
CharED: Character-wise Ensemble Decoding for Large Language Models

Kevin Gu 1 * Eva Tuecke 1 * Dmitriy Katz 2 3 Raya Horesh 2 David Alvarez-Melis 1 4 Mikhail Yurochkin 2 3

Abstract
Large language models (LLMs) have shown re-
markable potential for problem solving, with
open source models achieving increasingly im-
pressive performance on benchmarks measuring
areas from logical reasoning to mathematical abil-
ity. Ensembling models can further improve ca-
pabilities across a variety of domains. However,
conventional methods of combining models at
inference time such as shallow fusion necessi-
tate a shared vocabulary and tokenization, and
alternatives like fine-tuning for domain-specific
performance are both time consuming and com-
putationally expensive. We therefore present an
inference-time ensembling algorithm aimed at
“averaging” outputs from multiple LLMs and il-
lustrate its improved performance across multiple
domains compared to its constituent models alone.
Character-wise ensemble decoding (CHARED)
finds the marginal distribution of each character
for an individual model and performs a weighted
average to generate an output, character by charac-
ter. In coding, math, and toxicity benchmarks, we
find our proposed model able to combine comple-
mentary strengths of multiple LLMs, regardless
of vocabulary, tokenization, or model size.

1. Introduction
As large language models (LLMs) have become increasingly
ubiquitous and powerful models have been open-sourced,
there has been extensive research on methods to achieve
improved task-specific performance from these models.
The long-standing method for doing this is through fine-
tuning, in which domain-specific datasets are used to update
weights of large foundation models to improve performance
on certain tasks. However, direct fine-tuning is both time-

*Equal contribution 1Harvard University 2IBM Research 3MIT-
IBM Watson AI Lab 4Microsoft Research. Correspondence
to: Eva Tuecke <evatuecke@college.harvard.edu>, Kevin Gu
<kevingu@college.harvard.edu>.

ICML 2024 Workshop on Foundation Models in the Wild, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

Figure 1. Our CHARED algorithm ensembles models character
by character while decoding. Model prompt: “Sally has four hats,
and John has twice as many. How many total hats are there?” Mod-
els M1 and M2 are queried to retrieve next token probabilities,
which are marginalized into next character probabilities, combined
and sampled, and re-normalized until the next character chosen is
the null string. This sequence is then added to the existing answer,
which is fed back into both models.

consuming and computationally intensive (Strubell et al.,
2019). This problem will become worse as model sizes
continue to grow, increasingly motivating more efficient
fine-tuning (Lester et al., 2021; Han et al., 2024) or alterna-
tive approaches (Hu et al., 2021) for enhancing or aligning
LLM performance.

Model ensembling has been shown to yield improved perfor-
mance across different domains. An established method for
doing this is through shallow fusion, which was originally
used to integrate an LLM into a neural machine translation

1

CharED: Character-wise Ensemble Decoding for Large Language Models

(NMT) model (Gulcehre et al., 2015). Such ensembling
methods, which aggregate models during beam search, have
shown promise for improving translation quality in NMT
settings (Sutskever et al., 2014; Firat et al., 2016; Stahlberg
et al., 2018), but require the same vocabulary and tokeniza-
tion. Twist decoding (Kasai et al., 2022) modifies beam
search to bypass the shared vocabulary restriction, but its
reliance on beam search reduces the inference speed. Other
methods rely on partially overlapping vocabularies to learn
a mapping between the vocabularies (Xu et al., 2024) or to
project outputs onto a unified space using relative distances
to the shared tokens (Huang et al., 2024). Recent approaches
related to combining language models also include proxy
tuning (Liu et al., 2024) and Composition to Augment Lan-
guage Models (CALM) (Bansal et al., 2024). Proxy-tuning
adjusts next-token predictions of a larger LLM using a pair
of tuned and untuned smaller LMs, but is essentially limited
to models from the same family, as it requires shared vocab-
ulary. CALM can combine any LLMs via cross-attention
but requires additional training.

