
KNN-SSD: Enabling Dynamic Self-Speculative Decoding via
Nearest Neighbor Layer Set Optimization

Anonymous ACL submission

Abstract001

Speculative Decoding (SD) has emerged as a002
widely used paradigm to accelerate the infer-003
ence of large language models (LLMs) with-004
out compromising generation quality. It works005
by efficiently drafting multiple tokens using006
a compact model and then verifying them in007
parallel using the target LLM. Notably, Self-008
Speculative Decoding proposes skipping cer-009
tain layers to construct the draft model, which010
eliminates the need for additional parameters011
or training. Despite its strengths, we observe012
in this work that drafting with layer skipping013
exhibits significant sensitivity to domain shifts,014
leading to a substantial drop in acceleration015
performance. To enhance the domain generaliz-016
ability of this paradigm, we introduce KNN-SSD,017
an algorithm that leverages K-Nearest Neigh-018
bor (KNN) search to match different skipped019
layers with various domain inputs. We evalu-020
ated our algorithm in various models and mul-021
tiple tasks, observing that its application leads022
to 1.3×∼1.6× speedup in LLM inference.023

1 Introduction024

Large language models (LLMs) have proven highly025

capable in handling various downstream tasks (Tou-026

vron et al., 2023; OpenAI et al., 2024; Yang et al.,027

2025). However, the token-by-token generation in028

autoregressive decoding results in quadratic com-029

putational complexity, which presents significant030

efficiency challenges, particularly as model size031

increases. To address this challenge, speculative032

decoding (SD) has been proposed as a promising033

solution for lossless acceleration of LLM infer-034

ence (Xia et al., 2023; Leviathan et al., 2023; Chen035

et al., 2023). At each decoding step, SD uses a036

lightweight draft model to efficiently predict mul-037

tiple tokens, which are then verified in parallel by038

the target LLM to preserve the original output dis-039

tribution. The effectiveness of SD hinges on the040

trade-off between drafting latency and speculation041

Summarization Reasoning Translation StoryTelling Text2SQL

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Sp
ee

du
p

Ra
tio

SelfSD(Fix)
SelfSD(Mix)
KNN-SSD

Figure 1: Average speedup results under task-by-task
sample streams. The dashed line represents the average
speedup ratio achieved by KNN-SSD. Results indicate
that our KNN-SSD can achieve a stable speedup while
Self-SD methods’ speedups decline, as they are sensitive
to domain shifts.

