
Metareasoning and Path Planning for Autonomous Indoor Navigation

Susan L. Epstein and Raj Korpan
Hunter College and The Graduate Center of The City University of New York

695 Park Avenue
New York, NY 10065

susan.epstein@hunter.cuny.edu

Abstract

A planner for indoor navigation in an unknown space should
anticipate the perils of sensor and actuator errors. The ap-
proach described here uses a spatial model whose elements
generalize continuous affordances from discrete data to sup-
port robust hierarchical planning. A novel reactive controller
intervenes to address lack of progress toward a target and
to improve plans opportunistically, during their execution. A
metareasoning architecture seamlessly integrates these com-
ponents as hierarchical decision making. Empirical results
demonstrate the flexibility of this approach and the role of
the spatial model in three challenging real worlds.

Introduction

To navigate successfully to a specified location (target) in
a complex indoor space, a robot needs a plan. A typical
plan is a sequence of locations (waypoints) from the robot
to the target. Given the likelihood of errors in a robot’s sen-
sors and actuators, however, such a plan often fails. The the-
sis of our work is that a robot can efficiently learn, robustly
plan, and effectively navigate in challenging worlds without
a map. Our approach learns a hierarchical spatial model of
freespace, unobstructed area that supports hierarchical plan-
ning. So equipped, our system can ignore many details until
execution time, can interrupt plan execution for failure to
make progress, and can revise a plan opportunistically. The
principal results reported here are a system that learns and
exploits a continuous representation of its world from dis-
cretized data on relatively few targets, and a demonstration,
in simulation, of its effective metareasoning in large, com-
plex, indoor spaces (henceforward, worlds).

A task here is navigation to a target in a world like Figure
1 with a laser range finder as the primary sensor and without
an input map. (Figures in this paper show walls and other
fixed obstacles only for the reader’s convenience. The robot
has no access to such a map, yet still traverses these worlds
in real time.) The range finder measures the distance to the
nearest obstruction in multiple directions, as visualized in
Figure 2(a). From its experience in a world, our system,
SemaFORR, learns a spatial model of the freespace there,
and improves its performance as it augments its model. Be-
cause robot sensors and actuators have limited precision,
the outcome of a decision is somewhat uncertain. Thus the

Figure 1: H10, a challenging world for a robot without a map

robot must repeatedly localize, that is, detect its precise lo-
cation and orientation in the world. We assume here that
the robot has accurate localization through, for example,
visual-inertial odometry (Forster et al. 2017). Our exper-
iments demonstrate that brief preliminary exploration can
provide an initial model that empowers planning.

Although both indoor navigation and autonomous driving
have a target as their goal, they present different challenges
and opportunities. Driving is constrained to a tiny fraction
of outdoor space, a network of clearly delineated, well-
mapped roads. A complex indoor space, however, is mostly
freespace, designed by an architect to support not only navi-
gation but also security, aesthetics, or privacy. Moreover, the
worlds studied here allow proportionally far more space that
the robot can occupy than the space that is unavailable to it.

SemaFORR formulates a plan as a sequence of freespace
elements rather than waypoints. This allows it to delay de-
cisions about how to move between elements until the next
plan step must be executed. Metareasoning relies on a re-
active controller that monitors and can interrupt plan exe-
cution. The next section provides background and related
work. Subsequent sections describe the model, the planners,
and the architecture that integrates them, followed by an em-
pirical demonstration, and a discussion of the results.



Background and Related Work

An autonomous robot navigator is an embodied computa-
tional system embedded in a world. It relies on a controller
to make its decisions. SemaFORR is written for ROS, the
international standard for robot operating systems, which al-
lows modular construction and platform-specific implemen-
tations (Quigley et al. 2009).

Algorithms that represent space continuously soon be-
come intractable in large, complex spaces. Most work in
robotics, therefore, discretizes the robot’s body (often, as
we do here, to a point on a coordinate plane), and repre-
sents its perception of a continuous world as a finite set of
values. Consider, for example, a robot with pose 〈x, y, θ〉,
where 〈x, y〉 is the robot’s location and θ is its orientation.
Figure 2(a) visualizes our robot’s sensor data, with the robot
at the arrow’s base (x, y), oriented toward the arrow’s head.
The blue rays measure the distance to the nearest obstruc-
tion, here every 1/3◦ along a 220◦ arc. This data is local,
that is, only within the range limit of the sensor. It is also
partial because the sensor lacks a 360◦ field of view, and
because small obstacles between the rays can go undetected,
particularly those farther from the robot.

Because real worlds are rampant with spatial irregulari-
ties (e.g., moldings, support columns, indentations or pro-
trusions in walls) and sensors are vulnerable to atmospheric
distortions and reflective surfaces, a robot’s sensors may pro-
vide inaccurate data. This makes it difficult to guarantee the
accuracy of any learned spatial model.

A decision point 〈x, y, θ, V 〉 is the robot’s pose and its
view V at that location, the data reported by its range finder
there. (Sensor data received while the robot is in motion is
ignored.) SemaFORR provides a deliberately small action
repertoire: 6 forward moves of different lengths, 12 clock-
wise or counterclockwise turns of different degrees, and a
pause. At each decision point, SemaFORR senses locally,
chooses one action from its repertoire, and executes that ac-
tion. During a task, SemaFORR records the robot’s path, a
chronological list of its decision points. A solution is a path
from the robot’s initial pose to one within ǫ of its target.

