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ABSTRACT

In this paper, we study the clustering problems in the learning-augmented setting,
where predicted labels for a d-dimensional dataset with size m are given by an
oracle to serve as auxiliary information to improve the clustering performance.
Following the prior work, the given oracle is parameterized by some error rate α,
which captures the accuracy of the oracle such that there are at most α fraction of
false positives and false negatives in each predicted cluster. In this setting, the goal
is to design fast and practical algorithms that can break the computational barriers
of inapproximability. The current state-of-the-art learning-augmented k-means al-
gorithm relies on sorting strategies to find good coordinates approximation, where
a (1 +O(α))-approximation can be achieved with near-linear running time in the
data size. However, the computational demands for sorting may limit the scala-
bility of the algorithm for handling large-scale datasets. To address this issue, in
this paper, we propose new algorithms that can identify good coordinates approx-
imation using sampling-based strategies, where (1+O(α))-approximation can be
achieved with linear running time in the data size. To obtain a more practical algo-
rithm for the problem with better clustering quality and running time, we propose
a sampling-based heuristic which can directly find center approximations using
sampling-based strategies. Empirical experiments show that our proposed meth-
ods are faster than the state-of-the-art learning-augmented k-means algorithms
with comparable performances on clustering quality.

1 INTRODUCTION

Clustering is a fundamental unsupervised learning task that has been extensively studied over the
past decades. Among different clustering objectives, one of the most commonly used clustering
formulations is the k-means clustering. In the k-means clustering, we are given a set P of data
points in a d-dimensional Euclidean space, and the goal is to compute a set C ⊂ Rd of centers
with size at most k such that the sum of the squared distances between data points in P to their
closest centers in C is minimized. The k-means problem has received significant attention in the
literature, and has been proved to be NP-hard (Dasgupta, 2008). Furthermore, Cohen-Addad and
Karthik (Cohen-Addad & Karthik, 2019) showed that even finding a solution with approximation
ratio smaller than 1.07 is NP-hard. The current best approximation ratio for the k-means problem
is 5.912 (Cohen-Addad et al., 2022), which is based on primal-dual and nested quasi-independent
set methods. For fixed dimensionality d or the number of clusters k, several (1 + ϵ)-approximation
algorithms were proposed (Jaiswal et al., 2014; Friggstad et al., 2019). However, in practice, these
algorithms with relatively tight approximation guarantees do not scale well for handling large-scale
datasets. Thus, several practical approximation schemes with linear running time in the data size
have been proposed, such as the O(log k)-approximation k-means++ sampling method (Arthur &
Vassilvitskii, 2007) and the O(1)-approximation local search methods (Lattanzi & Sohler, 2019;
Beretta et al.; Fan et al., 2023; Choo et al., 2020; Fan et al., 2023). Although these linear-time
algorithms have been widely used in practice, their large approximation ratios could potentially
deteriorate the clustering performance in scenarios that require high-quality solutions.

To overcome the barrier of inapproximability and develop more practical approximation algorithms,
a series of studies has focused on algorithms augmented with predictions (Mitzenmacher & Vassil-
vitskii, 2022; Ashtiani et al., 2016; Kraska et al., 2018; Mitzenmacher, 2018). For the clustering
problem, Gamlath et al. (Gamlath et al., 2022) proposed clustering recovery with noisy labels,
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where predicted clustering labels are given as additional information to aid the clustering process.
The given predictor is parameterized by some error rate α ∈ [0, 1), such that the size of the symmet-
ric difference between the predicted cluster and the optimal cluster is bounded by α times the size of
the optimal cluster. Based on this learning-augmented clustering model, Gamlath et al. developed a
(1+O(α))-approximation algorithm with polynomial running time, assuming fixed number of clus-
ters k and dimensionality d. However, to guarantee the approximation quality, the error rate α must
satisfy the condition that α < 1/4. Ergun et al. (Ergun et al., 2021) introduced another learning-
augmented clustering model, aiming at designing fast and practical approximation algorithms for
clustering. In their setting, there is also a given predictor which can provide some auxiliary informa-
tion for each data point in the form of predicted clustering labels. The reliability of the predictor is
parameterized by some error rate α ∈ [0, 1), which captures the accuracy of the predictor, ensuring
that an α fraction of false positives and false negatives exist in each predicted cluster. The predicted
clustering labels can serve as valuable “advice” from a well-trained oracle obtained through certain
learning methods, enabling clustering algorithms to improve the clustering quality.

In this paper, we mainly focus on the learning-augmented clustering problem proposed by Ergun
et al. (2021). The motivation behind the study of the learning-augmented clustering problem is as
follows. From a theoretical perspective, learning-augmented k-means can overcome the inapprox-
imability barriers, enabling the development of algorithms that can achieve tight clustering quality
guarantees with strong scalability. From a practical perspective, as pointed in Ergun et al. (2021),
reliable predictors are available for a wide range of natural datasets with auxiliary information. For
instance, in datasets with training labels, these labels can act as supplementary information to en-
hance the clustering quality on testing datasets. Furthermore, when the clustering instances adhere
to specific distributions, the efficient acquisition of a robust predictor is proved to be feasible (Ergun
et al., 2021). Even if the instances are not generated from such distributions, empirical evidence
(Ergun et al., 2021; Nguyen et al., 2022) suggests that labels produced by existing clustering meth-
ods, such as k-means++ (Arthur & Vassilvitskii, 2007) or heuristic approaches (Lloyd, 1982), can
serve as good predictors. However, as pointed out in Nguyen et al. (2022); Ergun et al. (2021),
even when the auxiliary labeling partition (or the predictor) is nearly optimal, a single false positive
located far from the true clustering centers can significantly degrade the quality of the clustering so-
lution. Therefore, a key challenge in the learning-augmented clustering problem is to design robust
algorithms that can minimize the impact of false positives.

Based on statistical methods, Ergun et al. (Ergun et al., 2021) proposed a randomized algorithm that
can achieve a (1+20α)-approximation in time O(md logm), where m and d are the data size and di-
mension, respectively. However, to guarantee the approximation loss, it is required that the label er-
ror rate α should be bounded by α ∈ [10 logm/

√
m, 1/7], and each optimal cluster should have size

Ω(k/α). To overcome the label error rate and cluster size constraints, in Nguyen et al. (2022), a de-
terministic searching method was developed, where an improved (1 +O(α))-approximation can be
obtained in time O(md logm) with α ∈ [0, 1/2) and better approximation guarantees. The current
learning-augmented clustering algorithms (Ergun et al., 2021; Nguyen et al., 2022) primarily rely on
sorting strategies to approximate the optimal clustering centers, resulting in an O(logm) factor loss
in the running time, where m is the data size. Additionally, the computational demands for sorting
may limit the scalability of the algorithm for handling large-scale datasets. Since O(m logm) is the
lower bound of comparison-based sorting, achieving a time complexity better than O(md logm)
using sorting-based strategies is a non-trivial task. Furthermore, it is worth mentioning that the time
complexity of Ergun et al. (2021) and Nguyen et al. (2022) cannot be further improved through
dimensionality reduction techniques, such as the JL-method. As pointed out in Theorem 3.4 in Er-
gun et al. (2021), the JL-method embeds a clustering instance from Rd into a space of dimension
O(logm) and O(log k) in O(md logm) and polynomial time, respectively. Thus, the total run-
ning time of using JL-method is still at least O(md logm). A central challenge in designing faster
algorithms for the learning-augmented k-means problem is to efficiently approximate the optimal
clustering centers in each dimension while avoiding sorting-based strategies.

1.1 OUR CONTRIBUTION

In this paper, we present new sampling-based algorithms for the learning-augmented k-means prob-
lem. A key challenge in improving the running time of the existing algorithms is to identify high-
quality coordinates without relying on sorting-based strategies. To overcome this challenge, we first
propose a sampling-based method called Fast-Sampling. For each dimension of each predicted clus-
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ter, the Fast-Sampling algorithm can identify intervals that contain coordinates sufficiently close to
the coordinates of the optimal clustering centers using sampling methods. High-quality coordinates
are then constructed within linear running time in the data size through fine-grained divisions of
the intervals. With this technique, a (1 + O(α))-approximate solution for the learning-augmented
k-means problem can be obtained in time O(md log(kd)). To further improve the running time and
eliminate the additional O(log(kd)) term, we propose another algorithm called Fast-Estimation. As-
suming that the aspect ratio (the ratio between the maximum and minimum pairwise distances) for
each dimension of the predicted clusters is bounded, the Fast-Estimation algorithm can accelerate
the coordinates approximation by constructing estimators that efficiently approximate the cluster-
ing cost in sub-linear time. Then, the constructed estimators can be used to guide the coordinates
selection process, yielding a (1 +O(α))-approximation in time O(md) + Õ(kd/α) 1.

While the proposed sampling-based algorithms can achieve faster running time compared to other
learning-augmented k-means methods, the improvements come with slight compromises in cluster-
ing quality guarantees. To benefit more from the sampling-based strategies, we propose a heuristic
algorithm (called Fast-Filtering) to better preserve the clustering quality while maintaining the im-
proved running time. Instead of enumerating all the dimensions of the predicted clusters for coordi-
nates approximation, the Fast-Filtering algorithm directly identifies approximate clustering centers
by constructing estimators that can provide accurate clustering cost estimates in sub-linear running
time. Then, by filtering out the data points far from the selected centers, the Fast-Filtering algorithm
can obtain high-quality clustering centers without the loss in clustering quality typically associated
with integrating coordinate information across all the dimensions.

The main contributions of this paper are summarized as follows.

• To further improve the running time of the existing learning-augmented k-means algorithms, we
introduce new sampling-based strategies that eliminate the additional O(logm) factor loss on the
running time caused by the sorting processes.

• We propose a practical heuristic algorithm for the learning-augmented k-means problem, which
better preserves the clustering quality of sampling-based approaches while maintaining the im-
proved running time.

• Empirical experiments show that our proposed algorithms achieves significant running time
improvements while maintaining clustering quality comparable to the state-of-the-art learning-
augmented k-means algorithms.

Table 1 provides a detailed comparison of the results for the learning-augmented k-means problem.
In the Appendix, we also give a plot (Figure 1 in Appendix) of approximation ratios vs. the error
rate α. It can be seen from the table that the current best result achieves a (1+O(α))-approximation
with α ∈ [0, 1/2) (Nguyen et al., 2022). Both of our proposed algorithms, Fast-Sampling and Fast-
Estimation, achieve linear running time in the data size. Compared to the state-of-the-art results,
the Fast-Sampling algorithm can achieve nearly the same theoretical guarantee on clustering quality
(i.e., (1 + O(α))-approximation) while providing faster running time when the number of clusters
k and the dimensionality d are much smaller than data size m, which is natural in real-world ap-
plications. Furthermore, our Fast-Estimation algorithm provides much faster running time while
maintaining clustering quality guarantees comparable to other learning-augmented algorithms.

Table 1: Comparison results of learning augmented k-means algorithms

Methods and References Approximation Ratio Label Error Range Time Complexity

Paritioning and Sorting (Ergun et al., 2021) 1 + 20α [ 10 logm√
m

, 1/7] O(md logm)

Sorting (Nguyen et al., 2022) 1 + α
1−α + 4α

(1−2α)(1−α) [0, 1/2) O(md logm)

Fast-Sampling (Ours) 1 + α
1−α + 4α+αϵ

(1−2α)(1−α) [0, 1/2) O(ϵ−1/2md log(kd))

Fast-Estimation (Ours) 1 + α
1−α + 12α−18α2

(1−3α−ϵ)(1−2α−ϵ) (0, 1/3− ϵ) O(md) + Õ(ϵ−5kd/α)

1Throughout this paper, we use Õ(.) notations to suppress polylog(m, d) factors.
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2 PRELIMINARIES

We use P ⊂ Rd and k to denote the given dataset and the number of clusters, respectively. Let m be
the data size. For any two points p, q ∈ Rd, let δ(p, q) and δ2(p, q) denote their distance and squared
distance, respectively. Given a point p ∈ Rd and a set C = {c1, c2, ..., ck} of centers, we also use
δ2(p, C) = minc∈C δ2(p, c) to denote the squared distance from p to its closest center in C. For a
set P of data points, we use P(C∗) = {P ∗

1 , ..., P
∗
k } and C∗ = {c∗1, ..., c∗k} to denote the optimal

clustering partition and the set of the optimal clustering centers, respectively. For each c∗i ∈ C∗, c∗i
can be represented by d coordinates, i.e., c∗i = (c∗i1, c

∗
i2, ..., c

∗
id). We define the clustering cost of P

with respect to C as δ2(P,C) =
∑

x∈P δ2(x,C). Given a collection L(P ) = {P1, P2, ..., Pk} as
the predictor, we use Qi = Pi ∩ P ∗

i to denote the set of data points in Pi that belong to P ∗
i . Denote

the projections of data points in Pi and Qi onto the j-th dimension as Pij and Qij , respectively. Let
P ∗
ij be the projections of data points in P ∗

i onto the j-th dimension. Let mi and m the size of Pi and
P , respectively. For a set V ⊂ Rd of data points, let V be the geometric center for V (also denoted as
the center for V ). Denote P (j) as the projections of points in P onto the j-th dimension. Let ∆max

be the maximum aspect ratio of the projected data points, i.e., ∆max = max
1≤j≤d

maxx,y∈P (j) δ(x,y)

minx,y∈P (j),x ̸=y δ(x,y)
2.

For a positive integer t, let [t] be the set [1, 2, ..., t].

Learning-Augmented k-means Problem. Given a dataset P ⊂ Rd of m points, let C∗ and
P(C∗) = {P ∗

1 , P
∗
2 , ..., P

∗
k } be an arbitrary optimal solution and its corresponding partition, respec-

tively. In learning-augmented setting, it is assumed that we have access to a predictor in the form of
a labeling partition L(P ) = {P1, P2, ..., Pk} parameterized by some label error rate α ∈ [0, 1) such
that |Pi ∩ P ∗

i | ≥ (1− α)max(|Pi|, |P ∗
i |). The goal of learning-augmented k-means clustering is to

find a set C ⊂ Rd of data points as centers such that δ2(P,C) is minimized.

The following lemmas are folklore in k-means clustering.
Lemma 1 (Arthur & Vassilvitskii (2007)) Given a set X ⊂ Rd with size m and an arbitrary data
point c ∈ Rd, it holds that δ2(X, c) = δ2(X,X) +m · δ2(c,X)

Lemma 2 (Ergun et al. (2021)) Given a set J ⊂ R, let J1 ⊆ J be a subset of J with |J1| ≥
(1− ζ)|J |, where (0 ≤ ζ < 1). Then, it holds that δ2(J, J1) ≤ ζ

(1−ζ)|J|δ
2(J, J).

Lemma 3 (Ergun et al. (2021)) Given a set X ⊂ Rd and an α ∈ (0, 1], let X ′ =
argminX′′⊆X,|X′′|=α|X| δ

2(X ′′, X ′′). Then, it holds that δ2(X ′, X ′) ≤ α · δ2(X,X).

3 THE FAST-SAMPLING ALGORITHM

The general idea of our proposed Fast-Sampling algorithm is to efficiently approximate the optimal
clustering centers in each dimension by identifying high-quality coordinates while avoiding the use
of sorting-based techniques. The primary technical challenge lies in handling the false negatives in
the predicted clusters without significantly compromising the approximation guarantees. Although
directly sampling a small subset of coordinates from each dimension of the predicted clusters can
help identify points near the optimal clustering centers, the uniformly sampled coordinates may
not accurately approximate the optimal centers, potentially leading to a constant-factor loss in the
approximation guarantees. To address this issue, we propose the Fast-Sampling algorithm. The Fast-
Sampling algorithm first identifies candidate coordinates close to the coordinates of each optimal
clustering center within linear running time in the data size. The constructed candidate coordinates
are then used to define intervals that can precisely capture the positions of the optimal centers,
enabling a better approximation through fine-grained divisions of these intervals.

The proposed Fast-Sampling algorithm (see Algorithm 1) mainly consists of the following two
phases: (1) interval estimation (steps 3-6 of Algorithm 1); (2) candidate coordinates construction
(step 7 of Algorithm 1). In the interval estimation phase, for each dimension of the predicted clus-
ters, the interval lengths are estimated through random sampling strategies. The sampled points are
then symmetrically adjusted based on the interval length estimates to construct intervals that can
enclose the coordinates of the optimal clustering centers. In the candidate coordinate construction

2Note that it is common to assume that the aspect ratio ∆max of the given clustering instance can be bounded
a polynomial function of the data size.
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phase, the derived intervals are further divided into smaller ones, with each corresponding to a new
candidate coordinate, enabling a fine-grained approximation of the optimal clustering centers. In
the following, we provide a detailed analysis for the proposed algorithm. Due to space limits, all the
proofs are delivered to the Appendix.

Algorithm 1 Fast-Sampling

Input: A k-means instance (P, k, d), a set (P1, ..., Pk) of partitions with error rate α, and a param-
eter ϵ ∈ (0, 1].

Output: A set C ⊂ Rd of centers with |C| = k.
1: for i ∈ [k] do
2: for j ∈ [d] do
3: Randomly and independently sample a set Uij from Pij with size O(log(kd)).
4: for u ∈ Uij do
5: Let Nij(u) be the set of the nearest (1− α)mi cooridnates in Pij to u.

6: lij =

√
2δ2(Nij(u), Nij(u))

(1−α)mi
.

7: s(u) =
{
u+ ϵ′λlij : λ ∈

[
− 1

ϵ′ ,
1
ϵ′

]
∩ Z
}

, where ϵ′ =
√

ϵ
48 .

8: U ′
ij =

⋃
u∈Uij

s(u).

9: u1 = argminu∈U ′
ij
δ2(Nij(u),Nij(u)).

10: Iij = Nij(u1).
11: ĉi = (Iij)j∈[d].
12: return {ĉ1, ĉ2, ..., ĉk}.

