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Abstract

Learning policies from raw, pixel images are quite
important for the real-world application of deep
reinforcement learning (RL). Standard model-free
RL algorithms focus on single-view settings and
unify the representation learning and policy learn-
ing into an end-to-end training process. However,
such a learning paradigm is sample-inefficiency
and sensitive to hyper-parameters when super-
vised merely by the reward signals. Based on this,
we present Self-Supervised Representations (S2R)
for multi-view reinforcement learning, a sample-
efficient representation learning method for learn-
ing features from high-dimensional images. In
S2R, we introduce a representation learning frame-
work and define a novel multi-view auxiliary ob-
jective based on the multi-view image states and
Conditional Entropy Bottleneck (CEB) principle.
We integrate S2R with the deep RL agent to learn
robust representations that preserve task-relevant
information while discarding task-irrelevant infor-
mation and find optimal policies that maximize
the expected return. Empirically, we demonstrate
the effectiveness of S2R in the visual DeepMind
Control (DMControl) suite and show its better per-
formance on the default DMControl tasks and their
variants by replacing the tasks’ default background
with a random image or natural video.

1 INTRODUCTION

In recent years, deep reinforcement learning (RL) has shown
the potential to learn high-quality policies directly from
complex environments with high-dimensional states, such
as playing Atari video games (Mnih et al., 2015; Hessel
et al., 2018) or operating in visual continuous control tasks
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(Lillicrap et al., 2016), etc. Note that we can decouple the
RL learning process into two sub-processes: representation
learning and policy learning. The former aims to abstract
features that characterize high-dimensional states, and the
latter aims to find optimal policies that maximize the ex-
pected cumulative return. However, standard model-free RL
algorithms unify these two sub-processes into an end-to-end
training procedure, making the learning sample-inefficiency
(Lake et al., 2017; Kaiser et al., 2019) when just being
supervised by the reward signals. This situation will be ag-
gravated in the real world as collecting interacting data and
training specific policies is expensive and time-consuming
(Kalashnikov et al., 2018; Akkaya et al., 2019).

Therefore, for RL algorithms, decoupling representation
learning and policy learning in one training procedure pro-
vides a feasible solution to alleviate the problem of sam-
ple inefficiency. Representation learning decomposes high-
dimensional data into low-vectored representations that
faithfully characterize them (Lesort et al., 2018). Then, pol-
icy learning can benefit from these low-dimensional and
informative representations, rather than the raw data, to
make the task sample efficiently solved. In this paper, we
base our method on this idea, first relying on an auxiliary
objective to explicitly obtain latent representations, then
training the agent upon these representations.

We focus on multi-view RL, which extends RL to multi-
view settings. While most RL algorithms solely consider
one-view data, multi-view settings release the restrictions
that hinder the application of RL to real-life scenarios. Take
the smart vehicle as an example, instead of only using one-
view data, it fuses multi-view data perceived by multiple
sensors to make safe driving decisions. Actually, compared
with the paradigm of learning in one-view settings, learning
in multi-view settings is more complex due to the increased
difficulties of reasoning representations from complicated
multiple views. If solved, it can promote the generalization
of RL across varying domains, including their applications
in the real world. Thus, we propose S2R: Self-Supervised
Representations for multi-view reinforcement learning. Our
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key contributions are summarized as follows.

• Representation learning framework. To support the
representation learning in multi-view RL, we design
a specific learning framework. It is composed of the
encoder/target encoder network, feature fusion mod-
ule, view-specific predictor, and multi-view predictor.
After learning marginal representations from the en-
coder network, we use the reparameterization trick
to obtain sampled data utilized by the feature fusion
module, and further the multi-view predictor to predict
self-supervision signals (latent transition function and
reward function). Besides, the sampled data are also fed
into the view-specific predictor to make predictions.

• Self-supervision objective. To learn compressed rep-
resentations, inspired by the Conditional Entropy Bot-
tleneck (CEB) (Fischer, 2020), we define a new multi-
view CEB (MCEB) auxiliary objective. It maximizes
the task-relevant information between representations
(marginal or joint) and self-supervision signals and
compresses away any task-irrelevant information that
comes from multi-view image states but is not con-
tained in the self-supervision signals.

• Representation learning for multi-view RL. To inte-
grate the representation learning with the multi-view
RL training, we incorporate the MCEB objective with
the RL objective by optimizing the RL objective on
top of the encoder network optimized by the MCEB
objective. We follow the common practice (for a given
image, data augmentation is used to generate multiple
views) in multi-view learning (Bachman et al., 2019;
Wang et al., 2021) to produce multi-view data. Empir-
ically, we show that S2R performs better on default
visual DMControl tasks (Tassa et al., 2018) and their
noisy variants by replacing the tasks’ default back-
ground with a random image or complex natural video.