accuracy (Xia et al., 2024; Hu et al., 2025). Dur- 042

ing inference, SD aims to both minimize latency 043

and maximize accuracy to improve efficiency while 044

maintaining output quality. 045

Recent advancements in SD have significantly 046

expanded the boundaries of the latency-accuracy 047

trade-off by employing diverse techniques, such 048

as integrating lightweight draft models into 049

LLMs (Ankner et al., 2024; Zhang et al., 2025) 050

or aligning a small model with a larger one (Kim 051

et al., 2023; Bachmann et al., 2025) for speculative 052

generation. However, these approaches inevitably 053

require additional models, which increase the to- 054

tal number of parameters and introduce additional 055

training complexity. Addressing this concern, Self- 056

SD (Zhang et al., 2024) has been proposed to se- 057

lectively skip certain layers within the large model 058

itself to construct a compact draft model. 059

In this work, we find that the selection of 060

skipped layers is not universal. Instead, one skip- 061

layer configuration could be sensitive to domain 062

1

shifts. For example, when applying a configuration063

derived from the summarization task to other tasks,064

as shown in Figure 1, we observe a significant re-065

duction in speedup from 1.35× to less than 1.10×,066

highlighting the need for domain-specific adapta-067

tion. To tackle this issue, we propose KNN-SSD, a068

method for dynamically adjusting skip-layer con-069

figurations based on domain representations. The070

key goal of KNN-SSD is to optimize skipped layers071

specific to each domain, simulate realistic input072

scenarios, and accurately identify the domain of073

each sample. To achieve this goal, KNN-SSD in-074

tegrates three main features: (1) a skipped layer075

set optimization process for the specific domain of076

samples, (2) an input sample stream designed to077

simulate real-life user inputs better, and (3) a KNN078

model using LLM’s last hidden representations to079

identify the domain of input samples.080

Experiments are conducted using LLaMA-2081

series (Touvron et al., 2023) and Qwen-2.5 se-082

ries (Yang et al., 2025) across various tasks, in-083

cluding summarization, reasoning, translation, sto-084

rytelling, and text-to-SQL. KNN-SSD achieves a085

1.3×∼1.6× speedup compared to autoregressive086

decoding. This approach maintains over 80% to-087

ken acceptance rate across the LLaMA-2 series and088

over 99% token acceptance rate across the Qwen-2089

series, indicating high alignment potential between090

the draft model and the target LLM. Further anal-091

ysis validated the effectiveness of KNN-SSD across092

out-of-domain sample inputs and one dataset that093

contains various types of samples.094

To summarize, our key contributions are:095

1. We introduce KNN-SSD, a self-speculative de-096

coding algorithm with a fine-grained skipped097

layer set selection, which adopts k-nearest098

neighbor search to retrieve a suitable skipped099

layer set for each input sample;100

2. To evaluate our method, we design a dynamic101

input data stream that contains samples from102

diverse domains, and KNN-SSD can achieve a103

1.3×∼1.6× speedup across different models104

without changing the generated tokens’ distri-105

bution.106

2 Related Work107

Speculative Decoding (SD). Speculative Decod-108

ing (SD) aims to accelerate autoregressive text109

generation in LLMs without compromising out-110

put quality (Xia et al., 2023; Leviathan et al., 2023).111

It reduces decoding latency by predicting multiple 112

future tokens using a draft model or internal mech- 113

anisms, followed by verification and correction by 114

the target LLM. Existing strategies include aligning 115

small draft models with large models (Xia et al., 116

2023; Kim et al., 2023; Bachmann et al., 2025) or 117

predicting k tokens in parallel (Cai et al., 2024; 118

Wen et al., 2024). In another line of work, plug- 119

and-play methods have been examined, with exam- 120

ples including appending pseudo tokens (Fu et al., 121

2024) and skipping layers dynamically (Metel et al., 122

2024; Xia et al., 2025) during inference. Despite 123

efficiency improvement, these methods often rely 124

on auxiliary models or sub-optimal choices, hinder- 125

ing scalability and effectiveness. The most related 126

methods to our work include Self-SD (Zhang et al., 127

2024) and LayerSkip (Elhoushi et al., 2024), which 128

also construct draft models by skipping interme- 129

diate LLM layers. However, both approaches are 130

trained on a single data type and struggle with di- 131

verse data streams. Our work aims to tackle this 132

problem by integrating samples from various do- 133

mains. 134

Sparsity and Model Compression. Sparsity and 135

model compression are essential for enhancing the 136

efficiency of LLMs by reducing active parame- 137

ters or computations during inference (Hu et al., 138

2022). Common approaches include parameter 139

pruning (Frantar and Alistarh, 2023; Ashkboos 140

et al., 2024; Sun et al., 2024), knowledge distil- 141

lation (Huang et al., 2022; Gu et al., 2024; Wu 142

et al., 2024), and quantization (Yao et al., 2022; 143

Liu et al., 2023; Park et al., 2024), which compress 144

models while preserving performance. Structured 145

sparsity methods, such as layer skipping (Liu et al., 146

2024; Bhendawade et al., 2024; Xia et al., 2025) 147

and dynamic sparsification, further enhance effi- 148

ciency by adapting computation to input character- 149

istics. While these works aim to optimize computa- 150

tional workloads, they may sacrifice performance 151

by using sub-optimal choices because of insuffi- 152

cient search in the layer space. In contrast, our 153

KNN-SSD method can always find optimal choices 154

to accelerate LLM inference losslessly. 155

3 Background 156

3.1 Self-Speculative Decoding 157

Unlike traditional SD methods that require an 158

auxiliary draft model, Self-Speculative Decoding 159

(Self-SD) leverages the LLM’s internal structure 160

2

Summarization Reasoning Translation StoryTelling Text2SQL
0.9

1.0

1.1

1.2

1.3

1.4

S
p
ee

d
u
p

1.41

1.16

0.97

1.35

1.18

1.22
1.24

1.2

1.26

1.11
1.13

1.05

1.27

1.22

1.09

1.02

1.07
1.1

1.45

1.22

1.05

0.95

1.21

1.17

1.31

Sum SL
Re SL
Tran SL

St SL
SQL SL

Figure 2: Different tasks have different optimal skip
layer sets. "Sum SL" denotes the skip layer set opti-
mized for the Summarization task.

to draft tokens by selectively skipping certain lay-161

ers (Zhang et al., 2024). Given data x1, . . . , xn and162

the target LLM M with L layers including both163

attention and MLP layers, Self-SD aims to find an164

optimal z ∈ {0, 1}L, where z(i) = 1 indicates that165

the ith layer needs to be skipped and vice versa. A166

black-box function f(·) is used to assess the aver-167

age inference time per verified token:168

z∗ = argmin
z

f
(
M(z)|x1, . . . , xn

)
. (1)169

Self-SD applies Bayesian optimization (Jones et al.,170

1998) to identify an optimal skip layer set by itera-171

tively selecting new z based on a Gaussian process172

and evaluating with Eq(1). After a specified num-173

ber of iterations, the best z is considered an approx-174

imation of z∗ and is fixed for inference. During de-175

coding, the selected layers are skipped to efficiently176

generate draft tokens, which are then validated in177

parallel by the full-parameter LLM to ensure the178

output distribution remains unchanged.179

3.2 Preliminary Study180

While Self-SD improves inference efficiency, the181

optimal layers to skip vary significantly across dif-182

ferent tasks. To demonstrate this, we analyze the183

performance of SD across multiple representative184

tasks, including summarization, reasoning, story-185

telling, translation, and text-to-SQL. As shown in186

Figure 2, an optimized skip-layer configuration for187

one task does not generalize well to others. For188

example, a configuration that accelerates summa-189

rization degrades performance in reasoning tasks.190

These results show that the static skip-layer con-191

figuration is suboptimal. This limits its effective-192

ness, particularly in real-world scenarios where193

query types are unpredictable. To achieve both194

high inference efficiency and minimal performance195

degradation, task-specific configurations are essen-196

tial. This motivates the development of KNN-SSD,197

which dynamically selects the most suitable skip- 198

layer configuration based on task characteristics, 199

ensuring robust and efficient speculative decoding 200

across diverse tasks. 201

4 Methodology 202

We introduce KNN-SSD, a generalizable Self-SD 203

method designed to improve inference efficiency 204

while maintaining adaptability across diverse tasks. 205

Figure 3 shows our method of accelerating infer- 206

ence. It first generates enough last hidden vec- 207

tors for each task during the pre-inference process. 208

Then, a fixed number of vectors are selected as rep- 209

resentative anchors to fit a KNN model. For each 210

task, its optimal skip layer set is searched using 211

a Bayesian optimization process. In the inference 212

process, a new input data will find its cluster using 213

the previous KNN model, and the corresponding 214

skip layer set will be used for the target LLM. Fi- 215

nally, we perform the standard Self-SD process, 216

which contains two stages of drafting and verifica- 217

tion to accelerate inference. By integrating these 218

two processes, KNN-SSD provides a flexible and 219

effective solution to accelerate LLM inference in 220

real-world applications. 221

4.1 Pre Inference 222

Given a set of domains D1, . . . , Dn, we first ran- 223

domly sample multiple instances from each do- 224

main, denoted as di1, . . . , dim for domain Di. Each 225

sampled instance dij is then passed through a pre- 226

trained LLM M to obtain its last hidden vector 227

representation vij . These samples are then aggre- 228

gated and clustered into n groups µ1, . . . , µn using 229

the K-means algorithm, where the number of clus- 230

ters is set to match the number of domains. For 231

each cluster µi, we identify k representative an- 232

chors based on their distance to the cluster centroid. 233

The collection of selected anchors for cluster µi 234

is denoted as Ai = {ai1, . . . , aik}, which will be 235

used to fit a KNN model. The construction of the 236

anchor set Ai is formally defined as follows: 237

Ai = argmin
S⊆Di,|S|=k

∑
vij∈S

∥vij − µi∥. (2) 238

Subsequently, for each domain Di, we utilize the 239

anchor set {ai1, . . . , aik} to determine a domain- 240

specific skip layer set zi ∈ {0, 1}L, where L de- 241

notes the total number of layers in the language 242

model M. Each element z(j)i indicates whether 243

3

LLM Outputs

Bayes
Optimization

Last Hidden
Vectors

Last Hidden
Vectors

Attention

MLP

Attention

MLP

Attention

MLP

0

0

1

0

0

1[
]

z

Attention

MLP

Attention

MLP

Attention

MLP

1

0

0

0

0

1[
]

z

Attention

MLP

Attention

MLP

Attention

MLP

0

1

0

0

1

0[
]

z

input tokens generated tokens inter cluster intra cluster

Query Skipped Layer Set

.

Summarize

Reasoning

Translate

LLM Inputs

Skipped Layer Set
Optimization

SSD via Querying
Optimized Layer Set

update

Query

Clustering

To solve this math
problem, we ...