We first consider a single dimension j ∈ [d] of an arbitrary predicted cluster Pi for some i ∈ [k].
Let Q′

ij ⊆ Qij be the set of the coordinates with size (1 − α)mi and minimum clustering cost,
i.e., Q′

ij = argminQ′′
ij⊆Qij ,|Q′′

ij |=(1−α)mi
δ2(Q′′

ij , Q
′′
ij). Starting from step 3 of Algorithm 1, a

sample set Uij is constructed by randomly and independently drawing O(log(kd)) samples from
Pij . The goal here is to find candidate coordinates close to the coordinates of the optimal clustering
centers. We will show that, with probability at least

(
1− 1

kd

)
, there exists at least one coordinate

u ∈ Uij that can well approximate the center for Q′
ij . To analyze the success probability, we define

Gµ
ij =

{
x ∈ Q′

ij : δ
2(x,Q′

ij) ≤ µδ2(Q′
ij , Q

′
ij)/|Q′

ij |
}

as the set of coordinates in Q′
ij close to Q′

ij ,
where µ is a constant with µ > 1. The following lemma argues that the number of coordinates in
Gµ

ij takes a large fraction of Q′
ij .

Lemma 4 For any Qij = P ∗
ij ∩ Pij , it holds that |Gµ

ij | ≥
µ−1
µ |Q′

ij |.

Let µ = 2. According to Lemma 4, we have |G2
ij | ≥ 1

2 |Q
′
ij | =

(1−α)mi

2 . If randomly and indepen-
dently sampling a set Uij with size 2

1−α ln(kdη ) from Pij , the probability of sampling at least one

coordinate u ∈ G2
ij is 1−

(
1− |G2

ij |
mi

)|Uij |
≥ 1− e

|Uij | ln
(
1−

|G2
ij |

mi

)
≥ 1− e

−
|Uij ||G

2
ij |

mi ≥ 1− η
kd ,

where the second inequality follow from ln(1 − x) ≤ −x for x ∈ (0, 1). By taking a union bound
success probability over all the dimensions and the predicted clusters, we can argue that with con-
stant probability, there exists at least one coordinate u ∈ Uij such that u ∈ G2

ij ∩ Uij .

Corollary 1 With constant probability, for each i ∈ [k] and j ∈ [d], there exists at least one
coordinate u ∈ Uij such that u ∈ G2

ij .

Based on the sampled coordinates, in the remaining steps of the interval estimation phase (steps
4-6 of Algorithm 1), the Fast-Sampling algorihtm estimates the interval lengths to identify potential
regions that can enclose the center for Q′

ij . According to Corollary 1, we can assume that there
always exists at least one coordinate u ∈ Uij ∩ G2

ij . In step 5 of Algorithm 1, given the sample
u ∈ Uij ∩ G2

ij , the algorithm identifies the set Nij(u) of the nearest (1 − α)mi coordinates in
Pij to u. The following lemma shows that both lower and upper bounds for the clustering cost of
δ2(Q′

ij , Q
′
ij) can be established using Nij(u).

5
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Lemma 5 Given an arbitrary coordinate u ∈ G2
ij ∩ Uij , it holds that δ2(Q′

ij , Q
′
ij) ≤

δ2(Nij(u),Nij(u)) ≤ 3δ2(Q′
ij , Q

′
ij).

Lemma 5 shows that, if the sampled point u ∈ Uij is from G2
ij , by identifying the set Nij(u)

of coordinates in Pij , we can obtain both lower and upper bounds for the clustering cost of
δ2(Q′

ij , Q
′
ij). Then, according to the definition of G2

ij , we have δ2(u,Q′
ij) ≤ 2δ2(Q′

ij , Q
′
ij)/|Q′

ij |.

Let lij =

√
2δ2(Nij(u), Nij(u))

(1−α)mi
be the interval length. Then, by combining with Lemma 5, we can

get that Q′
ij ∈ [u− lij , u+ lij ] and the interval has length at most 2

√
6δ2(Q′

ij ,Q
′
ij)

(1−α)mi
. In the candidate

coordinates construction phase (step 7 of Algorithm 1), the Fast-Sampling algorithm further divides
the intervals into smaller blocks, where the length of each block is parameterized by some ϵ′ =

√
ϵ
48 .

Then, it holds trivially that there must exist at least one block b = [u+ ϵ′λlij , u+ ϵ′(λ+ 1)lij ] for

some integer λ ∈ Z, such that δ(u+ ϵ′λlij , Q′
ij) ≤

√
ϵδ2(Q′

ij ,Q
′
ij)

2(1−α)mi
. Consequently, in step 8 of Algo-

rithm 1, we can get that the constructed candidate set U ′
ij contains at least one coordinate u′ ∈ U ′

ij

such that δ(u′, Q′
ij) ≤

√
ϵδ2(Q′

ij ,Q
′
ij)

2(1−α)mi
.

Corollary 2 With constant probability, for each i ∈ [k] and j ∈ [d], there exists at least one

coordinate u′ ∈ U ′
ij such that δ(u′, Q′

ij) ≤
√

ϵδ2(Q′
ij ,Q

′
ij)

2(1−α)mi
.

Starting from step 9 in Algorithm 1, the Fast-Sampling algorithm enumerates all the constructed
candidate coordinates and their (1 − α)mi nearest neighbors to identify the set of the coordinates
with the minimum clustering cost. Then, the geometric center for the set of the coordinates with
minimum clustering cost is then selected to serve as the coordinate for the clustering center. Let Iij
be the set of the coordinates with minimum clustering cost found in step 10 of Algorithm 1. Denote
Iij as the geometric center for Iij . The following lemma shows that Iij ∩Qij can be used to bound
the distance between Qij and Iij .

Lemma 6 The following bound holds: δ2(Iij , Qij) ≤ (4α+αϵ)δ2(Qij ,Qij)
|Qij |(1−2α) .

To this end, we can combine Lemma 6 with Lemma 2 to bound the distance between Iij and P ∗
ij .

Lemma 7 The following bound holds: δ2(Iij , P ∗
ij) ≤

(
α

1−α + α(4+ϵ)
(1−2α)(1−α)

)
δ2(P∗

ij ,P
∗
ij)

|P∗
ij |

.

Putting all these together, we can get the following result for learning-augmented k-means problem.
Theorem 1 There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(ϵ−1/2md log(kd)) with constant probability, where α ∈ [0, 1/2).

4 THE FAST-ESTIMATION ALGORITHM

Although the proposed Fast-Sampling algorithm achieves linear running time in the data size while
maintaining the approximation guarantees, it introduces an additional O(log(kd)) factor loss when
taking a union bound success probability. The additional loss in the running time might influence the
practical performance of the algorithm when handling large-scale datasets. To address this issue, in
this section, we propose a faster sampling-based method called Fast-Estimation. The proposed Fast-
Estimation algorithm can efficiently approximate the coordinates of each predicted cluster within
linear running time, with only a small trade-off in clustering quality guarantees.

The formal description for the Fast-Estimation algorithm is given in Algorithm 2. The general
idea behind the algorithm is to first generate candidate coordinates that can closely approximate the
coordinates of the optimal clustering centers. Then, in each dimension of each predicted cluster,
an estimator is constructed using a sampling-based strategy. The estimator is designed to provide
accurate clustering cost estimates for subsets of coordinates with sizes (1− α)mi. In particular, for

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

each dimension of each predicted cluster, the estimator is built by randomly selecting a small sample
Sij from Pij . Each sampled coordinate is then assigned a uniform weight, enabling approximate
clustering costs to be calculated using the weighted samples rather than the entire predicted cluster.
With the constructed estimators, finding the set of coordinates with minimum clustering cost can be
done in sub-linear time, removing the O(log(kd)) factor from the running time of the Fast-Sampling
algorithm. Due to the space limits, all the proofs are delivered to the Appendix.

Algorithm 2 Fast-Estimation

Input: A k-means instance (P, k, d), a set (P1, P2, ..., Pk) of partitions with error rate α, and a
parameter 0 < ϵ < 0.5.

Output: A set C ⊂ Rd of centers with |C| = k.
1: for i ∈ [k] do
2: for j ∈ [d] do
3: Randomly and independently sample a set Uij from Pij with size O(log(kd)), then initial-

ize U ′
ij = ∅ and ϵ1 = ϵ

126 .
4: for q = 1 to O(log(m∆max)) do
5: lij =

√
2q

(1−α)mi
.

6: for u ∈ Uij do
7: s(u) =

{
u+ ϵ2λlij : λ ∈

[
− 1

ϵ2
, 1
ϵ2

]
∩ Z
}

, where ϵ2 =
√

ϵ1
32 .

8: U ′
ij = U ′

ij ∪ s(u).
9: Randomly and independently sample a set Sij from Pij with size

O
(

log(m3d log3(m∆max)/ϵ
2
1) log(m∆max)

αϵ41

)
, assign each point in Sij a weight mi

|Sij | .

10: Construct an estimator ω such that ∀u ∈ U ′
ij , ω(u) =

∑
p∈Sij\F(u)

m
|Sij |δ

2(p, u), where
F(u) is the set of the furthest (1 + 3ϵ1)α|Sij | points from Sij to u.

11: cij = argminu∈U ′
ij
ω(u).

12: Let Iij be the set of the nearest (1− 2α− ϵ)mi coordinates from Pij to cij .
13: ĉi = (Iij).
14: return {ĉ1, ĉ2, ..., ĉk}.

In the following, we give the formal analysis for the proposed Fast-Estimation algorithm. In each
step 3 of Algorithm 2, for each dimension of the predicted cluster, the Fast-Estimation algorithm
selects a random sample Uij to approximate the coordinates of the optimal clustering centers. Ac-
cording to Lemma 4, with constant probability, there exists at least one sampled coordinate u ∈ Uij

such that δ(u,Q′
ij) ≤

√
2δ2(Q′

ij , Q
′
ij)/|Q′

ij |. Then, starting from step 4 of Algorithm 2, the algo-
rithm enumerates all the possible lengths of intervals for constructing the set of candidate coordi-
nates. Without loss of generality, we can assume that the minimum pairwise distance between the
coordinates in Pij is 1, and the maximum pairwise distance between the coordinates in Pij is ∆max.
Consequently, in step 5 of Algorithm 2, there exists at least one guess for the interval length such that√

2δ2(Q′
ij ,Q

′
ij)

(1−α)mi
≤ lij ≤

√
4δ2(Q′

ij ,Q
′
ij)

(1−α)mi
. Then, in steps 7-8 of Algorithm 2, according to Lemma 5,

there also exists at least one coordinate u′ ∈ U ′
ij such that u′ is close enough to the geometric center

for Q′
ij , i.e., δ(u′, Q′

ij) ≤
√
ϵ1δ2(Q′

ij , Q
′
ij)/|Q′

ij |.

For an arbitrary coordinate u ∈ U ′
ij , denote Nij(u) as the set of the nearest (1 − α)mi co-

ordinates from Pij to u. Let O(u) = Pij\Nij(u) be the set of the furthest αmi coordinates
from Pij to u. Before the construction of the estimator ω (steps 9-10 of Algorithm 2), we start

by dividing Nij(u) into γ = O
(

log(m∆max)
ϵ1

)
blocks for each u ∈ U ′

ij . Specifically, for each

u ∈ U ′
ij , Nij(u) is decomposed into γ blocks (denoted as B1

u, B2
u,...,Bγ

u) based on the distances from
the coordinates in Nij(u) to u, where Bi

u =
{
x ∈ Nij(u) : (1 + ϵ1)

i ≤ δ2(x, u) < (1 + ϵ1)
i+1
}

.
Then, we further divide the blocks into two groups based on the sizes of the blocks, where

7
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L(u) =
{
Bi
u : |Bi

u| ≥
ϵ21αm

log(m∆max)
, i ∈ [γ]

}
and S(u) =

{
B1
u, ...,Bγ

u

}
\L(u) are the groups of

large and small blocks, respectively. Our goal is to well approximate each large block in L(u) while
allowing to ignore the coordinates in small blocks. The following lemma shows that the estimator,
constructed by randomly selecting a sample Sij with size c log(m3d log3(m∆max)/ϵ

2
1) log(m∆max)

αϵ41
(c is

a large enough constant to be specified) can well approximate each large block and the set O(u) of
coordinates with high probability.
Lemma 8 With probability at least 1 − ϵ1

m3d log2(m∆max)
, we have E[|Bi

u ∩ Sij |](1 − ϵ1) ≤ |Bi
u ∩

Sij | ≤ (1+ϵ1)E[|Bi
u∩Sij |] holds for each Bi

u ∈ L(u), and E[|O(u)∩Sij |](1−ϵ1) ≤ |O(u)∩Sij | ≤
(1 + ϵ1)E[|O(u) ∩ Sij |].

For the small blocks in S(u), denote J (u) =
⋃

Bi
u∈S(u) Bi

u as the set of the coordinates in small
blocks. Given that the number of coordinates in small blocks constitutes only a small fraction of
the entire predicted cluster, we will demonstrate that the number of coordinates selected from these
small blocks through random sampling can be approximately upper bounded by O(|Sij |).
Lemma 9 With probability at least 1− ϵ1

m3d log2(m∆max)
, it holds that |J (u) ∩ Sij | ≤ 2ϵ1α|Sij |.

Next, we prove that the estimator can give accurate estimations for the clustering cost induced by the
set of the nearest (1−α)mi coordinates from some sampled coordinate u ∈ U ′

ij . For any coordinate
u ∈ U ′

ij , let F†(u) be the set of the furthest (2+16ϵ1)αmi coordinates from Pij to u. The following
lemma establishes the lower and upper bounds for the clustering cost given by the estimator ω
Lemma 10 Given an arbitrary coordinate u ∈ U ′

ij , with high probability, we have
δ2(Pij\F†(u))/(1 + 7ϵ1) ≤ ω(u) ≤ (1 + ϵ1)

2δ2(Nij(u), u)

According to Lemma 9 and Lemma 10, for an arbitrary sample u ∈ U ′
ij , with probability at least

1 − ϵ1
m2d log2(m∆max)

, the constructed estimator ω can give approximate clustering cost estima-

tions such that δ2(Pij\F†(u))
1+7ϵ1

≤ ω(u) ≤ (1 + ϵ1)
2δ2(Nij(u), u). Observe that there are at most

O(ϵ
−1/2
1 log(kd) log(m∆max)) constructed coordinates in each dimension of each predicted cluster.

Then, by taking a union bound success probability over all the dimensions of the predicted clusters,
we can get that with constant probability, δ2(Pij\F†(u),u)

(1+7ϵ1)
≤ ω(u) ≤ (1 + ϵ1)

2δ2(Nij(u), u) holds
for each u ∈ U ′

ij where i ∈ [k] and j ∈ [d]. Based on the properties of the estimator, we will
show that in each dimension of each predicted cluster, the Fast-Estimation algorithm can find good
coordinate approximation for the optimal clustering centers.
Lemma 11 The following bound holds: δ2(Iij , Qij) ≤ O(α)δ2(Qij , Qij)/|Qij |.

Finally, by using Lemma 7, Theorem 2 can be proved.
Theorem 2 There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(md)+ Õ(ϵ−5kd/α) with constant probability, where α ∈ (0, 1/3−
ϵ).

5 THE FAST-FILTERING ALROTIHM

For the Fasst-Sampling and Fast-Estimation algorithms, clustering centers are generated by finding
coordinate approximations in each dimension of the predicted clusters. However, the sampling pro-
cess may introduce cumulative errors during the coordinate construction process, potentially leading
to a degradation in overall clustering quality. In this section, we provide a more practical algorithm
or the learning-augmented k-means problem, based on our Fast-Sampling and Fast-Estimation al-
gorithms, to better preserve the clustering quality while maintaining the improved running time.
The proposed algorithm is presented in Algorithm 3, where the main idea is to directly find center
approximations for each predicted cluster.

In step 2 of Algorithm 3, a random set of samples is drawn randomly and independently from each
predicted cluster to find good candidate center approximations. Then in steps 3-4 of Algorithm 3,
estimators are constructed using similar ideas from the Fast-Estimation algorithm. The constructed
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estimators can provide accurate clustering cost estimates, and the candidate center with the minimum
clustering cost is selected in step 5 of Algorithm 3 to identify intervals containing the nearest (1 −
α)mi points. Finally, in step 7 of Algorithm 3, the geometric centers of the identified intervals
are selected as the final clustering centers for the predicted clusters. In Appendix A.4, we give a
theoretical analysis for the Fast-Filtering algorithm. We show that by slightly modifying the Fast-
Filtering algorithm with adjusted number of nearest neighbors (step 4 and step 6 of Algorithm 3) and
sample sizes R1 and R2 (the modifications are marked as blue color in Appendix), the Fast-Filtering
algorithm can give a (1 +O(

√
α))-approximation for the learning-augmented k-means problem.

Algorithm 3 Fast-Filtering

Input: A k-means instance (P, k, d), a set (P1, P2, ..., Pk) of partitions with error rate α, parameters
R1 > 0, R2 > 0 and 0 < ϵ < 1.

Output: A set C ⊂ Rd of centers with |C| ≤ k.
1: for i ∈ [k] do
2: Randomly and independently sample a set Ui from Pi with size R1.
3: Randomly and independently sample a set Si from Pi with size R2 , and assign each point in

Si a weight mi

|Si| .
4: Construct an estimator ω such that ∀u ∈ Ui, ω(u) =

∑
p∈Si\F(u)

mi

|Si|δ
2(p, u), where F(u)

is the set of the furthest (2 + ϵ)α|Si| points from Si to u.
5: ci = argminu∈Ui

ω(u).
6: Let Ii be the set of the nearest (1− α)mi points from Pi to ci.
7: ĉi = Ii.
8: return {ĉ1, ĉ2, ..., ĉk}.

6 EXPERIMENTS

In this section, we give empirical evaluations on the performances of our proposed algorithms. All
algorithms are implemented and executed in Python. The experiments were done on a machine with
i7-12700KF processor and 256GB RAM. Following the prior work (Nguyen et al., 2022; Ergun
et al., 2021), we run each algorithm 10 times and report the average results with deviations.

Datasets. Following the work in Nguyen et al. (2022) and Ergun et al. (2021), we test the algorithms
on datasets CIFAR10 (m = 10, 000, d = 3, 072), PHY (m = 10, 000, d = 50) and MNIST
(m = 1, 797, d = 64) with varying error rage α and the number of clusters k. We also test the
performances of different algorithms on other large datasets from UCI Machine Learning Repository
3 including SUSY (m = 5, 000, 000, d = 18) and HIGGS (m = 11, 000, 000, d = 27), and one
large scale dataset SIFT (m = 100, 000, 000, d = 128) from Matsui et al. (2017).

