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Abstract

Diabetes is a major global health issue, with cases predicted to rise from 4511

million today to 642 million by 2040. We use three machine learning methods2

(k-NN, regression and neural networks) to predict the glucose levels of mice based3

on genetic expression data across five tissues. Based on the best-performing neural4

network model, we derive modules that correspond to metabolic pathways by5

retraining networks on permuted feature clusters. The neural networks performed6

the best of the three model families, achieving a mean absolute percentage error of7

26.0% on the adipose tissue. From the neural network models, we produce a list of8

9 modules that have high impact in their respective models.9

1 Introduction10

Diabetes is a significant health crisis worldwide, as the number of people with diabetes has risen11

from 108 million in 1980 to 422 million in 2014. Determining causes and treatments for diabetes is12

critical, as adverse health impacts of diabetes hinder daily life and increase mortality (1). However,13

the causes of diabetes in humans, which include diet, weight, and genetics, are extremely complex.14

By studying model organisms such as mice in a controlled laboratory setting, researchers can more15

easily investigate causality between genetic features and diabetic outcomes. In this project, we use16

supervised machine learning to predict glucose levels based on gene expression levels of obese mice,17

with the goal of informing diabetes diagnoses in humans. Clusters of genes with high levels of18

co-expression also investigated to determine the most important biological pathways for glucose level19

prediction.20

Genetics-based disease prediction models play important roles in clinical decisions. In recent years,21

machine learning techniques are emerging as a key approach in the diagnosis of disease (3)(12).22

Machine learning models are capable of learning complex functions based on large genetic and clinical23

trait datasets. Various studies about applying machine learning algorithms to genetic sequence data24

have been conducted. Liu (2019) constructed a web server, BioSeq-Analysis, which aggregates the25

feature selection, predictor construction, and performance evaluation processes to help researchers26

construct predictor models for DNA, RNA, and protein sequences (13). Alimadadi et al. (2020)27

demonstrate how machine learning algorithms can be applied to RNA-Seq data from human left28

ventricular heart tissue for classifying clinical cardiomyopathies types (2). Jiang et al.(2020) utilized a29

Generative Adversarial Network to solve the small sample problem in brain-related disease prediction.30

Machine learning methods have also been employed for diabetes prediction in particular (9). Carter31

et al. (2016) used plasma metabolic profiling, genetics, and proteins to predict Type 2 diabetes using32

Bayesian Networks (4).33
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This project builds on the existing literature by comparing the performance of several machine34

learning techniques, determining the relative importance of co-expression clusters for glucose levels,35

and mapping these clusters to biological pathways for future research targeted on specific processes.36

2 Dataset37

Our dataset was obtained from the Attie Lab Diabetes Dataset (http://diabetes.wisc.edu/search.php).38

The dataset contains expression and clinical trait data from obese 10 week-old F2 offspring from39

B6 and BTBR mice that segregate for diabetes; i.e., demonstrate a wide range of blood glucose40

values. The dataset consists of 1) measurements of clinical traits such as blood glucose and insulin41

values, and 2) Microarray-based (Agilent) measurements of gene expressions in six tissues; islet,42

adipose, liver, gastrocnemius, kidney, and hypothalamus. All gene expression measurements used for43

modeling were transformed to normal quantiles with respect to each tissue.44

2.0.1 Transcript Cleaning45

The Agilent microarray uses 60-mer nucleotide probes to measure the level of transcript abundance for46

all genes. The array consists of 40,000 60-mers that are associated with 23156 genes. Therefore, our47

first step was to identify probes that harbor genetic differences (i.e. single nucleotide polymorphisms48

(SNPs), insertion/deletions (indels) and other complex structural variants) between B6 and BTBR49

mice and remove them from further consideration. The presence of these genetic variants between50

B6 and BTBR within a 60-mer sequence can cause false differences expression levels.51

First, we performed a batch query using the Basic Local Alignment Search Tool (BLAST) to identify52

the genomic location for each of the 40,000 60-mer sequences. This procedure excluded 5.5%53

and 8% of the 60-mers due to lack of alignment to the mouse genome, or alignment with less than54

