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Abstract

Speculative Decoding (SD) has emerged as a
widely used paradigm to accelerate the infer-
ence of large language models (LLMs) with-
out compromising generation quality. It works
by efficiently drafting multiple tokens using
a compact model and then verifying them in
parallel using the target LLM. Notably, Self-
Speculative Decoding proposes skipping cer-
tain layers to construct the draft model, which
eliminates the need for additional parameters
or training. Despite its strengths, we observe
in this work that drafting with layer skipping
exhibits significant sensitivity to domain shifts,
leading to a substantial drop in acceleration
performance. To enhance the domain generaliz-
ability of this paradigm, we introduce KNN-SSD,
an algorithm that leverages K-Nearest Neigh-
bor (KNN) search to match different skipped
layers with various domain inputs. We evalu-
ated our algorithm in various models and mul-
tiple tasks, observing that its application leads
to 1.3x~1.6x speedup in LLM inference.

1 Introduction

Large language models (LLMs) have proven highly
capable in handling various downstream tasks (Tou-
vron et al., 2023; OpenAl et al., 2024; Yang et al.,
2025). However, the token-by-token generation in
autoregressive decoding results in quadratic com-
putational complexity, which presents significant
efficiency challenges, particularly as model size
increases. To address this challenge, speculative
decoding (SD) has been proposed as a promising
solution for lossless acceleration of LLM infer-
ence (Xia et al., 2023; Leviathan et al., 2023; Chen
et al., 2023). At each decoding step, SD uses a
lightweight draft model to efficiently predict mul-
tiple tokens, which are then verified in parallel by
the target LLM to preserve the original output dis-
tribution. The effectiveness of SD hinges on the
trade-off between drafting latency and speculation
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Figure 1: Average speedup results under task-by-task
sample streams. The dashed line represents the average
speedup ratio achieved by KNN-SSD. Results indicate
that our KNN-SSD can achieve a stable speedup while
Self-SD methods’ speedups decline, as they are sensitive
to domain shifts.

accuracy (Xia et al., 2024; Hu et al., 2025). Dur-
ing inference, SD aims to both minimize latency
and maximize accuracy to improve efficiency while
maintaining output quality.

Recent advancements in SD have significantly
expanded the boundaries of the latency-accuracy
trade-off by employing diverse techniques, such
as integrating lightweight draft models into
LLMs (Ankner et al., 2024; Zhang et al., 2025)
or aligning a small model with a larger one (Kim
et al., 2023; Bachmann et al., 2025) for speculative
generation. However, these approaches inevitably
require additional models, which increase the to-
tal number of parameters and introduce additional
training complexity. Addressing this concern, Self-
SD (Zhang et al., 2024) has been proposed to se-
lectively skip certain layers within the large model
itself to construct a compact draft model.

In this work, we find that the selection of
skipped layers is not universal. Instead, one skip-
layer configuration could be sensitive to domain



shifts. For example, when applying a configuration
derived from the summarization task to other tasks,
as shown in Figure 1, we observe a significant re-
duction in speedup from 1.35x to less than 1.10x,
highlighting the need for domain-specific adapta-
tion. To tackle this issue, we propose KNN-SSD, a
method for dynamically adjusting skip-layer con-
figurations based on domain representations. The
key goal of KNN-SSD is to optimize skipped layers
specific to each domain, simulate realistic input
scenarios, and accurately identify the domain of
each sample. To achieve this goal, KNN-SSD in-
tegrates three main features: (1) a skipped layer
set optimization process for the specific domain of
samples, (2) an input sample stream designed to
simulate real-life user inputs better, and (3) a KNN
model using LLM’s last hidden representations to
identify the domain of input samples.

Experiments are conducted using LLaMA-2
series (Touvron et al., 2023) and Qwen-2.5 se-
ries (Yang et al., 2025) across various tasks, in-
cluding summarization, reasoning, translation, sto-
rytelling, and text-to-SQL. KNN-SSD achieves a
1.3x~1.6x speedup compared to autoregressive
decoding. This approach maintains over 80% to-
ken acceptance rate across the LLaMA-2 series and
over 99% token acceptance rate across the Qwen-2
series, indicating high alignment potential between
the draft model and the target LLM. Further anal-
ysis validated the effectiveness of KNN-SSD across
out-of-domain sample inputs and one dataset that
contains various types of samples.