Algorithms. In our experiments, we mainly compare our proposed Fast-Sampling, Fast Estimation
and Fast-Filtering and Fast-Filtering algorithm (the version in Appendix A.4 with theoretical guaran-
tees) with other learning-augmented algorithms, including the algorithm in Ergun et al. (2021) (de-
noted as Ergun) and the algorithm in Nguyen et al. (2022) (denoted as Det). For the Fast-Sampling
algorithm, the sample size is set to 4, and we fix ϵ = 1. For the Fast-Filtering algorithm and Fast-
Estimation algorithms, we fix R1 = 10, R2 = m/20 and ϵ = 0.3, where m is the size of the
given clustering instance. To further demonstrate the advantage of learning-augmented clustering
model, we also give comparisons between our algorithms and the k-means++ method (Arthur &
Vassilvitskii, 2007) without prediction information.

Predictor Description. Following the prior work (Nguyen et al., 2022), the predictor is generated
as follows. For each dataset, we first run the k-means++ (Arthur & Vassilvitskii, 2007) method
as an initialization, and then run the Lloyd’s algorithm (Lloyd, 1982) until convergence, where the
labels returned are regarded as the optimal labeling partitions (denoted as {P1, ..., Pk}). To test the
performance of the algorithms under different error rates of the predictor, following the previous
work of Nguyen et al. (2022), we randomly change the labels of the αmi points closest to ci for
each cluster Pi to generate the corrupted labeling partitions {P ′

1, ..., P
′
k} as the predictors. For every

dataset, we generate the set of corrupted labels for α ranging from 0.1 to 0.5.
3https://archive.ics.uci.edu/
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Detailed Algorithm Implementations. As pointed out in Nguyen et al. (2022), in most situations,
we will not have access to the error rate α and must try different guesses of α, then return the cluster-
ing with the best cost. Therefore, for each algorithm (including those in Ergun et al. (2021); Nguyen
et al. (2022) as well as ours), we iterate over 15 possible values of α uniformly distributed in the in-
terval [0.01, 0.5] as the inputs for the algorithms. The guessed α value that yields the best clustering
cost is selected as the final result for each algorithm. Following the prior work (Nguyen et al., 2022),
each algorithm is implemented using JIT-optimization for further accelerations. For each algorithm,
the runtime for each execution includes the cumulative time spent across 15 iterations of guessing
error rates and solving the corresponding k-means instances based on predictors. Additionally, we
also compare the ARI amd NMI values for different algorithms to show the quality of the clustering
results with respect to the ground truth labeling.

Table 2: Comparisons on dataset SIFT for varying α and fixed k = 20

Dataset SIFT (100,000,000 × 128)

Method Ref α Cost NMI ARI Time(s)

k-means++

1.0542E+13(844.18s) 0.1

1.6884E+13±1.45E+11 0.3285±0.0138 0.1530±0.0137 1000.89±10.84
Ergun 9.9799E+12±1.03E+05 0.9243±0.0000 0.9181±0.0001 16748.88±5776.25
Det 9.7791E+12±0.00E+00 0.9490±0.0000 0.9491±0.0000 13152.95±2160.94

Fast-Sampling 9.7666E+12±0.00E+00 0.9519±0.0000 0.9531±0.0000 13057.36±1717.68
Fast-Filtering 9.7150E+12±2.90E+08 0.9316±0.0090 0.9333±0.0107 1006.31±43.79

Fast-Estimation 9.8007E+12±3.74E+08 0.9465±0.0003 0.9466±0.0002 8874.66±2871.26

k-means++

9.7055E+12(1011.24s) 0.2

1.6585E+13±7.91E+10 0.3634±0.0182 0.1940±0.0221 1077.12±71.57
Ergun 1.0210E+13±2.89E+08 0.9043±0.0000 0.8901±0.0000 17410.75±6132.76
Det 9.9919E+12±0.00E+00 0.9019±0.0000 0.8867±0.0000 13681.80±2073.36

Fast-Sampling 9.9576E+12±0.00E+00 0.9037±0.0000 0.8895±0.0000 13270.53±1989.65
Fast-Filtering 9.7914E+12±9.59E+08 0.8690±0.0116 0.8515±0.0146 1088.53±92.09

Fast-Estimation 1.0004E+13±6.51E+08 0.9093±0.0002 0.8979±0.0002 9567.52±2691.74

k-means++

9.2478E+12(1330.99s) 0.3

1.6561E+13±9.48E+10 0.3531±0.0278 0.1814±0.0206 927.07±31.75
Ergun 1.0526E+13±4.08E+07 0.8663±0.0000 0.8361±0.0000 17586.20±6488.30
Det 1.0291E+13±0.00E+00 0.8625±0.0000 0.8299±0.0000 13214.91±1914.86

Fast-Sampling 1.0238E+13±0.00E+00 0.8743±0.0000 0.8496±0.0000 13032.26±1657.72
Fast-Filtering 9.9098E+12±7.74E+09 0.8180±0.0048 0.7833±0.0064 1095.48±66.17

Fast-Estimation 1.0300E+13±3.31E+08 0.8663±0.0002 0.8371±0.0002 8618.38±2378.02

k-means++

8.9739E+12(1342.73s) 0.4

1.6814E+13±4.91E+11 0.3582±0.0111 0.1752±0.0126 991.80±148.57
Ergun 1.0924E+13±4.27E+08 0.8273±0.0000 0.7801±0.0001 16291.70±5926.28
Det 1.0683E+13±0.00E+00 0.8248±0.0000 0.7749±0.0000 12999.81±2144.98

Fast-Sampling 1.0613E+13±0.00E+00 0.8353±0.0000 0.7930±0.0000 13658.40±1766.14
Fast-Filtering 1.0125E+13±3.14E+09 0.7879±0.0048 0.7393±0.0032 1091.53±94.64

Fast-Estimation 1.0687E+13±8.25E+08 0.8260±0.0001 0.7781±0.0003 8725.94±2691.41

k-means++

8.7576E+12(1412.61s) 0.5

1.7542E+13±2.81E+11 0.3313±0.0073 0.1580±0.0065 972.59±60.40
Ergun 1.1414E+13±4.92E+08 0.7885±0.0000 0.7140±0.0000 17256.11±6160.91
Det 1.1156E+13±0.00E+00 0.7863±0.0000 0.7105±0.0000 13121.68±1901.27

Fast-Sampling 1.1089E+13±0.00E+00 0.7963±0.0000 0.7290±0.0000 13042.91±1762.42
Fast-Filtering 1.0504E+13±5.81E+09 0.7086±0.0103 0.6133±0.0097 1051.20±34.37

Fast-Estimation 1.1169E+13±1.68E+09 0.7886±0.0005 0.7153±0.0012 8532.96±2152.19

Results. Table 2 compares our proposed algorithms with other learning-augmented k-means meth-
ods on the SIFT dataset for varying error rates and fixed clusters. “Ref” reports clustering costs of
optimal labeling partitions and the running time for generating them using Lloyd’s algorithms. Due
to space limit, the results for varying clusters and other datasets are in Appendix A.6.

The results show that our Fast-Sampling algorithm achieves clustering costs comparable to state-of-
the-art methods, while Fast-Filtering consistently outperforms other learning-augmented algorithms,
with an average 1.5% reduction in clustering cost across all datasets. In terms of running time,
Fast-Filtering is significantly faster than other algorithms, especially for large and high-dimensional
datasets, achieving at least 3x speedup over current methods. On the SIFT dataset, it is the only
method faster than Lloyd’s algorithm, where the running time is at least 10 times faster than other
methods. For the NMI and ARI values, our algorithms consistently achieve NMI and ARI values
above 0.80 across most datasets, with particularly better results on MNIST and SIFT due to their spa-
tial coherence. Meanwhile, the Det algorithm performs better on high-dimensional datasets (SUSY,
HIGGS, and PHY), while Ergun’s algorithm excels on CIFAR10 with its complex image features.

7 CONCLUSION

In this work, we present new sampling-based algorithms with linear running time in the data size
for the learning-augmented k-means problem. We show experimentally that our algorithm achieves
better performances on different datasets compared with other state-of-art algorithms. An interesting
future direction is how to design algorithms with better approximation ratios while maintaining a
linear running time in learning-augmented settings.
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A APPENDIX

A.1 PLOT OF APPROXIMATION RATIO V.S. ERROR RATE α

Figure 1: Plot of approximation ratios v.s. the error rate α.

A.2 MISSING PROOFS IN SECTION 3

Lemma 4. For any Qij = P ∗
ij ∩ Pij , it holds that |Gµ

ij | ≥
µ−1
µ |Q′

ij |.

Proof Observe that

δ2(Q′
ij , Q

′
ij) ≥ δ2(Q′

ij\G
µ
ij , Q

′
ij)

≥ |Q′
ij |

(
1−

|Gµ
ij |

|Q′
ij |

)
µδ2(Q′

ij , Q
′
ij)

|Q′
ij |

,

which implies that |Gµ
ij | ≥

µ−1
µ |Q′

ij |. □

Lemma 5. Given an arbitrary coordinate u ∈ G2
ij ∩ Uij , it holds that δ2(Q′

ij , Q
′
ij) ≤

δ2(Nij(u),Nij(u)) ≤ 3δ2(Q′
ij , Q

′
ij).

Proof According to the definition of Q′
ij that Q′

ij is the subset of Pij with size (1 − α)mi

and minimum clustering cost, it holds trivially that δ2(Nij(u),Nij(u)) ≥ δ2(Q′
ij , Q

′
ij) since

Nij(u) ⊆ Pij and |Nij(u)| = (1 − α)mi. On the other hand, we can establish an upper bound
for δ2(Nij(u),Nij(u)) as

δ2(Nij(u),Nij(u)) ≤ δ2(Nij(u), u)

≤ δ2(Q′
ij , u)

= δ2(Q′
ij , Q

′
ij) + |Q′

ij |δ2(u,Q′
ij)

≤ 3δ2(Q′
ij , Q

′
ij),

13
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where the first step follows from the optimality of the geometric center, the second step follows from
the definition of Nij(u) that Nij(u) contains the nearest (1 − α)mi coordinates from Pij to u, the
third step follows from Lemma 1, and the last step follows from the definition of G2

ij . □

Lemma 6. The following bound holds: δ2(Iij , Qij) ≤ (4α+αϵ)δ2(Qij ,Qij)
|Qij |(1−2α) .

Proof We first bound the distance between Iij ∩Qij and Iij . Denote I ′ij as the set of the nearest

(1− α)mi points from Pij to u′ such that u′ ∈ U ′
ij and δ(u′, Q′

ij) ≤
√

ϵδ2(Q′
ij ,Q

′
ij)

2(1−α)mi
. Then, it holds

that
δ2(I ′ij , I

′
ij) ≤ δ2(I ′ij , u

′)

≤ δ2(Q′
ij , u

′)

= δ2(Q′
ij , Q

′
ij) + |Q′

ij |δ2(u′, Q′
ij)

≤
(
1 +

ϵ

2

)
δ2(Q′

ij , Q
′
ij),

where the first step follows from the optimality of geometric center, the second step follows from
the the definition for I ′ij that I ′ij contains the nearest (1−α)mi coordinates from Pij to u′, the third

step follows from Lemma 1, and the last step follows from δ(u′, Q′
ij) ≤

√
ϵδ2(Q′

ij ,Q
′
ij)

2(1−α)mi
. Since Iij is

the set of coordinates with size (1− α)mi and minimum clustering cost, it holds that

δ2(Iij , Iij) ≤ δ2(I ′ij , I
′
ij)

≤
(
1 +

ϵ

2

)
δ2(Q′

ij , Q
′
ij).

Let ζ = |Qij ∩ Iij |/|Qij | = (1 − (1 − |Qij ∩ Iij |/|Qij |)). According to Lemma 2, by assigning
J = Iij and J1 = Qij ∩ Iij , we can get that

δ2(Iij ∩Qij , Iij) ≤
1− ζ

ζ
· δ

2(Iij , Iij)

|Iij |

=
1− |Qij ∩ Iij |/|Qij |
|Q′

ij ∩ Iij |/|Qij |
· δ

2(Iij , Iij)

|Iij |

=
|Qij | − |Qij ∩ Iij |

|Qij ∩ Iij |
· δ

2(Iij , Iij)

|Iij |
,

where the first step follows from Lemma 2. According to the definition of Qij , since |Pij\Qij | ≤
αmi, it holds that |Qij ∩ Iij | ≥ (1− 2α)mi. Then, we have

δ2(Iij ∩Qij , Iij) ≤
α

1− 2α

δ2(Iij , Iij)

|Iij |

≤ α

1− 2α
·
(1 + ϵ

2 )δ
2(Q′

ij , Q
′
ij)

|Iij |

≤ α+ 0.5αϵ

1− 2α
·

|Q′
ij |

|Qij | · |Iij |
· δ2(Qij , Qij)

≤ α+ 0.5αϵ

1− 2α
· δ

2(Qij , Qij)

|Qij |
,

where the first inequality follows from Lemma 2, the second inequality follows from δ2(Iij , Iij) ≤
(1 + ϵ

2 )δ
2(Q′

ij , Q
′
ij), the third inequality follows from Lemma 3, and the last inequality follows

from |Q′
ij | = |Iij | = (1− α)mi.

14
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Next, we give an upper bound for the distance between Iij ∩Qij and Qij . Let ζ ′ = (1 −
|Qij\Iij |/|Qij |). According to Lemma 2, by assigning J = Qij and J1 = Qij ∩ Iij , we can
get that

δ2(Iij ∩Qij , Qij) ≤
(|Qij\Iij |/|Qij |)δ2(Qij , Qij)

(1− |Qij\Iij |/|Qij |)|Qij |

=
|Qij\Iij |δ2(Qij , Qij)

(|Qij | − |Qij\Iij |)|Qij |

≤ αδ2(Qij , Qij)

(1− 2α)|Qij |
,

where the last inequality follows from |Qij\Iij | ≤ αmi. Putting all these together and using the

triangle inequality, we have δ2(Iij , Qij) ≤ (α(4+ϵ))δ2(Qij ,Qij)
|Qij |(1−2α) . □

Lemma 7. The following bound holds: δ2(Iij , P ∗
ij) ≤

(
α

1−α + α(4+ϵ)
(1−2α)(1−α)

)
δ2(P∗

ij ,P
∗
ij)

|P∗
ij |

.

Proof Since Qij ⊆ P ∗
ij , we have

|P ∗
ij |P ∗

ij = |P ∗
ij\Qij |P ∗

ij\Qij + |Qij |Qij .

Then, we can get that δ2(P ∗
ij , P

∗
ij\Qij) =

(
|P∗

ij |−|P∗
ij\Qij |

|P∗
ij\Qij |

)2
δ2(P ∗

ij , Qij). Define γ =
|P∗

ij\Qij |
|P∗

ij |
.

We have δ2(P ∗
ij , P

∗
ij\Qij) =

(
1−γ
γ

)2
δ2(P ∗

ij , Qij). By decomposing the clustering cost of P ∗
ij with

respect to P ∗
ij into δ2(P ∗

ij\Qij , P ∗
ij) and δ2(P ∗

ij ∩Qij , P ∗
ij), it holds that

δ2(P ∗
ij , P

∗
ij) = δ2(P ∗

ij\Qij , P ∗
ij) + δ2(Qij , P ∗

ij)

= δ2(P ∗
ij\Qij , P ∗

ij\Qij) + γ|P ∗
ij |δ2(P ∗

ij , P
∗
ij\Qij) + δ2(Qij , P ∗

ij)

= δ2(P ∗
ij\Qij , P ∗

ij\Qij) + γ|P ∗
ij |
(
1− γ

γ

)2

δ2(P ∗
ij , Qij)

+ δ2(Qij , Qij) + (1− γ)|P ∗
ij |δ2(Qij , P ∗

ij)

= δ2(P ∗
ij\Qij , P ∗

ij\Qij) + δ2(Qij , Qij) +
1− γ

γ
|P ∗

ij |δ2(Qij , P ∗
ij)

≥ δ2(Qij , Qij) +
1− α

α
δ2(Qij , P ∗

ij),

where the first step follows from Lemma 1, and the last step follows from the definition of the
predicted clusters that γ ≤ α. By Lemma 6, we have

δ2(P ∗
ij , P

∗
ij) ≥

1− 2α

α(4 + ϵ)
(1− α)|P ∗

ij |δ2(Iij , Qij) +
1− α

α
|P ∗

ij |δ2(Qij , P ∗
ij).

Then, by using Cauchy-Schwarz Inequality, we have

(δmax(P ∗
ij , Qij) + δmax(Qij , Iij))

2 ≤
δ2(P ∗

ij , P
∗
ij)

|P ∗
ij |

(
α

1− α
+

α(4 + ϵ)

(1− 2α)(1− α)

)
.

Finally, we can conclude the proof using the fact that δmax(P ∗
ij , Iij)

2 ≤ (δmax(P ∗
ij , Qij) +

δmax(Iij , Qij))
2. □

Theorem 1. There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(ϵ−1/2md log(kd)) with constant probability, where α ∈ [0, 1/2).
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Proof Denote C as the set of centers returned by Algorithm 1, where C = {ĉ1, ĉ2, ..., ĉk} and ĉi is
consisting of d coordinates [ci1, ci2, ..., cid]. Then, we have

δ2(P,C) =

k∑
i=1

d∑
j=1

δ2(P ∗
ij , cij)

=

k∑
i=1

d∑
j=1

δ2(P ∗
ij , P

∗
ij) + |P ∗

ij |δ2(P ∗
ij , cij)

≤
k∑

i=1

d∑
j=1

(
1 +

α

1− α
+

α(4 + ϵ)

(1− 2α)(1− α)

)
δ2(Pij , P ∗

ij)

=

(
1 +

α

1− α
+

α(4 + ϵ)

(1− 2α)(1− α)

)
δ2(P,C∗).

Then, we give the runtime analysis for the proposed Fast-Sampling algorithm. In each step 3 of the
Fast-Sampling algorithm, sampling coordinates from the predicted cluster takes O(1) time. In each
step 5 of the Fast-Sampling algorithm, finding the nearest (1 − α)mi coordinates in Pij to a given
sample can be executed in linear time O(mi) using linear selection methods (Blum et al., 1973).