2 RELATED WORK

Reconstruction-based representations. Auto-encoder, an
unsupervised learning technique that uses neural networks
for representation learning, is the early work that combines
with RL in control tasks (Lange and Riedmiller, 2010; Lange
et al., 2012; Yarats et al., 2021). These RL agents first trained
an encoder via the reconstruction loss, then learned policies
based on the representations encoded by the encoder. How-
ever, there is no guarantee that the encoder captures useful
information for control tasks in practice. Aiming at this
problem, researchers proposed to train the encoder jointly
with RL dynamics to learn task-oriented and predictive rep-
resentations (Watter et al., 2015; Wahlström et al., 2015;
Hafner et al., 2019, 2020, 2021; Lee et al., 2020a). Although
effective, these approaches try to encode all details into em-
beddings in the reconstruction process of visual images, re-
sulting in the sensibility to task-independent visual changes

and negative effection on performance due to the existence
of task-irrelevant information (Zhang et al., 2018).

Contrastive-based representations. As a representation
learning method, contrastive learning has been widely used
in self-supervised settings and made significant progress in
the research of image classification and detection (Caron
et al., 2020; Xie et al., 2021). It uses data augmentation
(Chen et al., 2020) or image patches (Henaff, 2020) to ac-
quire data samples and learns rich representations via sim-
ilarity functions (Belghazi et al., 2018; Poole et al., 2019)
such that the distance between similar pairs is minimized,
between dissimilar pairs is maximized. Many works (Kim
et al., 2019; Srinivas et al., 2020; Mazoure et al., 2020) have
introduced contrastive learning to RL settings to extract pre-
dictive features. However, under the effect of contrastive
loss, these methods aim to capture all features in the images
to maximize the lower bound of the mutual information,
making the features containing task-irrelevant information.

Multi-view and other representations. To solely ex-
tract task-relevant features from high-dimensional data, re-
searchers have tried various methods. Multi-view learning,
also known as data fusion or data integration from multiple
views data, is an emerging area in machine learning (Zhang
et al., 2016). Though abundant in computer vision tasks
(Federici et al., 2020; Wang et al., 2019; Wan et al., 2021),
it gains less attention on RL decision-making tasks. Chen
et al. (2017) proposed the double-task deep Q-Network
within multiple views based on double-DQN (Van Has-
selt et al., 2016) and dueling-DQN (Wang et al., 2016).
Li et al. (2019) defined a framework that generalized par-
tially observable Markov decision processes (POMDPs) to
multi-view settings within multiple observation models. In
addition, Zhang et al. (2021) introduced the bisimulation
metric (Ferns et al., 2011) to learn latent representations that
only encode task-relevant information of image observa-
tions. Laskin et al. (2020) proposed a plug-and-play module
that achieved SOTA performance on the default visual DM-
Control tasks by incorporating data augmentations with the
RL agent. Lee et al. (2020b) learned compressed representa-
tions of the predictive information of RL dynamics through
a CEB objective with the CatGen decoder (Fischer, 2020) in
the single-view setting. By contrast, our work, S2R, which
learns robust representations via an MCEB auxiliary objec-
tive, simultaneously takes advantage of the multi-view learn-
ing and CEB principle to preserve task-relevant information
and ignore task-irrelevant information. We empirically show
the performance improvement of S2R against state-of-the-
art methods on a variety of visual control benchmarks.

3 PRELIMINARIES

Multi-view Reinforcement Learning. In this paper, we
consider the multi-view reinforcement learning, an exten-
sion of RL to multi-view settings, formulated as a Markov



Figure 1: S2R framework. It contains the encoder/target encoder network, feature fusion module, view-specific predictor,
and multi-view predictor. Multi-view image state sj are fed into the encoder network to learn marginal representation zj .
Following the reparameterization trick, we obtain sampled representations that successively fed into the feature fusion
module and multi-view predictor to predict z′ and r and simultaneously into the view-specific predictor to predict z′j and r.

decision process (MDP) {S,A, P, r, γ}. Here, symbols S,
A, P (st+1|st, at) : S×A×S 7→ [0, 1], r(st, at) : S×A 7→
R and γ ∈ [0, 1) respectively denote the state space, ac-
tion space, transition probability of state st+1 when agent
takes action at at state st, reward function that maps state
st and action at into real number, and the discount factor.
Given r and γ, the agent aims to learn an optimal policy π
that maximizes the expected cumulative discounted reward
R =

∑
tγ
tr(st, at).