58 nucleotides, respectively. This left us with robust alignment of 35,000 60-mers to the mouse55

genome. We chose a 58/60 nucleotide match as our benchmark to ensure rigorous alignment of56

probe-to-genome.57

The second step was to identify all 60-mers that contain any genetic variant between BTBR and B6,58

and their genomic locations. We first downloaded all BTBR-B6 variants from the Sanger Institute’s59

Mouse Genomes Project (19) and used it to identify all 60-mers that contain one or more of these60

variants. This analysis resulted in 6.8% (2,677) of the remaining probes being excluded from our61

analysis due to genetic differences between B6 and BTBR. Thus, we are left with approximately62

32,600 60-mers that we have confidently mapped to the mouse genome, and are free of genetic63

variants between B6 and BTBR, consisting 82% of the original dataset.64

The final step was to link the cleaned transcripts to specific genes. Using the Ensembl Release 10265

database, we mapped each 60-mer to it’s nearest corresponding gene using the chromosome range66

found using BLAST. This resulted in 87% (28362) of the clean 60-mers exactly matching the gene,67

which resulted in 23156 unique genes total.68

2.0.2 Missing Value Imputation69

All tissues contained a significant number of missing gene expression values which hindered accurate70

glucose predictions. To fill missing expression values for a given gene and tissue, a correlation matrix71

was constructed to determine the within-tissue gene with the strongest correlation to the gene to fill.72

A linear regression model was then trained with the gene with missing values as a function of the73

highest-correlation gene. The trained regression model was then used to fill the missing values.74

All 10-week glucose measurements were fully available. However, there were missing 4, 6, and75

8-week glucose measurements. Missing glucose level values for a given mouse was filled by fitting76

a univariate least squares regression function to the available values and linearly interpolating the77

missing glucose measurement.78
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2.1 Exploratory Analysis79

Having linked each transcript to its nearest gene, we also wanted to find how groups of transcripts80

might correspond to specific biological pathways (modules). We used weighted gene correlation81

network analysis (WGCNA) to identify modules within the cleaned transcripts (11)(20). WGCNA82

takes in expression values from the 32,600 transcripts and forms a pairwise adjacency matrix83

according to the formula ai,j = abs(0.5 + 0.5 ∗ corr(xi, xj))
β , where β = 12. Using this matrix,84

we form a scale-free and “signed” co-expression network that is used to compute modules of highly85

correlated transcripts. We did this for each tissue, yielding 29 (islet), 23 (liver), 37 (adipose), 2486

(gastroc), and 33 (kidney) modules. Owing to their highly coordinated regulation, gene modules87

often contain transcripts highly enriched for physiological pathways.88

We used the R package allez, a pathway enrichment algorithm, to enrich modules for biological89

pathways. Allez uses random-set scoring to find components in an enrichment signal (14). The90

program ultimately produces a list of of pathways for each module. To determine if a module was91

“significantly enriched”, we evaluated each pathway using two criteria: a minimum z-score of 5 and92

a minimum number of genes of 5. Overall, the enrichment was effective an average of 65.8% of93

modules across the five tissues being significantly enriched.94

Finally, we used the modules in each dataset to determine which sets of transcripts (and thereby95

genes) greatly affected model performance. To find which modules were significant, we randomized96

each module using the process described in Section 4.5.97

3 Methods98

Predictive models were constructed to predict mouse glucose levels using their gene expression data.99

We used a train-test split ratio of 7:1, and stratified sampling on mouse sex was used to minimize100

the impact of sex on predictions. Input data had dimensions (Number of mice for tissue x 31463)101

with the number of mice ranging from 473 for kidney tissue data to 490 for gastrocnemius tissue data.102

Output targets had dimensions (Number of mice for tissue x 4), where 4 represents the 4, 6, 8, and103

10-week glucose measurements for each mouse. A combined dataset of all tissues was also used for104

the baseline regression models. This dataset had dimensions (427 x 157315), corresponding to the105

427 mice with expression data for all tissues and 31463 x 5 total genes.106

Google Colab was used for preliminary code development, as well as initial model testing on smaller107

datasets. All regression results were obtained from Amazon’s AWS Cloud Computing services.108

