes (1) by the primal
dual interior point method. One usually needs to specify a fea-
sible initialization. When p > n, it is hard to find an initial value
for (1). For (8), we can simply set the initial value to �−1

n,ρ .

Theorem 2. Suppose that �0 ∈ U (q, s0(p)) and (C1) holds.
Let λn = C0M

√
log p/n, with C0 defined as in Theorem 1(a)

and τ sufficiently large. Let ρ = √
log p/n. If p ≥ nξ for some

ξ > 0, then we have

sup
�0∈U

E‖�̂ρ − �0‖2
2 = O

(
M4−4qs2

0(p)

(
log p

n

)1−q)
.

Remark. It is not necessary to restrict ρ = √
log p/n. In fact,

from the proof, we can see that Theorem 2 still holds for

min

(√
log p

n
,p−α

)
≤ ρ ≤

√
log p

n
(10)

with any α > 0.

When the variables of X are ordered, better rates can be ob-
tained. Similar to Bickel and Levina (2008a), we consider the
following class of precision matrices:

Uo(α,B) =
{
� :� 
 0,

max
j

∑
i

{|ωij| : |i − j| ≥ k} ≤ B(k + 1)−α

for all k ≥ 0

}
for α > 0. Suppose that the modified Cholesky factor of �0 is
�0 = TD−1T , with the unique lower triangular matrix T and
diagonal matrix D. To estimate �0, Bickel and Levina (2008a)
used the banding method and assumed T ∈ Uo(α,B). It is easy
to see that T ∈ Uo(α,B) implies �0 ∈ Uo(α,B1) for some con-
stant B1. Rather than assuming T ∈ Uo(α,B), we use a more
general assumption that �0 ∈ Uo(α,B).

Theorem 3. Let �0 ∈ Uo(α,B) and λn = CB
√

log p/n with
sufficiently large C.

(a) If (C1) or (C2) holds, then with probability greater than
1 − O(n−δ/8 + p−τ/2),

‖�̂ − �0‖2 = O

(
B2

(
log p

n

)α/(2α+2))
. (11)

(b) Suppose that p ≥ nξ for some ξ > 0. If (C1) holds and
ρ = √

log p/n, then

sup
�0∈Uo(α,B)

E‖�̂ρ − �0‖2
2 = O

(
B4

(
log p

n

)α/(α+1))
. (12)

Theorem 3 shows that our estimator has the same rate as that
of Bickel and Levina (2008a) by banding the Cholesky factor
of the precision matrix for the ordered variables.

3.2 Rates Under the l∞ Norm and Frobenius Norm

So far, we have focused on the performance of the estima-
tor under the spectral norm loss. Rates of convergence also can
be obtained under the elementwise l∞ norm and the Frobenius
norm.

Theorem 4. (a) Under the conditions of Theorem 1(a), we
have

|�̂ − �0|∞ ≤ 4C0M2

√
log p

n
,

1

p
‖�̂ − �0‖2

F ≤ 4C1M4−2qs0(p)

(
log p

n

)1−q/2

,

with probability greater than 1 − 4p−τ .
(b) Under the conditions of Theorem 1(b), we have

|�̂ − �0|∞ ≤ 4C2M2

√
log p

n
,

1

p
‖�̂ − �0‖2

F ≤ 4C3M4−2qs0(p)

(
log p

n

)1−q/2

,

with probability greater than 1 − O(n−δ/8 + p−τ/2).

The rate in Theorem 4(b) is significantly faster than the rate
obtained by Ravikumar et al. (2008); see Section 3.3 for more
detailed discussion. A similar rate to ours was obtained by Lam
and Fan (2009) under the Frobenius norm. The elementwise �∞
norm result will lead to the model selection consistency result
that we present in the next section. We now give the rates for
�̂ρ − �0 under expectation.

Theorem 5. Under the conditions of Theorem 2, we have

sup
�0∈U

E|�̂ρ − �0|2∞ = O

(
M4 log p

n

)
,

1

p
sup

�0∈U
E‖�̂ρ − �0‖2

F = O

(
M4−2qs0(p)

(
log p

n

)1−q/2)
.

The proofs of Theorems 1–5 rely on the following more gen-
eral theorem.
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Theorem 6. Suppose that �0 ∈ U (q, s0(p)) and ρ ≥ 0. If
λn ≥ ‖�0‖L1(maxij |σ̂ij − σ 0

ij | + ρ), then we have

|�̂ρ − �0|∞ ≤ 4‖�0‖L1λn, (13)

‖�̂ρ − �0‖2 ≤ C4s0(p)λ1−q
n , (14)

and

1

p
‖�̂ρ − �0‖2

F ≤ C5s0(p)λ2−q
n , (15)

where C4 ≤ 2(1 + 21−q + 31−q)(4‖�0‖L1)
1−q and C5 ≤

4‖�0‖L1C4.

3.3 Comparison With the Lasso-Type Estimator

Here we compare our results with those of Ravikumar et al.
(2008), who estimated �0 by solving the following �1 regular-
ized log-determinant program:

�̂� := arg min
�
0

{〈�,�n〉 − log det(�) + λn‖�‖1,off}, (16)

where ‖�‖1,off = ∑
i�=j |ωij|. To obtain the rates of convergence

in the elementwise �∞ norm and the spectral norm, they im-
posed the following condition:

Irrepresentable Condition in Ravikumar et al. (2008). There
exists some α ∈ (0,1] such that

‖�ScS(�SS)
−1‖L1 ≤ 1 − α, (17)

where � = �−1
0 ⊗ �−1

0 , S is the support of �0 and Sc =
{1, . . . ,p} × {1, . . . ,p} − S.