Crucially, we focus on image-based tasks, which means the
agent needs to learn policy from pixels. To obtain the multi-
view data, referring to the common practice in multi-view
learning, we repeatedly apply random data augmentation
on the original image state st received by the agent to gen-
erate diverse sub-images stj as multi-view states, where
j ∈ [1, N ] is the view index.

Soft Actor-Critic. Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) is an off-policy actor-critic algorithm that
learns a stochastic policy πφ to maximize a γ-discounted
and maximum entropy-based return (Ziebart et al., 2008)
by optimizing three objectives. Given transition tuples
τ t = (st, at, rt, st+1) sampled from the replay buffer B,
the critic minimizes the below Bellman error.

LQϕi = Eτ∼B
[(
Qϕi(s

t, at)− (rt + γV (st+1))
)2]

(1)

Where V (st+1) is the target value of st+1, defined as:

V (st+1) = Ea′∼π
(

min
i=1,2

Q̄ϕ̄i(s
t+1, a′)−α log πφ(a′|st+1)

)
(2)

Note that SAC maintains two critics (Qϕ1 , Qϕ2 ), two target
critics (Q̄ϕ̄1 , Q̄ϕ̄2) and uses the exponential moving aver-
age (EMA) to update target network parameters. For the
actor, actions are sampled using the reparameterization trick,
i.e., aφ(st, ξ) = tan(µφ(st) + σφ(st)� ξ) with a standard
normalized noise vector ξ ∼ N (0, I), it minimizes:

Lπφ = Ea∼π
[
α log πφ(a|st)−min

i=1,2
Qϕi(s

t, a)
]

(3)

For the temperature, given the target entropyH of the policy
distribution, it minimizes:

Lα = Ea∼π[−α log πφ(a|st)− αH] (4)

4 S2R FOR MULTI-VIEW RL

To address the learning challenges of multi-view RL men-
tioned in Sec. 1, we propose S2R, which mainly contains:
the representation learning framework, the self-supervision
objective, and the combination of S2R with multi-view RL.
For readability, we simplify the time index of the transition
tuple, replacing {st, at, rt, st+1} with {s, a, r, s′}.

4.1 S2R FRAMEWORK

To extract representations from pixel states in multi-view
RL, in Fig. 1, we design an S2R representation learning
framework. It includes:

(1) Encoder/target encoder network. Both of them are re-
sponsible for encoding image states (high-dimensional)
into marginal representations (low-dimensional) in a
common latent space.

(2) Feature fusion module. Its purpose is to integrate (sam-
pled) marginal representations into joint representa-
tions in the common latent space.

(3) View-specific predictor. By inputting the sampled
marginal representation together with the action and
predicting the latent transition function and reward
function, it can maximize task-relevant information and
minimize task-irrelevant information in the marginal
representation.

(4) Multi-view predictor. By inputting the sampled joint
representation together with the action and doing the
same prediction, it can effectively extract useful infor-
mation from the joint representation.



4.2 S2R OBJECTIVE

Two-view CEB. In 2020, CEB (Fischer, 2020) was pro-
posed. Given the high-dimensional data X , it learns rep-
resentation Z from X to predict label Y , defined as
minZ βI(X;Z|Y )− I(Y ;Z), expecting that the informa-
tion captured in Z is maximally relevant to Y . In CEB,
I(X;Z|Y ) is the conditional mutual information, measur-
ing the reduction of uncertainty of X due to learning Z
when given Y ; I(Y ;Z) is the mutual information, measur-
ing the reduction of uncertainty of Y due to learning Z
(Cover, 1999). Based on CEB, we propose a new MCEB
objective to optimize networks related to the S2R frame-
work (Sec. 4.1). For simplicity, we start with a two-view
case. Considering the sequential nature of RL, we define
X1, X2 as the current image states, Z1, Z2, Z as the current
latent representations, and Y1, Y2, Y as the rewards and next
latent representations. Without loss of generality, we define
the two-view CEB objective as:

obj. min
Z,Z1,Z2

β1I(X1;Z1|Y1) + β2I(X2;Z2|Y2)− I(Z;Y )

= min
z,z1,z2

β1I(s1; z1|z′1, r, a) + β2I(s2; z2|z′2, r, a) −

I(z; z′, r|a)

s.t. Z = fθ(Z1, Z2)⇒ z = fθ(z1, z2) (5)