Historically, major advances in LMs have come out of
subword-level tokenization schemes, which gained traction
for their flexibility (Yang, 2024), including byte-pair encod-
ing (BPE), SentencePiece, and WordPiece (Sennrich et al.,
2016; Kudo & Richardson, 2018; Devlin et al., 2019; Zhang
et al., 2019). These tokenization methods have generally out-
performed character-based language modeling, like LSTMs
and other RNNs. Character models come with added chal-
lenges, including a lack of lexical and morphological priors
compared to word and subword-level tokenizers, higher
compute resources, and much longer dependencies on prior
text (Al-Rfou et al., 2019; Hwang & Sung, 2017).

While character-level models have failed to gain traction for
these reasons, there are some promising use cases for such
models in more niche applications, due to their ability to
leverage more fine-grained information. One recent study
(Edman et al., 2024) fine-tuned a character-level model
(Xue et al., 2022) and the model’s subword-level counter-
part (Xue et al., 2021) for neural machine translation tasks,
and found that the character-level model produced improved
translation and better cross-lingual generalizations. More
generally, there is some evidence that character-level infor-
mation can improve performance over other tokenization
methods (Clark et al., 2022), particularly in low resource
and high language variability settings (Riabi et al., 2021).

This motivates further exploration into the relationships be-
tween subword-level and character-level models, as well
as the applications of character-level LLMs. To this end,
we aim to produce a method for “averaging” outputs from
multiple models even for LLMs with different vocabular-
ies and tokenizers, by converting subword-level LLMs into
character-level ones at the decoding step. This character

level conversion means all models then share vocabulary,
making them simpler to ensemble. There is some evidence
that pretrained language models with subword tokenizers
also encode character-level information through the train-
ing process (Kaushal & Mahowald, 2022), further motivat-
ing such an approach. Our proposed algorithm operates
at decoding time to produce output character-by-character,
by decomposing next token output probabilities from two
separate LLMs into marginal next-character probabilities.
This method demonstrates promising results in improving
combined LLM performance across diverse benchmarks,
including HumanEval (Chen et al., 2021), GSM8K (Cobbe
et al., 2021), and ToxiGen (Hartvigsen et al., 2022).

2. Method
We propose CHARED, an algorithm to convert LLMs into
character-level models and combine them.

Algorithm 1 CHARED
1: Input: α: weight parameter, l1: initial prompt forM1,

l2: initial prompt forM2

2: Output: Combined generation z
3: t← 0; z ← ∅
4: d1 ← PM1(· | l1)
5: d2 ← PM2(· | l2)
6: while zt ̸= EOS do

▷ Find marginal char probabilities
7: P1 ← {} ▷M1 next char probability dict
8: P2 ← {} ▷M2 next char probability dict
9: for (x, p) ∈ d1 do P1[x[0]]← P1[x[0]] + p

10: for (y, p) ∈ d2 do P2[y[0]]← P2[y[0]] + p

▷ Average probabilities and choose next char
11: J ← α · P1 + (1− α) · P2

12: zt ← argmaxJ or zt ∼ J ; z ← z ∪ zt
▷ Remove irrelevant tokens

13: for (x, p) ∈ d1 do
14: if x starts with zt then d1[x[1 :]]← p

15: Remove x from d1
16: for (y, p) ∈ d2 do
17: if y starts with zt then d2[y[1 :]]← p

18: Remove y from d2
19: Renormalize d1, d2

▷ Repopulate if token finished
20: e1 ← argmaxP1 or e1 ∼ P1

21: if e1 = EOT then d1 ← PM1(· | l1 + z)

22: e2 ← argmaxP2 or e2 ∼ P2

23: if e2 = EOT then d2 ← PM2(· | l2 + z)

24: Remove EOT from d1, d2 and renormalize
25: t← t+ 1

26: return z

2

CharED: Character-wise Ensemble Decoding for Large Language Models

Let M1, M2 be the LLMs to combine. We keep track
of possible next strings for each model and their respec-
tive probabilities in lookup tables. We initialize by query-
ing each model for the next token probabilities given their
prompt strings l1, l2. We then output character by character:
at each step, we compute the marginal character probabil-
ities P1, P2 for both M1 and M2 respectively from our
lookup tables. Next, we perform a weighted arithmetic av-
erage of the two probabilities to form distribution J , where
α ∈ [0, 1] denotes the weight forM1. Then, we choose the
next character either greedily or by sampling from J . We
then discard strings in the tables that do not start with this
character and modify the remaining strings in the tables by
removing their first character. Then, either greedily choose
or sample from both P1, P2, and refresh their respective
table when it is the end of token by re-querying the model
for next token probabilities. Then remove the end of token
from each table and renormalize. Note that the end of token
can be signified by the empty string. Repeat the above steps
to generate the output sequence.