The foregoing assumption is particularly strong. Under this
assumption, Ravikumar et al. (2008) showed that �̂� estimates
the zero elements of �0 exactly by 0 with high probability. In
fact, a similar condition to (17) for Lasso with the covariance
matrix �0 taking the place of the matrix � is sufficient and
nearly necessary for recovering the support using the ordinary
Lasso (see, e.g., Meinshausen and Bühlmann 2006).

Suppose that �0 is s0(p)-sparse and consider sub-Gaussian

random variables Xi/

√
σ 0

ii with the parameter σ . In addition to
(17), Ravikumar et al. (2008) assumed that the sample size n
satisfies the bound

n > C1s2
0(p)(1 + 8/α)2(τ log p + log 4), (18)

where C1 = {48
√

2(1 + 4σ 2)maxi(σ
0
ii )max{‖�0‖L1K�,

‖�0‖3
L1

K2
�}}2. Under the aforementioned conditions, they

showed that with probability greater than 1 − 1/pτ−2,

|�̂� − �0|∞ ≤
{

16
√

2(1 + 4σ 2)max
i

(σii)(1 + 8α−1)K�

}

×
√

τ log p + log 4

n
,

where K� = ‖([�0 ⊗ �0]SS)
−1‖L1 . Note that their constant de-

pends on quantities α and K� , whereas our constant depends
on M, the bound of ‖�0‖L1 . They required (18), whereas we
need only log p = o(n). Another substantial difference is that
the irrepresentable condition (17) is not needed for our re-
sults.

We next compare our result with that of Ravikumar et al.
(2008) under the case of polynomial-type tails. Suppose that
(C2) holds. Corollary 2 of Ravikumar et al. (2008) shows that
if p = O({n/s2

0(p)}(γ+1+δ/4)/τ ) for some τ > 2, then with prob-
ability greater than 1 − 1/pτ−2,

|�̂� − �0|∞ = O

(√
pτ/(γ+1+δ/4)

n

)
.

Theorem 4 shows that our estimator still has the order of√
log p/n in the case of polynomial-type tails. Moreover, when

γ ≥ 1, the range p = O(nγ ) in our theorem is wider than their
range p = O({n/s2

0(p)}(γ+1+δ/4)/τ ) with τ > 2.
It is worth noting that our estimator allows for a wider class

of matrices compared with the sparse precision matrices. For
example, the estimator is still consistent for the model, which is
not truly sparse but has many small entries.

4. GRAPHICAL MODEL SELECTION CONSISTENCY

As mentioned in the Introduction, graphical model selec-
tion is an important problem. The constrained �1 minimiza-
tion procedure introduced in Section 2 for estimating �0 can
be modified to recover the support of �0. We introduce an ad-
ditional thresholding step based on �̂. More specifically, define
a threshold estimator �̃ = (ω̃ij) with

ω̃ij = ω̂ijI{|ω̂ij| ≥ τn},
where τn ≥ 4Mλn is a tuning parameter and λn is given in The-
orem 1.

Define

M(�̃) = {sgn(ω̃ij), 1 ≤ i, j ≤ p},
M(�0) = {sgn(ω0

ij), 1 ≤ i, j ≤ p},
S(�0) = {(i, j) :ω0

ij �= 0},
and

θmin = min
(i,j)∈S(�0)

|ω0
ij|.

From the elementwise �∞ results established in Theorem 4,
with high probability, the resulting elements in �̂ will exceed
the threshold level if the corresponding element in �0 is large
in magnitude. In contrast, the elements of �̂ outside the support
of �0 will remain below the threshold level with high probabil-
ity. Therefore, we have the following theorem on the threshold
estimator �̃.

Theorem 7. Suppose that (C1) or (C2) holds and �0 ∈
U (0, s0(p)). If θmin > 2τn, then, with probability greater than
1 − O(n−δ/8 + p−τ/2), we have M(�̃) = M(�0).

The threshold estimator �̃ recovers not only the sparsity pat-
tern of �0, but also the signs of the nonzero elements. This
property is called sign consistency in some of the literature.

The condition θmin > 2τn is needed to ensure that nonzero
elements are correctly retained. From Theorem 4, we see that
if M does not depend on n,p, then τn is of order

√
log p/n,

which is of the same order as in the assumption of Ravikumar
et al. (2008) for exponential-type tails, but weaker than in their

assumption θmin ≥ C
√

pτ/(γ+1+δ/4)

n for polynomial-type tails.
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Based on Meinshausen and Bühlmann (2006), Zhou, van
de Geer, and Bühlmann (2009) applied the adaptive Lasso to
covariance selection in Gaussian graphical models. For X =
(X1, . . . ,Xp)

T ∼ N(0,�0), they regressed Xi versus the other
variables {Xk; k �= i}: Xi = ∑

j�=i β
i
j Xj + Vi, where Vi is a nor-

mally distributed random variables with mean 0 and the under-
lying coefficients can be shown to be β i

j = −ω0
ij/ω

0
ii. They then

used the adaptive Lasso to recover the support of {β i
j }, which is

identical to the support of �0. One of their main assumptions
is the restricted eigenvalue assumption on �0, which is weaker
than the irrepresentable condition. Their method can recover the
support of �0 but cannot estimate the elements in �0. Besides
not imposing the unnecessary irrepresentable condition, an ad-
ditional advantage of our method is that it not only recovers the
support of �0, but also provides consistency results under the
elementwise l∞ norm and the spectral norm.

5. NUMERICAL RESULTS

In this section, we turn to the numerical performance of our
CLIME estimator. The procedure is easy to implement. An R
package of our method has been developed and is available
at http://stat.wharton.upenn.edu/~tcai/paper/html/Precision-
Matrix.html. Here we first investigate the numerical perfor-
mance of the estimator through simulation studies, and then
apply our method to the analysis of a breast cancer dataset.