In each step 7 of Algorithm 1, note that the interval length can be bounded by O(1)
√

δ2(Qij ,Qij)
(1−α)mi

.
Hence, by dividing the interval into smaller blocks with length ϵ′lij where ϵ′ =

√
ϵ
48 , we can get that

the number of candidate coordinates constructed in each step 7 of Algorithm 1 can be bounded by
O(ϵ−1/2). According to the sample size of Uij , the total number of coordinates constructed in step
8 of Algorithm 1 can be bounded by O(ϵ−1/2 log(kd)). Then, finding the subset of coordinates with
minimum clustering cost in steps 9-10 of Algorithm 1 can be executed in time O(ϵ−1/2mi log(kd))
using linear selection methods (Blum et al., 1973). Since the Fast-Sampling algorithm needs to
enumerate all the dimensions of each predicted cluster, the overall running time can be bounded by∑k

i=1

∑d
j=1 O(ϵ−1/2mi log(kd)) = O(ϵ−1/2md log(kd)). □

A.3 MISSING PROOFS IN SECTION 4

Lemma 8. With probability at least 1 − ϵ1
m3d log2(m∆max)

, we have E[|Bi
u ∩ Sij |](1 − ϵ1) ≤ |Bi

u ∩
Sij | ≤ (1+ϵ1)E[|Bi

u∩Sij |] holds for each Bi
u ∈ L(u), and E[|O(u)∩Sij |](1−ϵ1) ≤ |O(u)∩Sij | ≤

(1 + ϵ1)E[|O(u) ∩ Sij |].

Proof Observe that |Sij | = c log(m3d log3(m∆max)/ϵ
2
1) log(m∆max)

αϵ41
where c is some large enough con-

stant. Hence, for an arbitrary large block Bi
u ∈ L(u), we have

E[|Sij ∩ Bi
u|] =

|Sij | · |Bi
u|

|Pij |

≥ ϵ21α

log(m∆max)
· c log(m

3d log3(m∆max)/ϵ
2
1) log(m∆max)

αϵ41

≥ c log(m3d log3(m∆max)/ϵ
2
1)

ϵ21
.

Thus, by applying the Chernoff Bound, we can get that

Pr

(
E[|Bi

u ∩ Sij |](1− ϵ1) ≤ |Bi
u ∩ Sij | ≤ (1 + ϵ1)E[|Bi

u ∩ Sij |]
)
≥ 1− 2e−

ϵ21E[|Bi
u∩Sij |]
3

≥ Ω

(
1− ϵ21

m3d log3(m∆max)

)
,

where the last inequality follows from the fact that c is a large enough constant.

Similarly, for the set O(u) of coordinates, we can get that with probability at least
Ω
(
1− ϵ1

m3d log3(m∆max)

)
, it holds that E[|O(u)∩Sij |](1−ϵ1) ≤ |O(u)∩Sij | ≤ (1+ϵ1)E[|O(u)∩
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Sij |]. By taking a union bound success probability over all the blocks in L(u), Lemma 8 can be
proved. □

Lemma 9. With probability at least 1− ϵ1
m3d log2(m∆max)

, it holds that |J (u) ∩ Sij | ≤ 2ϵ1α|Sij |.

Proof According to the definition of small blocks, it holds that |J (u)| ≤ ϵ1αmi. Observe that
E[|Sij ∩ J (u)|] = |Sij |·|J (u)|

mi
. Let λ′ = 2ϵ1αmi

|J (u)| − 1. By applying the Chernoff Bound, we can get
that

Pr(|J (u) ∩ Sij | ≤ (1 + λ′)E[|J (u) ∩ Sij |]) ≥ 1− e−
E[|Sij∩J (u)|](λ′)2

3

= 1− e
−

|J (u)|·|Sij |
3mi

( 2ϵ1αmi
|J (u)| −1)

2

≥ 1− e
−

|J (u)|·|Sij |
3mi

( ϵ1αmi
|J (u)| )

2

≥ 1− e−
ϵ21α2mi|Sij |

3|J (u)|

≥ Ω

(
1− ϵ1

m3d log2(m∆max)

)
,

where the first step follows from Chernoff Bound, the second step step follows from the definition
of λ′, the third step follows from the fact that |J (u)| ≤ ϵ1αmi, and the last step follows from
|Sij | ≥ c log(m3d log3(m∆max)/ϵ

2
1) log(m∆max)

ϵ41α
. Since (1+λ′)E[|J (u)∩Sij |] = (1+λ′)

|J (u)|·|Sij |
mi

≤
2ϵ1α|Sij |, we have |J (u) ∩ Sij | ≤ 2ϵ1α|Sij |. □

Lemma 10. Given an arbitrary coordinate u ∈ U ′
ij , with high probability, we have

δ2(Pij\F†(u))/(1 + 7ϵ1) ≤ ω(u) ≤ (1 + ϵ1)
2δ2(Nij(u), u).

Proof According to Lemma 8 and Lemma 9, by taking a union bound over the success probability,
we have |J (u) ∩ Sij | ≤ 2ϵ1α|Sij | and |O(u) ∩ Sij | ≤ (1 + ϵ1)α|Sij | hold with probability at

least
(
1− ϵ1

m2d log2(m∆max)

)
. Define F ′(u) = (J (u) ∪ O(u)) ∩ Sij . Then, it holds that |F ′(u)| ≤

(1 + 3ϵ1)α|Sij |. For each large block Bi
u ∈ L(u), by using Lemma 8, we have |Bi

u ∩ Sij | ≤
(1+ ϵ1)E[|Bi

u∩Sij |] = (1+ϵ1)|Sij |
mi

|Bi
u|. Thus, the clustering cost of Bi

u∩Sij can be upper bounded
by

δ2(Bi
u ∩ Sij , u) =

∑
x∈Bi

u∩Sij

δ2(x, u)

≤ (1 + ϵ1)
i+1|Bi

u ∩ Sij |

≤ (1 + ϵ1)
i · (1 + ϵ1)

2|Sij |
mi

|Bi
u|

≤ (1 + ϵ1)
2|Sij |

mi
δ2(Bi

u, u),

where the second step follows from the definition of Bi
u ∈ L(u) that δ2(x, u) ≤ (1+ϵ1)

i+1 holds for
each x ∈ Bi

u, and the fourth step follows from the definition of Bi
u ∈ L(u) that δ2(x, u) ≥ (1+ ϵ1)

i

holds for each x ∈ Bi
u. Consequently, by taking a summation over all the coordinates sampled in

large blocks, we can get that
∑

Bi
u∈L(u) δ

2(Bi
u∩Sij , u) ≤ (1+ϵ1)

2

mi
|Sij |δ2(Nij(u), u). Denote F(u)

as the set of the furthest (1 + 3ϵ1)α|Sij | points from Sij to u. According to the definition of the

17
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constructed estimator ω in step 10 of Algorithm 2, we have

ω(u) =
mi

|Sij |
δ2(Sij\F(u), u)

≤ mi

|Sij |
δ2(Sij\F ′(u), u)

=
mi

|Sij |
∑

Bi
u∈L(u)

δ2(Bi
u ∩ Sij , u)

≤ mi

|Sij |
(1 + ϵ1)

2|Sij |
mi

δ2(Nij(u), u)

= (1 + ϵ1)
2δ2(Nij(u), u),

where the second step follows from |F ′(u)| ≤ (1 + 3ϵ1)α|Sij | = |F(u)|. Hence, an upper bound
for the clustering cost estimation can be obtained as ω(u) ≤ (1 + ϵ1)

2δ2(Nij(u), u).

Then, we show that the estimator can also give a lower bound for the clustering cost induced by
the nearest (1 − α)mi coordinates from some sampled coordinate u ∈ U ′

ij . For each large block
Bi
u ∈ L(u), define Zi

u = F(u) ∩ Bi
u. For each large block Bi

u, let Hi
u be an arbitrary subset of the

coordinates in Bi
u with size (1+3ϵ1)|Zi

u| mi

|Sij | . Denote F ′′(u) = (O(u) ∪ J (u))∪(
⋃

Bi
u∈L(u) Hi

u).
It holds that

|F ′′(u)| ≤ αmi + ϵ1αmi + (1 + 3ϵ1)(mi/|Sij |)|Zi
u|

≤ αmi + ϵ1αmi + (1 + 3ϵ1)(mi/|Sij |) · ((1 + 3ϵ1)α|Sij |)
≤ (2 + 16ϵ1)αmi,

where the second step follows from
∑

Bi
u∈L(u) |Zi

u| ≤ |F(u)| ≤ (1 + 3ϵ1)α|Sij |. Define F†(u) as
the set of the furthest (2 + 16ϵ1)αmi points from Pij to u. Then, we can get that

δ2(Pij\F†(u), u) ≤ δ2(Pij\F ′′(u), u)

=
∑

Bi
u∈L(u)

δ2(Bi
u\Hi

u, u)

≤
∑

Bi
u∈L(u)

(1 + ϵ1)
i+1(|Bi

u| − |Hi
u|)

≤
∑

Bi
u∈L(u)

(1 + ϵ1)

(
|Bi

u ∩ Sij |mi

(1− ϵ1)|Sij |
− (1 + 3ϵ1)|Zi

u|mi

|Sij |

)
· (1 + ϵ1)

i

≤ (1 + ϵ1)(1 + 3ϵ1)mi

|Sij |
∑

Bi
u∈L(u)

(|Bi
u ∩ Sij | − |Zi

u|) · (1 + ϵ1)
i

≤ (1 + 7ϵ1)ω(u),

where the first step follows from the definition of F†(u) that |F ′′(u)| ≤ |F†(u)|, the third step
follows from the definition of L(u) that δ2(x, u) ≤ (1 + ϵ1)

i+1 holds for each x ∈ Bi
u, the fourth

step follows from Lemma 8, and the second to the last step follows from 1
1−ϵ1

≤ 1 + 3ϵ1 for
0 < ϵ1 < 0.5. □

Lemma 11. The following bound holds: δ2(Iij , Qij) ≤ O(α)δ2(Qij , Qij)/|Qij |.
Proof According to Lemma 5, with constant probability, there exists at least one coordinate u1 ∈
U ′
ij such that δ2(u1, Q′

ij) ≤
ϵ1δ

2(Q′
ij ,Q

′
ij)

|Q′
ij |

. Hence, we can get that δ2(Nij(u1), u1) ≤ δ2(Q′
ij , u1) ≤

(1 + ϵ1)δ
2(Q′

ij , Q
′
ij), where the last step follows from Lemma 1. Let cij be the coordinate chosen

by the estimator in step 11 of Algorithm 2. According to the property of the estimator, we have
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δ2(Pij\F†(cij), cij)

1 + 7ϵ1
≤ ω(cij)

≤ ω(u1)

≤ (1 + ϵ1)
2δ2(Nij(u1), u1)

≤ (1 + ϵ1)
3δ2(Q′

ij , Q
′
ij).

Denote Iij as the set of coordinates found in step 12 of Algorithm 2. Then, we can give the bound
between Iij and Qij . Since ϵ1 = ϵ

126 , according to Lemma 1 and the properties of the estimator, we
have

δ2(Iij , Iij) ≤ δ2(Iij , cij)

≤ (1 + 7ϵ1)ω(cij)

≤ (1 + ϵ1)
3(1 + 7ϵ1)δ

2(Q′
ij , Q

′
ij)

≤ (1 + ϵ/2)δ2(Q′
ij , Q

′
ij),

where the last step follows from ϵ1 = ϵ
126 . Next, we bound the distance between Iij and Qij .

According to Lemma 6, it holds that

δ2(Iij , Iij ∩Qij) ≤
2α+ αϵ

(1− 3α− αϵ)|Iij |
δ2(Q′

ij , Q
′
ij)

≤ (2α+ αϵ)(1 + ϵ)

(1− 3α− αϵ)

|Q′
ij |

|Iij ||Qij |
δ2(Qij , Qij)

≤ (2α+ αϵ)(1 + ϵ)(1− α)

(1− 3α− αϵ)(1− 2α− αϵ)

δ2(Qij , Qij)

|Qij |
.

Similarly, according to Lemma 6, we also have δ2(Qij , Qij ∩ Iij) ≤ 2α+αϵ
1−3α−αϵ

δ2(Qij ,Qij)
|Qij | .

Putting all these together and using the triangle inequality, it holds that δ2(Iij , Qij) ≤
12α−18α2

(1−3α−ϵ)(1−2α−αϵ)
δ2(Qij ,Qij)

|Qij | , where the last inequality follows from ϵ < 0.5. □

Theorem 2. There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(md)+ Õ(ϵ−5kd/α) with constant probability, where α ∈ (0, 1/3−
ϵ).

Proof According to Lemma 7, we have δ2(P ∗
ij , Iij) ≤

(
α

1−α + 12α−18α2

(1−3α−ϵ)(1−2α−ϵ)

)
δ2(Pij ,P∗

ij)

|P∗
ij |

. De-

note C as the set of centers returned by Algorithm 1, where C = {ĉ1, ĉ2, ..., ĉk} and ĉi is consisting
of d coordinates [ci1, ci2, ..., cid]. Then, we have

δ2(Pij , C) =

k∑
i=1

d∑
j=1

δ2(P ∗
ij , cij)

=

k∑
i=1

d∑
j=1

δ2(P ∗
ij , P

∗
ij) + |P ∗

ij |δ2(P ∗
ij , cij)

≤
k∑

i=1

d∑
j=1

(
1 +

α

1− α
+

12α− 18α2

(1− 3α− ϵ)(1− 2α− ϵ)

)
δ2(Pij , P

∗
ij)

≤
(
1 +

α

1− α
+

12α− 18α2

(1− 3α− ϵ)(1− 2α− ϵ)

)
δ2(P,C∗).

Then, we give the runtime analysis for the proposed Fast-Sampling algorithm. Similar to the analysis
for Algorithm 1, in each step 3 of the Fast-Estimation algorithm, sampling coordinates from the
given predicted clusters takes O(1) time. Then, in step 7 of Algorithm 2, we can get that the
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constructed candidate set of coordinates has size O(ϵ−0.5 log(m∆max) log(kd)). Note that in each
step 10 of Algorithm 1, the constructed estimator has size Õ( 1

αϵ4 ) assuming bounded aspect ratio
∆max that ∆max ≤ poly(m). Hence, in step 10 of Algorithm 2, the running time for estimating
the clustering cost can be bounded by Õ( 1

αϵ−5 ). Finally, in each step 12 of Algorithm 2, finding the
nearest (1 − 2α − ϵ) coordinates in Pij to the selected coordinate can be executed in time O(mi)
using linear selection methods (Blum et al., 1973). Then, the overall running time can be bounded
by
∑k

i=1

∑d
j=1 O(mi) + Õ( 1

αϵ−5 ) = O(md) + Õ(ϵ−5kd/α).

A.4 THEORETICAL ANALYSIS FOR THE FAST-FILTERING ALGORITHM

In this section, we present a theoretical analysis for the proposed Fast-Filtering algorithm (Algo-
rithm 3). The intuitive idea behind is as follows. In each step 2 of Algorithm 3, we show that by
carefully adjusting the sample size R1, with constant probability, it is possible to sample candidate
data points from each predicted cluster such that the sampled data points are close enough to the
optimal clustering centers. Then, in steps 3-4 of Algorithm 3, a random and independent sample
is drawn from each predicted cluster to construct an estimator that can accurately approximate the
clustering cost induced by the candidate centers. Finally, by using the constructed estimator to select
the best candidate center for each predicted cluster (step 5 of Algorithm 3), we prove that the clus-
tering cost of each optimal cluster can be well approximated by using the nearest neighbor searching
process (step 6 of Algorithm 3). The modified Fast-Filtering algorithm is presented in Algorithm 4.

Algorithm 4 Fast-Filtering (modified)

Input: A k-means instance (P, k, d), a set (P1, P2, ..., Pk) of partitions with error rate α, parameter
0 < ϵ < 1/3.

Output: A set C ⊂ Rd of centers with |C| ≤ k.
1: for i ∈ [k] do
2: Randomly and independently sample a set Ui from Pi with size R1 = O( log k

1−2α ).
3: Randomly and independently sample a set Si from Pi with size R2 =

O
(

log(m3d log3(m∆max)/ϵ
2) log(m∆max)

αϵ4

)
, and assign each point in Si a weight mi

|Si| .

4: Construct an estimator ω such that ∀u ∈ Ui, ω(u) =
∑

p∈Si\F(u)
mi

|Si|δ
2(p, u), where F(u)

is the set of the furthest (1 + 3ϵ)α|Si| points from Si to u.
5: ci = argminu∈Ui ω(u).
6: Let Ii be the set of the nearest (1− 2α− ϵ)mi points from Pi to ci.
7: ĉi = Ii.
8: return {ĉ1, ĉ2, ..., ĉk}.

Theorem 3 Let R1 = O( log k
1−2α ) and R2 = O

(
log(m3d log3(m∆)/ϵ2) log(m∆)

αϵ4

)
, where ϵ is a parame-

ter with 0 < ϵ < 1/3 and ∆ 4 is the aspect ratio of the whole dataset (i.e., ∆ =
maxx,y∈P δ(x,y)

minx,y∈P,x̸=y δ(x,y) ).
With constant probability, Algorithm 4 can return a (1 + O(

√
α))-approximate solution in time

O(md) + Õ( k
ϵ4(1−2α)α ) for α ∈ (0, 1/3− ϵ).

Recall that Qi = Pi ∩ P ∗
i is the set of data points in Pi that belong to the optimal cluster P ∗

i .
Define Gµ(P

∗
i ) = {x ∈ P ∗

i : δ2(x, c∗i ) ≤ µδ2(P ∗
i , c

∗
i )/|P ∗

i |} as the set of data points in P ∗
i that

are close to c∗i (the distance is parameterized by some constant µ > 1). According to Lemma 4
and the definition of Qi, we have G2(P

∗
i ) ≥ |P∗

i |
2 and P ∗

i \G2(P
∗
i ) <

|P∗
i |
2 . Then, it holds that

|Pi ∩ G2(P
∗
i )| ≥ |P ∗

i ∩ Pi| − |P ∗
i \G2(P

∗
i )| ≥ (1 − α)|P ∗

i | −
|P∗

i |
2 = ( 12 − α)|P ∗

i |, where the
last inequality follows from the definition of the learning-augmented k-means model. Additionally,
according to the definition of Qi, we have |P ∗

i | ≥ |Qi| ≥ (1 − α)|Pi|, which indicates that |Pi| ≤
|P∗

i |
1−α . Let ζi =

|Pi∩G2(P
∗
i )|

|Pi| be the probability that a data point from G2(P
∗
i ) can be sampled

from Pi through uniform sampling strategy. Then, it holds trivially that ζi ≥ (1 − α)( 12 − α).