Figure 3: Layer skipping and KNN process in KNN-SSD. Before LLM-related generation, KNN-SSD first performs
(a) Layer set Searching Optimization. For each task, KNN-SSD generates a task-specific skip layer set and stores
it in a configuration file; (b) Generate Anchor representatives. KNN-SSD then produces last hidden vectors for
each task to fit a KNN model. When a new sample is input, KNN-SSD first uses its last hidden vector as the input
representative and queries the KNN model. Based on the retrieved result, it selects the corresponding skip layer set
to perform decoding, thereby achieving acceleration.

the j-th layer should be skipped (z
(j)
i = 1) or re-244

tained (z
(j)
i = 0) during inference. To identify245

the optimal configuration zi, we employ Bayesian246

Optimization (Jones et al., 1998) over the space247

of binary layer masks, aiming to minimize an ob-248

jective black-box function f(·) that measures the249

average inference time per verified token:250

z∗i = argmin
zi

f
(
M(zi)|ai1, . . . , aik

)
. (3)251

All z∗1 , . . . , z
∗
n will be stored for future use and not252

be changed.253

4.2 Inference254

For a newly arrived sample s, we first extract its last255

hidden vector v from the model. We then perform256

a KNN search based on cosine similarity between257

the hidden vector of s and all representative an-258

chors. This process yields a corresponding domain259

label, effectively classifying the sample into one260

of the known domains i∗. Based on the identified261

domain, we apply its associated optimal skip-layer262

configuration z∗i∗ to M to accelerate inference:263

i∗, j∗ = argmax
i,j

v · aij
∥v∥ · ∥aij∥

, (4) 264

Domain(s) = i∗, (5) 265

M← z∗i∗ . (6) 266

We then perform the standard Self-SD pro- 267

cess (Zhang et al., 2024), which involves two 268

stages: drafting and verification. During the draft- 269

ing stage, the LLM uses the previously selected 270

skip-layer configuration zi as a draft model M(zi) 271

to generate a sequence of draft tokens: 272

y′ = argmax
y

log P (y | x, y; M(zi)), (7) 273

where x and y denote input and output generated 274

by LLM, respectively, and y′ represents the token 275

produced by the autoregressive process. In the veri- 276

fication stage, the full LLM verifies the draft tokens 277

in a single forward pass. This step validates the cor- 278

rectness of the generated tokens and either accepts 279

them or triggers a re-drafting if discrepancies are 280

found. 281

To better simulate real-world task streams, we 282

introduce the mix ratio r, which denotes the prob- 283

ability that the next input sample belongs to a dif- 284

ferent task than the current one. A mix ratio of 0 285

corresponds to a task-by-task input stream, where 286

4

Models Methods R=0.0 R=0.3 R=0.7 R=1.0 Speed
(token/s)

Overall
E(Spd.)E(Spd.) E(Spd.) E(Spd.) E(Spd.)

LLaMA-2-13B

VANILLA 1.00× 1.00× 1.00× 1.00× 13.62 1.00×
SELF-SD(FIX) 1.24× 1.21× 1.19× 1.17× 16.34 1.20×
SELF-SD(MIX) 1.23× 1.27× 1.24× 1.23× 16.88 1.24×
KNN-SSD 1.42× 1.45× 1.43× 1.45× 19.61 1.44×

LLaMA-2-13B
-Chat

VANILLA 1.00× 1.00× 1.00× 1.00× 13.22 1.00×
SELF-SD(FIX) 1.13× 1.14× 1.08× 1.10× 14.67 1.11×
SELF-SD(MIX) 1.13× 1.17× 1.17× 1.16× 15.33 1.16×
KNN-SSD 1.33× 1.36× 1.36× 1.37× 17.85 1.35×

Qwen-2.5-14B

VANILLA 1.00× 1.00× 1.00× 1.00× 11.16 1.00×
SELF-SD(FIX) 1.25× 1.23× 1.27× 1.28× 14.06 1.26×
SELF-SD(MIX) 1.40× 1.36× 1.39× 1.38× 15.40 1.38×
KNN-SSD 1.60× 1.64× 1.63× 1.61× 18.08 1.62×

Qwen-2.5-14B
-Instruct

VANILLA 1.00× 1.00× 1.00× 1.00× 10.79 1.00×
SELF-SD(FIX) 1.18× 1.20× 1.20× 1.17× 12.84 1.19×
SELF-SD(MIX) 1.26× 1.24× 1.27× 1.25× 13.49 1.25×
KNN-SSD 1.52× 1.49× 1.50× 1.52× 16.30 1.51×

Table 1: Comparison between KNN-SSD and two Self-SD methods. R indicates the mix ratio of sample streams.
We report the expected speedup ratio under different mix ratios, average decoding speed (token/s) under greedy
decoding, and average speedup ratio among different mix ratios. More details are provided in the Appendix C.3.

all consecutive samples come from the same task.287

In contrast, a mix ratio of 1 indicates maximum288

task mixing, where every two consecutive samples289

are from different tasks. As the mix ratio grows,290

the frequency of domain shift increases.291

P (si+1 ∈ Dj | si ∈ Dk) =

{
r

N−1 if j ̸= k,

1− r if j = k.
(8)292

5 Experiments293

5.1 Experimental Setup294

Implementation Details. We mainly evaluate295

KNN-SSD on LLaMA-2 series (Touvron et al.,296

2023) and Qwen-2.5 series (Yang et al., 2025)297

across various tasks, including summarization,298

mathematical reasoning, storytelling, translation,299

and text-to-SQL. The evaluation datasets include300

CNN/Daily Mail (CNN/DM) (Nallapati et al.,301

2016), GSM8K (Cobbe et al., 2021), TinyS-302

tories (Eldan and Li, 2023), Wmt16 DE-EN303

(Wmt16) (Bojar et al., 2016), and Spider2 (Lei304

et al., 2025).305

For each dataset, we used Bayesian optimiza-306

tion 1 (BO) to perform 1,000 iterations in 8 rep-307

1https://github.com/bayesian-optimization/
BayesianOptimization

resentative samples in search of the optimal skip- 308

layer configuration. The representative samples are 309

selected via the K-means algorithm from all last 310

hidden vectors generated by the LLM in the corre- 311

sponding dataset, ensuring optimal coverage of the 312

feature space. The maximum generation lengths on 313

CNN/DM, GSM8K, Wmt16, Spider2, and TinyS- 314

tories are set to 64, 64, 64, 64, and 128, respec- 315

tively. We conduct 1-shot evaluation for CNN/DM 316

and TinyStories, 3-shot evaluation for Spider2, and 317

5-shot evaluation for GSM8K and Wmt16. For 318

each dataset, we extracted the most representative 319

k = 10 hidden vectors from the last hidden layer 320

across all data samples using cosine similarity to 321

serve as anchor points for the KNN model, follow- 322

ing the same approach as introduced earlier in the 323

BO framework. For each new input sample, we 324

also compute the cosine similarity between its last 325

hidden vector and the anchors, and assign it to the 326

task of its nearest neighbor. 327

Baselines. In our primary experiments, we com- 328

pared KNN-SSD and Self-SD approach (Zhang et al., 329

2024) to assess their effectiveness. For the Self-SD 330

method, we primarily simulated two scenarios. In 331

the first scenario, a fixed skip-layer configuration 332

was determined based on the first sample in the 333

5

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization

Models Methods M α Speedup

LLaMA-2
-13B

Vanilla 1.00 - 1.00×
Self-SD(Fix) 2.17 0.62 1.10×
Self-SD(Mix) 2.53 0.68 1.14×
KNN-SSD 3.12 0.88 1.34×