The proposed estimator �̂ can be obtained in a column-by-
column fashion as illustrated in Lemma 1. Thus we focus on
the numerical implementation of solutions to the optimization
problem (3):

min |β|1 subject to: |�nβ − ei|∞ ≤ λn.

We consider relaxation of the foregoing, which is equivalent to
the following linear programming problem:

min
p∑

j=1

uj subject to:

− βj ≤ uj for all 1 ≤ j ≤ p,

+ βj ≤ uj for all 1 ≤ j ≤ p, (19)

− σ̂ T
k β + I{k = i} ≤ λn for all 1 ≤ k ≤ p,

+ σ̂ T
k β − I{k = i} ≤ λn for all 1 ≤ k ≤ p.

The same linear relaxation was considered by Candès and
Tao (2007), who found it very efficient for the Dantzig selec-
tor problem in regression. To solve (19), we follow the pri-
mal dual interior method approach (see, e.g., Boyd and Van-
denberghe 2004). The resulting algorithm has comparable nu-
merical performance to other numerical procedures, including
Glasso. Note that we need only sweep through the p columns
once, but Glasso requires an extra outer layer of iterations to
loop through the p columns several times by cyclical coordi-
nate descent. Once �̂1 is obtained by combining the β̂’s for
each column, we symmetrize �̂1 by setting the entry (i, j) to
be the smaller in magnitude of two entries ω̂1

ij and ω̂1
ji, for all

1 ≤ i, j ≤ p, as in (2).
Similar to many iterative methods, our method also requires

a proper initialization within the feasible set. However, the ini-
tializing β0 cannot simply be replaced by the solution of the

linear system �nβ = ei for each i when p > n, because �n is
singular. The remedy is to add a small positive constant ρ (e.g.,
ρ = √

log p/n) to all of the diagonal entries of the matrix �n;
that is, we use the ρ-perturbed matrix �n,ρ = �n + ρI to re-
place the �n in (19). Such a perturbation does not noticeably
affect the computational accuracy of the final solution in our
numerical experiments. In Sections 3 and 4, the resulting solu-
tion �̂ρ in the perturbed problem (8) is shown to have all of the
theoretical properties, and, even better, the convergence rate of
the spectral norm under expectation is established for �̂ρ .

In the context of high-dimensional linear regression, a sec-
ond-stage refitting procedure was considered by Candés and
Tao (2007) to correct the biases introduced by the �1 norm pe-
nalization. Their refitting procedure seeks the best coefficient
vector, giving the maximum likelihood, which has the same
support as the original Dantzig selector. Inspired by this two-
stage procedure, we propose a similar two-stage procedure to
further improve the numerical performance of the CLIME esti-
mator by refitting as

�̌ = arg min
�Ŝc=0

{〈�,�n〉 − log det(�)},

where Ŝ = S(�̃) and �Ŝc = {ωij, (i, j) ∈ Ŝc}. Here the estima-
tor �̌ minimizes the Bregman divergence among all symmetric
positive definite matrices under the constraint. We call �̌ the
refitted CLIME. We can establish the bounds under the three
norms in Section 3 and the support recovery S(�̌) = S(�0). For
example, the Frobenius loss bound can be easily derived from
the approach used by Rothman et al. (2008) and Fan, Feng, and
Wu (2009). Other theoretical properties are more involved, and
we leave this to future work.

5.1 Simulations

Here we compare the numerical performance of the CLIME
estimator �̂CLIME, the Refitted CLIME estimator, the Graphical
Lasso �̂Glasso, and the SCAD �̂SCAD from Fan, Feng, and Wu
(2009), which is defined as

�̂SCAD := arg min
�
0

{
〈�,�n〉 − log det(�)

+
p∑

i=1

p∑
j=1

SCADλ,a(|ωij|)
}

,

where the SCAD function SCADλ,a is that proposed by Fan
(1997). We use Fan and Li’s (2001) recommended choice a =
3.7 throughout and set all λ to be the same for all (i, j) entries
for simplicity. This setting for a and λ is the same as that of Fan,
Feng, and Wu (2009). (See Fan, Feng, and Wu (2009) for fur-
ther details on �̂SCAD.) Note that �̂Glasso performs equivalently
to the SPICE estimator of Rothman et al. (2008) according to
their study.

We consider three models as follows:

• Model 1. ω0
ij = 0.6|i−j|.

• Model 2. The second model comes from Rothman et al.
(2008). We let �0 = B + δI, where each off-diagonal en-
try in B is generated independently and equals 0.5 with
probability 0.1 or 0 with probability 0.9. δ is chosen such

http://stat.wharton.upenn.edu/~tcai/paper/html/Precision-Matrix.html
http://stat.wharton.upenn.edu/~tcai/paper/html/Precision-Matrix.html
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that the conditional number (the ratio of maximal and min-
imal singular values of a matrix) is equal to p. Finally, the
matrix is standardized to have unit diagonals.

• Model 3. In this model, we consider a nonsparse matrix
and let �0 have all off-diagonal elements 0.5 and the di-
agonal elements 1.

Model 1 has a banded structure, and the values of the entries
decay as they move away from the diagonal. Model 2 is an ex-
ample of a sparse matrix without any special sparsity patterns.
Model 3 serves as a dense matrix example.

For each model, we generate a training sample of size n =
100 from a multivariate normal distribution with mean 0 and
covariance matrix �0, and an independent sample of size 100
from the same distribution for validating the tuning parame-
ter λ. Using the training data, we compute a series of estimators
with 50 different values of λ and use the one with the smallest
likelihood loss on the validation sample, where the likelihood
loss is defined by

L(�,�) = 〈�,�〉 − log det(�).