To summarize, our key contributions are:

1. We introduce KNN-SSD, a self-speculative de-
coding algorithm with a fine-grained skipped
layer set selection, which adopts k-nearest
neighbor search to retrieve a suitable skipped
layer set for each input sample;

2. To evaluate our method, we design a dynamic
input data stream that contains samples from
diverse domains, and KNN-SSD can achieve a
1.3x~1.6x speedup across different models
without changing the generated tokens’ distri-
bution.

2 Related Work

Speculative Decoding (SD). Speculative Decod-
ing (SD) aims to accelerate autoregressive text
generation in LLMs without compromising out-
put quality (Xia et al., 2023; Leviathan et al., 2023).

It reduces decoding latency by predicting multiple
future tokens using a draft model or internal mech-
anisms, followed by verification and correction by
the target LLM. Existing strategies include aligning
small draft models with large models (Xia et al.,
2023; Kim et al., 2023; Bachmann et al., 2025) or
predicting k tokens in parallel (Cai et al., 2024;
Wen et al., 2024). In another line of work, plug-
and-play methods have been examined, with exam-
ples including appending pseudo tokens (Fu et al.,
2024) and skipping layers dynamically (Metel et al.,
2024; Xia et al., 2025) during inference. Despite
efficiency improvement, these methods often rely
on auxiliary models or sub-optimal choices, hinder-
ing scalability and effectiveness. The most related
methods to our work include Self-SD (Zhang et al.,
2024) and LayerSkip (Elhoushi et al., 2024), which
also construct draft models by skipping interme-
diate LLM layers. However, both approaches are
trained on a single data type and struggle with di-
verse data streams. Our work aims to tackle this
problem by integrating samples from various do-
mains.

Sparsity and Model Compression. Sparsity and
model compression are essential for enhancing the
efficiency of LLMs by reducing active parame-
ters or computations during inference (Hu et al.,
2022). Common approaches include parameter
pruning (Frantar and Alistarh, 2023; Ashkboos
et al., 2024; Sun et al., 2024), knowledge distil-
lation (Huang et al., 2022; Gu et al., 2024; Wu
et al., 2024), and quantization (Yao et al., 2022;
Liu et al., 2023; Park et al., 2024), which compress
models while preserving performance. Structured
sparsity methods, such as layer skipping (Liu et al.,
2024; Bhendawade et al., 2024; Xia et al., 2025)
and dynamic sparsification, further enhance effi-
ciency by adapting computation to input character-
istics. While these works aim to optimize computa-
tional workloads, they may sacrifice performance
by using sub-optimal choices because of insuffi-
cient search in the layer space. In contrast, our
KNN-SSD method can always find optimal choices
to accelerate LLM inference losslessly.

3 Background

3.1 Self-Speculative Decoding

Unlike traditional SD methods that require an
auxiliary draft model, Self-Speculative Decoding
(Self-SD) leverages the LLM’s internal structure



1.05 1.05

Summarization Reasoning Translation StoryTelling Text2SQL

Figure 2: Different tasks have different optimal skip
layer sets. "Sum SL" denotes the skip layer set opti-
mized for the Summarization task.

to draft tokens by selectively skipping certain lay-
ers (Zhang et al., 2024). Given data x1, ..., x, and
the target LLM M with L layers including both
attention and MLP layers, Self-SD aims to find an
optimal z € {0, 1}*, where 2() = 1 indicates that
the ith layer needs to be skipped and vice versa. A
black-box function f(-) is used to assess the aver-
age inference time per verified token:

z :argm;nf(M(z)|x1,...,xn). (D

Self-SD applies Bayesian optimization (Jones et al.,
1998) to identify an optimal skip layer set by itera-
tively selecting new z based on a Gaussian process
and evaluating with Eq(1). After a specified num-
ber of iterations, the best z is considered an approx-
imation of z* and is fixed for inference. During de-
coding, the selected layers are skipped to efficiently
generate draft tokens, which are then validated in
parallel by the full-parameter LLM to ensure the
output distribution remains unchanged.

3.2 Preliminary Study

While Self-SD improves inference efficiency, the
optimal layers to skip vary significantly across dif-
ferent tasks. To demonstrate this, we analyze the
performance of SD across multiple representative
tasks, including summarization, reasoning, story-
telling, translation, and text-to-SQL. As shown in
Figure 2, an optimized skip-layer configuration for
one task does not generalize well to others. For
example, a configuration that accelerates summa-
rization degrades performance in reasoning tasks.
These results show that the static skip-layer con-
figuration is suboptimal. This limits its effective-
ness, particularly in real-world scenarios where
query types are unpredictable. To achieve both
high inference efficiency and minimal performance
degradation, task-specific configurations are essen-
tial. This motivates the development of KNN-SSD,

which dynamically selects the most suitable skip-
layer configuration based on task characteristics,
ensuring robust and efficient speculative decoding
across diverse tasks.