Finally, all results from k-Nearest Neighbors and Neural Network models were computed using109

the University of Wisconsin Center for High Throughput Computing’s (UW CHTC) distributed110

computing system. The UW CHTC computing system is managed by HTCondor (a modified version111

of Condor for UW purposes) which was used to allocate necessary computing resources (processors,112

gpus, RAM, and disk memory).113

3.1 k-Nearest Neighbors114

k-Nearest Neighbors, a non-parametric statistical model, was used to obtain baseline results to115

compare with neural network results. To predict glucose level for a given mouse, the kNN model116

determines the k-nearest mice based on their gene expression data using the Euclidean distance117

metric. The glucose level prediction is the average glucose level of these k-nearest mice. For each118

tissue, k from 1 through 20 was used to determine the optimal number of nearest neighbors. As the119

k-NN model is non-parametric, a train-test split has no purpose. To maintain comparability, k-NN120

models were evaluated on the same testing data as the regression and neural network models.121

3.2 Regression Analysis122

Initially, regression modeling was conducted on the combined dataset of all tissues. Five models123

were employed in order to test a wide range of models and determine the optimal algorithm: Linear124
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Model Adipose Gastrocnemius Islet Liver Kidney

k-Nearest Neighbors 33.5 35.9 30.0 39.6 43.2
Regression 35.9 35.6 34.4 35.9 32.4
Neural Network 29.6 33.1 32.1 28.2 28.3

Table 1: Mean Absolute Percentage Error (MAPE) for each model family and tissue type

Regression, SGD Regression, Kernel Ridge Regression, SVM Regression, and Elastic Net Regression.125

L1 and L2 regularization was used for Elastic Net Regression. In the Simple approach, the model was126

trained using the gene expression data to predict each of the four weeks separately. In the iterative127

approach, we used the same data to train the model four times and predict the result for each trial128

separately. In the Reinforced approach, the outcome of the previous glucose measurement was129

included as an input feature to predict the outcome of the next glucose measurement. As detailed130

in Section 4.2, the highest performing model (Reinforced Elastic Net Regression) was used to form131

models trained separately on each of the five tissues.132

3.3 Neural Networks133

Experiments were conducted to determine optimal artificial neural network structures for glucose134

level prediction. Artificial neural networks (ANN) consist of fully connected layers composed of135

nodes, with weights connecting nodes between layers. The gene expression data is passed into the136

input layer of the ANN, and weights are trained in an iterative process by optimizing a loss function137

to produce glucose level predictions. Regularization techniques such as L2, Dropout, and Early138

Stopping were implemented. 7-fold cross validation was used to improve the generalization ability139

of the model. Randomized Grid Search was conducted on the following hyperparameters to find an140

optimal configuration: L2 regularization parameter, batch size, learning rate, optimizer, number of141

layers, layer sizes, and dropout rates. Mean Squared Error (MSE) was selected as the loss function142

for all neural networks, as this is a standard function used for neural network training.143

3.3.1 Permutation Testing144

After obtaining reliable glucose level predictions from the full set of features, permutation tests were145

conducted to determine the gene clusters most impactful for glucose prediction. To achieve this,146

neural network models were re-trained on the test dataset to obtain a baseline testing performance.147

Then, each gene cluster obtained from the WGCNA was randomly shuffled before reevaluating the148

testing performance. Calculating the difference in MAPE and MSE between the baseline data and149

the permuted data enabled evaluation of the contribution of each cluster of genes. These steps of150

permuting, reevaluating and comparing were repeated 100 times for each module. Each permutation151

test has two meaningful outcomes: 1) Model performance improves after permutation. This suggests152

permuting the features worsens the model performance. 2) Model performance decreases after153

permutation. This suggests that permuting the features benefits the model performance.154

3.4 Performance Metrics155

We primarily used two metrics to evaluate our model performance: mean squared error (MSE) and156

mean absolute percentage error (MAPE). Given that et = (ŷt)− yt is the model error on instance t,157