World representation

IEEE currently recognizes three standard ways to represent
a world with respect to a coordinate plane (IEEE RAS Map
Data Representation Working Group 2015). An occupancy
grid superimposes a grid of uniform square cells on the
footprint of the world, the area delineated by its boundaries
(e.g., the outer walls of a building). It indicates whether or
not each cell is blocked (fully or partially) by obstructions.
A geometric map lists individual points and line segments
that delineate obstacles to support precise distance and an-
gle computation. Finally, a topological map is a graph whose
nodes represent locations, and whose edges denote pairs of
locations reachable from one another, with labels for the
known travel distance between them. If a map is not pro-
vided, the robot must construct one.

SLAM (Simultaneous Localization and Mapping) local-
izes the robot and maps the world at once (Durrant-Whyte
and Bailey 2006). As the robot moves, SLAM uses pro-

prioceptive and exteroceptive sensor data both to gener-
ate a map and to determine the robot’s pose in it. Be-
cause V is incomplete and possibly inaccurate, and because
different poses can generate the same V , modern SLAM
methods are probabilistic (Thrun, Burgard, and Fox 2016;
Stachniss, Leonard, and Thrun 2016). For now, the most
popular probabilistic SLAM approaches remain those that
identify the most likely map of the robot’s world with maxi-
mum a posteriori likelihood (Lu and Milios 1997). They ef-
ficiently optimize and increment a global map of the world’s
static geometry to generate a likely floorplan as the robot
moves. Probabilistic SLAM, however, is limited to static
landmarks, requires extensive parameter tuning, and is not
robust to outliers. Unlike SemaFORR, it does not make de-
cisions or plans (Cadena et al. 2016).

Beyond the IEEE standard’s topology graph, many other
topological models are possible. They are designed to pro-
vide a high-level view of freespace and how portions of it are
connected, one over which a controller could reason. Some
approaches have learned and represented this topology in
first-order logic (Joshi et al. 2012) or as polygons induced
with a monocular camera (Stein et al. 2020). SemaFORR’s
spatial model is a topological graph whose nodes represent
continuous freespace.

Robot control

Modern robot controllers are hybrids that blend reactivity
and planning. A controller necessarily has some low-level
mechanisms that take priority in decision making. These re-
active procedures are immediate responses dictated by both
the robot’s task and its world. An autonomous car, for exam-
ple, has provisions for emergency braking to avoid collisions
and for lane following to obey driving restrictions.

The complexity of real-world spaces demands that a con-
troller be more than purely reactive. A plan is correct if its
flawless execution can be guaranteed to achieve a specified
goal. For a robot, however, a planner depends upon what is
likely an inaccurate world model, and no execution can be
guaranteed flawless. A planner is complete if it is guaranteed
to halt in finite time, to return a solution if one exists, and
to otherwise indicate failure. Complete navigation planners
have not scaled well, require perfect knowledge of obstacles,
and are rarely implemented (Lavalle 2006). Instead, plan-
ning for robot navigation trades off among computational
efficiency, optimality, and feasibility.

Modern navigation planners search discrete locations to
find waypoints. A graph planner searches for paths between
nodes that typically represent locations. When the edge la-
bel for a pair of mutually accessible nodes is the Euclidean
distance between them, A* is an optimal (i.e., shortest path)
algorithm (Hart, Nilsson, and Raphael 1968). Its optimality,
however, requires that the label is a heuristic underestimator
of the effort that remains to the goal. In that case, A* returns
the shortest path as a sequence of node waypoints.

A grid-based planner builds a graph from an occupancy
grid, with a node for each unobstructed cell and an edge for
each pair of immediately adjacent cells with unimpeded ac-
cess between their centers. Each edge is labeled with the
Euclidean distance between those centers, so that a graph



(a) Rays cast by the
range finder

(b) Regions with doors
and exits

(c) A dotted path and
its derived solid trail

(d) Trails and their con-
veyors

(e) Skeleton

Figure 2: Affordance detection in Home, a simple artificial world

search algorithm finds a sequence of cell-center waypoints.
Grid-based planning is only resolution complete, that is,
complete under the discretization it imposes on a world. Too
coarse a grid may label too many cells obstructed; if the
graph is thereby disconnected, some navigable paths can no
longer be detected. An accurate representation of freespace
requires a sufficiently fine-grained grid, one so well aligned
with the world’s architectural details that every cell is either
fully in freespace or fully obstructed. Because graph search
algorithms, including A*, have time and space complexity
at least exponential in the size of the graph, an optimal plan
is rarely found in real time.

Two families of navigation planners are probabilistic. A
probabilistic road map (PRM) algorithm builds a graph on
randomly generated locations and adds edges where it is
possible to move directly between them (Kavraki et al.
1996). PRM planners control the size of the graph but de-
pend on clever location sampling and fortuitous selection to
find good routes. Another approach, Rapidly-exploring Ran-
dom Trees (RRT), iteratively extends a graph from an initial
node (the starting point) and then tries to connect randomly-
selected locations to the nearest node in the existing graph
(Lavalle 1998). RRT has a Voronoi bias that prefers exten-
sions to unrepresented portions of the world. Both PRMs
and RRT return a sequence of specific waypoints and have
versions that are asymptotically complete, that is, complete
in the limit of the number of nodes in their graphs (Karaman
and Frazzoli 2011). Unlike our work, they do not exploit
navigation experience or continuous portions of freespace.