4 Methodology

We introduce KNN-SSD, a generalizable Self-SD
method designed to improve inference efficiency
while maintaining adaptability across diverse tasks.
Figure 3 shows our method of accelerating infer-
ence. It first generates enough last hidden vec-
tors for each task during the pre-inference process.
Then, a fixed number of vectors are selected as rep-
resentative anchors to fit a KNN model. For each
task, its optimal skip layer set is searched using
a Bayesian optimization process. In the inference
process, a new input data will find its cluster using
the previous KNN model, and the corresponding
skip layer set will be used for the target LLM. Fi-
nally, we perform the standard Self-SD process,
which contains two stages of drafting and verifica-
tion to accelerate inference. By integrating these
two processes, KNN-SSD provides a flexible and
effective solution to accelerate LLLM inference in
real-world applications.

4.1 Pre Inference

Given a set of domains Dy, ..., D,, we first ran-
domly sample multiple instances from each do-
main, denoted as d;1, . . . , dj;, for domain D;. Each
sampled instance d;; is then passed through a pre-
trained LLM M to obtain its last hidden vector
representation v;;. These samples are then aggre-
gated and clustered into n groups pi1, . . . , fi, USINg
the K-means algorithm, where the number of clus-
ters is set to match the number of domains. For
each cluster u;, we identify k representative an-
chors based on their distance to the cluster centroid.
The collection of selected anchors for cluster p;
is denoted as A; = {aj1,...,a;}, which will be
used to fit a KNN model. The construction of the
anchor set A; is formally defined as follows:

A; = argmin Z lvij — pil|- (2)

SCDi|S|=k . Zg

Subsequently, for each domain D;, we utilize the
anchor set {a;1,...,a;;} to determine a domain-
specific skip layer set z; € {0,1}¥, where L de-
notes the total number of layers in the language
model M. Each element 2"

[

indicates whether
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Figure 3: Layer skipping and KNN process in KNN-SSD. Before LLM-related generation, KNN-SSD first performs
(a) Layer set Searching Optimization. For each task, KNN-SSD generates a task-specific skip layer set and stores
it in a configuration file; (b) Generate Anchor representatives. KNN-SSD then produces last hidden vectors for
each task to fit a KNN model. When a new sample is input, KNN-SSD first uses its last hidden vector as the input
representative and queries the KNN model. Based on the retrieved result, it selects the corresponding skip layer set

to perform decoding, thereby achieving acceleration.

the j-th layer should be skipped (zz(‘7 ) = 1) or re-
tained (zZ(J ) = 0) during inference. To identify
the optimal configuration z;, we employ Bayesian
Optimization (Jones et al., 1998) over the space
of binary layer masks, aiming to minimize an ob-
jective black-box function f(-) that measures the

average inference time per verified token:

2 = argmin (M (z)|an, . ai). (3)

All 27, ..., z; will be stored for future use and not
be changed.

4.2 Inference

For a newly arrived sample s, we first extract its last
hidden vector v from the model. We then perform
a KNN search based on cosine similarity between
the hidden vector of s and all representative an-
chors. This process yields a corresponding domain
label, effectively classifying the sample into one
of the known domains 7*. Based on the identified
domain, we apply its associated optimal skip-layer
configuration zj. to M to accelerate inference:

i*,j" = argmax — 9 (4
i [l - [lagl

Domain(s) = i*, (%)

M + 2. (6)

We then perform the standard Self-SD pro-
cess (Zhang et al., 2024), which involves two
stages: drafting and verification. During the draft-
ing stage, the LLM uses the previously selected
skip-layer configuration z; as a draft model M (z;)
to generate a sequence of draft tokens:

y = arg max log Py |z, y; M(z)), ()

where x and y denote input and output generated
by LLM, respectively, and 3’ represents the token
produced by the autoregressive process. In the veri-
fication stage, the full LLM verifies the draft tokens
in a single forward pass. This step validates the cor-
rectness of the generated tokens and either accepts
them or triggers a re-drafting if discrepancies are
found.