Where β1, β2 are regularization factors. To better understand
this objective, we show an Information diagram (I-diagram)
for X1, X2, Z1, Z2, Z, Y1, Y2 and Y in Fig. 2. Intuitively,
we observe that: I(X1;Z1) = I(Z1;Y1) + I(X1;Z1|Y1),
I(X2;Z2) = I(Z2;Y2)+I(X2;Z2|Y2). Thus, to get a min-
imal and sufficient Z, we must minimize redundant informa-
tion (I(X1;Z1|Y1) and I(X2;Z2|Y2)) and maximally pre-
serve relevant information (I(Z;Y ), where Z = fθ(Z1, Z2)
is the joint representation of marginal representations Z1

and Z2 fused by the S2R feature fusion module).

Figure 2: I-diagram of the two-view CEB.

Optimization of Two-view CEB. In Eq. (5), it is intractable
to directly compute the (conditional) mutual information
terms. Fortunately, the variational inference method pro-
vides a feasible solution by approximating intractable terms
with variational bounds that are easily optimized by stan-
dard gradient methods (Kingma and Welling, 2014; Alemi
et al., 2017). To get the variational upper bound of Eq. (5),

we first rewrite it below.

min
Z,Z1,Z2

β1(I(X1;Z1)− I(Z1;Y1)) + β2(I(X2;Z2) −

I(Z2;Y2))− I(Z;Y ), Z = fθ(Z1, Z2)

= min
z,z1,z2

β1(I(s1; z1)− I(z1; z′1, r|a)) + β2(I(s2; z2)−

I(z2; z′2, r|a))− I(z; z′, r|a), z = fθ(z1, z2) (6)

Then, we give the joint probability density function of vari-
ables s1, s2, z1, z2, z, z′1, z′2, z′, r and a. According to the
Bayes’s rule, it can be expressed as:

p(s1, s2, z1, z2, z, z
′
1, z
′
2, z
′, r, a) = p(z|s1, s2, z1, z2, z

′
1, z
′
2,

z′, r, a) · p(z1|s1, s2, z2, z
′
1, z
′
2, z
′, r, a) · p(z2|s1, s2, z

′
1,

z′2, z
′, r, a) · p(s1, s2, z

′
1, z
′
2, z
′, r, a) (7)

Considering z1 is extracted from s1, z2 is extracted from s2,
z is fused by z1 and z2, we thus infer that: z1 is independent
of variables other than s1, z2 is independent of variables
other than s2, and z is independent of variables other than
z1 and z2. Therefore, we have:

p(s1, s2, z1, z2, z, z
′
1, z
′
2, z
′, r, a) = p(z|z1, z2) ·

p(z1|s1) · p(z2|s2) · p(s1, s2, z
′
1, z
′
2, z
′, r, a)

(8)

Based on the standard definition of the (conditional) mu-
tual information, the non-negative property of the Kullback-
Leibler divergence (KL-divergence), the above joint prob-
ability density function, and the Monte Carlo sampling
(Shapiro, 2003), we derive the variational upper bound of
Eq. (5) as follows.

β1I(s1; z1|z′1, r, a) + β2I(s2; z2|z′2, r, a)− I(z; z′, r|a) ≤

1

M

M∑(
β1[DKL (p(z1|s1)||q1(z1))− Ez1∼p(z1|s1) log gω1

(

z′1, r|z1, a) ] + β2[DKL (p(z2|s2)||q2(z2)) −
Ez2∼p(z2|s2) log gω2(z′2, r|z2, a) ] − Ez1∼p(z1|s1)

Ez2∼p(z2|s2)Ez∼p(z|z1,z2) [log gω12
(z′, r|z, a)]

)
(9)

Where M is the size of data obtained by the Monte
Carlo sampling, gω1

(z′1, r|z1, a), gω2
(z′2, r|z2, a) and

gω12
(z′, r|z, a) are distributions learned from neural net-

works (view-specific predictor or multi-view predictor) to
approximate real distributions p(z′1, r|z1, a), p(z′2, r|z2, a)
and p(z′, r|z, a), variational distributions q1(z1) ∼
N(0, I), q2(z2) ∼ N(0, I) are used to approximate real
distributions p(z1) and p(z2). Detailed derivations of Eq.
(9) are given in Appendix A.