Even with a tractable search algorithm for an accurate and
adequately detailed map of the world, plans often fail. The
robot still must be able to move through freespace from one
waypoint to the next. If it has adequate actions in its reper-
toire and its actuators are precise, the plan will succeed. Too
often, however, this is not the case. The model may be flawed
or a distant obstacle may have gone unnoticed. The model
may be incomplete because the true vista is beyond the sen-
sor’s limit or because the robot has no experience in some
part of the world. If the robot’s actuators err, it may not be
able to reach, or even sense, its next waypoint.

To recover from plan failure, a controller can replan, but
that is often computationally costly. Alternatively, it can at-
tempt plan repair, that is, provide a subplan intended to ad-
dress that problem (e.g., plan to move around an object left
in the middle of a hallway). One way to repair a plan is with

a reactive planner, which triggers in a particular situation
and then provides one-step responses based on some strategy
until it alleviates that situation and the controller resumes
execution of the original plan. Neither replanning nor plan
repair is guaranteed to alleviate the underlying problem.

Another approach to plan failure is hierarchical planning.
It formulates a sequence of less precise plan steps (e.g.,
“go to the airport,” “take the flight”) and defers more de-
tailed steps until execution time (Kaelbling and Lozano-
Pérez 2011). Such plans are likely to be more robust be-
cause they leave the controller with multiple possible actions
from which it can choose once it has completed the immedi-
ately preceding plan step. This transformation from general
to more specific at execution time is called operationaliza-
tion. For example, there may be multiple options to reach
the airport, but the best choice may be clear only when it is
time to go there. During execution, the controller only oper-
ationalizes a segment when it is about to execute it, and then
selects actions to achieve it.

A recent Bayesian model of general hierarchical discov-
ery proposed a system that plans online and learns concepts
incrementally for use by its planner (Tomov et al. 2020).
This approach could theoretically discover the concepts that
underlie SemaFORR’s model, but it was tested only on tiny,
artificial worlds. SemaFORR too plans hierarchically online
and increments its model when it achieves a goal, but it
only instantiates input concepts and uses reactive planning
to speed its adaptation to specific worlds.

A Freespace Model

SemaFORR’s world model is a collection of spatial affor-
dances, features that facilitate movement rather than ob-
struct it. Its model summarizes its experience, based only
on the discrete decision points recorded in its path his-
tory. Nonetheless, all these affordances represent continu-
ous lengths or areas in freespace. Further details on the al-
gorithms sketched here are available in (Epstein et al. 2015;
Epstein and Korpan 2019). We use an artificial world, Home,
to illustrate the ideas in this section.

A region is a circle in freespace. Each time the robot is
stationary, the controller enters a sense-decide-act loop, and
the range finder reports the distances to the nearest obstruc-
tions. In Figure 2(a), the region defined by the decision point
at the arrow’s base is the circle whose center is the robot’s
location and whose radius is the minimum distance reported



by V . From some orientations, this local information will
be an overestimate of freespace that changes when the robot
turns in place. Accumulated contradictory or overlapping re-
gions are resolved when a task terminates. A region records
its radius and decision point, plus any additional range data
detected if the robot assumed other poses in that region.

An exit for a region represents access to freespace, a point
where the robot’s path once crossed the region’s perimeter.
A door is an arc on the region’s perimeter, a continuous gen-
eralization of finitely many, relatively close exits between its
endpoints. A door assumes that its infinitely many, as-yet-
unexperienced locations will also serve to transport the robot
into or out of the region. Figure 2(b) is an example of learned
regions with exits and doors (drawn for clarity as secants to
their respective arcs). Although regions use freespace to ap-
proximate what appear to be rooms in the figure, they record
only sensor data, not walls.

A trail is a refined version of the robot’s path during a
task, whether or not it reached its target. At the end of a task,
the learning algorithm revises the robot’s path heuristically,
to smooth it and eliminate digressions. The remaining (usu-
ally far fewer) decision points are trail markers; they suffice
to define the trail and preserve its views. As in Figure 2(c),
the sequence of line segments defined by consecutive trail
markers is typically more direct than the original (dotted)
path, but the trail is not expected to be optimal.

A conveyor is a small square in freespace that frequently
supports trails. To learn conveyors, SemaFORR superim-
poses a 2×2m grid on the world’s footprint, and tallies how
often any trail passes through each cell. Conveyors are high-
count cells that are presumed to facilitate target-independent
navigation, but are not used in planning. Figure 2(d) is an
example of learned trails and conveyors, with higher-count
conveyors shaded more darkly.

The model’s skeleton is a graph that represents how re-
gions are connected. Each node there represents a region; an
edge between two nodes indicates that the robot took some
path directly from one region into the other, without passing
through any intervening region. Each such path segment is
reformulated as a subtrail, a sequence of trail markers de-
rived from it. The length and trail markers of the shortest
such subtrail become the label for the edge in the skele-
ton between those two regions. Figure 2(e) superimposes
a skeleton SemaFORR learned for Home, where edges in-
dicate only the existence of a subtrail, not its trail markers.
With perfect knowledge, a region of degree one in a skeleton
would be a dead-end.