LLaMA-2
-13B-Chat

Vanilla 1.00 - 1.00×
Self-SD(Fix) 1.97 0.57 1.04×
Self-SD(Mix) 2.14 0.59 1.09×
KNN-SSD 2.87 0.85 1.28×

Table 2: The results demonstrate the mean accepted
tokens, token acceptance rate, and actual speedup ratio
obtained from our tests on the LLaMA-2 series, showing
that KNN-SSD outperforms two Self-SD methods in every
metric.

task stream and remained unchanged throughout334

the process, which is denoted as Self-SD(Fix). In335

the second scenario, the skip-layer configuration336

was adjusted by re-performing BO according to the337

task distribution within the stream, and the newly338

searched configuration was subsequently applied339

for inference and also remained unchanged, which340

is denoted as Self-SD(Mix).341

Evaluation Metrics. We evaluate KNN-SSD using342

two standard metrics commonly adopted in evalu-343

ation: the mean generated length M (Stern et al.,344

2018) and the token acceptance rate α (Leviathan345

et al., 2023). Beyond these, we also report the346

expected decoding throughput in tokens per sec-347

ond, along with the expected wall-time speedup348

ratio compared to standard autoregressive decod-349

ing. Given M and α, the expected speedup can be350

derived by the formula given by Leviathan et al.351

(2023):352

E(Spd.) =
Mα

(M − 1)(1− r) + α
(9)353

where r denotes the ratio of skipped layers.354

5.2 Main Result355

Table 1 presents the comparison between KNN-SSD356

and two Self-SD methods on generation tasks. In357

our experiments, we evaluate KNN-SSD under four358

settings: mix ratio = 0, 0.3, 0.7, and 1 separately,359

with 40 samples from five datasets each, 200 sam-360

ples in total. The experimental results demonstrate361

the following findings: (1) KNN-SSD shows superior362

efficiency over prior methods, achieving consistent363

speedups of 1.35×∼1.62× over vanilla autoregres-364

sive decoding across various models. (2) The mix365

Summarization Reasoning Translation StoryTelling Text2SQL

0.65

0.70

0.75

0.80

0.85

M
ea

n
Ac

ce
pt

an
ce

 R
at

e

SelfSD(Fix)
SelfSD(Mix)
KNN-SSD

Summarization Reasoning Translation StoryTelling Text2SQL

2.2

2.4

2.6

2.8

3.0

3.2

M
ea

n
Ac

ce
pt

ed
 To

ke
ns

SelfSD(Fix)
SelfSD(Mix)
KNN-SSD

Figure 4: The mean accepted tokens and mean accep-
tance rate under task-by-task sample streams. The
dashed lines represent the average length and rate
achieved by KNN-SSD across all five datasets.

ratio of sample flows doesn’t affect the speedup 366

of KNN-SSD. The speedup remains stable, which 367

indicates that KNN-SSD can handle various samples 368

in a more realistic scenario. 369

We present the mean accepted tokens, accep- 370

tance rate, as well as the actual speedup of LLaMA- 371

2-13B series in Table 2 and Figure 4, which further 372

validates the superiority of KNN-SSD over Self-SD. 373

5.3 Analysis 374

Inter & Intra. We use the MATH (Hendrycks 375

et al., 2021) dataset to assess the capabilities of 376

KNN-SSD in a single dataset with multiple domains. 377

In the MATH dataset, math questions are catego- 378

rized into seven types. Thus, using one specific skip 379

layer set for this dataset is insufficient, and we intro- 380

duce a fine-grained clustering to handle this mixed 381

domain. Figure 6 shows that each type of math 382

question can be clustered into a single group. Ta- 383

ble 3 indicates the speedup result for each method, 384

where we can clearly see that KNN-SSD outperforms 385

Self-SD methods and achieves a speedup of 1.23× 386

6

All Vectors
Representative Vectors

Figure 5: Visualization of last hidden vectors from five
domains of samples. Results show these vectors can be
clearly divided into five clusters. From each cluster, we
selected ten vectors as representative anchors for our
KNN model.

Methods M α Speedup

Vanilla 1.00 - 1.00×
Self-SD(Fix) 1.54 0.51 0.97×
Self-SD(Mix) 1.82 0.59 1.02×
KNN-SSD 2.37 0.81 1.23×

Table 3: Results of MATH dataset using LLaMA-2-13B.

and a mean generated length M of 2.37.387

Figure 7 visualizes speedups on task-by-task set-388

tings. Self-SD-Fix achieves high performance only389

on the first subtask and declines on the rest of the390

subtasks; while KNN-SSD has a better speedup than391

the other two Self-SD methods.392

Out of Domain Generalization. We adopt393

the XSUM (Narayan et al., 2018) dataset, the394

MATH (Hendrycks et al., 2021) dataset, and the395

Alpaca (Taori et al., 2023) dataset as out-of-domain396

tasks to assess KNN-SSD’s generalizability. XSUM397

and CNN/DM datasets belong to summarization398

tasks, whereas MATH and GSM8K datasets in-399

volve reasoning-based tasks. Therefore, although400

we did not search for their respective optimal skip401

layer sets for XSUM and MATH in our exper-402

iments, it is reasonable that KNN-SSD would as-403

sign XSUM samples to CNN/DM and thus adopt404

CNN/DM’s optimal skip layer set, and the same405

applies to MATH samples.406

Compared to these two datasets, the Alpaca407

dataset contains more diverse instruction-answer408

pairs across summarization, reasoning, grammar,409

All Vectors
Representative Vectors

Figure 6: Visualization of 700 last hidden vectors from
the MATH dataset using t-SNE method. It is clear to
see that all vectors can be categorized into 7 groups,
which aligns with the fact that the MATH dataset has 7
different kinds of problems.