4It is naturally to assume that the aspect ratio of a given dataset can be bounded by a polynomial function
of the data size, i.e., ∆ = poly(n).
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Hence, according to Corollary 1, by randomly and independently taking a sample Ui with size
Θ( 1

1−2α log(kη )) from Pi, with probability at least 1− η
k , there exists at least one data point u ∈ Ui

such that u ∈ G2(P
∗
i ). By taking a union bound over the success probability across all the predicted

clusters, we can argue that with constant probability, there exists at least one data point u ∈ Ui such
that u ∈ G2(P

∗
i ) ∩ Ui for each predicted cluster i ∈ [k].

Corollary 3 Let R1 = Θ( log k
1−2α ). For each i ∈ [k], with constant probability, there exists at least

one data point u ∈ Ui such that u ∈ G2(P
∗
i ).

Let ϵ1 = ϵ
126 . Similar to the analysis for the Fast-Estimation algorithm, in steps 3-4 of Algorithm

4, we can also construct a clustering cost estimator ω by randomly and independently taking a
small sample R2 from Pi with size O

(
log(m3d log3(m∆)/ϵ21) log(m∆)

αϵ41

)
. Given an arbitrary data point

u ∈ Ui, let Z†(u) be the set of the furthest (2 + 16ϵ1)αmi data points from Pi to u. Denote Hi(u)
as the set of the nearest (1 − α)mi points in Pi to u. According to Lemma 10, the constructed
estimator ω in step 4 of Algorithm 4 can well approximate the clustering cost using data points in
Ui as centers.

Corollary 4 Let R2 = O
(

log(m3d log3(m∆)/ϵ21) log(m∆)

αϵ41

)
. Given an arbitrary data point u ∈ Ui,

with high probability, it holds that δ2(Pi\Z†(u))/(1 + 7ϵ1) ≤ ω(u) ≤ (1 + ϵ1)
2δ2(Hi(u), u).

According to Corollary 3, with constant probability, a data point ui ∈ Ui ∩ G2(P
∗
i ) can be sam-

pled from Pi for each predicted cluster i ∈ [k]. Hence, we have δ2(Hi(ui), ui) ≤ δ2(Qi, ui) ≤
δ2(P ∗

i , ui) = δ2(P ∗
i , c

∗
i ) + |P ∗

i |δ2(ui, c
∗
i ) ≤ 3δ2(P ∗

i , c
∗
i ), where the first inequality follows from

the definition of Hi(u) that Hi(u) contains the nearest (1 − α)mi points from Pi to ui, the sec-
ond inequality follows from Qi ⊆ P ∗

i , the second to the last step follows from Lemma 2, and the
last step follows from ui ∈ G2(P

∗
i ). Then, by using Corollary 4, we can argue that with con-

stant probability, the center ci chosen by the estimator ω in step 5 of Algorithm 4 satisfies that
δ2(Pi\Z†(ci), ci) ≤ (1 + ϵ)δ2(Hi(ui), ui) ≤ 4δ2(P ∗

i , c
∗
i ), where the last inequality follows from

ϵ < 1/3.

For any predicted cluster Pi, recall that Z†(ci) is the set of the furthest (2 + 16ϵ1)αmi data points
in Pi to ci. Let Ii = Pi\Z†(ci). Define Ai = Qi ∩Z†(ci), where data points in Ai can be regarded
as the set of the “false negatives” discarded by ci. Let Bi = Pi\(Qi ∪Z†(ci)), where data points in
Bi can be regarded as the set of the “false positives” included by ci. The following lemma bounds
the distance between Ii and c∗i .

Lemma 12 The following bound holds: δ2(Ii, c∗i ) ≤
9δ2(P∗

i ,c∗i )
(1−(3+ϵ)α)mi

.

Proof According to Corollary 4, we have δ2(Ii, Ii) ≤ 4δ2(P ∗
i , c

∗
i ). Observe that |Ii| = (1 − (2 +

16ϵ1)α)mi and |Pi\P ∗
i | ≤ αmi. Then, it holds that |Ii ∩ P ∗

i | ≥ (1 − (3 + 16ϵ1)α)mi. Observe
that the clustering cost of δ2(Ii, Ii) can be upper bounded by δ2(Ii, Ii) ≤ δ2(Ii, ci) ≤ 4δ2(Pi, c

∗
i ).

Hence, by using the relaxed triangle inequality and taking a summation over the distances between
data points in Ii and c∗i , we can get that

δ2(Ii, c
∗
i ) ≤

∑
p∈Ii∩P∗

i
(1 + 1/2)δ2(Ii, p) + (1 + 2)δ2(p, c∗i )

|Ii ∩ P ∗
i |

≤ (1 + 1/2)δ2(Ii, Ii) + 3δ2(P ∗
i , c

∗
i )

(1− (3 + 16ϵ1)α)mi

≤ 9δ2(P ∗
i , c

∗
i )

(1− (3 + ϵ)α)mi
,

where the last inequality follows from 16ϵ1 ≤ ϵ. □

Observe that the clustering cost of P ∗
i with respect to Ii can be decomposed into δ2(P ∗

i , Ii) =
δ2(P ∗

i ∩ Pi, Ii) + δ2(P ∗
i \Pi, Ii). In the following, we first give an upper bound for the clustering

cost of δ2(P ∗
i ∩ Pi, Ii).

Lemma 13 The following bound holds: δ2(Qi, Ii) ≤ δ2(Qi, c
∗
i ) +

√
α(36

√
α+41−15α)

1−(3+ϵ)α δ2(P ∗
i , c

∗
i ).
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Proof According to the definition of Qi, we have Qi = Pi∩P ∗
i = (Ii\Bi)∪Ai. Hence, it holds that

δ2(Qi, Ii)−δ2(Qi, c
∗
i ) = δ2(Ii, Ii)+δ2(Ai, Ii)−δ2(Bi, Ii)−(δ2(Ii, c

∗
i )+δ2(Ai, c

∗
i )−δ2(Bi, c

∗
i )).

We first give an upper bound for δ2(Bi, c
∗
i )− δ2(Bi, Ii). Observe that

δ2(Bi, c
∗
i )− δ2(Bi, Ii) =

∑
b∈Bi

δ2(b, c∗i )− δ2(Bi, Ii)

≤
∑
b∈Bi

(1 +
√
α)δ2(b, Ii) + (1 + 1/

√
α)δ2(c∗i , Ii)− δ2(Bi, Ii)

≤
√
αδ2(Bi, Ii) + (1 + 1/

√
α)|Bi|δ2(c∗i , Ii),

where the second inequality follows from the relaxed triangle inequality.

Similarly, we can also establish an upper bound for δ2(Ai, Ii)− δ2(Ai, c
∗
i ). We have

δ2(Ai, Ii)− δ2(Ai, c
∗
i ) =

∑
a∈Ai

δ2(a, Ii)− δ2(Ai, c
∗
i )

≤
∑
a∈Ai

(1 +
√
α)δ2(a, c∗i ) + (1 + 1/

√
α)δ2(c∗i , Ii)− δ2(Ai, c

∗
i )

≤
√
αδ2(Ai, c

∗
i ) + (1 + 1/

√
α)|Ai|δ2(c∗i , Ii),

where the second inequality follows from the relaxed triangle inequality.

According to the optimality of the geometric center, it holds trivially that δ2(Ii, Ii) ≤ δ2(Ii, c
∗
i ).

Hence, we can get that

δ2(Qi, Ii)− δ2(Qi, c
∗
i ) ≤

√
α(δ2(Ai, c

∗
i ) + δ2(Bi, Ii)) + (1 + 1/

√
α)(|Ai|+ |Bi|)δ2(c∗i , Ii)

≤
√
α(δ2(P ∗

i , c
∗
i ) + δ2(Ii, Ii)) + 4α(1 + 1/

√
α)miδ

2(c∗i , Ii)

≤ 5
√
αδ2(P ∗

i , c
∗
i ) +

36α(1 + 1/
√
α)

1− (3 + ϵ)α
δ2(P ∗

i , c
∗
i )

≤
√
α(36

√
α+ 41− 15α)

1− (3 + ϵ)α
δ2(P ∗

i , c
∗
i ),

where the second inequality follows from Bi ⊆ Ii, |Ai| ≤ Z†(ci) ≤ 3αmi and |Bi| ≤ αmi, and
the last inequality follows from Corollary 4 and Lemma 12. □

Finally, we can give an upper bound for the clustering cost of P ∗
i with respect to Ii.

Lemma 14 The following bound holds: δ2(P ∗
i , Hi) ≤

(
1 +

√
α(45

√
α+51−60α)

(1−α)(1−(3+ϵ)α)

)
δ2(P ∗

i , c
∗
i ).
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Proof According to Lemma 13, we can get that
δ2(P ∗

i , Ii) = δ2(Pi ∩ P ∗
i , Ii) + δ2(P ∗

i \Pi, Ii)

≤
√
α(36

√
α+ 41− 15α)

1− (3 + ϵ)α
δ2(P ∗

i , c
∗
i ) + δ2(P ∗

i ∩ Pi, c
∗
i ) +

∑
p∈P∗

i \Qi

δ2(p, Ii)

≤
√
α(36

√
α+ 41− 15α)

1− (3 + ϵ)α
δ2(P ∗

i , c
∗
i ) + δ2(P ∗

i ∩ Pi, c
∗
i )

+
∑

p∈P∗
i \Pi

(1 +
√
α)δ2(p, c∗i ) + (1 + 1/

√
α)δ2(c∗i , Ii)

≤
(
1 +

√
α(36

√
α+ 42− 18α)

1− (3 + ϵ)α

)
δ2(P ∗

i , c
∗
i ) + (1 + 1/

√
α)|P ∗

i \Pi|δ2(c∗i , Hi)

≤
(
1 +

√
α(36

√
α+ 42− 18α)

1− (3 + ϵ)α

)
δ2(P ∗

i , c
∗
i )

+ (1 + 1/
√
α) · αmi

1− α
· 9δ2(P ∗

i , c
∗
i )

(1− (3 + ϵ)α)mi

≤
(
1 +

√
α(45

√
α+ 51− 60α)

(1− α)(1− (3 + ϵ)α)

)
δ2(P ∗

i , c
∗
i ),

where the first inequality follows from Lemma 13, the second inequality follows from the relaxed
triangle inequality, and the second to the last inequality follows from Lemma 12. □

Using similar ideas for the Fast-Sampling and Fast-Estimation algorithms, by taking a summation
over all the clustering cost of the optimal clusters, Theorem 3 can be proved. As for the running
time, for each predicted cluster i ∈ [k], sampling Ui and Si from Pi takes O(1) time. Then, in
each step 5 of Algorithm 4, estimating the clustering cost of each candidate center in Ui takes time
O(R1 × R2), which is Õ( ϵ−4

(1−2α)α ). Finally, in each step 6 of Algorithm 4, finding the nearest
neighbors for a given data point can be executed in time O(mid) using linear selection technique
Blum et al. (1973). Thus, the overall running time for Algorithm 4 is O(md) + Õ( k

ϵ4(1−2α)α ). To
conclude, the Fast-Filtering algorithm can return a (1 +

√
α)-approximate solution with constant

probability in time O(md) + Õ( k
ϵ4(1−2α)α ).

A.5 EXTENSION TO THE k-MEDIAN OBJECTIVE

In this subsection, we show how to extend our proposed sampling-based methods to the learning-
augmented k-median problem. The key challenge here arises from the difference in optimization
objectives. In particular, for an arbitrary set S ⊂ Rd of coordinates, the geometric center of S can
no longer serve as the optimal clustering center for S under k-median objective, making it difficult
to identify high-quality candidate coordinates. As a result, existing learning-augmented k-median
algorithms often struggle to achieve high-quality approximation guarantees on clustering quality.

To overcome this challenge, our goal is to use sampling-based strategies to construct a set Uij of
candidate coordinates that are close enough to the coordinates of the optimal clustering centers in
each dimension j of each predicted cluster Pi. Then, by enumerating all the constructed coordinates
and picking the best coordinate with minimum clustering cost, we prove that the clustering cost of
each optimal cluster can be well approximated in each dimension.

Table 3: Comparison results of learning augmented k-means algorithms

Methods and References Approximation Ratio Label Error Range Time Complexity

Paritioning and Sorting (Ergun et al., 2021) 1 + Õ((kα)1/4) Small Constant O(md log3 m+ poly(k, logm))

Sorting (Nguyen et al., 2022) 1 + α(7+10α−10α2)
(1−α)(1−2α) [0, 1/2) O(md log3 m log2(k/δ)

1−2α )

Fast-Sampling (Ours) 1 + α(6+4ϵ−4α−3ϵα)
(1−α)(1−2α) [0, 1/2) O(md log(kd) log(m∆)

ϵα(1−2α) )

Table 3 provides a detailed comparison of the results for the learning-augmented k-median problem.
We also give a plot (Figure 2) of approximation ratios vs. the error rate α. It can be seen from the
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table that the current best result achieves a (1 + O(α))-approximation with α ∈ [0, 1/2) (Nguyen
et al., 2022). Compared to the state-of-the-art results, the Fast-Sampling algorithm can achieve
better clustering quality guarantees with slightly worse running time.

Figure 2: Plot of approximation ratios v.s. the error rate α for the k-median objective.

The formal description for the learning-augmented k-median algorithm is presented in Algorithm
5. The general idea behind the algorithm is to first generate candidate coordinates that can closely
approximate the coordinates of the optimal clustering centers in each dimension of each predicted
cluster. Then, by picking the best coordinate with minimum k-median cost, we prove that the
proposed algorithm can give better approximation guarantees for the learning-augmented k-median
problem. In the following, we give a formal analysis for the proposed algorithm.

Algorithm 5 Fast-Sampling (k-median)

Input: A k-median instance (P, k, d), a set (P1, ..., Pk) of partitions with error rate α, and a pa-
rameter ϵ ∈ (0, 1].

Output: A set C ⊂ Rd of centers with |C| = k.
1: for i ∈ [k] do
2: for j ∈ [d] do
3: Randomly and independently sample a set Uij from Pij with size O

(
log(kd)
1−2α

)
, then ini-

tialize U ′
ij = ∅.

4: for q = 1 to O(log(m∆max)) do
5: lij = 2q/(1− α)mi.
6: for u ∈ Uij do
7: s(u) =

{
u+ ϵ′λlij : λ ∈

[
− 1

ϵ′ ,
1
ϵ′

]
∩ Z
}

, where ϵ′ = αϵ
8(1−α) .

8: U ′
ij =

⋃
u∈Uij

s(u).
9: uij = argminu∈U ′

ij
δ(Nij(u), u).

10: ĉi = (uij)j∈[d].
11: return {ĉ1, ĉ2, ..., ĉk}.

Without loss of generality, we can assume that on in each dimension of each predicted cluster, the
minimum pairwise distance is 1 while the maximum pairwise distance is ∆max. Note that this can
be done using standard scaling techniques. According to Lemma 4, in each step 3 of Algorithm 5,
with probability at least 1 − 1

kd , at least one coordinate u ∈ Uij can be found such that δ(u, c∗ij) ≤
2δ(P ∗

ij , c
∗
ij)/|P ∗

ij | ≤ 2δ(P∗
ij ,c

∗
ij)

(1−α)mi
, where the last step follows from the fact that |P ∗

ij | ≥ |Qij | ≥
(1−α)mi. Then, in step 4 of Algorithm 5, since the algorithm enumerates all the possible values of
the lengths of intervals between 1 and log(m∆max), there exists at least one guess for the interval
length (step 5 of Algorithm 5) such that δ(P ∗

ij , c
∗
ij)/(1 − α)mi ≤ lij ≤ 2δ(P ∗

ij , c
∗
ij)/(1 − α)mi.

Hence, in steps 7-8 of Algorithm 5, according to Lemma 5, there also exists at least one coordinate
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u′ ∈ U ′
ij such that u′ is close enough to c∗ij , i.e., δ(u′, c∗ij) ≤ αϵδ(P ∗

ij , c
∗
ij)/mi. Let uij be the

coordinate chosen in step 9 of Algorithm 5. For any data point u ∈ U ′
ij , let Nij(u) be the set of the

nearest (1− α)mi coordinates in Pij to u. Consequently, we have

δ(Nij(uij), uij) ≤ δ(Nij(u
′), u′)

≤ δ(Nij(uij), u
′)

≤ δ(Nij(uij), c
∗
ij) + |Nij(uij)|δ(u′, c∗ij)

≤ δ(Nij(uij), c
∗
ij) + αϵδ(P ∗

ij , c
∗
ij),

where the first inequality follows from the fact that δ(Nij(u
′), u′) induces the minimum clustering

cost, the second inequality follows from the definition of Nij(u
′) that Nij(u

′) contains the nearest
(1 − α)mi points in Pij to u′, the third inequality follows from the triangle inequality, and the last
inequality follows from δ(u′, c∗ij) ≤ αϵδ(P ∗

ij , c
∗
ij)/mi and |Nij(uij)| ≤ mi.

Corollary 5 For some i ∈ [k] and j ∈ [d], with probability at least 1 − 1/kd, it holds that
δ(Nij(uij), uij) ≤ δ(Nij(uij), c

∗
ij) + ϵδ(P ∗

ij , c
∗
ij).

For any predicted cluster Pij , let Z†(uij) be the set of the furthest αmi coordinates in Pij to uij ,
i.e., Z†(uij) = Pij\Nij(uij). Let Aij = Qij ∩Z†(uij) and Bij = Pij\(Qij ∪Z†(uij)) be the set
of the “false negatives” and “false positives”, respectively. In the following lemma, we first give an
upper bound for the distance between c∗ij and uij .