Planning
Because freespace is about where one could be, it naturally
supports planning. In practice we have found that A* paths
in fine grids for real worlds typically hug walls and corners
tightly. As a result, when a small sensor or actuator error oc-
curs during the construction of the occupancy grid or during
navigation in the world itself, such plans often fail. Instead
of waypoints, SemaFORR represents a plan as a sequence of
steps (waypoints or regions) in freespace.

SemaFORR plans in the skeleton, which is built from con-
tinuous travel to a sequence of targets and is therefore con-

Figure 3: Skeleton for M5

nected. A step in a plan that requires movement from region
A to region B is necessarily feasible, because some path
once went from a location in A to a location in B to estab-
lish the graph’s edge between them. Thus, these plans are
correct up to actuator and sensor error. If the robot’s initial
position and target lie in regions, any complete graph search
algorithm will make the planner complete.

Planning in a freespace graph offers two advantages:
speed and flexibility. Planning is faster because a freespace
graph is typically several orders of magnitude smaller than
an occupancy grid for the same world. Consider, for exam-
ple, M5, the 54×62m fifth floor of MoMA, New York’s Mu-
seum of Modern Art. Planning on a 1× 1m occupancy grid
there requires a graph on hundreds of thousands of cells, ver-
sus the 21 nodes in Figure 3. Freespace plans are also more
robust because movement in freespace offers so many possi-
ble ways to travel, for example, from one region to another.

SemaFORR’s planner, SKELETONP, finds a shortest path
in the skeleton with graph search. If the robot and the tar-
get each lie in (distinct) regions, SKELETONP generates a
hierarchical plan, from the robot’s initial pose R to the tar-
get location at T , as a sequence of regions in the skeleton.

If they do not, SKELETONP identifies surrogate regions, R̂

and T̂ for R and T , respectively. To find a surrogate for a
point p, SKELETONP takes the closest region to p whose
recorded range data senses p. If there is none, then it scores
each region with a weighted combination of its center’s Eu-
clidean distance to p and its degree in the skeleton, and se-
lects a region with maximum score. Once the surrogates are

selected, the plan is R̂ −→ . . . −→ T̂ . Because we have no
admissible heuristic h for our planner, we use Dijkstra’s al-
gorithm, which has higher complexity bounds than A* but
is fast enough because the skeleton is small (Dijkstra 1959).
How to reach the surrogates and how to operationalize a plan
opportunistically are described in the next section.

SemaFORR is designed to learn its model online, as it
pursues a sequence of tasks, but that leaves it at a consider-



Table 1: SemaFORR’s Advisors and their rationales

Tier 1, in order of priority

VICTORY Go toward an unobstructed target
AVOIDOBSTACLES Do not go within ε of an obstacle
NOTOPPOSITE Do not return to last orientation
ENFORCER Operationalize and execute plan
OUT Leave a repeatedly confined area

Tier 2 planners

SKELETONP Find region sequence to target

Tier 3 heuristics

Based on commonsense reasoning
BIGSTEP Take a long step
ELBOWROOM Get far away from obstacles
NOVELTY Go to unvisited locations
GOAROUND Turn away from nearby obstacles
GREEDY Go close to target

Based on the spatial model
CONVEY Go to frequent, distant conveyors
ENTER Go into the target’s region
EXIT Go far from non-target regions
LEASTANGLE Leave this region toward target
TRAILER Use subtrail toward target
UNLIKELY Avoid dead-ends in the skeleton

able disadvantage on its first task, when it has no model, and
on many early tasks, when its model is quite limited. We
therefore employ an exploration algorithm whose original
purpose was to enhance the model with other affordances.
Here, however, we use it only as an active learner to estab-
lish an initial model before the robot began its tasks. The
exploration algorithm assumes that the world is intended to
facilitate travel and that freespace cues the navigator with
glimpses of long extents (e.g., down a hallway). Given a
time limit, exploration recognizes and pursues selected long
(≥ 7m) rays. (This work is currently under review.)

Integration by Metareasoning

SemaFORR is based on FORR (FOr the Right Reasons), a
cognitive architecture for learning and problem solving (Ep-
stein 1994). A FORR-based system makes decisions with a
set of rationales, each implemented by an Advisor, a pro-
cedure that represents its behavior. A list of SemaFORR’s
Advisors appears in Table 1.

SemaFORR integrates the spatial model and all its Ad-
visors in tiers that capture three reasoning mechanisms: re-
activity, planning, and heuristic guidance. At each decision
point, given its full experiment history, action repertoire, and
current spatial model, SemaFORR cycles through its tiers of
Advisors to select its next action. In a pose, the robot is said
to sense a point if it lies within the area covered by its range
finder, and to sense a region only if it can sense its center.