Algebra

Counting and Probability
Geometry

Intermediate Algebra

Number Theory
Prealgebra

Precalculus
0.9

1.0

1.1

1.2

1.3

S
p
ee

d
u
p

1 1 1 1 1 1 1

1.23
1.21

1.16

1.12

1.03
1.05

0.97

1.12
1.14

1.09 1.1

1.06
1.03 1.02

1.27

1.21
1.23 1.22

1.26
1.24 1.23

Baseline
Self-SD(Fix)

Self-SD(Mix)
KNN-SSD

Figure 7: Speedup results for task-by-task sample
streams on MATH dataset under three methods. While
KNN-SSD maintains a speedup of around 1.25×, two
Self-SD methods decline as the number of domains
grows.

and many other tasks. Results indicate that al- 410

though some of the domains are not covered by our 411

five datasets in the main experiments, our method 412

can still assign an unknown sample to its most 413

similar domain and thus achieve inference accel- 414

eration. As shown in Table 4, our experimental 415

results demonstrate that the model achieves an ap- 416

proximately 1.15× ∼ 1.25× speedup under the 417

KNN-SSD method, even without prior search. 418

Number of Clusters. Table 5 shows the result 419

of the influence of cluster numbers. We conducted 420

experiments on the Alpaca dataset as it covers a 421

variety of domains, using K-means clustering with 422

varying numbers of clusters. As shown in the 423

results, the speedup effect improves as the num- 424

ber of clusters increases, eventually surpassing the 425

speedup ratio observed in the out-of-domain exper- 426

iments (Table 4). However, when the cluster count 427

7

Datasets Methods M α Speedup

XSUM
Vanilla 1.00 - 1.00×
Self-SD 1.42 0.56 0.99×
KNN-SSD 2.51 0.84 1.24×

MATH
Vanilla 1.00 - 1.00×
Self-SD 1.34 0.48 0.93×
KNN-SSD 2.13 0.76 1.17×

Alpaca
Vanilla 1.00 - 1.00×
Self-SD 1.26 0.43 0.92×
KNN-SSD 1.95 0.67 1.15×

Table 4: Results of out-of-domain datasets using
LLaMA-2-13B-Chat. No representative anchor of these
three domains is generated.

exceeds 5 (e.g., up to 7), the speedup plateaus, indi-428

cating that partitioning Alpaca into five clusters is429

sufficient—further subdivision yields no additional430

gains.431

Num. M α Speedup

1 1.86 0.65 1.05×
3 2.20 0.75 1.17×
5 2.52 0.80 1.23×
7 2.55 0.81 1.23×

Table 5: Results of the Alpaca dataset among different
numbers of clusters using LLaMA-2-13B-Chat. Num.
denotes the number of clusters.

Case Study. To better illustrate how our method432

works, we provide a case study that presents a typ-433

ical sample stream. In Figure 8, a sample stream434

contains three common types of queries a user435

might ask: summarization, reasoning, and trans-436

lation. For each input query, KNN-SSD will first437

compute its last hidden vector and then use a KNN438

model to find its optimal skipped layer set. The typ-439

ical speculative decoding will be conducted with440

draft and verification steps, where blue and red to-441

kens indicate that they are generated separately in442

draft and verification steps. By constantly chang-443

ing skipped layer sets, KNN-SSD achieves a stable444

speedup compared to other methods that use a static445

strategy, which is insufficient for diverse inputs.446

6 Conclusion447

In this work, we introduce KNN-SSD, an algorithm448

that leverages K-Nearest Neighbor search to match449

Searching for nearest skip layer set

Article: Carlos Tevez talks about being as free as a bird,
back to the days when he was banging in the goals in
Argentina for Boca Juniors. A big hit on the famous
steeped terracing at La Bombonera as he followed in
the footsteps of Diego Maradona Summary:

Juventus forward Carlos Tevez discusses his enjoyment
of playing for the club and his form this season, with six
Champions League goals so far. The team is looking to
beat Monaco in the quarter-finals and

Searching for nearest skip layer set

Question: Maddison has 5 boxes with 50 marbles in
each box. Then she gets 20 marbles from her friend.
How many marbles does she have now? Answer:

Here's the solution step-by-step:\n\n1. Maddison has 5
boxes, each with 50 marbles. \n\nSo, in total, Maddison
has 5 x 50 = 250

Searching for nearest skip layer set

Translate German to English: "Es ist für mich wirklich",
sagte Spielberg, "unstrittig der größte Zeitreise-Film,
der jemals gedreht wurde."

Here's the translation:\n\n"It is truly, in my opinion,"
said Spielberg, "the greatest time travel film that has
ever been made."

Figure 8: Case study of how KNN-SSD works. Blue to-
kens indicate that they are generated during the drafting
step and verified by the model, while red tokens indicate
they are generated by prediction from the verification
step. Squares in red and blue indicate skipped attention
layers and MLP layers, respectively.

suitable skipped layers for various domain inputs. 450

KNN-SSD is designed to find an optimal skipped 451

layer set for each domain of data, which accelerates 452

LLM’s inference losslessly. To assess its ability, 453

we define a mix ratio of a sample stream, indicat- 454

ing how frequently the domain changes. We con- 455

ducted extensive experiments with various LLMs 456

and mix ratios and found that KNN-SSD can achieve 457

a speedup of around 1.3×∼1.6× without changing 458

the ordinary distribution of the generated tokens. 459

Our in-depth analysis indicates that a single dataset 460

may also contain mixed domains. Furthermore, 461

KNN-SSD can achieve a 1.2× speedup on out-of- 462

domain datasets, showing its great potential in han- 463

dling various data streams in real-life scenarios. 464

8

Limitations465

A few limitations need to be considered while our466

KNN-SSD achieves a notable speedup on various467

models. First, we did not incorporate draft tree ver-468

ification, which has been shown to improve the to-469

ken acceptance rate (Xia et al., 2025). Second, our470

current evaluation is limited to models of moderate471

scale. Due to practical considerations related to472

computational resources, we have not yet extended473

our method to larger-scale models. We leave these474

directions for future work.475

Ethics Statement476

The datasets used in our experiment are publicly477

released and labeled through interaction with hu-478

mans in English. In this process, user privacy is479

protected, and no personal information is contained480

in the dataset. The scientific artifacts that we used481

are available for research with permissive licenses.482

And the use of these artifacts in this paper is consis-483

tent with their intended use. Therefore, we believe484

that our research work meets the ethics of ACL.485

References486

Zachary Ankner, Rishab Parthasarathy, Aniruddha487
Nrusimha, Christopher Rinard, Jonathan Ragan-488
Kelley, and William Brandon. 2024. Hydra:489
Sequentially-dependent draft heads for medusa de-490
coding. Preprint, arXiv:2402.05109.491

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari492
do Nascimento, Torsten Hoefler, and James Hens-493
man. 2024. Slicegpt: Compress large language494
models by deleting rows and columns. Preprint,495
arXiv:2401.15024.496