Lemma 15 The following bound holds: δ(uij , c
∗
ij) ≤

(2+αϵ)δ(P∗
ij ,c

∗
ij)

(1−2α)mi
.

Proof Since |Nij(uij)| = (1−α)mi and |Pij\P ∗
ij | ≤ αmi, it holds trivially that |Nij(uij)∩P ∗

ij | ≥
(1− 2α)mi. According to the definition of uij that Nij(uij) induces the minimum clustering cost,
we can get that δ(Nij(uij), uij) ≤ δ(Nij(u

′), u′) ≤ δ(Qij , u
′) ≤ δ(Qij , c

∗
ij) + |Qij |δ(u′, c∗ij) ≤

(1+αϵ)δ(P ∗
ij , c

∗
ij), where the last inequality follows from δ(u′, c∗ij) ≤ αϵδ(P ∗

ij , c
∗
ij). Then, by using

the triangle inequality, we have

δ(uij , c
∗
ij) ≤

∑
p∈Nij(uij)∩P∗

ij
δ(p, uij) + δ(p, c∗ij)

|Nij(uij) ∩ P ∗
ij |

≤
δ(Nij(uij), uij) + δ(P ∗

ij , c
∗
ij)

(1− 2α)mi

≤
(2 + αϵ)δ(P ∗

ij , c
∗
ij)

(1− 2α)mi
,

where the first inequality follows from the triangle inequality. □

The following lemma gives an upper bound for the clustering cost of Qij with respect to uij .

Lemma 16 The following bound holds: δ(Qij , uij) ≤ δ(Qij , c
∗
ij) +

α(4+3ϵ)
1−2α δ(P ∗

ij , c
∗
ij)

Proof Since Qij = Nij(uij)\Bij ∪ Aij , we have δ(Qij , uij) − δ(Qij , c
∗
ij) = δ(Nij(uij), uij) −

δ(Bij , uij) + δ(Aij , uij) − (δ(Nij(uij), c
∗
ij) − δ(Bij , c

∗
ij) + δ(Aij , c

∗
ij)). We consider to bound

these terms separately.

For the clustering cost of δ(Aij , uij) − δ(Aij , c
∗
ij), we can get that δ(Aij , uij) − δ(Aij , c

∗
ij) ≤

δ(Aij , c
∗
ij) + |Aij |δ(c∗ij , uij) − δ(Aij , c

∗
ij) ≤ |Aij |δ(c∗ij , uij). Similarly, for the clustering

cost of δ(Bij , c
∗
ij) − δ(Bij , uij) can be bounded by δ(Bij , c

∗
ij) − δ(Bij , uij) ≤ δ(Bij , uij) +

|Bi|δ(uij , c
∗
ij)− δ(Bij , uij) ≤ |Bi|δ(uij , c

∗
ij).

Next, we bound the size of |Aij | and |Bij |. Observe that Qij = Nij(uij)\Bij ∪Aij . Consequently,
we have |Qij | = |Nij(uij)|+ |Aij | − |Bij | = (1− α)mi + |Aij | − |Bij | ≥ (1− α)mi, where the
last inequality follows from |Qij | ≥ (1− α)mi. Hence, we can get that |Bij | ≤ |Aij | ≤ αmi.

Then, it holds that
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δ(Qij , uij)− δ(Qij , c
∗
ij) ≤ δ(Nij(uij), uij)− δ(Nij(uij), c

∗
ij) + (|Aij |+ |Bij |)δ(uij , c

∗
ij)

≤ δ(Nij(uij), uij) + ϵδ(P ∗
ij , c

∗
ij)− δ(Nij(uij), c

∗
ij)

+ (|Aij |+ |Bij |)δ(uij , c
∗
ij)

≤ αϵδ(P ∗
ij , c

∗
ij) + 2αmi

(2 + ϵ)δ(P ∗
ij , c

∗
ij)

(1− 2α)mi

≤ α(4 + 3ϵ)

1− 2α
δ(P ∗

ij , c
∗
ij).

Finally, we can bound the clustering cost of P ∗
ij with respect to uij for each i ∈ [k] and j ∈ [d].

Lemma 17 For each i ∈ [k] and j ∈ [d], with probability at least 1 − 1/kd, δ(P ∗
ij , uij) ≤(

1 + 6α+4αϵ−4α2−3ϵα2

(1−α)(1−2α)

)
δ(P ∗

ij , c
∗
ij).

Proof For an arbitrary predicted cluster P ∗
ij , the clustering cost of P ∗

ij with respect to uij can be
decomposed into δ(P ∗

ij , uij) = δ(P ∗
ij ∩ Pij , uij) + δ(P ∗

ij\Pij , uij). Hence, we can get that

δ(P ∗
ij , uij) = δ(P ∗

ij ∩ Pij , uij) + δ(P ∗
ij\Pij , uij)

≤ δ(Pij ∩ P ∗
ij , c

∗
ij) +

α(4 + 3ϵ)

1− 2α
δ(P ∗

ij , c
∗
ij) + δ(P ∗

ij\Pij , uij)

≤ α(4 + 3ϵ)

1− 2α
δ(P ∗

ij , c
∗
ij) + δ(Pij ∩ P ∗

ij , c
∗
ij) + δ(P ∗

ij\Pij , c
∗
ij) + |P ∗

ij\Pij |δ(c∗ij , uij)

≤ δ(P ∗
ij , c

∗
ij) +

αmi

1− α
·
(2 + αϵ)δ(P ∗

ij , c
∗
ij)

(1− 2α)mi
+

α(4 + 3ϵ)

1− 2α
δ(P ∗

ij , c
∗
ij)

≤
(
1 +

6α+ 4αϵ− 4α2 − 3ϵα2

(1− α)(1− 2α)

)
δ(P ∗

ij , c
∗
ij).

Putting all these together, we can obtain a (1+O(α))-approximation for the learning-augmented k-
median problem. As for the running time, for each dimension of each predicted cluster, the sampling
process takes O(1) time in step 3 of Algorithm 5. Guessing the optimal clustering cost in step 4 of
Algorithm 5 induces an multiplicative O(log(m∆max)) factor loss. Then, constructing the candidate
coordinates takes time O( log(kd)

αϵ(1−2α) ). Finally, finding the nearest coordinates for each candidate
center takes time O(mi) in step 9 of Algorithm 5 using linear selection method Blum et al. (1973).
Consequently, the overall running time of Algorithm 5 is O(md log(kd) log(m∆max)

ϵα(1−2α) ).

A.6 COMPLEMENTARY EXPERIMENTS

Other Results with Varying Error Rate and Fixed Clusters. Tables 4-8 show the experimental re-
sults on datasets Mnist, PHY, CIFAR10, SUSY, and HIGGS for varying error rate with fixed clusters,
where “Ref” reports the clustering cost of the optimal labeling partitions and the running time for
constructing the labeling partitions using k-means++ and Lloyd’s algorithms. On average, by calcu-
lating the results over all the datasets used in the experiments, the Fast-Filtering algorithm achieves
a 1.5% reduction in clustering cost compared to the current state-of-the-art learning-augmented k-
means algorithm. As for the running time, it can be seen from the tables that our Fast-Filtering
algorithm is significantly faster than other learning-augmented algorithms across all the datasets,
with this trend becoming more pronounced as the data sizes and dimensionality grow. On average,
Fast-Filtering is at least 3 times faster than the current state-of-the-art learning-augmented algo-
rithm. For the Fast-Estimation, On average, the Fast-Estimation algorithm is at least 2 times faster
than previous learning-augmented algorithms on large-scale datasets with sizes over 5 million.

Results with Varying Clusters and Fixed Error Rate. Tables 9-14 present the comparison results
for varying number of clusters with fixed error rate. For clustering cost, our Fast-Sampling algorithm
is comparable with other learning-augmented algorithms, while our Fast-Filtering algorithm consis-
tently achieves better clustering quality for most cases. On average, by calculating the results over
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all the datasets used in the experiments, the Fast-Filtering algorithm achieves at least 1.6% reduction
in clustering cost compared to the current state-of-the-art learning-augmented k-means algorithm.
Regarding the running time, it can be seen from the table that the running time for all learning-
augmented algorithms remains relatively stable as the number of clusters increases. However, our
Fast-Filtering algorithm is significantly faster than other learning-augmented algorithms across all
the datasets, with this trend becoming more pronounced as the data sizes and dimensionality grow.
On average, our Fast-Filtering algorithm is at least 3 times faster than the current state-of-the-art
learning-augmented algorithm. On the largest dataset SIFT, the running time of our Fast-Filtering
algorithm is at least 10 times faster than other learning-augmented methods, which further demon-
strates the effectiveness of our proposed sampling-based strategies for handling large-scale datasets.

Comparisons with the Lloyd’s and k-means++ Methods. When comparing with the Lloyd’s
method, it can be seen from the tables that our Fast-Filtering algorithm is at least 50.9% faster than
the k-means++ method across different datasets. However, other learning-augmented algorithms
may not achieve much better running time than k-means++ method (such as on dataset SIFT). When
comparing with the k-means+= method, o average, our Fast-Filtering algorithm achieves at least
a 20% reduction in clustering cost compared to k-means++. Furthermore, it provides over 50%
improvements in ARI and NMI values across most datasets. These results show the advantage of
incorporating learning-augmented and sampling strategies for improving the clustering quality.

Discussions on the Limitations for the Algorithms. In the following, we give a brief discussion
on the bottlenecks for different algorithms. For sorting-based algorithms, such as those in Ergun
et al. (2021); Nguyen et al. (2022), the primary bottlenecks are their running time due to the sorting
processes, where an additional O(logm) term is included in the running time. The experiments
demonstrate that the sorting-based algorithms do not scale well when handling large-scale datasets.
On the other hand, one of the limitations for our sampling-based algorithms is that they might
achieve worse clustering quality guarantees compared with sorting-based methods. However, these
guarantees are worst-case scenarios. Experiments show that our algorithms perform competitively
on large-scale datasets like SUSY, HIGGS and SIFT.

A.6.1 EXPERIMENTAL RESULTS

Table 4: Comparisons on dataset MNIST for varying α and fixed k = 20

Dataset MNIST (1,797 × 64)

Method Ref α Cost NMI ARI Time(s)

k-means++

9.6032E+05(1.37s) 0.1

1.5445E+06±2.49E+04 0.7087±0.0139 0.5502±0.0255 0.03±0.04
Ergun 9.9174E+05±1.19E+03 0.9680±0.0036 0.9665±0.0053 0.34±0.68
Det 9.7566E+05±0.00E+00 0.9819±0.0000 0.9821±0.0000 0.13±0.17

Fast-Sampling 9.6471E+05±5.93E+02 0.9849±0.0025 0.9844±0.0027 0.11±0.09
Fast-Filtering 9.6640E+05±3.80E+02 0.9814±0.0029 0.9793±0.0035 0.48±1.36

Fast-Estimation 9.7553E+05±3.79E+02 0.9806±0.0023 0.9801±0.0025 1.82±0.37

k-means++

9.6177+05(1.49s) 0.2

1.5475E+06±3.70E+04 0.6861±0.0170 0.4825±0.0230 0.02±0.01
Ergun 1.0201E+06±2.35E+03 0.9482±0.0055 0.9394±0.0077 0.12±0.01
Det 1.0036E+06±0.00E+00 0.9531±0.0000 0.9460±0.0000 0.09±0.02

Fast-Sampling 9.9901E+05±1.32E+03 0.9551±0.0049 0.9484±0.0069 0.09±0.02
Fast-Filtering 9.7548E+05±9.86E+02 0.9632±0.0116 0.9553±0.0157 0.03±0.01

Fast-Estimation 1.0093E+06±1.76E+03 0.9556±0.0022 0.9487±0.0027 1.84±0.14

k-means++

9.5226E+05(1.76s) 0.3

1.5551E+06±3.41E+04 0.7072±0.0191 0.5426±0.0494 0.01±0.00
Ergun 1.0656E+06±3.63E+03 0.9316±0.0052 0.9254±0.0058 0.12±0.00
Det 1.0411E+06±0.00E+00 0.9405±0.0000 0.9336±0.0000 0.08±0.01

Fast-Sampling 1.0713E+06±3.64E+03 0.9174±0.0040 0.8942±0.0065 0.08±0.00
Fast-Filtering 9.9369E+05±4.74E+03 0.9422±0.0096 0.9335±0.0132 0.03±0.00

Fast-Estimation 1.0595E+06±2.56E+03 0.9331±0.0065 0.9254±0.0094 1.78±0.13

k-means++

9.6728E+05(1.32s) 0.4

1.5541E+06±3.35E+04 0.6893±0.0231 0.4897±0.0451 0.01±0.00
Ergun 1.1859E+06±5.28E+03 0.8804±0.0059 0.8359±0.0086 0.12±0.01
Det 1.1454E+06±0.00E+00 0.8812±0.0000 0.8395±0.0000 0.08±0.00

Fast-Sampling 1.1379E+06±3.84E+03 0.8975±0.0069 0.8497±0.0100 0.09±0.01
Fast-Filtering 1.0633E+06±1.05E+04 0.8975±0.0082 0.8577±0.0150 0.03±0.00

Fast-Estimation 1.1736E+06±3.85E+03 0.8851±0.0091 0.8433±0.0137 1.84±0.09

k-means++

9.4992E+05(1.29s) 0.5

1.5464E+06±4.35E+04 0.7042±0.0234 0.5263±0.0468 0.02±0.02
Ergun 1.2969E+06±7.41E+03 0.8483±0.0084 0.7822±0.0120 0.12±0.01
Det 1.2417E+06±0.00E+00 0.8601±0.0000 0.8040±0.0000 0.08±0.00

Fast-Sampling 1.2578E+06±5.77E+03 0.8622±0.0088 0.8076±0.0134 0.09±0.01
Fast-Filtering 1.1622E+06±1.41E+04 0.8581±0.0122 0.8000±0.0195 0.03±0.00

Fast-Estimation 1.2844E+06±4.67E+03 0.8470±0.0049 0.7805±0.0080 1.81±0.08
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Table 5: Comparisons on dataset CIFAR10 for varying α and fixed k = 20

Dataset CIFAR10 (10,000 × 3,072)

Method Ref α Cost NMI ARI Time(s)

k-means++

7.8337E+10(37.41s) 0.1

1.2782E+11±6.26E+09 0.3995±0.0171 0.1683±0.0207 1.90±0.08
Ergun 7.8812E+10±2.06E+06 0.9096±0.0007 0.8879±0.0012 19.15±1.00
Det 7.8619E+10±0.00E+00 0.9009±0.0000 0.8761±0.0000 20.45±0.51

Fast-Sampling 7.8335E+10±4.65E+07 0.8970±0.0131 0.8671±0.0215 19.91±0.49
Fast-Filtering 7.8611E+10±1.59E+07 0.9106±0.0042 0.8941±0.0060 5.61±1.53

Fast-Estimation 7.8633E+10±6.58E+05 0.9186±0.0006 0.9074±0.0006 185.51±2.30

k-means++

7.8306E+10(33.19s) 0.2

1.2248E+11±4.44E+09 0.4043±0.0165 0.1601±0.0129 1.89±0.04
Ergun 7.9135E+10±3.07E+06 0.8700±0.0010 0.8292±0.0013 18.67±0.32
Det 7.8899E+10±0.00E+00 0.8515±0.0000 0.7999±0.0000 20.20±0.09

Fast-Sampling 7.9257E+10±1.62E+08 0.8087±0.0218 0.7354±0.0348 19.73±0.08
Fast-Filtering 7.9112E+10±4.77E+07 0.8314±0.0100 0.7682±0.0172 5.19±0.10

Fast-Estimation 7.9180E+10±3.93E+06 0.8568±0.0008 0.8086±0.0013 187.49±0.93

k-means++

7.8202E+10(30.42s) 0.3

1.2844E+11±7.17E+09 0.3975±0.0114 0.1643±0.0248 1.97±0.07
Ergun 8.0341E+10±6.09E+06 0.7999±0.0006 0.7190±0.0010 18.77±0.20
Det 8.0095E+10±0.00E+00 0.7727±0.0000 0.6711±0.0000 20.33±0.18

Fast-Sampling 8.0278E+10±2.15E+08 0.7435±0.0165 0.6173±0.0301 19.86±0.12
Fast-Filtering 8.0760E+10±3.01E+08 0.7406±0.0124 0.6072±0.0231 5.06±0.08

Fast-Estimation 8.1302E+10±1.61E+07 0.7826±0.0011 0.6857±0.0013 188.72±0.92

k-means++

7.8061E+10(26.96s) 0.4

1.2489E+11±3.46E+09 0.4062±0.0104 0.1628±0.0275 1.99±0.06
Ergun 8.1533E+10±1.07E+07 0.7528±0.0010 0.6316±0.0013 18.94±0.18
Det 8.1549E+10±0.00E+00 0.7347±0.0000 0.6011±0.0000 20.16±0.08

Fast-Sampling 8.1915E+10±4.78E+08 0.6751±0.0357 0.5105±0.0600 19.80±0.17
Fast-Filtering 8.3463E+10±4.21E+08 0.6767±0.0132 0.4966±0.0174 5.03±0.08

Fast-Estimation 8.3900E+10±3.76E+07 0.7331±0.0011 0.5772±0.0017 188.79±1.89

k-means++

7.8211E+10(22.77s) 0.5

1.2305E+11±7.21E+09 0.4116±0.0221 0.1646±0.0264 1.95±0.04
Ergun 8.3372E+10±1.82E+07 0.7160±0.0010 0.5644±0.0016 18.76±0.23
Det 8.4653E+10±0.00E+00 0.6877±0.0000 0.5090±0.0000 20.24±0.10

Fast-Sampling 8.4686E+10±7.21E+08 0.6131±0.0207 0.4061±0.0306 19.85±0.15
Fast-Filtering 8.8030E+10±5.56E+08 0.6348±0.0144 0.4052±0.0170 4.95±0.04

Fast-Estimation 8.7858E+10±5.03E+07 0.6875±0.0012 0.4834±0.0014 190.86±2.17

Table 6: Comparisons on dataset PHY for varying α and fixed k = 20

Dataset PHY (10,000 × 50)