The reactive Advisors in tier 1 take priority, because re-
activity saves cognitive effort and prevents foolish mistakes
and wasteful behavior. The first three provide initial navi-
gational common sense, in the following order. If the robot
senses its target, VICTORY orients the robot toward the tar-
get or moves directly forward toward it; this becomes the

decision and the cycle ends. Otherwise, AVOIDOBSTACLES

eliminates from consideration all forward moves that would
go beyond the distance it senses directly in front of it, and
NOTOPPOSITE eliminates consecutive repetitive rotations in
place. The remaining actions are viable. If, after any tier-
1 Advisor executes, only one viable action remains, it be-
comes the decision and the cycle ends. Otherwise, the viable
actions are forwarded to tier 2.

Because no plan should ignore reliable reactive behaviors,
the two plan-related reactive Advisors that perform metarea-
soning are last in tier 1. ENFORCER tries to follow the cur-
rent hierarchical plan. It operationalizes one step at a time,
and then evaluates the remaining possible actions in the con-
text of that step. Operationalization depends on a step’s type.

To operationalize a waypoint w, ENFORCER approaches
it, that is, it selects a move that should bring the robot closer
to w or, based on one-step lookahead, a turn that should do
so. This lookahead does not actually turn the robot; it merely
transposes the range data to consider it from the incomplete
(< 220◦) perspective it can project after the turn, and applies
its rationale from that perspective. If there is any viable such
action, ENFORCER selects as the decision the one that it pre-
dicts will bring it closest to w, and the decision cycle ends.

To operationalize the next region in a plan whose next
steps are a sequence of regions A → B → C, ENFORCER

considers the current decision point. If the robot is not in
A, ENFORCER makes A’s center the first step in the plan.
Otherwise, for a robot in A, there are three possibilities:

• If the robot can sense C, ENFORCER ignores B and re-
places C with C’s center. This is what psychologists call
a “novel shortcut,” where the navigator has only ever tra-
versed two legs of a triangle but now takes the third, a
proclivity well-documented in many animals.

• If the robot can sense B but not C, ENFORCER replaces B
with B’s center. Although the skeleton stores a guaranteed
path from A to B, it is only a sequence of subtrail markers.
If the robot can sense B’s center, there is a clear and likely
more direct move into B. SKELETONP may not have been
able to predict it, but the subtrail would now constitute a
less efficient detour given the robot’s current pose.

• Otherwise, ENFORCER replaces B with the trail markers
recorded in the skeleton for the subtrail from A to B.

If ENFORCER alters the plan, the cycle ends. Otherwise, if it
selects no action, it passes the viable actions to its reactive
planner OUT.

OUT addresses repeated confinement in a small area (e.g.,
a room or the space around a narrow corner). In a grid su-
perimposed on the footprint of the world, SemaFORR tallies
how often each cell has been sensed as freespace. When at
least 75% of the cells in the last 10 V ’s have been counted
at least 4 times, and the current decision point identifies no
new freespace, OUT triggers. Its strategy is first to have the
robot turn to cover a full 360◦. If this identifies any new
freespace, OUT halts, tier 1 ends, and control passes to tier
2. Otherwise, as it examines the history of the full experi-
ment backwards, it collects decision points until it finds one,
p, whose location it cannot sense from its current location.
OUT refines that subpath, from the robot’s current location



(a) H10 (b) G5

Figure 4: Skeletons after 30 minutes of exploration that began from *

backward to p, into a subtrail. To repair the current plan,
OUT places that subtrail’s markers as a sequence of way-
points at its front.

In tier 2, if planning has never been attempted for this task
and SKELETONP can formulate a plan, it sends that plan to
ENFORCER, and the cycle ends. A decision is relegated to

tier 3 only if the plan has reached T̂ but not T , or when no
action would satisfactorily operationalize the next step in the
current plan. In that case, control passes to tier 3 along with
the viable actions.

Tier-3 Advisors are single-focus, deliberately simplistic
heuristic procedures that express action preferences. Five of
the 11 tier-3 Advisors in Table 1 express navigational com-
mon sense; the others exploit the spatial model. Whenever a
tier-3 Advisor has appropriate knowledge (e.g., a history of
its previous decision points for NOVELTY or a relevant af-
fordance for a spatial heuristic), it comments on every viable
action with some strength s ∈ [0, 10], from strong opposi-
tion to strong preference. Comments are on moves, and on
turns with one-step lookahead if θ is within ǫ of the location
the action addresses. Given the comments of all applicable
tier-3 Advisors on the still-viable actions, SemaFORR’s de-
cision is the one with maximum total comment strength. Al-
though these comments typically conflict, tier 3’s power lies
in the synergy among the rationales that underlie them. For
example, a long forward move is likely to be better if it is
also in the direction of the target and avoids a dead-end. Ta-
ble 2 provides an example of a tier-3 decision.

Experimental Design and Results

In an extensive suite of experiments, we tested SemaFORR
in three challenging worlds. M5 was designed to attract,
but not force, visitors along some path that allows them to
view all the temporary exhibits there. H10 is an 89 × 58m
floor in a repeatedly renovated building. G5 is a 100× 70m
floor known for its ability to perplex human navigators, de-
spite color-coded walls and art introduced as landmarks by
thoughtful employees. The other floors in the same buildings
are both different and easier.

Table 2: Comment strengths of Advisors during a typical
tier-3 decision. The top 4 viable actions were two moves
(m1 and m2), pause p, and a small left turn l. Each was
supported with maximum strength by some Advisor. Despite
some enthusiasm for m2, l was the decisions.