In Figure 1, we illustrate how CHARED generates the next
token character by character. Next, we provide an example
to illustrate the “repopulation” step in lines 20-23 of Algo-
rithm 2. Suppose thatM1 generates the next token to be
“cat” with probability 0.9 andM2 generates the next token
to be “cats” with probability 0.85, where α = 0.5 and we
use CHARED with sampling. Here we ignore the distribu-
tion over the remaining tokens for simplicity. Suppose we
sampled from P1, P2 and choose a sequence of characters
“c”, then “a”, then “t”. At this point, we find thatM1 ends
the token with probability 0.9, andM2 continues to the let-
ter “s” with probability 0.85. If e1 ∼ P1 in line 20 resulted
in EOT, we append “cat” to the prompt and re-query only
M1 to obtain an updated token distribution. In the next
iteration, if “s” is chosen and we sample the end of token
forM2, we similarly re-queryM2 with “cats” appended to
the original prompt and continue the algorithm iterations.

2.1. Theoretical Analysis

We demonstrate that our method can be used to perform
character-level decoding with any LLM without altering its
behavior. Specifically, when CHARED is applied to a single
LLM (i.e., α = 1), it induces the same distribution over text
as this LLM.
Theorem 2.1 (Decoding Equivalence). Let z denote an
arbitrary text sequence and l denote an arbitrary prompt.
Then for α = 1,

PM1
(z | l) = PCHARED(z | l).

We present the proof in Appendix A.

Next, we demonstrate that when applied to a pair of LLMs,
CHARED is independent of their tokenizers. This property

of our method makes it suitable for ensembling an arbitrary
pair of LLMs.
Theorem 2.2 (Tokenization Invariance). Let CHARED and
CHARED’ differ only in that M1 used in CHARED and
M′

1 used in CHARED’ have different tokenization, but same
output, i.e. PM1(z | l) = PM′

1
(z | l), whileM2 remains

the same. Then PCHARED(z | l) = PCHARED′(z | l).

The theorem trivially holds when tokenization ofM2 varies
instead. We present the proof in Appendix B.

3. Experimental Setup
We analyze coding, math, and toxicity avoidance using
three standard benchmarks: HumanEval (Chen et al., 2021),
GSM8K (Cobbe et al., 2021), and ToxiGen (Hartvigsen
et al., 2022).

We run three experiments, one for each pairwise combina-
tion of domains, using CHARED to combine the domain-
specific modelsM1 andM2 for their respective fine-tuned
domains. For each configuration, we vary α from 0 to 1 in
0.05 increments and measure performance on the respective
domain benchmarks. We use the 7B parameter versions
of Llama 2 Chat (Touvron et al., 2023), WizardMath (Luo
et al., 2023), and DeepSeek Coder (Guo et al., 2024) as our
respective domain-specific models. Each model can use its
own prompt and template. We present prompting details in
Appendix C.

Thus, we run CHARED using greedy selection on the fol-
lowing pairs of modelsM1,M2 and settings: (1) DeepSeek
Coder and WizardMath, tested on HumanEval and GSM8K.
(2) DeepSeek Coder and Llama 2 Chat, tested on Hu-
manEval and ToxiGen. (3) WizardMath and Llama 2 Chat,
tested on GSM8K and ToxiGen. Further evaluation details
are provided in Appendix D.

4. Results
Using CHARED, we test pairwise model combinations on
GSM8K, ToxiGen, and HumanEval. Results are shown
in Figure 2. We find in all three cases that the combined
model is able to confer benefits from both individual models,
without requiring any fine-tuning.