Gregor Bachmann, Sotiris Anagnostidis, Albert497
Pumarola, Markos Georgopoulos, Artsiom498
Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali499
Thabet, and Jonas Kohler. 2025. Judge decoding:500
Faster speculative sampling requires going beyond501
model alignment. Preprint, arXiv:2501.19309.502

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry503
Mason, Mohammad Rastegari, and Mahyar Najibi.504
2024. Speculative streaming: Fast llm inference with-505
out auxiliary models. Preprint, arXiv:2402.11131.506

Ond rej Bojar, Rajen Chatterjee, Christian Federmann,507
Yvette Graham, Barry Haddow, Matthias Huck, An-508
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-509
gacheva, Christof Monz, Matteo Negri, Aurelie510
Neveol, Mariana Neves, Martin Popel, Matt Post,511
Raphael Rubino, Carolina Scarton, Lucia Specia,512
Marco Turchi, Karin Verspoor, and Marcos Zampieri.513
2016. Findings of the 2016 conference on machine514
translation. In Proceedings of the First Conference515

on Machine Translation, pages 131–198, Berlin, Ger- 516
many. Association for Computational Linguistics. 517

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu 518
Peng, Jason D. Lee, Deming Chen, and Tri Dao. 519
2024. Medusa: Simple llm inference acceleration 520
framework with multiple decoding heads. Preprint, 521
arXiv:2401.10774. 522

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 523
Jean-Baptiste Lespiau, Laurent Sifre, and John 524
Jumper. 2023. Accelerating large language model 525
decoding with speculative sampling. Preprint, 526
arXiv:2302.01318. 527

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 528
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 529
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 530
Nakano, Christopher Hesse, and John Schulman. 531
2021. Training verifiers to solve math word prob- 532
lems. CoRR, abs/2110.14168. 533

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How 534
small can language models be and still speak coherent 535
english? Preprint, arXiv:2305.07759. 536

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 537
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 538
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 539
Roman, Ahmed Aly, Beidi Chen, and Carole-Jean 540
Wu. 2024. LayerSkip: Enabling early exit inference 541
and self-speculative decoding. In Proceedings of the 542
62nd Annual Meeting of the Association for Compu- 543
tational Linguistics (Volume 1: Long Papers), pages 544
12622–12642, Bangkok, Thailand. Association for 545
Computational Linguistics. 546

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas- 547
sive language models can be accurately pruned in 548
one-shot. In Proceedings of the 40th International 549
Conference on Machine Learning, volume 202 of 550
Proceedings of Machine Learning Research, pages 551
10323–10337. PMLR. 552

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 553
2024. Break the sequential dependency of LLM 554
inference using lookahead decoding. In Forty-first 555
International Conference on Machine Learning. 556

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. 557
Minillm: Knowledge distillation of large language 558
models. Preprint, arXiv:2306.08543. 559

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 560
Arora, Steven Basart, Eric Tang, Dawn Song, and 561
Jacob Steinhardt. 2021. Measuring mathematical 562
problem solving with the math dataset. Preprint, 563
arXiv:2103.03874. 564

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 565
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 566
Chen. 2022. LoRA: Low-rank adaptation of large 567
language models. In International Conference on 568
Learning Representations. 569

9

https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.11131
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://openreview.net/forum?id=eDjvSFOkXw
https://openreview.net/forum?id=eDjvSFOkXw
https://openreview.net/forum?id=eDjvSFOkXw
https://arxiv.org/abs/2306.08543
https://arxiv.org/abs/2306.08543
https://arxiv.org/abs/2306.08543
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng,570
Bradley McDanel, and Sai Qian Zhang. 2025. Spec-571
ulative decoding and beyond: An in-depth survey of572
techniques. Preprint, arXiv:2502.19732.573

Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen574
McKeown. 2022. In-context learning distillation:575
Transferring few-shot learning ability of pre-trained576
language models. Preprint, arXiv:2212.10670.577

Donald R Jones, Matthias Schonlau, and William J578
Welch. 1998. Efficient global optimization of ex-579
pensive black-box functions. Journal of Global opti-580
mization, 13:455–492.581

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-582
tendra Malik, Michael W Mahoney, Amir Gholami,583
and Kurt Keutzer. 2023. Speculative decoding with584
big little decoder. In Advances in Neural Information585
Processing Systems, volume 36, pages 39236–39256.586
Curran Associates, Inc.587

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng588
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,589
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor590
Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida591
Wang, and Tao Yu. 2025. Spider 2.0: Evaluating592
language models on real-world enterprise text-to-sql593
workflows. Preprint, arXiv:2411.07763.594

Yaniv Leviathan, Matan Kalman, and Yossi Matias.595
2023. Fast inference from transformers via spec-596
ulative decoding. In Proceedings of the 40th Inter-597
national Conference on Machine Learning, volume598
202 of Proceedings of Machine Learning Research,599
pages 19274–19286. PMLR.600

Yijin Liu, Fandong Meng, and Jie Zhou. 2024.601
Accelerating inference in large language models602
with a unified layer skipping strategy. Preprint,603
arXiv:2404.06954.604

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie605
Chang, Pierre Stock, Yashar Mehdad, Yangyang606
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-607
dra. 2023. Llm-qat: Data-free quantization aware608
training for large language models. Preprint,609
arXiv:2305.17888.610

Michael R. Metel, Peng Lu, Boxing Chen, Mehdi Reza-611
gholizadeh, and Ivan Kobyzev. 2024. Draft on the612
fly: Adaptive self-speculative decoding using cosine613
similarity. Preprint, arXiv:2410.01028.614

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,615
Çağlar Gu̇lçehre, and Bing Xiang. 2016. Abstrac-616
tive text summarization using sequence-to-sequence617
RNNs and beyond. In Proceedings of the 20th618
SIGNLL Conference on Computational Natural Lan-619
guage Learning, pages 280–290, Berlin, Germany.620
Association for Computational Linguistics.621

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.622
2018. Don’t give me the details, just the summary!623
Topic-aware convolutional neural networks for ex-624
treme summarization. In Proceedings of the 2018625

Conference on Empirical Methods in Natural Lan- 626
guage Processing, Brussels, Belgium. 627

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar- 628
wal, Lama Ahmad, Ilge Akkaya, et al. 2024. Gpt-4 629
technical report. Preprint, arXiv:2303.08774. 630

Gunho Park, Baeseong Park, Minsub Kim, Sungjae 631
Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung 632
Kwon, Byeongwook Kim, Youngjoo Lee, and Dong- 633
soo Lee. 2024. Lut-gemm: Quantized matrix mul- 634
tiplication based on luts for efficient inference in 635
large-scale generative language models. Preprint, 636
arXiv:2206.09557. 637