Next, we assume p(z1|s1), p(z2|s2) and p(z|z1, z2) are
Gaussian distributions with relative means (µ1, µ2, µ12) and
variances (σ1, σ2, σ12) learned from MLPs:

p(z1|s1) = N(µ1(s1;ψ1), σ1(s1;ψ1))

p(z2|s2) = N(µ2(s2;ψ2), σ2(s2;ψ2))

p(z|z1, z2) = N(µ12(z1, z2;ψ12), σ12(z1, z2;ψ12)) (10)



In Eq. (10), ψ1, ψ2, ψ12 are parameters of the MLPs used
for learning p(z1|s1), p(z2|s2) and p(z|z1, z2), respectively.
To backpropagate the gradient through random variables z1,
z2 and z, we use the reparameterization trick:

z1 = µ1(s1;ψ1) + σ1(s1;ψ1) · ξ1
z2 = µ2(s2;ψ2) + σ2(s2;ψ2) · ξ2
z = µ12(z1, z2;ψ12) + σ12(z1, z2;ψ12) · ξ12

(11)

Where ξ1 ∈ N (0, I), ξ2 ∈ N (0, I), ξ12 ∈ N (0, I) are
Gaussian random variables. Therefore, Eq. (9) will be trans-
formed into Eq. (12), the final optimization loss of Eq. (5).

min
z,z1,z2

1

M

M∑(
β1[DKL(p(z1|s1)||q1(z1))− Eξ1 log gω1

(

z′1, r|z1, a)] + β2[DKL(p(z2|s2)||q2(z2))− Eξ2 log gω2
(

z′2, r|z2, a)]− Eξ1Eξ2Eξ12 log gω12(z′, r|z, a)
)

(12)

From Two-view CEB to MCEB. For cases with more than
two views, we can easily generalize the two-view CEB
objective to the MCEB objective by adding information
terms. Given N views (X1, . . . , XN ), it is expressed as:

obj. min
Z,Z1,··· ,ZN

∑N
j=1 βjI(Xj ;Zj |Yj)− I(Z;Y ) =

min
z,z1,··· ,zN

N∑
j=1

βj(I(sj ; zj)− I(zj ; z
′
j , r|a))− I(z; z′, r|a)

s.t. Z = fθ(Z1, · · · , ZN )⇒ z = fθ(z1, · · · , zN ) (13)

Referring to the same derivation process of the two-view
CEB objective, the final optimization loss of the MCEB
objective (Eq. (13)) can be expressed as follows:

min
z,z1,··· ,zN

1

M

M∑( N∑
j=1

βj

[
DKL(p(zj |sj)||qj(zj))− Eξj

log gωj (z
′
j , r|zj , a)

]
− Eξ1 . . .EξNEξ1N

log gω1N
(z′, r|z, a)

)
(14)

4.3 INCORPORATE S2R INTO MULTI-VIEW RL

To incorporate S2R into multi-view RL, we simultaneously
train the S2R model and the RL agent and treat the S2R loss
as an auxiliary loss (Fig. 3). To obtain multi-view image
states, we repeatedly apply the random crop augmentation
on sampled transition data from the replay buffer and keep it
consistent across three consecutive stacked frames to retain
the temporal information hidden in the states. This allows
the S2R model to infer task dynamics and is more suitable
for the RL setting. In Algorithm 1, we give the detailed pro-
cedure of integrating S2R with SAC. In our implementation,
we use an (target) encoder (ρ(sj)/ρ̄(s′j)), MLPs (ψ), view-
specific/multi-view predictor (ω) and two views’ data. The

first view is not only responsible for the training of the RL
agent but also the S2R model together with the second view.
For settings with multimodal states (image, text, audio, etc.),
we can use N (target) encoders, MLPs, view-specific/multi-
view predictors, and the joint latent representation to train
the RL agent and S2R model.

Figure 3: Joint training of the S2R model and RL agent.

Algorithm 1 S2R + SAC pseudo-code

1: Initialize: parameters of critic (ϕi, ϕ̄i), actor(φ), S2R
model (ρ, ρ̄, θ, ψ, ω), temperature (α), views N , replay
buffer B, training step T , gradient step K, batch size M

2: for step t = 1 to T do
3: for each collection step do
4: Store interaction data: B ← B ∪ (s, a, r, s′).
5: end for
6: for step k = 1 to K do
7: Sample batches D : {(s, a, r, s′)}Mm=1 from B.
8: Applying data augmentation on D, now:

D = {(sj , a, r, s′j)}Mm=1, j ∈ [1, N ]
9: Compute target value:

V = min Q̄i(ρ̄(s′1), a′)− α log π(a′|ρ̄(s′1))
10: Update critic:

Lϕi = [Qi(ρ(s1), a)− (r + γV )]2

11: Update actor:
Lφ = α log π(a|ρ(s1))−minQi(ρ(s1), a)

12: Update temperature:
Lα = −α log π(a|ρ(s1))− αH

13: Update S2R model (ρ(sj), etc.) by D, Eq. (14).
14: Update target critic: ϕ̄i = τϕ ·ϕi+(1− τϕ) · ϕ̄i
15: Update target encoder: ρ̄ = τρ · ρ+ (1− τρ) · ρ̄
16: end for
17: end for

5 EXPERIMENTS

In this paper, we design a variety of experiments to answer
the following questions:

• Can S2R have a better sample efficiency in RL visual
control tasks (Table 1, Fig. 5 - 8)?

• Is S2R robust to complex settings with the random
image distractor or natural video distractor (Fig. 7)?

• Can S2R perform better than existing reconstruction-
based, non-reconstruction-based, or contrastive-based
RL representation methods (Table 1, Fig. 5 - 7)?



• For S2R, How much information should be preserved
for efficient representation? Is it sufficient to merely
predict the latent transition function or reward function
in MCEB? Is the MCEB objective more suitable than
its mutual information or CEB variants? How does S2R
perform when the number of views increases? (Fig. 8)

5.1 EXPERIMENT SETUP

DMControl Suite. To evaluate the performance of S2R, we
combine it with the SAC algorithm and focus on visual con-
tinuous control tasks in the DMControl Suite (Tassa et al.,
2018). Our benchmark includes six different environments
under three settings. (1) Default Setting. Agent receives
pixel states with the default background. (2) Image Distrac-
tor Setting. Agent receives pixel states with the random
image as the background. (3) Natural Video Setting. Agent
receives pixel states with the natural video selected from the
"arranging flowers" class of the Kinetics dataset (Kay et al.,
2017) as the background. In Fig. 4, We show snapshots of
pixel states in the above settings.

Figure 4: Tasks from left to right are ball-in-cup catch, cart-
pole swingup, cheetah run, finger spin (the first row)/walker
run (the second/third row), reacher easy, and walker walk.

Implementation. We base our S2R method on the imple-
mentation of RAD (Laskin et al., 2020) 1 and use most of
its default parameters, including the learning rate, action
repeat, etc. Specially, we use a desktop with an 8-core CPU,
and two Nvidia GeForce RTX 3090 for each benchmarking.
In our experiments, figures show the mean and standard
error across five seeds unless specified otherwise. Besides,
we use random crop augmentation on the agent’s 100× 100
original image states to obtain 84 × 84 multi-view states.
Full implementation details and hyper-parameters are listed
in Appendix B.

5.2 BASELINE ALGORITHM

In this paper, we compare S2R + SAC with some state-of-
the-art pixel-based RL methods. DBC (Zhang et al., 2021)
learns effective representations for downstream control tasks
through the bisimulation metric. RAD (Laskin et al., 2020)
uses augmented data to train policy. CURL (Srinivas et al.,

1https://github.com/MishaLaskin/rad

2020) combines contrastive learning objective with model-
free RL agent. SLAC (Lee et al., 2020a) learns stochas-
tic sequential models via a variational inference objective.
PlaNet (Hafner et al., 2019) and Dreamer (Hafner et al.,
2020) are two model-based algorithms, they both learn a
world model and respectively choose actions via online plan-
ning and long-horizon imagination. SAC + AE (Yarats et al.,
2021) combines auto-encoder with model-free RL algorithm
via an auxiliary reconstruction loss. Pixel SAC is the SAC
(Haarnoja et al., 2018) algorithm with image inputs, while
State SAC operates on proprioceptive states (positions, ve-
locities, etc.). Besides, in DBC, we use the same action
repeat as RAD and S2R to make a fair comparison.