Method Ref α Cost NMI ARI Time(s)

k-means++

2.9135E+11(15.33s) 0.1

4.2591E+11±2.21E+10 0.8505±0.0131 0.6795±0.0348 0.19±0.08
Ergun 2.9413E+11±7.21E+07 0.9921±0.0018 0.9919±0.0024 3.17±0.61
Det 2.9368E+11±0.00E+00 0.9937±0.0000 0.9942±0.0000 2.39±0.17

Fast-Sampling 3.0865E+11±9.02E+08 0.9658±0.0065 0.9514±0.0118 2.37±0.13
Fast-Filtering 2.9171E+11±5.22E+07 0.9869±0.0012 0.9842±0.0017 1.04±1.52

Fast-Estimation 2.9413E+11±7.43E+07 0.9888±0.0025 0.9870±0.0034 5.98±0.39

k-means++

3.0196E+11(19.86s) 0.2

4.3154E+11±2.92E+10 0.8522±0.0134 0.6796±0.0382 0.18±0.07
Ergun 3.1388E+11±2.41E+08 0.9815±0.0022 0.9767±0.0034 2.72±0.10
Det 3.0880E+11±0.00E+00 0.9867±0.0000 0.9853±0.0000 2.35±0.07

Fast-Sampling 3.1571E+11±8.30E+09 0.9512±0.0092 0.9231±0.0175 2.38±0.11
Fast-Filtering 3.0304E+11±9.26E+07 0.9791±0.0041 0.9727±0.0065 0.56±0.04

Fast-Estimation 3.0805E+11±3.20E+08 0.9793±0.0024 0.9741±0.0034 6.00±0.13

k-means++

3.0531E+11(22.04s) 0.3

4.1248E+11±1.74E+10 0.8552±0.0107 0.6915±0.0301 0.14±0.05
Ergun 3.2578E+11±9.33E+08 0.9749±0.0031 0.9681±0.0051 2.58±0.10
Det 3.2548E+11±6.10E-05 0.9738±0.0000 0.9654±0.0000 2.28±0.04

Fast-Sampling 3.5979E+11±1.14E+10 0.9291±0.0165 0.8746±0.0375 2.28±0.06
Fast-Filtering 3.1726E+11±1.78E+09 0.9506±0.0023 0.9248±0.0049 0.51±0.04

Fast-Estimation 3.2336E+11±1.21E+09 0.9508±0.0061 0.9228±0.0122 5.80±0.13

k-means++

3.0385E+11(20.17s) 0.4

4.3777E+11±2.97E+10 0.8514±0.0209 0.6740±0.0611 0.15±0.11
Ergun 3.3504E+11±1.13E+09 0.9793±0.0033 0.9704±0.0064 2.63±0.10
Det 3.3356E+11±6.10E-05 0.9709±0.0000 0.9619±0.0000 2.34±0.06

Fast-Sampling 4.2907E+11±4.32E+10 0.8951±0.0181 0.7914±0.0505 2.35±0.07
Fast-Filtering 3.3306E+11±1.58E+10 0.9279±0.0077 0.8836±0.0157 0.53±0.04

Fast-Estimation 3.3655E+11±3.64E+09 0.9336±0.0101 0.8883±0.0225 6.11±0.22

k-means++

2.9137E+11(16.62s) 0.5

4.3389E+11±3.42E+10 0.8434±0.0112 0.6601±0.0345 0.12±0.04
Ergun 3.2413E+11±6.91E+08 0.9796±0.0031 0.9758±0.0044 2.68±0.09
Det 3.2330E+11±6.10E-05 0.9791±0.0000 0.9756±0.0000 2.40±0.07

Fast-Sampling 6.4952E+11±7.75E+10 0.8711±0.0138 0.7214±0.0346 2.36±0.08
Fast-Filtering 3.2278E+11±1.09E+11 0.8684±0.0108 0.7249±0.0309 0.56±0.08

Fast-Estimation 3.4066E+11±9.39E+09 0.9157±0.0093 0.8503±0.0203 6.07±0.14
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Table 7: Comparisons on dataset SUSY for varying α and fixed k = 20

Dataset SUSY (5,000,000 × 28)

Method Ref α Cost NMI ARI Time(s)

k-means++

2.4406E+07(424.67s) 0.1

3.4792E+07±6.17E+05 0.4743±0.0152 0.2597±0.0163 8.61±0.21
Ergun 2.5432E+07±5.55E+03 0.8778±0.0002 0.8672±0.0003 130.97±2.89
Det 2.5221E+07±0.00E+00 0.9138±0.0000 0.9178±0.0000 154.27±2.24

Fast-Sampling 2.5247E+07±8.81E+03 0.9166±0.0013 0.9209±0.0017 119.50±2.01
Fast-Filtering 2.4921E+07±6.71E+04 0.8434±0.0073 0.8203±0.0104 36.77±1.15

Fast-Estimation 2.5246E+07±2.43E+03 0.9031±0.0008 0.9040±0.0010 51.30±0.76

k-means++

2.4551E+07(318.64s) 0.2

3.3779E+07±1.77E+05 0.4833±0.0130 0.2604±0.0245 9.31±0.54
Ergun 2.7453E+07±7.38E+03 0.8474±0.0001 0.8224±0.0001 134.35±1.44
Det 2.7162E+07±0.00E+00 0.8866±0.0000 0.8801±0.0000 155.83±0.99

Fast-Sampling 2.7253E+07±1.12E+05 0.8627±0.0373 0.8447±0.0541 121.29±1.64
Fast-Filtering 2.6769E+07±2.96E+05 0.8207±0.0224 0.7920±0.0341 39.96±1.85

Fast-Estimation 2.7201E+07±3.12E+03 0.8770±0.0003 0.8674±0.0004 53.58±1.20

k-means++

2.4465E+07(257.38s) 0.3

3.4445E+07±4.52E+05 0.4908±0.0125 0.2675±0.0131 9.25±0.46
Ergun 2.9191E+07±3.78E+03 0.8395±0.0002 0.8000±0.0004 134.53±2.65
Det 2.9043E+07±0.00E+00 0.8778±0.0000 0.8593±0.0000 157.23±1.92

Fast-Sampling 2.9245E+07±9.94E+04 0.8489±0.0256 0.8281±0.0343 122.78±2.85
Fast-Filtering 2.8439E+07±2.30E+05 0.8232±0.0153 0.7839±0.0249 41.32±1.29

Fast-Estimation 2.9051E+07±7.21E+03 0.8669±0.0004 0.8443±0.0005 54.03±0.94

k-means++

2.4851E+07(303.73s) 0.4

3.4685E+07±5.34E+05 0.4764±0.0177 0.2616±0.0283 9.37±0.41
Ergun 3.2623E+07±8.38E+03 0.8323±0.0002 0.8178±0.0004 133.73±1.38
Det 3.2695E+07±0.00E+00 0.8590±0.0000 0.8595±0.0000 154.98±1.35

Fast-Sampling 3.2412E+07±1.32E+05 0.8145±0.0513 0.7796±0.0758 124.09±2.68
Fast-Filtering 3.2218E+07±3.81E+05 0.8094±0.0172 0.7873±0.0226 41.59±0.98

Fast-Estimation 3.2704E+07±1.05E+04 0.8525±0.0008 0.8508±0.0007 54.45±0.77

k-means++

2.4360E+07(252.52s) 0.5

3.4139E+07±6.91E+05 0.4963±0.0087 0.2795±0.0168 9.47±0.58
Ergun 3.4316E+07±8.13E+03 0.8350±0.0004 0.8033±0.0006 133.74±1.96
Det 3.4546E+07±0.00E+00 0.8387±0.0000 0.8093±0.0000 154.20±1.72

Fast-Sampling 3.3944E+07±3.04E+05 0.7282±0.0613 0.6470±0.0946 123.75±2.04
Fast-Filtering 3.3883E+07±4.14E+05 0.7705±0.0293 0.7183±0.0482 40.01±2.86

Fast-Estimation 3.4622E+07±1.39E+04 0.8467±0.0116 0.8225±0.0147 54.91±1.70

Table 8: Comparisons on dataset HIGGS for varying α and fixed k = 20

Dataset HIGGS (11,000,000 × 18)

Method Ref α Cost NMI ARI Time(s)

k-means++

1.3924E+08(861.32s) 0.1

2.0309E+08±1.91E+06 0.3749±0.0182 0.1813±0.0112 21.36±0.25
Ergun 1.4083E+08±1.59E+03 0.9093±0.0006 0.9094±0.0009 432.42±2.72
Det 1.4019E+08±0.00E+00 0.9613±0.0000 0.9674±0.0000 481.06±2.76

Fast-Sampling 1.4198E+08±8.33E+03 0.9618±0.0007 0.9639±0.0007 428.25±3.12
Fast-Filtering 1.4002E+08±3.72E+04 0.8989±0.0021 0.8937±0.0027 136.62±7.03

Fast-Estimation 1.4014E+08±4.02E+03 0.9471±0.0010 0.9524±0.0008 171.12±2.17

k-means++

1.3911E+08(724.24s) 0.2

2.0562E+08±7.85E+05 0.3627±0.0206 0.1756±0.0186 20.68±0.36
Ergun 1.4383E+08±3.49E+03 0.9060±0.0010 0.9056±0.0013 425.37±3.68
Det 1.4236E+08±0.00E+00 0.9146±0.0000 0.9149±0.0000 481.58±3.41

Fast-Sampling 1.4304E+08±3.68E+04 0.8780±0.0019 0.8721±0.0021 432.06±1.99
Fast-Filtering 1.4172E+08±1.34E+05 0.8597±0.0114 0.8376±0.0165 146.53±5.21

Fast-Estimation 1.4252E+08±1.36E+04 0.9001±0.0013 0.8950±0.0018 171.63±3.24

k-means++

1.3929E+08(729.15s) 0.3

2.0574E+08±4.32E+06 0.3676±0.0148 0.1793±0.0095 20.51±0.82
Ergun 1.4860E+08±3.97E+03 0.8947±0.0015 0.8942±0.0023 418.54±7.96
Det 1.4613E+08±0.00E+00 0.8739±0.0000 0.8697±0.0000 469.16±6.86

Fast-Sampling 1.4700E+08±2.02E+05 0.8198±0.0059 0.7848±0.0109 413.38±12.49
Fast-Filtering 1.4508E+08±1.37E+05 0.8475±0.0070 0.8256±0.0090 144.12±4.13

Fast-Estimation 1.4595E+08±4.48E+04 0.8557±0.0068 0.8412±0.0086 167.43±7.17

k-means++

1.3957E+08(707.38s) 0.4

2.0099E+08±3.56E+06 0.3818±0.0094 0.1917±0.0150 20.00±0.32
Ergun 1.5418E+08±1.05E+04 0.8777±0.0024 0.8706±0.0035 413.61±1.45
Det 1.4999E+08±0.00E+00 0.8011±0.0000 0.7693±0.0000 459.55±1.29

Fast-Sampling 1.5068E+08±2.42E+05 0.7479±0.0230 0.6781±0.0345 397.79±4.56
Fast-Filtering 1.4814E+08±3.55E+05 0.8054±0.0082 0.7716±0.0092 139.27±9.70

Fast-Estimation 1.4818E+08±7.22E+04 0.7965±0.0108 0.7702±0.0127 160.61±2.36

k-means++

1.4127E+08(771.82s) 0.5

2.0108E+08±2.95E+06 0.3927±0.0080 0.1976±0.0034 20.54±0.48
Ergun 1.6151E+08±1.65E+05 0.6733±0.0072 0.5333±0.0119 431.85±5.45
Det 1.5447E+08±0.00E+00 0.7332±0.0000 0.6156±0.0000 478.20±8.28

Fast-Sampling 1.5672E+08±2.18E+05 0.5783±0.0209 0.3969±0.0388 428.04±6.82
Fast-Filtering 1.5395E+08±1.17E+06 0.7593±0.0112 0.6771±0.0156 129.40±4.43

Fast-Estimation 1.5431E+08±6.90E+04 0.7498±0.0356 0.6550±0.0615 164.92±4.15
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Table 9: Comparisons on dataset MNIST for varying k and fixed α = 0.2

Dataset MNIST (1,797 × 64)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.1695+06(2.01s) 10

1.9717E+06±2.63E+04 0.6392±0.0415 0.5213±0.0737 0.01±0.01
Ergun 1.2304E+06±1.88E+03 0.9465±0.0039 0.9490±0.0039 0.33±0.74
Det 1.2186E+06±2.33E-10 0.9456±0.0000 0.9449±0.0000 0.14±0.17

Fast-Sampling 1.2201E+06±1.50E+03 0.9330±0.0059 0.9256±0.0078 0.12±0.11
Fast-Filtering 1.1894E+06±2.58E+03 0.9489±0.0123 0.9520±0.0130 0.49±1.41

Fast-Estimation 1.2209E+06±1.85E+03 0.9425±0.0053 0.9426±0.0057 1.32±0.41

k-means++

9.5547+05(1.99s) 20

1.5669E+06±4.62E+04 0.6857±0.0135 0.4761±0.0197 0.01±0.00
Ergun 1.0119E+06±2.02E+03 0.9519±0.0043 0.9391±0.0061 0.11±0.00
Det 9.9410E+05±0.00E+00 0.9591±0.0000 0.9479±0.0000 0.07±0.00

Fast-Sampling 9.9914E+05±1.84E+03 0.9584±0.0058 0.9493±0.0108 0.08±0.00
Fast-Filtering 9.6684E+05±1.14E+03 0.9619±0.0069 0.9498±0.0099 0.02±0.00

Fast-Estimation 1.0011E+06±9.51E+02 0.9619±0.0032 0.9505±0.0047 1.60±0.00

k-means++

8.5000E+05(1.67s) 30

1.3399E+06±2.30E+04 0.7127±0.0129 0.4844±0.0313 0.02±0.01
Ergun 9.0804E+05±1.79E+03 0.9457±0.0042 0.9283±0.0067 0.15±0.02
Det 8.8892E+05±1.16E-10 0.9592±0.0000 0.9482±0.0000 0.09±0.01

Fast-Sampling 8.9789E+05±9.56E+02 0.9488±0.0049 0.9266±0.0098 0.10±0.02
Fast-Filtering 8.6468E+05±1.23E+03 0.9622±0.0060 0.9524±0.0091 0.03±0.00

Fast-Estimation 8.9725E+05±9.94E+02 0.9503±0.0019 0.9345±0.0026 2.45±0.24

k-means++

7.7018E+05(1.44s) 40

1.2120E+06±2.20E+04 0.7373±0.0071 0.4599±0.0197 0.03±0.01
Ergun 8.3789E+05±5.56E+02 0.9508±0.0041 0.9207±0.0062 0.17±0.02
Det 8.1200E+05±1.16E-10 0.9640±0.0000 0.9451±0.0000 0.11±0.01

Fast-Sampling 8.2700E+05±1.01E+03 0.9573±0.0037 0.9328±0.0068 0.12±0.02
Fast-Filtering 7.8453E+05±1.41E+03 0.9595±0.0083 0.9360±0.0145 0.04±0.01

Fast-Estimation 8.2322E+05±9.22E+02 0.9622±0.0039 0.9427±0.0068 3.08±0.12

k-means++

7.2273E+05(1.53s) 50

1.1248E+06±5.29E+03 0.7384±0.0069 0.4296±0.0179 0.03±0.01
Ergun 7.9776E+05±2.46E+03 0.9434±0.0042 0.8944±0.0078 0.19±0.01
Det 7.6429E+05±0.00E+00 0.9601±0.0000 0.9274±0.0000 0.12±0.01

Fast-Sampling 7.7443E+05±1.12E+03 0.9553±0.0033 0.9224±0.0057 0.13±0.00
Fast-Filtering 7.4142E+05±2.77E+03 0.9611±0.0108 0.9257±0.0237 0.05±0.01

Fast-Estimation 7.7657E+05±1.15E+03 0.9567±0.0030 0.9200±0.0074 3.62±0.06

Table 10: Comparisons on dataset CIFAR10 for varying k and fixed α = 0.2

Dataset CIFAR10 (10,000 × 3,072)

Method Ref k Cost NMI ARI Time(s)

k-means++

8.4673E+10(10.94s) 10

1.4120E+11±9.75E+09 0.3873±0.0302 0.2036±0.0404 1.02±0.09
Ergun 8.5415E+10±4.64E+06 0.8480±0.0046 0.8335±0.0056 19.59±1.09
Det 8.5355E+10±1.53E-05 0.8335±0.0000 0.8160±0.0000 21.54±0.57

Fast-Sampling 8.5777E+10±1.49E+08 0.7855±0.0303 0.7499±0.0452 20.76±0.48
Fast-Filtering 8.5735E+10±1.00E+08 0.8186±0.0116 0.7920±0.0177 6.15±1.41

Fast-Estimation 8.5537E+10±4.04E+06 0.8469±0.0011 0.8327±0.0013 125.27±2.99

k-means++

7.8808E+10(36.81s) 20

1.2415E+11±7.80E+09 0.4005±0.0294 0.1541±0.0311 1.85±0.05
Ergun 7.8972E+10±4.51E+06 0.8700±0.0009 0.8281±0.0011 18.55±0.27
Det 7.8750E+10±0.00E+00 0.8516±0.0000 0.7993±0.0000 20.19±0.26

Fast-Sampling 7.9135E+10±9.31E+07 0.8033±0.0157 0.7266±0.0247 19.66±0.13
Fast-Filtering 7.8920E+10±8.79E+07 0.8361±0.0084 0.7750±0.0157 4.92±0.08

Fast-Estimation 7.9032E+10±3.84E+06 0.8602±0.0010 0.8140±0.0016 182.33±1.94

k-means++

7.5010E+10(29.54s) 30

1.1647E+11±3.62E+09 0.4304±0.0109 0.1612±0.0131 3.44±0.12
Ergun 7.6223E+10±3.55E+06 0.8618±0.0009 0.7931±0.0016 18.82±0.22
Det 7.5958E+10±1.53E-05 0.8472±0.0000 0.7746±0.0000 19.82±0.11

Fast-Sampling 7.6109E+10±7.85E+07 0.8147±0.0167 0.7209±0.0283 19.49±0.22
Fast-Filtering 7.5991E+10±5.29E+07 0.8292±0.0061 0.7471±0.0111 4.74±0.11