We compute the Glasso and SCAD estimators on the same
training and testing data using the same cross-validation
scheme. We consider different values of p = 30,60,90,120,

200 and replicate 100 times.
We first measure the estimation quality by the following ma-

trix norms: the operator norm, the matrix �1 norm, and the
Frobenius norm. Table 1 reports the averages and standard er-
rors of these losses.

We see that CLIME nearly uniformly outperforms Glasso.
The improvement tends to be slightly more significant for
sparse models when p is large, but overall the improvement
is not dramatic. SCAD is the most computationally costly of
the three methods, but numerically it has the best performance
when p < n and is comparable to CLIME when p is large.
Note that SCAD uses a nonconvex penalty to correct the bias,
whereas CLIME currently optimizes the convex �1 norm ob-
jective efficiently. A more comparable procedure that also cor-
rects the bias is our two-stage Refitted CLIME, denoted by
�̂R-CLIME. Table 2 illustrates the improvement from bias cor-
rection, and we only list the spectral norm loss for reasons of
space. It is clear that our Refitted CLIME estimator has com-
parable or better performance than SCAD, and our Refitted
CLIME is especially favorable when p is large.

Gaussian graphical model selection has also received consid-
erable attention in the literature. As we discussed earlier, this
is equivalent to the support recovery of the precision matrix.
The proportion of true zero (TN) and nonzero (TP) elements
recovered by two methods are also reported here in Table 3.
The numerical values over 10−3 in magnitude are considered to
be nonzero, because the computation accuracy is set to be 10−4.

It is noticeable that Glasso tends to be more noisy by in-
cluding erroneous nonzero elements; CLIME tends to be more
sparse than Glasso, which is usually favorable in real applica-
tions; SCAD produces the most sparse among the three but with
a price of erroneously estimating more true nonzero entries by
zero. This conclusion also can be reached in Figure 2, where
the TPR and FPR values of 100 realizations of these three pro-
cedures for first two models (note that all elements in Model 3

are nonzero) are plotted for p = 60 as a representative example
of other cases.

To better illustrate the recovery performance elementwise,
Figure 3 shows heatmaps of the nonzeros identified out of 100
replications. All of the heatmaps suggest that CLIME is more
sparse than Glasso, and visual inspection shows that the spar-
sity pattern recovered by CLIME has a significantly closer re-
semblance to the true model than Glasso. When the true model
has significant nonzero elements scattered on the off-diagonals,
Glasso tends to include more nonzero elements than are needed.
SCAD is the sparsest of the three methods but again could zero
out more true nonzero entries, as shown in Model 1. Similar
patterns were observed in our experiments for other values of p.

5.2 Analysis of a Breast Cancer Dataset

We now apply our CLIME method on a real data exam-
ple. The breast cancer data were analyzed by Hess et al.
(2006) and are available at http://bioinformatics.mdanderson.
org/ . The dataset consists of 22,283 gene expression levels of
133 subjects, including 34 subjects with pathological complete
response (pCR) and 99 subjects with residual disease (RD). The
pCR subjects are considered to have a high chance of cancer-
free survival in the long term, and thus it is of great interest to
study the response states of the patients (pCR or RD) to neoad-
juvant (preoperative) chemotherapy. Based on the estimated in-
verse covariance matrix of the gene expression levels, we apply
linear discriminant analysis (LDA) to predict whether or not a
subject can achieve the pCR state.

For a fair comparison with other methods of estimating the
inverse covariance matrix, we follow the same analysis scheme
used by Fan, Feng, and Wu (2009) and the references therein.
For completeness, we briefly describe these steps here. The
data are randomly divided into the training and testing datasets.
A stratified sampling approach is applied to divide the data,
with 5 pCR subjects and 16 RD subjects randomly selected
to constitute the testing data (roughly 1/6 of the subjects in
each group). The remaining subjects form the training set. For
the training set, a two-sample t test is performed between the
two groups for each gene, and the 113 most significant genes
(i.e., with the smallest p-values) are retained as the covariates
for prediction. Note that the size of the training sample is 112,
1 less than the variable size, which allows us to examine the
performance when p > n. The gene data are then standardized
by the estimated standard deviation, estimated from the train-
ing data. Finally, following the LDA framework, the normalized
gene expression data are assumed to be normally distributed as
N(μk,�), where the two groups are assumed to have the same
covariance matrix, �, but different means, μk, k = 1 for pCR
and k = 2 for RD. The estimated inverse covariance �̂ produced
by different methods is used in the LDA scores,

δk(x) = xT�̂μ̂k − 1
2 μ̂T

k �̂μ̂k + log π̂k, (20)

where π̂k = nk/n is the proportion of group k subjects in the
training set and μ̂k = (1/nk)

∑
i∈group k xi is the within-group

average vector in the training set. The classification rule is taken
to be k̂(x) = arg max δk(x) for k = 1,2.

The classification performance is clearly associated with the
estimation accuracy of �̂. We use the testing dataset to assess

http://bioinformatics.mdanderson.org/
http://bioinformatics.mdanderson.org/
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Table 1. Comparison of average (SE) matrix losses for three models over 100 replications

Model 1 Model 2 Model 3

p �̂CLIME �̂Glasso �̂SCAD �̂CLIME �̂Glasso �̂SCAD �̂CLIME �̂Glasso �̂SCAD
Operator norm

30 2.28 (0.02) 2.48 (0.01) 2.38 (0.02) 0.74 (0.01) 0.77 (0.01) 0.59 (0.02) 14.95 (0.004) 14.96 (0.004) 14.97 (0.002)
60 2.79 (0.01) 2.93 (0.01) 2.71 (0.01) 1.13 (0.01) 1.12 (0.01) 0.95 (0.01) 30.01 (0.002) 30.02 (0.002) 29.98 (0.001)
90 2.97 (0.01) 3.07 (0.004) 2.76 (0.004) 1.69 (0.01) 1.49 (0.004) 1.14 (0.01) 45.01 (0.002) 45.03 (0.001) 44.98 (0.001)