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 638
2018. Blockwise parallel decoding for deep autore- 639
gressive models. In Advances in Neural Information 640
Processing Systems, volume 31. Curran Associates, 641
Inc. 642

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 643
2024. A simple and effective pruning approach for 644
large language models. Preprint, arXiv:2306.11695. 645

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 646
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 647
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 648
An instruction-following llama model. https:// 649
github.com/tatsu-lab/stanford_alpaca. 650

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 651
bert, Amjad Almahairi, et al. 2023. Llama 2: Open 652
foundation and fine-tuned chat models. Preprint, 653
arXiv:2307.09288. 654

Zhuofan Wen, Shangtong Gui, and Yang Feng. 2024. 655
Speculative decoding with ctc-based draft model for 656
llm inference acceleration. In Advances in Neural 657
Information Processing Systems, volume 37, pages 658
92082–92100. Curran Associates, Inc. 659

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham- 660
mad Abdul-Mageed, and Alham Fikri Aji. 2024. 661
LaMini-LM: A diverse herd of distilled models from 662
large-scale instructions. In Proceedings of the 18th 663
Conference of the European Chapter of the Associa- 664
tion for Computational Linguistics (Volume 1: Long 665
Papers), pages 944–964, St. Julian’s, Malta. Associa- 666
tion for Computational Linguistics. 667

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu 668
Wei, and Zhifang Sui. 2023. Speculative decod- 669
ing: Exploiting speculative execution for accelerat- 670
ing seq2seq generation. In Findings of the Associa- 671
tion for Computational Linguistics: EMNLP 2023, 672
pages 3909–3925, Singapore. Association for Com- 673
putational Linguistics. 674

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and 675
Wenjie Li. 2025. Swift: On-the-fly self-speculative 676
decoding for llm inference acceleration. Preprint, 677
arXiv:2410.06916. 678

10

https://arxiv.org/abs/2502.19732
https://arxiv.org/abs/2502.19732
https://arxiv.org/abs/2502.19732
https://arxiv.org/abs/2502.19732
https://arxiv.org/abs/2502.19732
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2212.10670
https://proceedings.neurips.cc/paper_files/paper/2023/file/7b97adeafa1c51cf65263459ca9d0d7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7b97adeafa1c51cf65263459ca9d0d7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7b97adeafa1c51cf65263459ca9d0d7c-Paper-Conference.pdf
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://arxiv.org/abs/2404.06954
https://arxiv.org/abs/2404.06954
https://arxiv.org/abs/2404.06954
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2410.01028
https://arxiv.org/abs/2410.01028
https://arxiv.org/abs/2410.01028
https://arxiv.org/abs/2410.01028
https://arxiv.org/abs/2410.01028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2206.09557
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2024/file/a79054a9da91d73ed3cb1a9e87d7cd2d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a79054a9da91d73ed3cb1a9e87d7cd2d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a79054a9da91d73ed3cb1a9e87d7cd2d-Paper-Conference.pdf
https://aclanthology.org/2024.eacl-long.57/
https://aclanthology.org/2024.eacl-long.57/
https://aclanthology.org/2024.eacl-long.57/
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://arxiv.org/abs/2410.06916
https://arxiv.org/abs/2410.06916
https://arxiv.org/abs/2410.06916

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,679
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-680
fang Sui. 2024. Unlocking efficiency in large lan-681
guage model inference: A comprehensive survey682
of speculative decoding. In Findings of the Asso-683
ciation for Computational Linguistics: ACL 2024,684
pages 7655–7671, Bangkok, Thailand. Association685
for Computational Linguistics.686

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,687
Bo Zheng, et al. 2025. Qwen2.5 technical report.688
Preprint, arXiv:2412.15115.689

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,690
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.691
Zeroquant: Efficient and affordable post-training692
quantization for large-scale transformers. In Ad-693
vances in Neural Information Processing Systems,694
volume 35, pages 27168–27183. Curran Associates,695
Inc.696

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,697
Gang Chen, and Sharad Mehrotra. 2024. Draft &698
verify: Lossless large language model acceleration699
via self-speculative decoding. In Proceedings of the700
62nd Annual Meeting of the Association for Compu-701
tational Linguistics (Volume 1: Long Papers), pages702
11263–11282, Bangkok, Thailand. Association for703
Computational Linguistics.704

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and705
Ruiwen Xu. 2025. Learning harmonized rep-706
resentations for speculative sampling. Preprint,707
arXiv:2408.15766.708

11

https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://arxiv.org/abs/2412.15115
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://arxiv.org/abs/2408.15766
https://arxiv.org/abs/2408.15766
https://arxiv.org/abs/2408.15766