To better simulate real-world task streams, we
introduce the mix ratio , which denotes the prob-
ability that the next input sample belongs to a dif-
ferent task than the current one. A mix ratio of 0
corresponds to a task-by-task input stream, where



R=0.0 R=0.3 R=0.7 R=1.0 Speed  Overall

Models Methods E(Spd.) E(Spd.) E(Spd.) E(Spd.) (token/s) FE(Spd.)
VANILLA 1.00x 1.00x 1.00x 1.00x 13.62 1.00x
SELE-SD(FIX)  1.24x  121x  1.19x  1.17x 16.34 1.20x
LLaMA-2-13B SELF-SD(MIX) 1.23x  127x  1.24x  1.23x 16.88 1.24 %
KNN-SSD 1.42x  145x  143x  1.45x 19.61 1.44
VANILLA 1.00x 1.00x 1.00x 1.00x 13.22 1.00x
LLaMA-2-13B  SELE-SD(FIX) 1.13x  1.14x  1.08x  1.10x 14.67 1.11x
-Chat SELE-SD(MIX) 1.13x  1.17x  1.17x  1.16x 15.33 1.16x
KNN-SSD 1.33x  1.36x  136x  1.37x 17.85 1.35x
VANILLA 1.00x  1.00x  1.00x  1.00x 11.16 1.00x
SELE-SD(FIX)  1.25x  1.23x  1.27x  1.28x 14.06 1.26x
Qwen-25-14B oo b SDMIx)  140x  136x  139x  138x 1540  138x
KNN-SSD 1.60x  1.64x  1.63x  1.61x 18.08 1.62x
VANILLA 1.00x 1.00x 1.00x 1.00x 10.79 1.00x
Qwen-2.5-14B  SELF-SD(FIX)  1.18x  1.20x  1.20x  1.17x 12.84 1.19x
-Instruct SELE-SD(MIX) 1.26x  1.24x  127x  1.25x 13.49 1.25%
KNN-SSD 1.52x  1.49x  1.50x  1.52x 16.30 1.51x

Table 1: Comparison between KNN-SSD and two Self-SD methods. R indicates the mix ratio of sample streams.
We report the expected speedup ratio under different mix ratios, average decoding speed (token/s) under greedy
decoding, and average speedup ratio among different mix ratios. More details are provided in the Appendix C.3.

all consecutive samples come from the same task.
In contrast, a mix ratio of 1 indicates maximum
task mixing, where every two consecutive samples
are from different tasks. As the mix ratio grows,
the frequency of domain shift increases.

it # &,

if j = k. ®)

P(sit1 € Dj | si € Dy) = {iv_lT

5 Experiments

5.1 Experimental Setup

Implementation Details. We mainly evaluate
KNN-SSD on LLaMA-2 series (Touvron et al.,
2023) and Qwen-2.5 series (Yang et al., 2025)
across various tasks, including summarization,
mathematical reasoning, storytelling, translation,
and text-to-SQL. The evaluation datasets include
CNN/Daily Mail (CNN/DM) (Nallapati et al.,
2016), GSMS8K (Cobbe et al., 2021), TinyS-
tories (Eldan and Li, 2023), Wmtl6 DE-EN
(Wmtl6) (Bojar et al., 2016), and Spider2 (Lei
et al., 2025).

For each dataset, we used Bayesian optimiza-
tion ! (BO) to perform 1,000 iterations in 8 rep-

1h'ctps ://github.com/bayesian-optimization/
BayesianOptimization

resentative samples in search of the optimal skip-
layer configuration. The representative samples are
selected via the K-means algorithm from all last
hidden vectors generated by the LLM in the corre-
sponding dataset, ensuring optimal coverage of the
feature space. The maximum generation lengths on
CNN/DM, GSMS8K, Wmt16, Spider2, and TinyS-
tories are set to 64, 64, 64, 64, and 128, respec-
tively. We conduct 1-shot evaluation for CNN/DM
and TinyStories, 3-shot evaluation for Spider2, and
5-shot evaluation for GSM8K and Wmt16. For
each dataset, we extracted the most representative
k = 10 hidden vectors from the last hidden layer
across all data samples using cosine similarity to
serve as anchor points for the KNN model, follow-
ing the same approach as introduced earlier in the
BO framework. For each new input sample, we
also compute the cosine similarity between its last
hidden vector and the anchors, and assign it to the
task of its nearest neighbor.