120 3.08 (0.004) 3.14 (0.003) 2.79 (0.004) 2.16 (0.01) 1.82 (0.003) 1.38 (0.01) 60.01 (0.002) 60.04 (0.001) 58.40 (0.10)
200 3.17 (0.01) 3.25 (0.002) 2.83 (0.003) 2.36 (0.01) 2.46 (0.002) 2.11 (0.01) 100.02 (0.001) 100.08 (0.001) 96.69 (0.01)

Matrix �1-norm
30 2.91 (0.02) 3.08 (0.01) 2.91 (0.02) 1.29 (0.02) 1.36 (0.01) 0.81 (0.02) 15.12 (0.004) 15.08 (0.003) 15.10 (0.002)
60 3.32 (0.01) 3.55 (0.01) 3.11 (0.01) 2.10 (0.02) 2.11 (0.02) 1.98 (0.03) 30.17 (0.002) 30.15 (0.002) 30.12 (0.002)
90 3.44 (0.01) 3.72 (0.01) 3.19 (0.01) 2.95 (0.02) 2.87 (0.02) 2.71 (0.03) 45.18 (0.002) 45.18 (0.002) 45.13 (0.002)

120 3.48 (0.01) 3.81 (0.01) 3.24 (0.01) 3.69 (0.02) 3.33 (0.02) 3.32 (0.03) 60.20 (0.002) 60.20 (0.003) 60.55 (0.06)
200 3.55 (0.01) 4.01 (0.01) 3.37 (0.01) 4.13 (0.02) 4.52 (0.02) 4.67 (0.03) 100.22 (0.002) 100.24 (0.002) 102.64 (0.05)

Frobenius norm
30 3.81 (0.04) 4.23 (0.03) 3.97 (0.03) 1.72 (0.02) 1.71 (0.01) 1.23 (0.02) 14.96 (0.004) 14.97 (0.004) 14.97 (0.001)
60 6.63 (0.03) 7.14 (0.02) 6.37 (0.02) 3.33 (0.02) 3.10 (0.01) 3.11 (0.01) 30.02 (0.002) 30.02 (0.002) 29.98 (0.001)
90 8.78 (0.04) 9.25 (0.01) 7.98 (0.01) 4.92 (0.02) 4.36 (0.01) 4.51 (0.01) 45.02 (0.002) 45.04 (0.001) 44.99 (0.001)

120 10.58 (0.02) 10.97 (0.01) 9.31 (0.01) 6.50 (0.03) 5.50 (0.01) 5.89 (0.01) 60.01 (0.001) 60.05 (0.001) 60.60 (0.08)
200 14.20 (0.04) 14.85 (0.01) 12.21 (0.01) 7.57 (0.02) 8.15 (0.01) 8.41 (0.01) 100.02 (0.001) 100.08 (0.001) 103.41 (0.02)
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Table 2. Comparison of average (SE) operator norm losses from
Models 1 and 2 over 100 replications

Model 1 Model 2

p �̂R-CLIME �̂SCAD �̂R-CLIME �̂SCAD

30 1.56 (0.02) 2.38 (0.02) 0.85 (0.01) 0.59 (0.02)
60 2.15 (0.01) 2.71 (0.01) 1.14 (0.01) 0.95 (0.09)
90 2.42 (0.01) 2.76 (0.004) 1.17 (0.01) 1.14 (0.01)

120 2.56 (0.01) 2.79 (0.004) 1.44 (0.01) 1.38 (0.01)
200 2.71 (0.01) 2.83 (0.003) 1.91 (0.01) 2.11 (0.01)

the estimation performance and to make comparisons with the
existing results of Fan, Feng, and Wu (2009) using the same
criterion. For the tuning parameters, we use a 6-fold cross-
validation on the training data for choosing λ. We repeat the
foregoing estimation scheme 100 times.

To compare the classification performance, we use speci-
ficity, sensitivity, and Mathews correlation coefficient (MCC)
criteria, defined as follows:

Specificity = TN

TN + FP
, Sensitivity = TP

TP + FN
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Here TP and TN stand for true positives (pCR) and true neg-
atives (RD), respectively, and FP and FN stand for false pos-
itives/negatives. The larger the criterion value, the better the
classification performance. The averages and standard errors of
the foregoing criteria, along with the number of nonzero entries
in �̂ over 100 replications, are reported in Table 4. The Glasso,
Adaptive lasso, and SCAD results are taken from the work of
Fan, Feng, and Wu (2009), which used the same procedure on
the same data set, except that here we use �̂CLIME in place of �̂.

Clearly, CLIME significantly outperforms the other two
methods on sensitivity and is comparable with them on speci-
ficity. The overall classification performance measured by
MCC overwhelmingly favors CLIME, which shows an 25%
improvement over the best alternative methods. CLIME also
produces the sparsest matrix, which is usually favorable for in-
terpretation purposes on real datasets.

6. DISCUSSION

This article presents a new constrained �1 minimization
method for estimating high-dimensional precision matrices.
Both the method and the analysis are relatively simple and
straightforward, and may be extended to other related problems.
Moreover, the method and the results are not restricted to a spe-
cific sparsity pattern. Thus the estimator can be used to recover
a wide class of matrices in theory as well as in applications.
In particular, when applying our method to covariance selec-
tion in Gaussian graphical models, the theoretical results can
be established without assuming the irrepresentable condition
of Ravikumar et al. (2008), which is very stringent and hard to
check in practice.