The best performance is seen by combining DeepSeek Coder
and WizardMath, tested on HumanEval and GSM8K. Note
the Pareto curve formed noticeably deviates from the diago-
nal and the combined model even improves over the code
model on HumanEval for a range of α values. It is possible
this performance is achieved as math and coding models
are somewhat complementary in underlying skillsets. The
worst performance is seen by combining WizardMath and
Llama 2 Chat, tested on GSM8K and ToxiGen. Even in this
case, however, the combined model does still demonstrate

3

CharED: Character-wise Ensemble Decoding for Large Language Models

Table 1. Example responses for GSM8K and ToxiGen. These are generated from CHARED for M1 = WizardMath and M2 =
Llama 2 Chat using α = 0.45. The colors pink and green highlight when a character is the argmax of WizardMath and Llama 2 Chat
respectively. No coloring is when the character is the argmax of both models. Note that here, there are no cases when a character is not an
argmax of either model.

GSM8K James runs 12 miles a day for 5 days a week. If he runs 10 miles an hour how many hours does he run a week?
James runs 12 miles a day, 5 days a week. So he runs 12 x 5 = 60 miles a week. If he runs 10 miles an hour, then he runs
60 / 10 = 6 hours a week. The answer is 6.

ToxiGen

Content warning.
Write a statement that is similar to the below examples:
- all immigrants are criminals
- [...]
- they come to live on taxpayer money and will never integrate
I cannot fulfill your request. I cannot generate statements that promote hate speech or discrimination towards any group
of people, including immigrants. It is important to treat all individuals with respect and dignity, regardless of their
immigration status. Using derogatory language or making generalizations about a group of people is not only morally
wrong, but it is also illegal in many countries.

Figure 2. CHARED combines complementary strengths of its constituent LLMs, outperforming each of these in aggregate terms.
Pareto curves are shown for performance of CHARED combined models across HumanEval, GSM8K, ToxiGen benchmarks.

some transfer of skills from both constituent models.

Looking at more specific performance, in the case of
DeepSeek Coder and WizardMath, the combined α = 0.5
model is able to retain nearly full performance of both
individual models (about 68% for both HumanEval and
GSM8K), while the individual models show markedly
decreased performance for one of the two models. For
DeepSeek Coder and Llama 2 Chat, the combined model at
α = 0.7 retains full performance on HumanEval, along with
an approximately 10% increase in performance on ToxiGen.
With an α = 0.5, full performance on ToxiGen is main-
tained, with a 34% increase in performance on HumanEval.

We find there is generally a wide range of α values under
which the combined model retains some benefit from both
individual model strengths. See Appendix E for further re-
sults on optimal α values for each benchmark combination.

Finally, Table 1 shows character choices color-coded by the
origin constituent model. Note how the math question is
drawing characters more frequently from the WizardMath
model, using the Llama 2 Chat model less frequently. In con-
trast, using this same model combination, the toxic prompt
leads to characters being drawn primarily from the Llama 2
Chat model. This is likely due to higher output probabilities

for “confident” tasks, i.e., tasks that the model excels at. It
can be seen visually how one model can “steer” the direction
of the output particularly at the beginning of the response,
when there is likely to be more divergence in output.

5. Conclusion
Combining large language models via character decomposi-
tion is a method for averaging LLM output at decoding time,
without requiring the LLMs to have the same vocabularies
or tokenizers. We find that the CHARED algorithm leads
to combined models that can largely retain the benefits of
each individual model, across a variety of benchmarking
tasks testing for mathematical reasoning, coding, and toxic
text generation. This work suggests a promising potential
alternative to fine-tuning, under which multiple models can
be combined at decoding time.

This lays the groundwork for future experiments investigat-
ing the combination of more than two models and perfor-
mance on complex compositional tasks. In addition, while
the current averaging mechanism in CHARED uses arith-
metic means, further exploring more sophisticated variants
such as geometric means or weighted combinations of arith-
metic and geometric means is of interest.

4

CharED: Character-wise Ensemble Decoding for Large Language Models

References
Al-Rfou, R., Choe, D., Constant, N., Guo, M.,

and Jones, L. Character-level language model-
ing with deeper self-attention. volume 33, pp.
3159–3166, Jul. 2019. doi: 10.1609/aaai.v33i01.
33013159. URL https://ojs.aaai.org/index.
php/AAAI/article/view/4182.

Bansal, R., Samanta, B., Dalmia, S., Gupta, N., Vashishth,
S., Ganapathy, S., Bapna, A., Jain, P., and Talukdar, P.
Llm augmented llms: Expanding capabilities through
composition. 2024.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
2021.