Fast-Estimation 7.6431E+10±2.60E+06 0.8510±0.0008 0.7906±0.0013 238.71±4.44

k-means++

7.2836E+10(37.33s) 40

1.1570E+11±4.48E+09 0.4279±0.0152 0.1268±0.0233 4.67±0.20
Ergun 7.3929E+10±2.10E+06 0.8851±0.0008 0.8288±0.0013 19.25±0.33
Det 7.3547E+10±0.00E+00 0.8667±0.0000 0.8000±0.0000 19.74±0.16

Fast-Sampling 7.3839E+10±1.39E+08 0.8245±0.0128 0.7198±0.0242 19.49±0.22
Fast-Filtering 7.3691E+10±8.40E+07 0.8272±0.0101 0.7275±0.0185 4.45±0.09

Fast-Estimation 7.3983E+10±2.59E+06 0.8622±0.0009 0.7878±0.0012 279.69±0.81

k-means++

7.1331E+10(39.24s) 50

1.1445E+11±4.80E+09 0.4276±0.0137 0.1235±0.0186 5.77±0.12
Ergun 7.2902E+10±2.31E+06 0.8693±0.0006 0.7979±0.0011 19.46±0.31
Det 7.2428E+10±0.00E+00 0.8481±0.0000 0.7581±0.0000 19.98±0.18

Fast-Sampling 7.2349E+10±7.78E+07 0.8109±0.0193 0.6888±0.0365 19.67±0.14
Fast-Filtering 7.2331E+10±7.19E+07 0.8498±0.0064 0.7603±0.0107 4.37±0.12

Fast-Estimation 7.3004E+10±3.01E+06 0.8555±0.0006 0.7775±0.0013 334.36±1.25
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Table 11: Comparisons on dataset PHY for varying k and fixed α = 20

Dataset PHY (10,000 × 50)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.0148E+12(4.62s) 10

1.4500E+12±1.21E+11 0.8077±0.0399 0.6678±0.0769 0.08±0.01
Ergun 1.0332E+12±1.55E+09 0.9772±0.0043 0.9752±0.0051 2.75±0.66
Det 1.0236E+12±1.22E-04 0.9801±0.0000 0.9806±0.0000 2.48±0.16

Fast-Sampling 1.0853E+12±1.12E+10 0.9370±0.0128 0.9207±0.0199 2.45±0.09
Fast-Filtering 1.0273E+12±1.69E+09 0.9763±0.0026 0.9757±0.0027 1.08±1.41

Fast-Estimation 1.0288E+12±3.19E+09 0.9709±0.0074 0.9679±0.0108 4.07±0.36

k-means++

3.0028E+11(9.93s) 20

4.3425E+11±2.19E+10 0.8494±0.0176 0.6685±0.0442 0.13±0.08
Ergun 3.1167E+11±2.87E+08 0.9812±0.0041 0.9770±0.0060 2.69±0.36
Det 3.0705E+11±6.10E-05 0.9882±0.0000 0.9866±0.0000 2.31±0.10

Fast-Sampling 3.2665E+11±7.21E+09 0.9455±0.0099 0.9118±0.0219 2.29±0.11
Fast-Filtering 3.0129E+11±5.01E+07 0.9789±0.0034 0.9740±0.0053 0.50±0.04

Fast-Estimation 3.0641E+11±2.58E+08 0.9787±0.0024 0.9731±0.0036 5.98±0.27

k-means++

1.6596E+11(18.70s) 30

2.4134E+11±4.04E+09 0.8562±0.0085 0.6563±0.0284 0.15±0.06
Ergun 1.7710E+11±1.16E+08 0.9814±0.0020 0.9741±0.0034 2.53±0.09
Det 1.7480E+11±3.05E-05 0.9855±0.0000 0.9825±0.0000 2.19±0.05

Fast-Sampling 1.8463E+11±3.71E+09 0.9393±0.0084 0.8845±0.0224 2.20±0.05
Fast-Filtering 1.6730E+11±8.38E+07 0.9563±0.0012 0.9214±0.0024 0.50±0.02

Fast-Estimation 1.7302E+11±1.08E+08 0.9783±0.0022 0.9709±0.0035 7.27±0.09

k-means++

1.2380E+11(41.26s) 40

1.7705E+11±4.01E+09 0.8641±0.0070 0.6561±0.0249 0.16±0.04
Ergun 1.3471E+11±1.21E+08 0.9812±0.0024 0.9714±0.0048 2.73±0.15
Det 1.3117E+11±1.53E-05 0.9816±0.0000 0.9694±0.0000 2.19±0.06

Fast-Sampling 1.4682E+11±4.54E+09 0.9346±0.0077 0.8693±0.0221 2.19±0.05
Fast-Filtering 1.2451E+11±4.92E+07 0.9763±0.0014 0.9601±0.0028 0.52±0.04

Fast-Estimation 1.3027E+11±9.43E+07 0.9798±0.0035 0.9684±0.0079 8.63±0.15

k-means++

9.8416E+10(50.11s) 50

1.4425E+11±3.96E+09 0.8544±0.0065 0.6206±0.0223 0.19±0.05
Ergun 1.1089E+11±1.38E+08 0.9821±0.0017 0.9725±0.0031 2.62±0.08
Det 1.0700E+11±0.00E+00 0.9785±0.0000 0.9653±0.0000 2.10±0.04

Fast-Sampling 1.1886E+11±3.56E+09 0.9321±0.0101 0.8490±0.0303 2.12±0.04
Fast-Filtering 1.0107E+11±6.73E+07 0.9705±0.0039 0.9456±0.0086 0.50±0.02

Fast-Estimation 1.0596E+11±1.27E+08 0.9750±0.0032 0.9572±0.0067 9.64±0.37

Table 12: Comparisons on dataset SUSY for varying k and fixed α = 0.2

Dataset SUSY (5,000,00 × 28)

Method Ref k Cost NMI ARI Time(s)

k-means++

2.9914E+07(194.06s) 10

4.2626E+07±1.5E+05 0.4212±0.0495 0.2851±0.0632 6.29±0.32
Ergun 3.1954E+07±3.4E+03 0.8037±0.0014 0.7953±0.0017 129.61±2.43
Det 3.1759E+07±0 0.8628±0 0.8696±0 159.18±2.90

Fast-Sampling 3.2683E+07±1.4E+04 0.8599±0.0019 0.8760±0.0021 121.91±1.16
Fast-Filtering 3.1814E+07±1.1E+03 0.8662±0.0004 0.8747±0.0004 37.52±1.87

Fast-Estimation 3.1779E+07±7.7E+03 0.8479±0.0031 0.8521±0.0032 48.18±1.57

k-means++

2.4533E+07(307.01s) 20

3.3848E+07±3.7E+05 0.4833±0.0107 0.2671±0.0099 9.27±0.24
Ergun 2.7086E+07±5.6E+03 0.8507±0 0.8201±0.0001 135.43±2.26
Det 2.6856E+07±0 0.8913±0 0.8805±0 155.56±1.50

Fast-Sampling 2.6889E+07±3.1E+04 0.8899±0.0012 0.8778±0.0013 125.01±2.09
Fast-Filtering 2.6121E+07±3.1E+05 0.8247±0.0091 0.7898±0.0140 39.78±1.07

Fast-Estimation 2.6890E+07±6.9E+03 0.8807±0.0006 0.8664±0.0009 54.35±0.87

k-means++

2.1903E+07(520.44s) 30

2.9916E+07±5.4E+05 0.5140±0.0048 0.2509±0.0112 12.30±0.15
Ergun 2.4828E+07±7.9E+03 0.8562±0 0.8183±0.0001 134.08±0.92
Det 2.4707E+07±0 0.8915±0 0.8759±0 152.09±1.89

Fast-Sampling 2.4870E+07±8.9E+03 0.8870±0.0007 0.8753±0.0007 117.35±3.02
Fast-Filtering 2.3846E+07±1.6E+05 0.8564±0.0161 0.8278±0.0266 36.32±0.79

Fast-Estimation 2.4646E+07±1.7E+04 0.8705±0.0223 0.8435±0.0345 54.37±0.95

k-means++

2.0262E+07(913.86s) 40

2.7709E+07±3.7E+05 0.5285±0.0152 0.2408±0.0185 15.56±0.83
Ergun 2.3405E+07±7.0E+03 0.8593±0.0001 0.8144±0.0002 144.44±2.17
Det 2.3197E+07±0 0.8813±0 0.8525±0 149.24±0.97

Fast-Sampling 2.3107E+07±4.7E+04 0.8724±0.0112 0.8385±0.0151 110.81±2.21
Fast-Filtering 2.2082E+07±2.3E+05 0.8436±0.0065 0.7994±0.0120 35.08±1.72

Fast-Estimation 2.3153E+07±8.2E+04 0.8708±0.0198 0.8378±0.0306 55.65±1.08

k-means++

1.9136E+07(1345.42s) 50

2.5509E+07±2.4E+05 0.5447±0.0082 0.0237±0.0147 17.48±0.32
Ergun 2.1978E+07±3.7E+03 0.8586±0.0001 0.7988±0.0003 147.95±1.91
Det 2.1894E+07±0 0.8805±0 0.8371±0 144.89±1.95

Fast-Sampling 2.1799E+07±1.0E+05 0.8396±0.0289 0.7749±0.0468 101.44±3.42
Fast-Filtering 2.0645E+07±6.5E+04 0.8716±0.0065 0.8315±0.0112 29.77±1.34

Fast-Estimation 2.1435E+07±4.1E+04 0.8339±0.0026 0.7645±0.0046 54.19±1.51
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Table 13: Comparisons on dataset HIGGS for varying k and fixed α = 0.2

Dataset HIGGS (11,000,000 × 18)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.5371E+08(343.72s) 10

2.3351E+08±4.85E+06 0.3063±0.0073 0.1806±0.0030 14.92±0.12
Ergun 1.5783E+08±4.95E+03 0.9263±0.0034 0.9349±0.0039 427.50±6.17
Det 1.5626E+08±0.00E+00 0.9239±0.0000 0.9327±0.0000 481.12±4.88

Fast-Sampling 1.5787E+08±3.68E+03 0.9445±0.0006 0.9595±0.0007 443.06±6.59
Fast-Filtering 1.5559E+08±1.99E+05 0.9028±0.0067 0.9079±0.0066 129.32±5.96

Fast-Estimation 1.5637E+08±7.66E+04 0.9176±0.0014 0.9260±0.0010 164.52±2.60

k-means++

1.3908E+08(706.94s) 20

2.0632E+08±2.49E+06 0.3454±0.0042 0.1658±0.0029 20.56±0.29
Ergun 1.4375E+08±1.26E+03 0.9085±0.0011 0.9066±0.0012 445.15±2.97
Det 1.4227E+08±0.00E+00 0.9148±0.0000 0.9135±0.0000 484.35±0.50

Fast-Sampling 1.4307E+08±6.93E+04 0.8827±0.0010 0.8768±0.0017 439.74±2.25
Fast-Filtering 1.4191E+08±1.38E+05 0.9017±0.0322 0.8937±0.0413 142.67±1.82

Fast-Estimation 1.4237E+08±2.91E+04 0.9020±0.0014 0.8971±0.0019 173.38±1.69

k-means++

1.3241E+08(1437.67s) 30

1.8190E+08±5.53E+05 0.4060±0.0092 0.1772±0.0061 28.81±0.08
Ergun 1.3663E+08±2.89E+03 0.9083±0.0000 0.8985±0.0000 450.15±9.71
Det 1.3520E+08±0.00E+00 0.9154±0.0000 0.9069±0.0000 478.83±6.94

Fast-Sampling 1.3554E+08±6.70E+04 0.8757±0.0001 0.8522±0.0005 425.87±9.23
Fast-Filtering 1.3425E+08±8.98E+04 0.8739±0.0087 0.8482±0.0128 147.26±7.24

Fast-Estimation 1.3525E+08±3.39E+03 0.8986±0.0002 0.8855±0.0003 175.96±3.08

k-means++

1.2694E+08(2301.98s) 40

1.7659E+08±1.75E+06 0.4153±0.0122 0.1610±0.0086 35.46±0.59
Ergun 1.3153E+08±2.79E+03 0.9046±0.0007 0.8921±0.0009 445.79±9.27
Det 1.3021E+08±0.00E+00 0.9146±0.0000 0.9032±0.0000 470.93±4.65

Fast-Sampling 1.3060E+08±6.99E+04 0.8633±0.0243 0.8276±0.0367 398.50±9.65
Fast-Filtering 1.2917E+08±1.05E+05 0.8936±0.0068 0.8727±0.0101 139.57±0.59

Fast-Estimation 1.3002E+08±4.50E+04 0.8958±0.0002 0.8775±0.0013 172.35±0.55

k-means++

1.2336E+08(3574.13s) 50

1.6815E+08±8.74E+05 0.4342±0.0032 0.1611±0.0057 38.57±0.02
Ergun 1.2730E+08±1.45E+04 0.8785±0.0229 0.8467±0.0338 436.17±0.26
Det 1.2589E+08±0.00E+00 0.9113±0.0000 0.8932±0.0000 443.46±0.38

Fast-Sampling 1.2645E+08±1.07E+05 0.8666±0.0218 0.8303±0.0324 364.05±3.10
Fast-Filtering 1.2490E+08±4.14E+04 0.8542±0.0015 0.8065±0.0018 133.17±0.40

Fast-Estimation 1.2587E+08±1.53E+04 0.8958±0.0017 0.8710±0.0019 160.75±0.99

Table 14: Comparisons on dataset SIFT for varying k and fixed α = 0.2

Dataset SIFT (100,000,000 × 128)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.0542E+13(844.18s) 10

1.8947E+13±1.41E+11 0.2994±0.0180 0.2026±0.0087 801.75±114.99
Ergun 1.1067E+13±1.16E+08 0.9065±0.0000 0.9085±0.0000 23298.85±2009.69
Det 1.0835E+13±0.00E+00 0.9115±0.0000 0.9146±0.0000 14759.49±401.91

Fast-Sampling 1.2093E+13±2.15E+11 0.5353±0.0306 0.4319±0.0255 14370.31±552.58
Fast-Filtering 1.0763E+13±5.73E+09 0.8879±0.0006 0.8959±0.0001 1013.03±77.22

Fast-Estimation 1.0856E+13±3.27E+08 0.9160±0.0004 0.9206±0.0005 14612.00±1312.35

k-means++

9.7055E+12(1011.24s) 20

1.6512E+13±1.26E+11 0.3269±0.0197 0.1353±0.0315 1329.66±173.52
Ergun 1.0200E+13±6.41E+07 0.9012±0.0000 0.8912±0.0001 20445.05±2033.90
Det 9.9855E+12±0.00E+00 0.9024±0.0000 0.8914±0.0000 14195.19±576.63

Fast-Sampling 1.1236E+13±2.55E+11 0.5600±0.0310 0.4002±0.0483 13877.33±778.01
Fast-Filtering 9.8954E+12±2.44E+09 0.8768±0.0055 0.8637±0.0062 1059.94±99.14

Fast-Estimation 9.9979E+12±4.08E+08 0.9077±0.0002 0.9002±0.0003 13987.80±1117.39

k-means++

9.2478E+12(1330.99s) 30

1.5338E+13±2.51E+11 0.3730±0.0112 0.1535±0.0094 2238.99±46.63
Ergun 9.7328E+12±3.49E+07 0.9013±0.0000 0.8737±0.0000 19099.74±1359.36
Det 9.5218E+12±0.00E+00 0.9027±0.0000 0.8745±0.0000 14119.17±1024.58

Fast-Sampling 1.1072E+13±4.91E+09 0.5429±0.0058 0.3297±0.0074 13738.71±763.40
Fast-Filtering 9.4282E+12±3.38E+09 0.8863±0.0061 0.8590±0.0082 1100.15±104.72

Fast-Estimation 9.5332E+12±6.38E+08 0.9072±0.0001 0.8832±0.0002 13633.17±1347.76

k-means++

8.9739E+12(1342.73s) 40

1.5006E+13±1.58E+11 0.3936±0.0072 0.1610±0.0027 2976.74±25.20
Ergun 9.4558E+12±6.92E+07 0.9019±0.0001 0.8699±0.0001 18493.35±995.04
Det 9.2487E+12±0.00E+00 0.9017±0.0000 0.8668±0.0000 13813.96±599.81

Fast-Sampling 1.0516E+13±9.63E+10 0.5826±0.0084 0.3736±0.0254 13533.55±460.98
Fast-Filtering 9.1579E+12±3.31E+09 0.8860±0.0065 0.8549±0.0076 1153.74±73.15

Fast-Estimation 9.2585E+12±4.64E+08 0.9070±0.0002 0.8780±0.0002 13920.46±847.87

k-means++

8.7576E+12(1412.61s) 50

1.4553E+13±1.43E+10 0.4146±0.0013 0.1681±0.0003 3410.89±157.58
Ergun 9.2450E+12±1.15E+07 0.9014±0.0000 0.8656±0.0001 16390.58±1034.44
Det 9.0398E+12±0.00E+00 0.8995±0.0000 0.8590±0.0000 13948.92±794.17

Fast-Sampling 1.0405E+13±9.76E+10 0.5582±0.0135 0.3143±0.0204 13484.68±621.02
Fast-Filtering 8.9381E+12±1.28E+09 0.8790±0.0003 0.8405±0.0003 1157.97±133.86

Fast-Estimation 9.0471E+12±4.11E+08 0.9059±0.0003 0.8733±0.0005 13367.68±1455.83
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A.6.2 VISUALIZATION FOR THE DISTRIBUTION OF THE PREDICTED CLUSTERS

In this section, we provide examples of visualizations for the coordinates distribution on some of the
datasets used in our experiments.

(a) Plot of coordinates in dimension 1 of cluster 1 (b) Plot of coordinates in dimension 3 of cluster 2

Figure 3: Examples of visualization of the coordinates distribution on dataset CIFAR10, where
red points represent correctly predicted data points, and other colors indicate data points that are
predicted incorrectly.

(a) Plot of coordinates in dimension 10 of cluster 3 (b) Plot of coordinates in dimension 16 of cluster 5

Figure 4: Examples of visualization of the coordinates distribution on dataset PHY, where red points
represent correctly predicted data points, and other colors indicate data points that are predicted
incorrectly.
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