Baselines. In our primary experiments, we com-
pared KNN-SSD and Self-SD approach (Zhang et al.,
2024) to assess their effectiveness. For the Self-SD
method, we primarily simulated two scenarios. In
the first scenario, a fixed skip-layer configuration
was determined based on the first sample in the
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Models Methods M « Speedup
Vanilla 1.00 - 1.00x

LLaMA-2 Self-SD(Fix) 2.17 0.62 1.10x
-13B Self-SD(Mix) 2.53 0.68 1.14x
KNN-SSD 312 0.88 1.34x

Vanilla 1.00 - 1.00x

LLaMA-2 Self-SD(Fix) 1.97 0.57 1.04x
-13B-Chat Self-SD(Mix) 2.14 0.59 1.09x
KNN-SSD 2.87 0.85 1.28x

Table 2: The results demonstrate the mean accepted
tokens, token acceptance rate, and actual speedup ratio
obtained from our tests on the LLaMA-2 series, showing
that KNN-SSD outperforms two Self-SD methods in every
metric.

task stream and remained unchanged throughout
the process, which is denoted as Self-SD(Fix). In
the second scenario, the skip-layer configuration
was adjusted by re-performing BO according to the
task distribution within the stream, and the newly
searched configuration was subsequently applied
for inference and also remained unchanged, which
is denoted as Self-SD(Mix).

Evaluation Metrics. We evaluate KNN-SSD using
two standard metrics commonly adopted in evalu-
ation: the mean generated length M (Stern et al.,
2018) and the token acceptance rate « (Leviathan
et al., 2023). Beyond these, we also report the
expected decoding throughput in tokens per sec-
ond, along with the expected wall-time speedup
ratio compared to standard autoregressive decod-
ing. Given M and «, the expected speedup can be
derived by the formula given by Leviathan et al.
(2023):

Ma
M-1D)(1-7r+a«

where r denotes the ratio of skipped layers.

E(Spd.) = ©)

5.2 Main Result

Table 1 presents the comparison between KNN-SSD
and two Self-SD methods on generation tasks. In
our experiments, we evaluate KNN-SSD under four
settings: mix ratio = 0, 0.3, 0.7, and 1 separately,
with 40 samples from five datasets each, 200 sam-
ples in total. The experimental results demonstrate
the following findings: (1) KNN-SSD shows superior
efficiency over prior methods, achieving consistent
speedups of 1.35x~1.62X over vanilla autoregres-
sive decoding across various models. (2) The mix
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Figure 4: The mean accepted tokens and mean accep-
tance rate under task-by-task sample streams. The
dashed lines represent the average length and rate
achieved by KNN-SSD across all five datasets.

ratio of sample flows doesn’t affect the speedup
of KNN-SSD. The speedup remains stable, which
indicates that KNN-SSD can handle various samples
in a more realistic scenario.

We present the mean accepted tokens, accep-
tance rate, as well as the actual speedup of LLaMA-
2-13B series in Table 2 and Figure 4, which further
validates the superiority of KNN-SSD over Self-SD.

5.3 Analysis

Inter & Intra. We use the MATH (Hendrycks
et al., 2021) dataset to assess the capabilities of
KNN-SSD in a single dataset with multiple domains.
In the MATH dataset, math questions are catego-
rized into seven types. Thus, using one specific skip
layer set for this dataset is insufficient, and we intro-
duce a fine-grained clustering to handle this mixed
domain. Figure 6 shows that each type of math
question can be clustered into a single group. Ta-
ble 3 indicates the speedup result for each method,
where we can clearly see that KNN-SSD outperforms
Self-SD methods and achieves a speedup of 1.23x
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Figure 5: Visualization of last hidden vectors from five
domains of samples. Results show these vectors can be
clearly divided into five clusters. From each cluster, we
selected ten vectors as representative anchors for our
KNN model.

Methods M a  Speedup
Vanilla 1.00 - 1.00x
Self-SD(Fix) 1.54 0.51 0.97x
Self-SD(Mix) 1.82 0.59  1.02x
KNN-SSD 237 081 1.23x

Table 3: Results of MATH dataset using LLaMA-2-13B.

and a mean generated length M of 2.37.

Figure 7 visualizes speedups on task-by-task set-
tings. Self-SD-Fix achieves high performance only
on the first subtask and declines on the rest of the
subtasks; while KNN-SSD has a better speedup than
the other two Self-SD methods.

Out of Domain Generalization. We adopt
the XSUM (Narayan et al., 2018) dataset, the
MATH (Hendrycks et al., 2021) dataset, and the
Alpaca (Taori et al., 2023) dataset as out-of-domain
tasks to assess KNN-SSD’s generalizability. XSUM
and CNN/DM datasets belong to summarization
tasks, whereas MATH and GSMS8K datasets in-
volve reasoning-based tasks. Therefore, although
we did not search for their respective optimal skip
layer sets for XSUM and MATH in our exper-
iments, it is reasonable that KNN-SSD would as-
sign XSUM samples to CNN/DM and thus adopt
CNN/DM’s optimal skip layer set, and the same
applies to MATH samples.