Clark, J. H., Garrette, D., Turc, I., and Wieting, J. Ca-
nine: Pre-training an efficient tokenization-free en-
coder for language representation. volume 10, pp.
73–91, Cambridge, MA, 2022. MIT Press. doi: 10.
1162/tacl a 00448. URL https://aclanthology.
org/2022.tacl-1.5.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
Bert: Pre-training of deep bidirectional transformers
for language understanding. In North American Chap-
ter of the Association for Computational Linguistics,
2019. URL https://api.semanticscholar.
org/CorpusID:52967399.

Edman, L., Sarti, G., Toral, A., van Noord, G., and Bisazza,
A. Are character-level translations worth the wait? com-
paring byt5 and mt5 for machine translation. 2024.

Firat, O., Sankaran, B., Al-Onaizan, Y., Vural, F. T. Y.,
and Cho, K. Zero-resource translation with multi-lingual
neural machine translation. 2016.

Gulcehre, C., Firat, O., Xu, K., Cho, K., Barrault, L., Lin,
H.-C., Bougares, F., Schwenk, H., and Bengio, Y. On
using monolingual corpora in neural machine translation.
2015.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G., Bi, X., Wu, Y., Li, Y. K., Luo, F., Xiong, Y.,
and Liang, W. Deepseek-coder: When the large language
model meets programming – the rise of code intelligence.
2024.

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q.
Parameter-efficient fine-tuning for large models: A com-
prehensive survey. 2024.

Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D.,
and Kamar, E. Toxigen: A large-scale machine-generated
dataset for adversarial and implicit hate speech detection.
2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. 2021.

Huang, Y., Feng, X., Li, B., Xiang, Y., Wang, H., Qin, B.,
and Liu, T. Ensemble learning for heterogeneous large
language models with deep parallel collaboration. 2024.
URL https://arxiv.org/abs/2404.12715.

Hwang, K. and Sung, W. Character-level language modeling
with hierarchical recurrent neural networks. In 2017
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5720–5724, 2017. doi:
10.1109/ICASSP.2017.7953252.

Kasai, J., Sakaguchi, K., Bras, R. L., Peng, H., Lu, X.,
Radev, D., Choi, Y., and Smith, N. A. Twist decoding:
Diverse generators guide each other. 2022.

Kaushal, A. and Mahowald, K. What do tokens know about
their characters and how do they know it? 2022.

Kudo, T. and Richardson, J. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Blanco, E.
and Lu, W. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 66–71, Brussels,
Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning. In Moens,
M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3045–3059, On-
line and Punta Cana, Dominican Republic, November

5

https://ojs.aaai.org/index.php/AAAI/article/view/4182
https://ojs.aaai.org/index.php/AAAI/article/view/4182
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/2022.tacl-1.5
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://arxiv.org/abs/2404.12715
https://aclanthology.org/D18-2012

CharED: Character-wise Ensemble Decoding for Large Language Models

2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.243. URL https://
aclanthology.org/2021.emnlp-main.243.

Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and
Smith, N. A. Tuning language models by proxy. 2024.

Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C., Geng, X.,
Lin, Q., Chen, S., and Zhang, D. Wizardmath: Empow-
ering mathematical reasoning for large language models
via reinforced evol-instruct. 2023.

Riabi, A., Sagot, B., and Seddah, D. Can character-
based language models improve downstream task per-
formances in low-resource and noisy language scenar-
ios? In Xu, W., Ritter, A., Baldwin, T., and Rahimi,
A. (eds.), Proceedings of the Seventh Workshop on Noisy
User-generated Text (W-NUT 2021), pp. 423–436, Online,
November 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.wnut-1.47. URL https:
//aclanthology.org/2021.wnut-1.47.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

Stahlberg, F., Cross, J., and Stoyanov, V. Simple fusion:
Return of the language model. In Bojar, O., Chatterjee,
R., Federmann, C., Fishel, M., Graham, Y., Haddow, B.,
Huck, M., Yepes, A. J., Koehn, P., Monz, C., Negri, M.,
Névéol, A., Neves, M., Post, M., Specia, L., Turchi, M.,
and Verspoor, K. (eds.), Proceedings of the Third Confer-
ence on Machine Translation: Research Papers, pp. 204–
211, Brussels, Belgium, October 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6321.
URL https://aclanthology.org/W18-6321.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in NLP. In Ko-
rhonen, A., Traum, D., and Màrquez, L. (eds.), Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 3645–3650,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1355. URL
https://aclanthology.org/P19-1355.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. 2014.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,

M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models.
2023.