Advisor m1 m2 p l
BIGSTEP 5.0 10.0 0.0 5.0
ELBOWROOM 4.1 10.0 0.0 2.9
NOVELTY 4.7 10.0 1.8 5.9
GOAROUND 0.0 0.0 0.0 10.0
GREEDY 5.0 0.0 10.0 5.2
TRAILER 10.0 0.0 5.1 6.9

Total 28.8 30.0 16.9 35.8

For each world, we randomly generated 5 different sets
of 40 locations in freespace. A run began a target set with
the robot at the real-world’s entrance (the stars in Figures 3
and 4), and attempted to reach each target in that set within
a decision limit (maximum number of actions selected). For
M5, the robot began facing left with a 500-decision limit for
each task. For H10 and G5, it began facing right, with a 750-
decision limit. Travel to a target after the first one began in
the location where the previous search ended.

To examine the interplay among reactivity, planning,
heuristics, and the spatial model, we also tested two ablated
versions. The first was a purely reactive baseline whose only
Advisors were VICTORY, AVOIDOBSTACLES, and NOTOP-
POSITE in tier 1. The other ablated version learned and used
the spatial model but did not plan; it had the same three tier-
1 Advisors and all the tier-3 Advisors. To demonstrate the
power of the spatial model, we also tested SemaFORR pre-
ceded by 20 or 30 minutes of exploration.

All experiments simulated Fetch Robotics’ Freight, an
industry-ready robot whose laser range scanner reports 15
times per second the distance to the nearest obstruction
within 25m of the robot, in 660 directions along a 220◦ arc.
The robot’s action repertoire was 6 forward moves (with mo-
tor activation to move 0.1, 0.2, 0.4, 0.8, 1.6, or 3.2m), 12



(a) Success rate (b) Distance (meters) (c) Time (seconds)

Figure 5: Performance on three metrics, grouped by world. Within a world, from left to right, each histogram reports on the
purely reactive baseline, the version without planning, SemaFORR, and SemaFORR preceded by 20 minutes and then 30
minutes of exploration.

rotations (with motor activation to turn clockwise or coun-
terclockwise 5, 15, 30, 45, 60 or 90 degrees), and a pause.

MengeROS managed the simulation (Aroor, Epstein, and
Korpan 2017). It deliberately introduced small, random er-
rors into both the sensor data and into action execution as
changes to motor time. MengeROS calculates V from an
input geometric map to which SemaFORR has no access.
To avoid collisions due to inaccurate sensor data, the maxi-
mum permissible forward move was no more than the min-
imum length within θ ± 30◦. To avoid small, distant ob-
structions that could go undetected, the ability to sense a
point requires confirmation within 20m and support within
a multi-ray area. Precision ǫ with respect to arrival at a point
in all experiments was 1m for targets, but 0.5m for subtrail
markers, and 0.75m for regions’ centers, both of which rely
on V and so require greater care. All experiments ran on a
Dell Precision Tower 7910 with 16 GB memory and an Intel
Xeon(R) CPU ES-26-30 v3 @ 2.40GHz x 16, that ran ROS
Indigo in Ubuntu 14.04.

The principal performance metric is success rate, the frac-
tion of targets reached within the decision limit. We also re-
port travel distance in meters and elapsed wall-clock time
(model construction, planning, decision making, and explo-
ration) in seconds. Data is reported over 10 runs, 2 for each
set. Cited differences are statistically significant (p = 0.05).

SemaFORR performs in real time. For example, after 20
minutes of exploration, decisions averaged 0.402 seconds in
M5, 0.216 in H10, and 0.238 in G5. Across all 3 worlds,
model updates after a task averaged 19.5 seconds and plan-
ning in the skeleton only 0.17 seconds per task.

In M5, the purely reactive version struggled (27.9% suc-
cess rate) but the plan-free version was surprisingly success-
ful (94.1%), which we attribute to the openness of the space.
In the two larger worlds, however, neither ablation did well.
Planning improved the success rate in M5, and reduced time
and distance. In H10, planning tripled the success rate, with
little change in distance, and time was nearly halved, which
suggests more efficient travel. In G5, planning doubled the
success rate but also nearly doubled distance while time re-
mained steady. G5 is larger, with many hallways that allow
more long moves. As a result, the robot often traveled fur-
ther to reach its targets, and thus took more time to execute
under the same decision limit.

The spatial model supports planning. Inspection indicates
that M5’s few failures came on early tasks. Twenty min-
utes of exploration was enough to address most of the long
rays the algorithm considered worthy of investigation, and
produced a skeleton that supported success on every task.
Thirty minutes of exploration maintained 100% success but
incurred additional time and distance. In H10, 20 minutes
of exploration significantly improved the success rate, and
30 minutes did so again, while time and distance remained
unchanged. In G5, 20 minutes of exploration dramatically
improved the success rate and reduced the time, while 30
minutes raised G5’s success rate to that of H10.

Ideally, as a navigator learned more about its world, it
would reach its targets faster and cover less distance. With
SemaFORR, however, successes rise with planning and ex-
ploration. As a result, operationalized plans replace tier-3’s
tentative compromises with larger, more purposeful actions
that may increase time and distance but reach more targets
within the same decision limits.