Several authors, including Yuan and Lin (2007), Rothman et
al. (2008), and Ravikumar et al. (2008), have estimated the pre-
cision matrix by solving the optimization problem (16) with �1

penalty only on the off-diagonal entries, which is slightly dif-
ferent from our starting point (4) presented here. We also can
consider the following optimization problem:

min‖�‖1,off subject to: |�n� − I|∞ ≤ λn, � ∈ R
p×p.

Analogous results can be established for the foregoing estima-
tor. We omit these here, due to close resemblance in proof tech-
niques and conclusions.

There are several possible extensions of our method. For
example, Zhou, Lafferty, and Wasserman (2010) considered
the time-varying undirected graphs and estimated �(t)−1 by
Glasso. It would be very interesting to study the estimation
of �(t)−1 by our method. Ravikumar and Wainwright (2009)
considered high-dimensional Ising model selection using �1-
regularized logistic regression. It would be interesting to apply
our method to their setting as well.

Another important subject is investigating the theoreti-
cal property of the tuning parameter selected by the cross-
validation method, although based on our experiments, CLIME
is not very sensitive to the choice of tuning parameter. An exam-
ple of such results on cross-validation was provided by Bickel
and Levina (2008b) on thresholding.

After submitting this article for publication, we were made
aware that Zhang (2010) had proposed a precision matrix esti-
mator, called GMACS, which is the solution of the following
optimization problem:

min‖�‖L1 subject to: |�n� − I|∞ ≤ λn, � ∈ R
p×p.

The objective function here is different from that of CLIME,
and this basic version cannot be solved column-by-column and
is not as easy to implement. Zhang (2010) considered only the
Gaussian case and �0 balls, whereas we consider sub-Gaussian
and polynomial-tail distributions and more general �q balls. In
addition, the GMACS estimator requires an additional thresh-
olding step for the rates to hold over �0 balls. In contrast,
CLIME does not need an additional thresholding step, and the
rates hold over general �q balls.

7. PROOF OF MAIN RESULTS

Proof of Lemma 1. Write � = (ω1, . . . ,ωp), where ωi ∈ R
p.

The constraint |�n� − I|∞ ≤ λn is equivalent to

|�nωi − ei|∞ ≤ λn for 1 ≤ i ≤ p.

Thus we have

|ω̂1
i |1 ≥ |β̂ i|1 for 1 ≤ i ≤ p. (21)

Because |�nB̂ − I|∞ ≤ λn, by the definitions of {�̂1}, we have

‖�̂1‖1 ≤ ‖B̂‖1. (22)

By (21) and (22), we have B̂ ∈ {�̂1}. On the other hand, if �̂1 /∈
{B̂}, then there exists an i such that |ω̂i|1 > |β̂ i|1. Thus, by (21),
we have ‖�̂1‖1 > ‖B̂‖1. This is in conflict with (22).

The main results all rely on Theorem 6, which upper bounds
the elementwise �∞ norm. We prove this theorem first.

Proof of Theorem 6. Let β̂ i,ρ be a solution of (3) by replac-

ing �n with �n,ρ . Note that Lemma 1 still holds for �̂n,ρ and
{β̂ i,ρ} with ρ ≥ 0. For conciseness of notation, we only prove
the theorem for ρ = 0. The proof is exactly the same for general
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Table 3. Comparison of average (SE) support recovery for three models over 100 replications

Model 1 Model 2 Model 3

p �̂CLIME �̂Glasso �̂SCAD �̂CLIME �̂Glasso �̂SCAD �̂CLIME �̂Glasso �̂SCAD
TN%

30 78.69 (0.61) 50.65 (0.75) 99.26 (0.17) 77.41 (0.86) 64.70 (0.42) 99.10 (0.08) N/A N/A N/A
60 90.37 (0.27) 69.47 (0.29) 99.86 (0.03) 85.98 (0.36) 69.44 (0.21) 96.08 (0.14) N/A N/A N/A
90 94.30 (0.27) 77.62 (0.20) 99.88 (0.02) 91.15 (0.17) 71.57 (0.15) 95.98 (0.11) N/A N/A N/A

120 96.45 (0.06) 81.46 (0.16) 99.91 (0.01) 94.87 (0.19) 75.33 (0.10) 95.69 (0.10) N/A N/A N/A
200 97.41 (0.11) 85.36 (0.11) 99.92 (0.01) 81.74 (0.26) 66.07 (0.12) 96.97 (0.05) N/A N/A N/A

TP%
30 41.07 (0.58) 60.20 (0.56) 16.93 (0.28) 99.66 (0.09) 99.98 (0.02) 97.70 (0.24) 14.88 (0.50) 20.07 (0.57) 3.38 (0.001)
60 25.96 (0.30) 41.72 (0.32) 12.72 (0.15) 85.10 (0.36) 96.47 (0.13) 79.81 (0.44) 6.86 (0.05) 10.49 (0.20) 1.67 (0.001)
90 20.32 (0.32) 33.70 (0.23) 11.94 (0.09) 66.25 (0.39) 91.62 (0.15) 67.93 (0.48) 5.86 (0.03) 7.54 (0.13) 1.11 (0.001)

120 17.16 (0.09) 29.32 (0.20) 11.57 (0.07) 42.37 (0.49) 82.45 (0.15) 54.92 (0.41) 5.11 (0.02) 6.20 (0.12) 20.63 (2.47)
200 15.03 (0.13) 25.34 (0.15) 11.07 (0.06) 57.07 (0.27) 73.43 (0.14) 30.50 (0.40) 3.56 (0.01) 4.94 (0.02) 39.76 (0.02)
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Figure 2. TPR vs FPR for p = 60. The solid, dashed and dotted lines are the average TPR and FPR values for CLIME, Glasso, and SCAD,
respectively, as the tuning parameters of these methods vary. The circles, triangles and pluses correspond to 100 different realizations of CLIME,
Glasso and SCAD respectively, with the tuning parameter picked by cross validation.