Xu, Y., Lu, J., and Zhang, J. Bridging the gap between
different vocabularies for llm ensemble. 2024. URL
https://arxiv.org/abs/2404.09492.

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou,
R., Siddhant, A., Barua, A., and Raffel, C. mT5:
A massively multilingual pre-trained text-to-text trans-
former. In Toutanova, K., Rumshisky, A., Zettlemoyer,
L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell,
R., Chakraborty, T., and Zhou, Y. (eds.), Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pp. 483–498, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.41. URL https:
//aclanthology.org/2021.naacl-main.41.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S.,
Kale, M., Roberts, A., and Raffel, C. ByT5: Towards
a token-free future with pre-trained byte-to-byte mod-
els. volume 10, pp. 291–306, Cambridge, MA, 2022.
MIT Press. doi: 10.1162/tacl a 00461. URL https:
//aclanthology.org/2022.tacl-1.17.

Yang, J. Rethinking tokenization: Crafting better tokenizers
for large language models. 2024.

Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., and Liu,
Q. ERNIE: Enhanced language representation with in-
formative entities. In Korhonen, A., Traum, D., and
Màrquez, L. (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp.
1441–1451, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1139.
URL https://aclanthology.org/P19-1139.

6

https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.wnut-1.47
https://aclanthology.org/2021.wnut-1.47
https://aclanthology.org/P16-1162
https://aclanthology.org/W18-6321
https://aclanthology.org/P19-1355
https://arxiv.org/abs/2404.09492
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/P19-1139

CharED: Character-wise Ensemble Decoding for Large Language Models

A. Proof of the Decoding Equivalence Theorem 2.1
Theorem A.1 (Theorem 2.1). Let z denote an arbitrary text sequence and l denote an arbitrary prompt. Then for α = 1,

PM1
(z | l) = PCHARED(z | l).

Proof. Assume sequence z must begin with token T1.

To prove for z of length n, suppose it holds for all z of length < n.

First, we show that the probability that the first token ofM1 is T1 is the same as that of CHARED outputting T1 and then
refreshing (line 21:).

Let PCHARED(T1&R | l) be the probability that CHARED outputs exactly the characters of T1, before refreshing (line 21)
for the first time. We also say that PM1

(T1&R | l)) is the probability that the first token ofM1(· | l) is T1.

Let Po(t) = PCHARED(T1[0 : t− 1]&�R | l) , where�R is the condition that refresh (line 21:) has not occurred.

Let Pd(t) be the probability corresponding to token T1 in d1 right before character z[t] has been chosen, conditioned on
CHARED(T1[0 : t− 1]&�R | l). Here, we say an entry in d1 corresponds to token T1 if it originated from the output of T1

from the first call toM1. For example if T1 = “apple”, and CHARED has output “ap”, then the entry in d1 that corresponds
to T1 is “ple”, as long as no refresh has occurred (and no entry corresponds to T1 if refresh has already occurred).

We show that E(Po(t)Pd(t)) remains constant from iteration to iteration: at line 12, as we choose the next character, Po(t)
is multiplied by the probability that the next character is consistent with T1. But when we renormalize at line 19, Pd(t)
is divided by the same probability. Then, at line 21, there is a P1(EOT) chance that Pd(c) becomes, 0, but if it doesn’t,
it is divided by 1/(1− P1(EOT)) during renormalization on line 24, thus expectation over lines 20-24 remains the same.
Therefore E(Po(t)Pd(t)) remains constant.

Let |T1| denote the length of token T1. Observe that Pd(|T1|) = P1(EOT after |T1| steps), and P1(EOT) is the probability
that refresh happens (lines 20-21 in Algorithm 2). Thus, PCHARED(T1&R | l)) = Po(|T1|)Pd(|T1|). We know though that
Po(0)Pd(0) = Pd(0) = PM1

(T1&R | l), and since E(Po(i)Pd(i)) does not change, PM1
(T1&R | l) = PCHARED(T1&R |

l).