A Preliminary Details709

We visualize the optimal skipped layer sets we710

searched across five tasks on two series of models711

in Figure 9 and Figure 10.712

B Datasets713

We mainly evaluate KNN-SSD on LLaMA-2 (Tou-714

vron et al., 2023) series and Qwen-2.5 (Yang et al.,715

2025) series across diverse tasks. We select five dif-716

ferent datasets, covering summarization, mathemat-717

ical reasoning, translation, storytelling, and text-to-718

SQL, which are CNN/Daily Mail (CNN/DM) (Nal-719

lapati et al., 2016), GSM8K (Cobbe et al., 2021),720

TinyStories (Eldan and Li, 2023), Wmt16 DE-EN721

(Wmt16) (Bojar et al., 2016), and Spider2 (Lei722

et al., 2025) datasets, respectively. The maxi-723

mum generation lengths on CNN/DM, GSM8K,724

Wmt16, Spider2, and TinyStories are set to 64, 64,725

64, 64, and 128, respectively. We conduct 1-shot726

evaluation for CNN/DM and TinyStories, 3-shot727

evaluation for Spider2, and 5-shot evaluation for728

GSM8K and Wmt16. For further analysis, we also729

use the XSUM (Narayan et al., 2018) dataset, the730

MATH (Hendrycks et al., 2021) dataset, and the731

Alpaca (Taori et al., 2023) dataset for the summa-732

rization, mathematical reasoning, and instruction733

following tasks, respectively.734

CNN/DM The CNN/Daily Mail dataset is a large-735

scale benchmark for abstractive text summarization.736

It consists of long news articles paired with short737

summaries, derived from the CNN and Daily Mail738

websites. The dataset is used to evaluate the perfor-739

mance on long-form input and coherent summary740

generation.741

GSM8K GSM8K is a high-quality benchmark742

dataset for arithmetic reasoning, consisting of743

grade school math word problems and their de-744

tailed step-by-step solutions. It is used to evaluate745

the reasoning and problem-solving capabilities in746

mathematical contexts.747

TinyStories TinyStories is a dataset of short, syn-748

thetically generated children’s stories designed to749

support research on language modeling and narra-750

tive understanding. The stories are simple in struc-751

ture and vocabulary, making the dataset suitable752

for studying controlled text generation.753

Wmt16 The WMT16 De-En dataset is a standard754

benchmark for machine translation, consisting of755

parallel German-English sentence pairs collected756

from various sources. It is used to evaluate the 757

translation quality of models. 758

Spider2 Spider 2.0 is a complex and cross- 759

domain text-to-SQL benchmark designed to eval- 760

uate the ability of models to generate executable 761

SQL queries from natural language questions. It 762

includes diverse databases and query types, requir- 763

ing models to generalize to unseen schemas and 764

handle intricate reasoning. 765

XSUM XSUM is an abstractive summarization 766

dataset consisting of BBC news articles paired 767

with single-sentence summaries, in contrast to 768

CNN/DM, which provides longer, multi-sentence 769

summaries for news articles. It emphasizes con- 770

cise and information-rich summaries, testing the 771

models’ ability to extract key information. 772

MATH The MATH dataset is a benchmark for 773

mathematical problem solving, comprising high 774

school-level competition problems with detailed 775

step-by-step solutions. It covers a wide range of 776

topics, including algebra, counting and probabil- 777

ity, geometry, intermediate algebra, number the- 778

ory, prealgebra, and precalculus, and is designed 779

to evaluate the advanced reasoning and symbolic 780

manipulation abilities of language models. 781

Alpaca The Alpaca dataset is a collection of 782

instruction-following demonstrations generated us- 783

ing the self-instruct method, based on the outputs 784

of a strong language model. It covers a wide range 785

of tasks, making it suitable for us to test the gener- 786

alizability of KNN-SSD. 787

C Experimental Details 788

C.1 Setups 789

During the pre-inference stage, we set the maxi- 790

mum iterations of Bayesian Optimization to 1,000 791

and the number of samples to 8. For each dataset, 792

we first randomly choose 1,000 last hidden vec- 793

tors, then we use the K-means algorithm to find 10 794

representatives as anchors for the KNN model. 795

In the inference process, experiments were con- 796

ducted on 8×NVIDIA RTX 3090 GPU (24GB) and 797

4×NVIDIA RTX A6000 GPU (40GB) with CUDA 798

12.0, and an Intel(R) Xeon(R) Gold 5117 CPU with 799

14 cores. Pytorch and Huggingface transformers 800

package are used to perform both baselines and our 801

method. 802

12

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) Summarization - CNN/DM

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) Reasoning - GSM8K

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) Translation - WMT16

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) Storytelling - TinyStories

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(e) Text-to-SQL - Spider2

Figure 9: Visualization of skipped layer set configuration of LLaMA-2-13B optimized by Self-SD (Zhang et al.,
2024) on different task domains. Gray squares indicate retained layers, red squares denote skipped attention layers,
and blue squares signify skipped MLP layers.

C.2 Evaluation Metrics803

We further demonstrate the two main metrics we804

used in the main experiments. The mean accepted805

length M denotes the average number of output806

tokens produced by the target LLM during each807

forward pass. The token acceptance rate α refers808

to the ratio of tokens that are accepted by the tar-809

get LLM to the total number of draft steps, which810

showcases the expectation of whether the target811

LLM accepts a token generated by the draft models.812

Given M and α, the expected wall-time speedup813

can be derived as follows:814

E(Speedup) =
Mα

(M − 1)c+ α
(10)815

where c is defined as the cost efficient in Leviathan816

et al. (2023). It represents the ratio of the draft817

model’s required time to the target model’s during818

a single forward pass. In the Self-SD method, we819

define c = 1− r, where r represents the proportion820

of skipped layers to total layers, as the draft model821

only needs to process the retained layers.822

C.3 Details of Main Results823

More details are provided in Table 6. Results show824

that our KNN-SSD outperforms the two Self-SD825

methods on both metrics, indicating our method826

can handle a more diverse input stream with stable 827

inference acceleration. 828

13

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

(a) Summarization - CNN/DM

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

(b) Reasoning - GSM8K

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

(c) Translation - WMT16

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

(d) Storytelling - TinyStories

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

(e) Text-to-SQL - Spider2

Figure 10: Visualization of skipped layer set configuration of Qwen-2.5-14B optimized by Self-SD (Zhang et al.,
2024) on different task domains.

Models Methods R=0.0 R=0.3 R=0.7 R=1.0 Overall

M α M α M α M α M α

LLaMA-2-13B

VANILLA 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
SELF-SD(FIX) 2.22 0.65 2.19 0.63 2.14 0.59 2.12 0.61 2.17 0.62
SELF-SD(MIX) 2.50 0.64 2.58 0.70 2.53 0.69 2.52 0.68 2.53 0.68
KNN-SSD 3.10 0.86 3.14 0.88 3.11 0.89 3.12 0.88 3.12 0.88

LLaMA-2-13B
-Chat

VANILLA 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
SELF-SD(FIX) 2.03 0.60 1.99 0.56 1.92 0.55 1.97 0.57 1.97 0.57
SELF-SD(MIX) 2.10 0.56 2.14 0.61 2.18 0.59 2.15 0.58 2.14 0.59
KNN-SSD 2.84 0.84 2.85 0.86 2.90 0.85 2.90 0.86 2.87 0.85

Qwen-2.5-14B

VANILLA 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
SELF-SD(FIX) 2.41 0.82 2.40 0.82 2.44 0.84 2.48 0.85 2.43 0.83
SELF-SD(MIX) 3.02 0.89 2.94 0.89 2.99 0.90 2.97 0.90 2.98 0.90
KNN-SSD 4.35 0.99 4.42 1.00 4.40 1.00 4.38 0.99 4.37 1.00

Qwen-2.5-14B
-Instruct

VANILLA 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
SELF-SD(FIX) 2.12 0.80 2.16 0.80 2.16 0.80 2.10 0.79 2.13 0.80
SELF-SD(MIX) 2.32 0.83 2.25 0.84 2.35 0.87 2.34 0.87 2.32 0.85
KNN-SSD 3.78 1.00 3.69 0.99 3.71 0.99 3.75 1.00 3.73 1.00

Table 6: Comparison between KNN-SSD and two Self-SD methods. R indicates the mix ratio of sample streams. We
report the mean accepted length and token acceptance rate, which are denoted as M and α, respectively.

14

	Introduction
	Related Work
	Background
	Self-Speculative Decoding
	Preliminary Study

	Methodology
	Pre Inference
	Inference

	Experiments
	Experimental Setup
	Main Result
	Analysis

	Conclusion
	Preliminary Details
	Datasets
	Experimental Details
	Setups
	Evaluation Metrics
	Details of Main Results