Heuristics supported decision making. Table 3 reports on
255,975 tier-3 decisions during 10 runs in M5 with 20 min-
utes of exploration, and in H10 and G5 with 30 minutes
of exploration. The commonsense Advisors almost always
commented; the spatial model Advisors required relevant af-
fordances. Only BIGSTEP and CONVEY had their strongest
preference selected more often than not. GREEDY was the
most frequently outvoted Advisor (41.2%).

Table 3: Frequency of tier-3 Advisors’ comments, and how
often their comments’ strength s supported the chosen action

Tier 3 Freq. s = 10 s > 5
BIGSTEP 100.0% 91.6% 94.6%
ELBOWROOM 100.0% 28.8% 72.2%
NOVELTY 99.2% 24.4% 73.6%
GOAROUND 98.0% 14.5% 67.1%
GREEDY 100.0% 18.7% 58.8%

CONVEY 29.0% 72.2% 92.9%
ENTER 3.0% 39.4% 73.2%
EXIT 60.1% 44.2% 88.2%
LEASTANGLE 12.6% 38.6% 71.1%
TRAILER 36.1% 44.8% 84.5%
UNLIKELY 14.5% 19.4% 87.8%



Discussion

SemaFORR demonstrates that a robot equipped only with
a range finder can learn to navigate in a large, complex
world without a map. Mapping is typically a computation-
ally costly undertaking. To the best of our knowledge, no
other controller has tackled this problem in worlds as large
and complex as these.

Planning is clearly essential but not every difficulty can be
anticipated. When a situation repeatedly arises, that suggests
the need for reactive intervention. What motivated OUT, for
example, was failure to make progress, particularly in rooms
where the robot was on the wrong side of a wall deceptively
close to the target. OUT triggered on average during 18.25%
of the tasks in H10 and G5 after 30 minutes of exploration.

Metareasoning includes introspective monitoring of rea-
soning, and actions taken in response to it (Cox and Raja
2011). In SemaFORR, ENFORCER monitors plan execution
with the reactive planner OUT to recognize and address lack
of progress. ENFORCER also improves on SKELETONP’s
traditional approach with operationalization that introduces
novel shortcuts and alternate paths into regions. While tra-
ditional navigation planners attempt to repair or replan in
the face of failure, we believe that SemaFORR is the first to
improve its plans opportunistically, during execution.

Reliance on randomly selected targets to develop Se-
maFORR’s model is clearly less effective than principled
exploration. The exploration-exploitation trade-off is a clas-
sic AI issue: whether an agent should apply what it knows
and act to solve its current problem, or should act in a
way that may ultimately increase its ability to solve this
and other problems. This motivated the tier-3 Advisor NOV-
ELTY, which simulated local curiosity but lacked a global
perspective. Unless global exploration occurs before the
robot’s first task in a new world, SemaFORR has no spa-
tial model, cannot plan, and is likely to fail. Even after its
first few tasks, the model is likely to be inadequate for many
targets.

The purpose of initial exploration is to provide a bet-
ter world model in which to plan. Exploration offers Se-
maFORR a global perspective, a skeleton for a new world
acquired through active learning with self-determined tar-
gets. An initial 30-minute investment in exploration, in-
cluded in Figure 5(c), reduced task-solving time per target
set by 75.5 minutes in H10, and by 95.8 minutes in G5.

An incomplete model of the world, particularly near the
target, caused the remaining failures in H10 and G5. If the

robot had to rely on heuristics to reach its first plan step R̂
from its current location, or to reach the target from its last

plan step T̂ , it was because it lacked knowledge. A metric
on SemaFORR’s spatial model is coverage, the fraction of
freespace it includes. Table 4 reports on the model’s cover-
age after 40 tasks. Across all our experiments, average cov-
erage after the first task was significantly correlated with the
success rate (0.92 for G5, 0.81 for H10, and 0.54 for M5).

Exploration assured perfect success in M5, a relatively
open space. Despite the remarkable skeletons in Figure 4,
however, Table 4 makes clear that in H10 and G5, with
about 75 and 180 rooms, respectively, more exploration is

Table 4: Freespace, coverage, and exploration time
World Free(m2) 0 min. 20 min. 30 min.

M5 1585 80.5% 93.2% 93.7%
H10 2627 28.3% 37.3% 44.0%
G5 4021 15.3% 34.7% 40.7%

not likely to improve SemaFORR further. What would? Not
more tasks, which rely too much on serendipitous targets to
extend the model. Not a higher decision limit, which would
simply allot more resources to heuristics that have proved
80% adequate. Instead we have identified, and have under
development, several promising additional reactive planners
and spatial affordances.

We envision several applications for SemaFORR. Archi-
tects could apply it to buildings still in design, to predict how
they might be navigated or improved. Rescue teams could
apply it to damaged buildings, to find alternate routes for
personnel. SemaFORR could also accompany another con-
troller to provide information on global connectivity. The
constants in the descriptions here are parameterized in our
code, to make SemaFORR readily applicable to other plat-
forms. (Grid cells, for example, are 1 × 1m because that
comfortably fits our robot.) In earlier work, we developed
simple templates that enabled SemaFORR to respond to a
restricted list of questions (e.g., “why did you do that?”)
in clear natural language (Epstein and Korpan 2019). Cur-
rent work adapts that to the planner described here, so that
SemaFORR might express its confidence as well as justify
its behavior. Future work includes automatically learning
OUT’s trigger parameters; the current values were selected
to generalize well across different worlds.