But PCHARED(z | l) = PCHARED(T1&R | l)PCHARED(z\T1 | l + T1), where z\T1 is z with T1 removed from its beginning,
and likewise PM1(z | l) = PM1(T1&R | l)PM1((z\T1 | l + T1). Under our inductive assumption, we have PM1(z | l) =
PCHARED(z | l).

Finally, if there are more than one possible T1 that will result in the output of z, both probabilities are summed over all the
possible T1s, maintaining the equality.

B. Proof of the Tokenization Invariance Theorem 2.2
Theorem B.1 (Theorem 2.2). Let CHARED and CHARED’ differ only in thatM1 used in CHARED andM′

1 used in
CHARED’ have different tokenizations, but the same output, i.e. PM1(z | l) = PM′

1
(z | l), whileM2 remains the same.

Then PCHARED(z | l) = PCHARED′(z | l).

Proof. Observe that at any point t in CHARED, d1 depends on the characters that have already been selected (i.e., z[0 : t−1])
and onM1, but not directly on α orM2 since α only influences d1 by its effect on characters selected.

Let CHAREDα=1 be identical to CHARED, except for α = 1, and likewise for CHARED′
α=1 and CHARED′. Then,

conditioned on z[0 : t − 1], (d1 in CHARED) = (d1 in CHAREDα=1). Therefore, P1 in CHARED and CHAREDα=1

likewise have identical distributions conditioned on z[0 : t− 1].

But by Theorem 2.1, CHAREDα=1 and CHARED′
α=1 produce identical output, so P1 in CHAREDα=1 and CHARED′

α=1

must also have identical distribution. By combining the above, P1 in CHARED and CHARED′ must have identical
distribution. Therefore, as PM1 only influences output via its effect on P1, the outputs of CHARED and CHARED′ must
likewise have identical distributions.

7

CharED: Character-wise Ensemble Decoding for Large Language Models

C. Prompting Details
We use the following prompts for each benchmark, applying the chat template when relevant for respective chat and instruct
models.

For HumanEval, we follow the prompting method from Guo et al. (2024):

Please continue to complete the function. You are not allowed to modify the given code and do completion only.
Please return the completed function in a codeblock. Here is the given code to do completion:
‘‘‘python
{Code}
‘‘‘

For GSM8K, we use 5-shot prompting following the first five prompt examples from Wei et al. (2023):

Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?
Answer: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have
been 21 - 15 = 6. The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Answer: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
Answer: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35,
they had 74 - 35 = 39. The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
Answer: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 =
8. The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?
Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 =
9. The answer is 9.

Question: {Problem}
Answer:

For ToxiGen, we prompt the model as shown below, which is then followed by the toxic example instances from the dataset.
The task is to not further generate toxic statements, where toxicity is classified using roberta-large similar to the method in
Liu et al. (2024):

Write a statement that is similar to the below examples:
{Examples}

In all cases, the user can feed different prompts for each model, thus enabling flexibility in prompting choices as needed.

D. Evaluation Details
We run experiments on two NVIDIA A40 GPUs. We use the top k = 100 next tokens when querying models. Furthermore,
we evaluate the full test dataset for both GSM8K and HumanEval, which consist of 1319 and 164 problems respectively.
ToxiGen contains 1k samples of hate speech for each of 16 different minority groups, so we sample 50 statements from each
group and thus test on a subset of the benchmark consisting of 800 examples due to computational constraints.

8

CharED: Character-wise Ensemble Decoding for Large Language Models

Figure 3. Performance tradeoffs of combined models using CHARED on different benchmarking tasks.

Figure 4. Summed performance across two benchmarks of combined models, using performance shown in Figure 3.

E. Supplementary Results
In Figure 3, we provide another visualization of the tradeoff of the percent correct of each benchmark, under which it is
clear how we can optimize summed model performance using specfici α. In Figure 4, we can find the α corresponding to
the peaked summed performance for α = 0.5, 0.55, 0.45 for DeepseekCoder + WizardMath, DeepseekCoder + Llama 2
Chat, and WizardMath + Llama 2 Chat, respectively.

9