5.3 MAIN RESULTS

Default Setting Results. To evaluate the sample efficiency
of our method, we first give the median scores achieved by
S2R + SAC along with the baselines at DMControl100k
(low sample performance) and DMControl500k (asymp-
totical optimal performance) benchmarks 2 in Fig. 5 and
show their relative scores on 6 control tasks in Table 1 and
Fig. 6. In Fig. 5, S2R + SAC achieves 1.14x/1.04x higher
median scores than State SAC, 1.59x/1.05x higher median
scores than CURL, and 6.69x/5.12x higher median scores
than Pixel SAC at 100k/500k environment steps, showing
that S2R + SAC has a higher sample efficiency. In Table 1,
S2R + SAC, which integrates MCEB-based representation
learning with model-free RL learning, is the state-of-the-
art algorithm on all (6 out of 6) visual DMControl tasks
on both DMControl100k and DMControl500k benchmarks.
It achieves impressive results, exceeds the performance of
best-performing RAD and CURL, matches the performance
of State SAC operating from proprioceptive states, and sig-
nificantly improves the performance of Pixel SAC on both
DMControl100k and DMControl500k benchmarks. In Fig.
6, the learning curves of S2R + SAC and DBC again confirm
the better sample efficiency of S2R + SAC.

Figure 5: Performance of S2R + SAC relative to baselines
averaged across 10 seeds in the default setting. Results are
the medians of 6 pixel-based control tasks in Table 1, and
data other than S2R + SAC is reported in CURL.

2DMControl100k/DMControl500k refers to 100k/500k envi-
ronment or simulator steps, which is equal to 50k/250k policy
steps if the action repeat is set to 2.

https://github.com/MishaLaskin/rad


Table 1: We report scores (mean and standard deviation) for S2R + SAC and baselines (report by RAD) on DMControl500k
and DMControl100k. Results are statistics by averaging the scores of 10 seeds on 6 control tasks. In both benchmarks,
compared with existing baselines, S2R + SAC achieves state-of-the-art performance on all (6 out of 6) control tasks.

500K STEP SCORES S2R + SAC RAD CURL PlaNet Dreamer SAC + AE SLACv1 PIXEL SAC STATE SAC

FINGER, SPIN
983
± 5

947
±101

926
±45

561
±284

796
±183

884
±128

673
±92

192
±166

923
±211

CARTPOLE, SWING
869
± 10

863
±9

845
±45

475
±71

762
±27

735
±63

-
419
±40

848
±15

REACHER, EASY
981
±5

955
±71

929
±44

210
±44

793
±164

627
±58

-
145
±30

923
±24

CHEETAH, RUN
837
± 21

728
±71

518
±28

305
±131

570
±253

550
±34

640
±19

197
±15

795
±30

WALKER, WALK
950
±19

918
±16

902
±43

351
±58

897
±49

847
±48

842
±51

42
±12

948
±54

CUP, CATCH
978
±5

974
±12

959
±27

460
±380

879
±87

794
±58

852
±71

312
±63

974
±33

100K STEP SCORES S2R + SAC RAD CURL PlaNet Dreamer SAC + AE SLACv1 PIXEL SAC STATE SAC

FINGER, SPIN
876
±43

856
±73

767
±56

136
±216

341
±70

740
±64

693
±141

224
±101

811
±46

CARTPOLE, SWING
868
±9

828
±27

582
±146

297
±39

326
±27

311
±11

-
200
±72

835
±22

REACHER, EASY
961
±40

826
±219

538
±233

20
±50

314
±155

274
±14

-
136
±15

746
±25

CHEETAH, RUN
605
±22

447
±88

299
±48

138
±88

235
±137

267
±24

319
±56

130
±12

616
±18

WALKER, WALK
897
±42

504
±191

403
±24

224
±48

277
±12

394
±22

361
±73

127
±24

891
±82

CUP, CATCH
968
±6

840
±179

769
±43

0
±0

246
±174

391
±82

512
±110

97
±27

746
±91

Figure 6: Learning curves in the default setting, a supplement to Table 1. We benchmark S2R + SAC with DBC. Results
show that S2R + SAC outperforms DBC and achieves impressive performance on all 6 control tasks.



Figure 7: Performance of S2R + SAC. Top row: Results in the image distractor setting. Last row: Results in the natural
video setting. We benchmark S2R + SAC with RAD and DBC in both settings, and results confirm the better performance of
S2R + SAC. Additional results can be found in Appendix C.

Image Distractor Setting Results. Then, we evaluate S2R
performance in the image distractor setting by replacing
the tasks’ background with a random image. In the top row
of Fig. 7, we give the results of three tasks (ball-in-cup
catch, cheetah run, and walker run). Results show that S2R
+ SAC performs comparably or better than RAD, and sub-
stantially outperforms DBC, proving that S2R can discard
task-irrelevant information when learning representations.