MAPE is calculated using the equation MAPE = 1
n

∑n
t=1

∣∣∣ etyt

∣∣∣. Similarly, MSE is calculated using158

the equation MSE = 1
n

∑n
t=1 e

2
t . These two metrics provide both a raw evaluation (MSE) and a159

scale-free evaluation (MAPE).160
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4 Results161

4.1 k-Nearest Neighbor Results162

The highest performing k-nearest neighbors model was trained on the islet expression data and163

resulted in an MAPE of 30.0%. kNN models trained on adipose and gastrocnemius expression164

data had slightly worse but comparable performance to the islet model, while liver and kidney-165

based models resulted in less accurate glucose prediction performance. The islet data-base kNN166

had both the most accurate predictions and the simplest model structure, as 13 neighbors yielded167

optimal performance. All other tissues required at least 16 neighbors to achieve optimal performance.168

This result shows that the islet gene expression data provides more useful information for glucose169

prediction than other tissues.170

4.2 Regression Analysis Results171

As detailed in Section 3.2, Reinforced Elastic Net Regression model was selected to be trained on each172

of the five tissues. This model yielded consistent results across all tissue types, ranging from a mean173

absolute percentage error (MAPE) of 32.38% for kidney to 35.94% for liver. The regression model174

had greater glucose prediction accuracy for liver and kidney tissue than the kNN model, comparable175

adipose and gastrocnemius-based performance, and significantly worse islet-based performance.176

Overall, the regression model had less variability in performance across tissues than the kNN model.177

4.3 Neural Network Results178

The neural network models were tuned and optimized on each tissue individually. Models across all179

tissues shared the following optimal hyperparameters: L2 regularization rate of 0.3, learning rate of180

0.0001, Adam optimizer, swish activation, 4 dense/dropout layers and batch size of 100. Adipose and181

gastroc performed optimally with dense layers with 30000, 15000, 1000, and 200 nodes respectively.182

The other three tissues performed best with dense layers with 25000, 150000, 5000 and 200 nodes183

respectively. All five tissues used dropout rates of 0.25, 0.25, 0.25 and 0.1. Overall, the neural184

network trained on the adipose tissue had the best performance, with a mean absolute percentage185

error (MAPE) of 26.0%. In contrast, gastrocnemius had the worst performance with a MAPE of186

29.5%. For all five tissues, neural networks performed best.187

4.4 Co-expression Network Results188

Figure 1: Percentage of transcripts in modules and percentage of modules enriched for each tissue.
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The WGCNA script yielded 146 total modules across the five tissues we examined (islet, liver, adipose,189

gastroc, kidney) in the F2 mice. Adipose had the most modules at 37, while liver had the least at 23.190

The remaining tissues had 24 (gastroc), 29 (islet) and 33 (kidney). In each tissue, the majority of191

transcripts (>=63%) uniquely belonged to a module. Furthermore, a large portion (>=57%) of the192

modules were significantly enriched (z-score >= 5) for gene ontology (GO) pathways, as shown in193

Figure 1. These results demonstrate that the co-expression network successfully grouped transcripts194

into biologically meaningful modules. In tandem with the models we trained, these modules pave the195

way for us to better understand the underlying biology in the following randomization tests.196

4.5 Permutation Testing Results197

We ran permutation tests on each of the modules in each tissue to determine the significance of each198

module in determining obesity in the F2 mice. Permutation testing was conducted only on neural199

networks due to their greater prediction accuracy on the unpermuted base dataset. The overall results200

are displayed in Figure 2 with more prominent results tabulated in Table 2, which are also discussed201

in more detail in the following section.202

Tissue Module Color Pathway MSE Diff. MAPE Diff (%)

Adipose Red cilium organization +171.6 +0.23
Gastroc Turquoise RN-protein complex biogenesis +806.8 +1.10
Gastroc Blue tricarboxylic acid cycle +463.7 +0.54
Islet Turquoise natural killer cell activation +1410.7 +1.51
Islet Brown pos. regulation of triglyceride +911.7 +0.77
Liver Turquoise ncRNA metabolic process +323.7 +0.30
Liver Red proteasome-med. process +171.5 +0.18
Kidney Turquoise actin filament bundle assembly +500.9 +0.70
Kidney Light Cyan isoprenoid biosynthetic process +369.3 +0.83

Table 2: Most important modules from each tissue based on average MSE differential, average MAPE
differential, and significant enrichment. Color corresponds with the point in Figure 2.