Compared to these two datasets, the Alpaca
dataset contains more diverse instruction-answer
pairs across summarization, reasoning, grammar,

Figure 6: Visualization of 700 last hidden vectors from
the MATH dataset using t-SNE method. It is clear to
see that all vectors can be categorized into 7 groups,
which aligns with the fact that the MATH dataset has 7
different kinds of problems.

Baseline Self-SD(Mix)
Self-SD(Fix) KNN-SSD
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Figure 7: Speedup results for task-by-task sample
streams on MATH dataset under three methods. While
KNN-SSD maintains a speedup of around 1.25X%, two
Self-SD methods decline as the number of domains
grows.

and many other tasks. Results indicate that al-
though some of the domains are not covered by our
five datasets in the main experiments, our method
can still assign an unknown sample to its most
similar domain and thus achieve inference accel-
eration. As shown in Table 4, our experimental
results demonstrate that the model achieves an ap-
proximately 1.15x ~ 1.25x speedup under the
KNN-SSD method, even without prior search.

Number of Clusters. Table 5 shows the result
of the influence of cluster numbers. We conducted
experiments on the Alpaca dataset as it covers a
variety of domains, using K-means clustering with
varying numbers of clusters. As shown in the
results, the speedup effect improves as the num-
ber of clusters increases, eventually surpassing the
speedup ratio observed in the out-of-domain exper-
iments (Table 4). However, when the cluster count



Datasets Methods M a  Speedup
Vanilla 1.00 - 1.00x
XSUM  Self-SD 142 0.56  0.99x
KNN-SSD  2.51 0.84 1.24x
Vanilla 1.00 - 1.00x
MATH  Self-SD 134 048  0.93x
KNN-SSD 213 0.76 1.17x
Vanilla 1.00 - 1.00x
Alpaca  Self-SD  1.26 043  0.92x
KNN-SSD  1.95 0.67 1.15x

Table 4: Results of out-of-domain datasets using
LLaMA-2-13B-Chat. No representative anchor of these
three domains is generated.

exceeds 5 (e.g., up to 7), the speedup plateaus, indi-
cating that partitioning Alpaca into five clusters is
sufficient—further subdivision yields no additional
gains.

Num. M a  Speedup
1 1.86 0.65 1.05x%
3 220 0.75 1.17x
5 2,52 0.80 1.23x
7 2.55 0.81 1.23x

Table 5: Results of the Alpaca dataset among different
numbers of clusters using LLaMA-2-13B-Chat. Num.
denotes the number of clusters.

Case Study. To better illustrate how our method
works, we provide a case study that presents a typ-
ical sample stream. In Figure 8, a sample stream
contains three common types of queries a user
might ask: summarization, reasoning, and trans-
lation. For each input query, KNN-SSD will first
compute its last hidden vector and then use a KNN
model to find its optimal skipped layer set. The typ-
ical speculative decoding will be conducted with
draft and verification steps, where blue and red to-
kens indicate that they are generated separately in
draft and verification steps. By constantly chang-
ing skipped layer sets, KNN-SSD achieves a stable
speedup compared to other methods that use a static
strategy, which is insufficient for diverse inputs.

6 Conclusion

In this work, we introduce KNN-SSD, an algorithm
that leverages K-Nearest Neighbor search to match

back to the days when he was banging in the goals in
Argentina for Boca Juniors. A big hit on the famous
steeped terracing at La Bombonera as he followed in
the footsteps of Diego Maradona ...... Summary:

Article: Carlos Tevez talks about being as free as a bird, @

Juventus

Question: Maddison has 5 boxes with 50 marbles in
each box. Then she gets 20 marbles from her friend.
How many marbles does she have now? Answer:

Searching for nearest skip layer set

Translate German to English: "Es ist fir mich wirklich",
sagte Spielberg, "unstrittig der groRte Zeitreise-Film,
der jemals gedreht wurde."

®

Searching for nearest skip layer set

Figure 8: Case study of how KNN-SSD works. Blue to-
kens indicate that they are generated during the drafting
step and verified by the model, while red tokens indicate
they are generated by prediction from the verification
step. Squares in red and blue indicate skipped attention
layers and MLP layers, respectively.

suitable skipped layers for various domain inputs.
KNN-SSD is designed to find an optimal skipped
layer set for each domain of data, which accelerates
LLM’s inference losslessly. To assess its ability,
we define a mix ratio of a sample stream, indicat-
ing how frequently the domain changes. We con-
ducted extensive experiments with various LLMs
and mix ratios and found that KNN-SSD can achieve
a speedup of around 1.3 x ~1.6x without changing
the ordinary distribution of the generated tokens.
Our in-depth analysis indicates that a single dataset
may also contain mixed domains. Furthermore,
KNN-SSD can achieve a 1.2x speedup on out-of-
domain datasets, showing its great potential in han-
dling various data streams in real-life scenarios.