Figure 3. Heatmaps of the frequency of the zeros identified for each entry of the precision matrix (when p = 60) out of 100 replications.
White represents 100 zeros identified out of 100 runs, and black represents 0/100.

Table 4. Comparison of average (SE) pCR classification errors over 100 replications. Glasso,
Adaptive lasso, and SCAD results are taken from Fan, Feng, and Wu (2009, table 2)

Method Specificity Sensitivity MCC Nonzero entries in �̂

Glasso 0.768 (0.009) 0.630 (0.021) 0.366 (0.018) 3923 (2)
Adaptive lasso 0.787 (0.009) 0.622 (0.022) 0.381 (0.018) 1233 (1)
SCAD 0.794 (0.009) 0.634 (0.022) 0.402 (0.020) 674 (1)
CLIME 0.749 (0.005) 0.806 (0.017) 0.506 (0.020) 492 (7)
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ρ > 0. By the condition in Theorem 6,

|�0 − �n|∞ ≤ λn/‖�0‖L1 . (23)

We then have

|I − �n�0|∞ = |(�0 − �n)�0|∞
≤ ‖�0‖L1 |�0 − �n|∞ ≤ λn, (24)

where we use the inequality |AB|∞ ≤ |A|∞‖B‖L1 for matrices
A,B of appropriate sizes. By the definition of β̂ i, we can see
that |β̂ i|1 ≤ ‖�0‖L1 for 1 ≤ i ≤ p. By Lemma 1,

‖�̂1‖L1 ≤ ‖�0‖L1 . (25)

We have

|�n(�̂1 − �0)|∞ ≤ |�n�̂1 − I|∞ + |I − �n�0|∞
≤ 2λn. (26)

Therefore, by (23)–(26),

|�0(�̂1 − �0)|∞
≤ |�n(�̂1 − �0)|∞ + |(�n − �0)(�̂1 − �0)|∞
≤ 2λn + ‖�̂1 − �0‖L1 |�n − �0|∞ ≤ 4λn.

It follows that

|�̂1 − �0|∞ ≤ ‖�0‖L1 |�0(�̂1 − �0)|∞ ≤ 4‖�0‖L1λn.

This establishes (13) by the definition in (2).
We next prove (14). Let tn = |�̂ − �0|∞ and define

hj = ω̂j − ω0
j ,

h1
j = (

ω̂ijI{|ω̂ij| ≥ 2tn};1 ≤ i ≤ p
)T − ω0

j , h2
j = hj − h1

j .

By the definition (2) of �̂, we have |ω̂j|1 ≤ |ω̂1
j |1 ≤ |ω0

j |1. Then

|ω0
j |1 − |h1

j |1 + |h2
j |1 ≤ |ω0

j + h1
j |1 + |h2

j |1 = |ω̂j|1 ≤ |ω0
j |1,

which implies that |h2
j |1 ≤ |h1

j |1. It follows that |hj|1 ≤ 2|h1
j |1.

Thus we only need to upper bound |h1
j |1. We have

|h1
j |1 =

p∑
i=1

∣∣ω̂ijI{|ω̂ij| ≥ 2tn} − ω0
ij

∣∣

≤
p∑

i=1

∣∣ω0
ijI{|ω0

ij| ≤ 2tn}
∣∣

+
p∑

i=1

∣∣ω̂ijI{|ω̂ij| ≥ 2tn} − ω0
ijI{|ω0

ij| ≥ 2tn}
∣∣

≤ (2tn)
1−qs0(p) + tn

p∑
i=1

I{|ω̂ij| ≥ 2tn}

+
p∑

i=1

|ω0
ij|

∣∣I{|ω̂ij| ≥ 2tn} − I{|ω0
ij| ≥ 2tn}

∣∣

≤ (2tn)
1−qs0(p) + tn

p∑
i=1

I{|ω0
ij| ≥ tn}

+
p∑

i=1

|ω0
ij|I

{||ω0
ij| − 2tn| ≤ |ω̂ij − ω0

ij|
}

≤ (2tn)
1−qs0(p) + (tn)

1−qs0(p) + (3tn)
1−qs0(p)

≤ (1 + 21−q + 31−q)t1−q
n s0(p), (27)

where we use the following inequality: for any a,b, c ∈ R, we
have

|I{a < c} − I{b < c}| ≤ I{|b − c| < |a − b|}.
This completes the proof of (14).

Finally, (15) follows from (13), (27), and the inequality
‖A‖2

F ≤ p‖A‖L1 |A|∞ for any p × p matrix.

Proof of Theorems 1(a) and 4(a). By Theorem 6, we only
need to prove

max
ij

|σ̂ij − σ 0
ij | ≤ C0

√
log p/n (28)

with probability greater than 1 − 4p−τ under (C1). With-
out loss of generality, we assume that EX = 0. Let �0

n :=
n−1 ∑n

k=1 XkXT
k and Ykij = XkiXkj − EXkiXkj. We then have

�n = �0
n − X̄X̄T . Let t = η

√
log p/n. Using the inequality

|es − 1 − s| ≤ s2emax(s,0) for any s ∈ R and letting CK1 =
2 + τ + η−1K2, by basic calculations, we can get

P

(
n∑

k=1

Ykij ≥ η−1CK1
√

n log p

)

≤ e−CK1 log p(E exp(tYkij))
n

≤ exp
(−CK1 log p + nt2EY2

kije
t|Ykij|)

≤ exp(−CK1 log p + η−1K2 log p)

≤ exp(−(τ + 2) log p).