Figure 2: Performance differentials of modules for each tissue. Origin represents differential of 0
from original results in both metrics. Modules closer to the top-right corner are deemed important.

The adipose results were fairly ambiguous overall. The most significant module was red, which203

enriches for cilium organization. Ciliopathies, or diseases related to cilia disfunction, have been204
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shown to be associated with type 2 diabetes (18). Although this module did not significantly differ205

from optimal test results, these results may serve to reinforce the existing literature suggesting that206

cilia function may play a role in diabetes.207

In the gastrocnemius tissue, we found two modules (turquoise and blue) that seem exceptionally208

important compared to the rest. The turquoise module, which is associated with ribonucleoprotein209

complex biogenesis, showed a strong performance. However, there is a lack of significant literature210

linking this pathway with diabetes, with the most closely related literature discussing RNA binding211

in diabetes (15). This is a field of interest and further research. The blue module enriches for the212

tricarboxylic acid cycle (Kreb cycle), which is one of the most important metabolic cycles for ATP213

production. There is an enormous amount of work focusing on the relationship between this pathway214

and diabetes (17)(7) and the importance of this module supports this literature.215

The islet results delivered two promising modules (turquoise and brown), which both enrich for highly216

relevant pathways. The turquoise module enriches for natural killer (NK) cell activation involved217

in immune response. NK cell activity has been shown to be an indicator of both type 1 and type 2218

diabetes (10)(6). The strong performance of this module continues to suggest that NK cell activation219

is closely tied to diabetes. The brown module enriches for the positive regulation of sequestering of220

triglyceride. Triglyceride accumulation is closely related to glucolipotoxicity, the detrimental effects221

of high glucose and fat levels on pancreatic B-cell function, which has been shown to contribute to222

type 2 diabetes (16)(8). The performance of this module supports these analyses.223

The liver produced two interesting modules (turquoise and red). The turquoise module enriches224

for ncRNA (non-coding RNA) metabolic processes. Non-coding RNA regions are essential for the225

regulation of genes throughout the genome. This is a broad topic that encompasses many different226

pathways and thus it is unclear how to directly relate it to diabetes. This permutation test result227

suggests that there may be some ncRNA regions that play a more important role in diabetes, but228

further research is required. The red module enriches for proteasome-mediated ubiquitin-dependent229

protein catabolic process, which is not related to diabetes in existing literature.230

The kidney has two clear significant modules (turquoise and light cyan). The turquoise had relatively231

strong results, with an average MSE differential of +500.9 and average MAPE differential of +0.70%.232

This module enriches for actin filament bundle assembly, which has no diabetes-related literature233

associated with it. The strong performance of this module suggests that this pathway could potentially234

be related to diabetes and is a viable future research topic. The light cyan module enriches for the235

isoprenoid biosynthetic process. This inhibition of this pathway has been associated with increased236

insulin resistance and likeliness of type 2 diabetes (5). Thus, our model supports the idea that this237

pathway could be impactful to diabetes.238

5 Conclusion239

This work provides three main contributions: 1) a novel application of machine learning and neural240

networks to determine gene significance for the task of predicting mouse diabetes, 2) a reproducible241

and generalizable process of cleaning and associating genetic expression data from probes, 3) a series242

of biological pathways that the our testing has deemed significant. Among the biological pathways243

we deemed important, several have an existing literature base that our results serve to reinforce244

and support; this includes the tricarboxylic acid cycle in the gastrocnemius, the natural killer cell245

activation and positive regulation of triglyceride in the islet, and more. However, there were also246

several pathways that have very little relevant literature or are too general of a pathway, despite247

having strong results in the permutation tests. These pathways are promising starting points for future248

research.249

In our future work, we could expand our work to other datasets and investigate if results match the list250

of key pathways identified in this work. The current dataset contains a set of parental data that could251

be used to reinforce our existing results. Furthermore, we could dive into some specific pathways and252

tissues to determine causality between each pathway and diabetes.253
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