Limitations

A few limitations need to be considered while our
KNN-SSD achieves a notable speedup on various
models. First, we did not incorporate draft tree ver-
ification, which has been shown to improve the to-
ken acceptance rate (Xia et al., 2025). Second, our
current evaluation is limited to models of moderate
scale. Due to practical considerations related to
computational resources, we have not yet extended
our method to larger-scale models. We leave these
directions for future work.

Ethics Statement

The datasets used in our experiment are publicly
released and labeled through interaction with hu-
mans in English. In this process, user privacy is
protected, and no personal information is contained
in the dataset. The scientific artifacts that we used
are available for research with permissive licenses.
And the use of these artifacts in this paper is consis-
tent with their intended use. Therefore, we believe
that our research work meets the ethics of ACL.
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A Preliminary Details

We visualize the optimal skipped layer sets we
searched across five tasks on two series of models
in Figure 9 and Figure 10.

B Datasets

We mainly evaluate KNN-SSD on LLaMA-2 (Tou-
vron et al., 2023) series and Qwen-2.5 (Yang et al.,
2025) series across diverse tasks. We select five dif-
ferent datasets, covering summarization, mathemat-
ical reasoning, translation, storytelling, and text-to-
SQL, which are CNN/Daily Mail (CNN/DM) (Nal-
lapati et al., 2016), GSMS8K (Cobbe et al., 2021),
TinyStories (Eldan and Li, 2023), Wmt16 DE-EN
(Wmtl6) (Bojar et al., 2016), and Spider2 (Lei
et al., 2025) datasets, respectively. The maxi-
mum generation lengths on CNN/DM, GSMS8K,
Wmtl6, Spider2, and TinyStories are set to 64, 64,
64, 64, and 128, respectively. We conduct 1-shot
evaluation for CNN/DM and TinyStories, 3-shot
evaluation for Spider2, and 5-shot evaluation for
GSMS8K and Wmt16. For further analysis, we also
use the XSUM (Narayan et al., 2018) dataset, the
MATH (Hendrycks et al., 2021) dataset, and the
Alpaca (Taori et al., 2023) dataset for the summa-
rization, mathematical reasoning, and instruction
following tasks, respectively.

CNN/DM  The CNN/Daily Mail dataset is a large-
scale benchmark for abstractive text summarization.
It consists of long news articles paired with short
summaries, derived from the CNN and Daily Mail
websites. The dataset is used to evaluate the perfor-
mance on long-form input and coherent summary
generation.

GSMS8K GSMSK is a high-quality benchmark
dataset for arithmetic reasoning, consisting of
grade school math word problems and their de-
tailed step-by-step solutions. It is used to evaluate
the reasoning and problem-solving capabilities in
mathematical contexts.

TinyStories TinyStories is a dataset of short, syn-
thetically generated children’s stories designed to
support research on language modeling and narra-
tive understanding. The stories are simple in struc-
ture and vocabulary, making the dataset suitable
for studying controlled text generation.

Wmtl6 The WMT16 De-En dataset is a standard
benchmark for machine translation, consisting of
parallel German-English sentence pairs collected
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from various sources. It is used to evaluate the
translation quality of models.

Spider2 Spider 2.0 is a complex and cross-
domain text-to-SQL benchmark designed to eval-
uate the ability of models to generate executable
SQL queries from natural language questions. It
includes diverse databases and query types, requir-
ing models to generalize to unseen schemas and
handle intricate reasoning.

XSUM XSUM is an abstractive summarization
dataset consisting of BBC news articles paired
with single-sentence summaries, in contrast to
CNN/DM, which provides longer, multi-sentence
summaries for news articles. It emphasizes con-
cise and information-rich summaries, testing the
models’ ability to extract key information.

MATH The MATH dataset is a benchmark for
mathematical problem solving, comprising high
school-level competition problems with detailed
step-by-step solutions. It covers a wide range of
topics, including algebra, counting and probabil-
ity, geometry, intermediate algebra, number the-
ory, prealgebra, and precalculus, and is designed
to evaluate the advanced reasoning and symbolic
manipulation abilities of language models.