SemaFORR’s key features are worthy of emphasis. Its
affordances inductively generalize continuous space from
only discrete measurements. It learns both actively, when
it chooses what to explore, and online, at the end of each
task. Its hierarchical plans defer operationalization and thus
allow the controller to correct for actuator error and for ob-
structions that previously went unnoticed by its sensors. Its
plan execution accepts intervention both to extricate it from
difficulty and to detect and exploit novel shortcuts. Its deci-
sion limit allows it to augment all but the conveyors in its
model, whether or not it reaches a target, so it learns from
both success and from failure. It treats historical behavior
(subtrails) as a recommendation rather than a requirement.

In two worlds deliberately selected for their difficulty, Se-
maFORR navigates autonomously to about 80% of its tar-
gets. We look forward to its continued improvement. Mean-
while, SemaFORR’s metareasoning interleaves hierarchical
planning and reactive planning to address and exploit differ-
ent situations as they arise during target-driven navigation.

Acknowledgments. This work was supported in part by
The National Science Foundation under CNS-1625843. The
authors also thank Gil Dekel and Matthew Evanusa for their
pioneering work on the spatial model, and Anoop Aroor for
MengeROS and his support in SemaFORR’s development.



References
Aroor, A.; Epstein, S. L.; and Korpan, R. 2017. MengeROS: A
crowd simulation tool for autonomous robot navigation. In 2017
AAAI Fall Symposium on Human-Agent Groups.

Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.;
Neira, J.; Reid, I.; and Leonard, J. J. 2016. Past, present, and fu-
ture of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics 32(6):1309–1332.

Cox, M., and Raja, A. 2011. Metareasoning: An Introduction. MIT
Press. 3–14.

Dijkstra, E. W. 1959. A note on two problems in connexion with
graphs. Numerische Mathematik 1(1):269–271.

Durrant-Whyte, H., and Bailey, T. 2006. Simultaneous localiza-
tion and mapping: part I. IEEE Robotics & Automation Magazine
13(2):99–110.

Epstein, S. L., and Korpan, R. 2019. Planning and explanations
with a learned spatial model. In Timpf, S.; Schlieder, C.; Katten-
beck, M.; Ludwig, B.; and Stewart, K., eds., COSIT-2019, volume
142 of LIPICS, 22:1–22:20. Schloss Dagstuhl.

Epstein, S. L.; Aroor, A.; Evanusa, M.; Sklar, E. I.; and Parsons, S.
2015. Learning spatial models for navigation. In Fabrikant, S. I.;
Raubal, M.; Bertolotto, M.; Davies, C.; Freundschuh, S. M.; and
Bell, S., eds., COSIT, volume 9368 of Lecture Notes in Computer
Science, 403–425. Springer.

Epstein, S. L. 1994. For the right reasons: The FORR architecture
for learning in a skill domain. Cognitive Sforscience 18(3):479–
511.

Forster, C.; Carlone, L.; Dellaert, F.; and Scaramuzza, D. 2017.
On-manifold preintegration for real-time visual-inertial odometry.
IEEE Transactions on Robotics 33(1):1–21.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–107.

IEEE RAS Map Data Representation Working Group. 2015. IEEE
Standard for Robot Map Data Representations for Navigation.

Joshi, S.; Schermerhorn, P.; Khardon, R.; and Scheutz, M. 2012.
Abstract planning for reactive robots. In 2012 IEEE International
Conference on Robotics and Automation, 4379–4384. IEEE.

Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical task and
motion planning in the now. In ICRA, 1470–1477. IEEE.

Karaman, S., and Frazzoli, E. 2011. Sampling-based algorithms
for optimal motion planning. International Journal of Robotics
Research 30(7):846–894.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics
and Automation 12(4):566–580.

Lavalle, S. 1998. Rapidly-exploring random trees : a new tool for
path planning. Technical Report TR98-11, Iowa State.

Lavalle, S. M. 2006. Planning Algorithms. Cambridge University
Press.

Lu, F., and Milios, E. E. 1997. Robot pose estimation in unknown
environments by matching 2D range scans. Journal of Intelligent
and Robotic Systems 18(3):249–275.

Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote, T.; Leibs,
J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source Software.

Stachniss, C.; Leonard, J. J.; and Thrun, S. 2016. Simultane-
ous localization and mapping. In Springer Handbook of Robotics.
Springer. 1153–1176.

Stein, G. J.; Bradley, C.; Preston, V.; and Roy, N. 2020. Enabling
topological planning with monocular vision. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE.

Thrun, S.; Burgard, W.; and Fox, D. 2016. Probabilistic Robotics:
Intelligent Robotics and Autonomous Agents. MIT Press.

Tomov, M. S.; Yagati, S.; Kumar, A.; Yang, W.; and Gershman,
S. J. 2020. Discovery of hierarchical representations for efficient
planning. PLoS Computational Biology 16(4):e1007594.