Thus, we have

P(|�0
n − �0|∞ ≥ η−1CK1

√
log p/n) ≤ 2p−τ . (29)

By the simple inequality es ≤ es2+1 for s > 0, we have Eet|Xj| ≤
eK for all t ≤ η1/2. Let CK2 = 2 + τ + η−1e2K2 and an =
C2

K2(log p/n)1/2. As before, we can show that

P(|X̄X̄T |∞ ≥ η−2an
√

log p/n)

≤ p max
i

P

(
n∑

k=1

Xki ≥ η−1CK2
√

n log p

)

+ p max
i

P

(
−

n∑
k=1

Xki ≥ η−1CK2
√

n log p

)

≤ 2p−τ−1. (30)

By (29), (30), and the inequality C0 > η−1CK1 +η−2an, we see
that (28) holds.

Proof of Theorems 1(b) and 4(b). Let

Ȳkij = XkiXkjI{|XkiXkj| ≤
√

n/(log p)3}

− EXkiXkjI{|XkiXkj| ≤
√

n/(log p)3},
Y̌kij = Ykij − Ȳkij.
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Because bn := maxi,j E|XkiXkj|I{|XkiXkj| ≥ √
n/(log p)3} =

O(1)n−γ−1/2, we have, by (C2),

P

(
max

i,j

∣∣∣∣∣
n∑

k=1

Y̌kij

∣∣∣∣∣ ≥ 2nbn

)

≤ P

(
max

i,j

∣∣∣∣∣
n∑

k=1

XkiXkjI{|XkiXkj| >
√

n/(log p)3}
∣∣∣∣∣ ≥ nbn

)

≤ P

(
max

i,j

n∑
k=1

|XkiXkj|I{X2
ki + X2

kj ≥ 2
√

n/(log p)3} ≥ nbn

)

≤ P
(

max
k,i

X2
ki ≥

√
n/(log p)3

)

≤ pnP(X2
1 ≥

√
n/(log p)3)

= O(1)n−δ/8.

By Bernstein’s inequality (cf. Bennett 1962) and some elemen-
tary calculations,

P

(
max

i,j

∣∣∣∣∣
n∑

k=1

Ȳkij

∣∣∣∣∣ ≥ √
(θ + 1)(4 + τ)n log p

)

≤ p2 max
i,j

P

(∣∣∣∣∣
n∑

k=1

Ȳkij

∣∣∣∣∣ ≥ √
(θ + 1)(4 + τ)n log p

)

≤ 2p2 max
i,j

exp
(−(θ + 1)(4 + τ)n log p

/(2nEȲ2
1ij +

√
(θ + 1)(64 + 16τ)n/(3 log p))

)
= O(1)p−τ/2.

Thus we have

P(|�0
n − �0|∞ ≥ √

(θ + 1)(4 + τ) log p/n + 2bn)

= O
(
n−δ/8 + p−τ/2). (31)

Using the same truncation argument and Bernstein’s inequality,
we can show that

P

(
max

i

∣∣∣∣∣
n∑

k=1

Xki

∣∣∣∣∣ ≥
√

max
i

σ 0
ii (4 + τ)n log p

)

= O
(
n−δ/8 + p−τ/2).

Thus

P
(
|X̄X̄T |∞ ≥ max

i
σ 0

ii (4 + τ) log p/n
)

= O
(
n−δ/8 + p−τ/2). (32)

Combining (31) and (32), we have

max
ij

|σ̂ij − σ 0
ij | ≤

√
(θ + 1)(5 + τ) log p/n (33)

with probability greater than 1 − O(n−δ/8 + p−τ/2). The proof
is completed by (33) and Theorem 6.

Proof of Theorems 2 and 5. Because �−1
n,ρ is a feasible point,

we have, by (10),

‖�̂ρ‖1 ≤ ‖�̂1ρ‖1 ≤ ‖�−1
n,ρ‖1 ≤ p2 max

(√
n

log p
,pα

)
.

By (28), Theorem 6, the fact p ≥ nξ , and because τ is large
enough, we have

sup
�0∈U

E‖�̂ρ − �0‖2
2 = sup

�0∈U
E‖�̂ρ − �0‖2

2

× I
{

max
ij

|σ̂ij − σ 0
ij | + ρ ≤ C0

√
log p/n

}
+ sup

�0∈U
E‖�̂ρ − �0‖2

2

× I
{

max
ij

|σ̂ij − σ 0
ij | + ρ > C0

√
log p/n

}

= O

(
M4−4qs2

0(p)

(
log p

n

)1−q)

+ O

(
p4 max

(
n

log p
,p2α

)
p−τ/2

)

= O

(
M4−4qs2

0(p)

(
log p

n

)1−q)
.

This proves Theorem 2. The proof of Theorem 5 is similar.

Proof of Theorem 3. Let kn be an integer satisfying 1 ≤
kn ≤ n. Define

hj = ω̂j − ω0
j ,

h1
j = (ω̂ijI{1 ≤ i ≤ kn};1 ≤ i ≤ p)T − ω0

j , h2
j = hj − h1

j .

By the proof of Theorem 6, we can show that |hj|1 ≤ 2|h1
j |1.

Because �0 ∈ Uo(α,M), we have
∑

j≥kn
|ω0

ij| ≤ Mk−α
n . By The-

orem 4,
∑kn

j=1 |ω̂ij − ω0
ij| = O(kn

√
log p/n) with probability

greater than 1 − O(n−δ/8 + p−τ/2). Theorem 3(a) is proved by
taking kn = [(n/ log p)1/(2α+2)]. The proof of Theorem 3(b) is
similar as that of Theorem 2.

[Received March 2010. Revised January 2011.]
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