Alpaca The Alpaca dataset is a collection of
instruction-following demonstrations generated us-
ing the self-instruct method, based on the outputs
of a strong language model. It covers a wide range
of tasks, making it suitable for us to test the gener-
alizability of KNN-SSD.

C Experimental Details

C.1 Setups

During the pre-inference stage, we set the maxi-
mum iterations of Bayesian Optimization to 1,000
and the number of samples to 8. For each dataset,
we first randomly choose 1,000 last hidden vec-
tors, then we use the K-means algorithm to find 10
representatives as anchors for the KNN model.

In the inference process, experiments were con-
ducted on 8 x NVIDIA RTX 3090 GPU (24GB) and
4xNVIDIA RTX A6000 GPU (40GB) with CUDA
12.0, and an Intel(R) Xeon(R) Gold 5117 CPU with
14 cores. Pytorch and Huggingface transformers
package are used to perform both baselines and our
method.
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Figure 9: Visualization of skipped layer set configuration of LLaMA-2-13B optimized by Self-SD (Zhang et al.,
2024) on different task domains. Gray squares indicate retained layers, red squares denote skipped attention layers,
and blue squares signify skipped MLP layers.

C.2 Evaluation Metrics can handle a more diverse input stream with stable

. . inference acceleration.
We further demonstrate the two main metrics we

used in the main experiments. The mean accepted
length M denotes the average number of output
tokens produced by the target LLM during each
forward pass. The token acceptance rate « refers
to the ratio of tokens that are accepted by the tar-
get LLM to the total number of draft steps, which
showcases the expectation of whether the target
LLM accepts a token generated by the draft models.
Given M and «, the expected wall-time speedup
can be derived as follows:

Mo

E(Speedup) = m

(10)

where c is defined as the cost efficient in Leviathan
et al. (2023). It represents the ratio of the draft
model’s required time to the target model’s during
a single forward pass. In the Self-SD method, we
define ¢ = 1 — r, where r represents the proportion
of skipped layers to total layers, as the draft model
only needs to process the retained layers.

C.3 Details of Main Results

More details are provided in Table 6. Results show
that our KNN-SSD outperforms the two Self-SD
methods on both metrics, indicating our method
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Figure 10: Visualization of skipped layer set configuration of Qwen-2.5-14B optimized by Self-SD (Zhang et al.,
2024) on different task domains.

R=0.0 R=0.3 R=0.7 R=1.0 Overall

Models Methods
M a M o M a M o M a
VANILLA 100 - 100 - 100 - 100 - 100 -
SELF-SD(F1x) 2.22 0.65 2.19 0.63 2.14 0.59 2.12 0.61 2.17 0.62
LLaMA-2-13B SELF-SD(MiIx) 2.50 0.64 2.58 0.70 2.53 0.69 2.52 0.68 2.53 0.68
KNN-SSD 3.10 0.86 3.14 0.88 3.11 0.89 3.12 0.88 3.12 0.88
VANILLA 1.00 1.00 1.00 1.00 1.00

LLaMA-2-13B SELF-SD(FIx) 2.03 0.60 1.99 0.56 192 0.55 197 0.57 197 0.57
-Chat SELF-SD(MIx) 2.10 0.56 2.14 0.61 2.18 0.59 2.15 0.58 2.14 0.59

KNN-SSD 2.84 0.84 2.85 0.86 2.90 0.85 2.90 0.86 2.87 0.85
VANILLA tio0 - 100 - 100 - 100 - 1.00 -
Qwen-2.5-14B SELF-SD(F1x) 2.41 0.82 240 0.82 244 0.84 2.48 0.85 243 0.83
wen-2.9- SELF-SD(Mix) 3.02 0.89 294 0.89 299 0.90 2.97 0.90 2.98 0.90
KNN-SSD 4.35 099 442 1.00 4.40 1.00 4.38 0.99 4.37 1.00
VANILLA 1.00 1.00 1.00 1.00 - 1.00

Qwen-2.5-14B SELF-SD(F1x) 2.12 0.80 2.16 0.80 2.16 0.80 2.10 0.79 2.13 0.80
-Instruct SELF-SD(MIx) 2.32 0.83 225 0.84 2.35 0.87 2.34 0.87 2.32 0.85
KNN-SSD 3.78 1.00 3.69 099 3.71 0.99 3.75 1.00 3.73 1.00

Table 6: Comparison between KNN-SSD and two Self-SD methods. R indicates the mix ratio of sample streams. We
report the mean accepted length and token acceptance rate, which are denoted as M and «, respectively.
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