Natural Video Setting Results. Next, we evaluate S2R
+ SAC, RAD, and DBC in a more complex setting by in-
troducing the natural video as the background. In the last
row of Fig. 7, we give the results of three tasks (ball-in-cup
catch, cheetah run, and walker run). We notice that com-
pared with RAD and DBC, S2R + SAC again performs
better and has a higher sample efficiency. This attributes
to our well designing of S2R, which makes the agent only
focus on task-related features, insensitive to task-irrelevant
visual changes, and thus providing robust representations
for the training of the actor and critic.

Ablation Studies. Finally, in the cheetah run task in Fig. 8,
we investigate how S2R is affected by the regularization fac-
tors, predictive data (Y1, Y2 and Y ), optimization objectives,
and the number of views. (1) MCEB regularization factors.
In the MCEB objective, regularization factors are related to
the trade-off between the sufficiency and robustness of the
representation, and we use an exponential scheduler in all
experiments. As seen from Fig. 8(a), in MCEB, too-high val-
ues block information essential to the predictive data, while
too-small values reduce the benefit of regularization. Results
prove the rationality of the set values of the regularization
factors in MCEB. (2) MCEB predictive data. To utilize the

(a) MCEB regularization factors (b) MCEB predictive data

(c) Optimization objectives (d) Number of views

Figure 8: Results in the default setting for ablation studies.
(a) compares MCEB regularization factors, (b) compares
MCEB predictive data, (c) compares MCEB optimization
objectives, and (d) compares the number of views N in
MCEB. Additional results can be found in Appendix C.

sequential nature of RL, the predictive data in the MCEB
objective can be the reward and next latent representation or
either of them. However, our experiment results in Fig. 8(b)
show that simultaneously predicting the latent transition
function and reward function is better than predicting either
of them alone. (3) MCEB optimization objectives. With a



slight modification to the MCEB objective, its two variants
that are similar to reported works can be obtained. The first
variant is equal to PI-SAC (Lee et al., 2020b), which opti-
mizes the representation model by the CEB principle in the
single-view RL setting. The second variant is equal to MIB
(Multi-view Information Bottleneck) (Wang et al., 2019),
which replaces the CEB term I(Xj ;Zj |Yj) with the IB term
I(Xj ;Zj) in MCEB. Compared to these two variants, our
results in Fig. 8(c) show the better performance and higher
sample efficiency of the MCEB objective, confirming the
necessity of including multiple views and using the CEB
principle in S2R. (4) Number of views in MCEB. We fur-
ther ablate the number of views N included in the MCEB
objective to understand its effect on the S2R performance.
As we can see from Fig. 8(d), the MCEB objective can ben-
efit from multi-view data (especially when it contains the
complementary information) to learn robust representations
that improve performance, whereas this is premised on the
increase of the training time (as the increase of N means a
larger computational demand). To strike a balance between
the training time and the method performance, we choose
to set the number of views to 2.

6 DISCUSSION

In this paper, we present S2R, a multi-view self-supervised
representation learning method to learn efficient and suffi-
cient representations for the policy learning of the RL agent
based on the multi-view data and CEB principle. S2R intro-
duces a representation learning framework for multi-view
RL and defines a novel MCEB auxiliary objective for the
training of the actor and critic to extract useful features from
pixel states by ignoring task-irrelevant information. As a
decoupling representation module, S2R is easy to integrate
with the deep RL agents to find optimal policies. To evaluate
S2R, we perform extensive experiments on the DMControl
suite. Empirical results show that S2R learns robust repre-
sentations and improves sample efficiency of the RL agent
on various default and noisy visual continuous control tasks.

We want to emphasize that one way to theoretically analyze
the sample efficiency of the S2R method is using the sample
complexity trait. According to Kakade (2003) and Strehl
et al. (2006), the sample complexity of an RL algorithm
can be expressed as the amount of experience the RL agent
takes to learn to behave well. As an open and challenging
problem, theoretical analysis of the sample complexity of
the S2R method combined with specified RL algorithms is
a clear direction for future work. Besides, a natural exten-
sion of S2R is to combine it with model-based planning,
which may further improve its sample efficiency. It is well-
known that model-based RL algorithms are generally more
sample-efficient than model-free RL algorithms. Therefore,
for future research, we are interested in incorporating S2R
into model-based RL algorithms, first learning an accurate

environment model by reducing the model bias, then plan-
ning actions through the learned model. Also, integrating
S2R with exploration mechanisms is a reasonable way to
improve its sample efficiency in RL sparse-reward visual
settings. In RL realistic applications, the sparse-reward prob-
lem is common and inevitable, and the agent may need to
learn policies in environments with sparse or deceptive re-
wards. Such learning challenges urge us to improve the
exploration efficiency of the S2R method in the future.
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