
Published in Transactions on Machine Learning Research (02/2025)

Generalized Tangent Kernel: A Unified Geometric
Foundation for Natural Gradient and Standard Gradient

Qinxun Bai∗ qinxun.bai@horizon.auto
Horizon Robotics, Cupertino, CA, USA

Steven Rosenberg∗ sr@math.bu.edu
Department of Mathematics and Statistics, Boston University, Boston, MA, USA

Wei Xu wei.xu@horizon.auto
Horizon Robotics, Cupertino, CA, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= HOnL5hjaIt

Abstract

Natural gradients have been widely studied from both theoretical and empirical perspectives,
and it is commonly believed that natural gradients have advantages over standard (Euclidean)
gradients in capturing the intrinsic geometric structure of the underlying function space and
being invariant under reparameterization. However, for function optimization, a fundamental
theoretical issue regarding the existence of natural gradients on the function space remains
underexplored. We address this issue by providing a geometric perspective and mathematical
framework for studying both natural gradient and standard gradient that is more complete
than existing studies. The key tool that unifies natural gradient and standard gradient is
a generalized form of the Neural Tangent Kernel (NTK), which we name the Generalized
Tangent Kernel (GTK). Using a novel orthonormality property of GTK, we show that for a
fixed parameterization, GTK determines a Riemannian metric on the entire function space
which makes the standard gradient as “natural" as the natural gradient in capturing the
intrinsic structure of the parameterized function space. Many aspects of this approach relate
to RKHS theory. For the practical side of this theory paper, we showcase that our framework
motivates new solutions to the non-immersion/degenerate case of natural gradient and leads
to new families of natural/standard gradient descent methods.

1 Introduction

Since their introduction in Amari (1998), natural gradients have been a topic of interest among both theoretical
researchers (Ollivier, 2015; Martens, 2014; Li & Montúfar, 2018) and practitioners (Kakade, 2001; Pascanu
& Bengio, 2013). In recent years, research has examined several important theoretical aspects of natural
gradient for function optimization on neural networks, such as replacing the KL-divergence by the L2 metric
on the function space (Benjamin et al., 2019), Riemannian metrics for neural networks (Ollivier, 2015), and
convergence properties under overparameterization (Zhang et al., 2019b).

It is well-known that natural gradient has the favorable property of being invariant under change of coordinates.
While this invariance property is appealing theoretically, in modern practice of (stochastic) gradient descent,
the coordinates are rarely changed during the gradient descent procedure. Therefore, in this work, we focus
on the properties of natural gradient and standard gradient under some fixed function parameterization and
coordinates. In this setup, it is widely believed that natural gradients have an advantage over standard
(Euclidean) 1 gradients in capturing the intrinsic geometric structure of the parameterized function space.

*Correspondence. These authors contributed equally to this work.
1Throughout the paper, we use standard gradient to denote the gradient for the standard Euclidean metric on the parameter

space, which is the default choice for (stochastic) gradient descent in most machine learning practice.

1

https://openreview.net/forum?id=HOnL5hjaIt

Published in Transactions on Machine Learning Research (02/2025)

Figure 1: Most existing work on natural gradient focuses on the red dashed regime, where ϕ is a mapping
from the parameter space W to the parameterized function space Φ = ϕ(W). Natural gradient decreases the
objective F along the gradient flow on Φ under a chosen Riemannian metric, instead of using the standard
Euclidean metric on W. However, the functional gradient ∇F at any point of Φ need not lie in the tangent
space to Φ.

However, some critical theoretical aspects of natural gradients related to function approximations are still
largely underexplored. In parametric approaches to machine learning, one often maps the parameter domain
W ⊂ Rk to a spaceM =M(M,N) of differentiable functions from a manifold M to another manifold N . For
example, in neural networks, W is the space of network weights, and ϕ : W →M(Rn,Rm) has ϕ(w) equal to
the associated network function, where n is the dimension of network inputs and m the dimension of outputs.
In the modern formulation of natural gradient, if ϕ is an immersion, a Riemannian metric on M induces a
pullback or natural metric on W. In supervised training of such neural networks, the empirical loss F of a
particular type, say mean squared error (MSE) for regression and cross-entropy for classification, is typically
applied to the parametric function evaluated on a finite set of training data. As shown in Figure 1, most
existing work (with a notable exception of van Oostrum et al. (2023)) on natural gradient focuses on the red
dashed regime, where natural gradient decreases the objective F along the gradient flow on Φ = ϕ(W) under
the natural metric, instead of using the standard Euclidean metric on W. However, the functional gradient2

∇F at any point of Φ need not lie in the tangent space to Φ. Therefore, a complete study of the natural
gradient should analyze both the gradient of F in the ambient function space M ⊃ Φ and its projection
onto Φ, before pulling it back to W. This motivates our study of the analytic and differential geometric
properties of M that influence the projection and the pullback metric. Moreover, we can interpret this figure
to encompass a family of projected functional gradients, including natural gradient and standard gradient,
which leads to new understandings of both.

Based on this geometric viewpoint, we address the relationship between the gradient flow on Φ and that on
M, showing that the inverse of the metric matrix appearing in the natural gradient is in fact a consequence
of the orthogonal projection of the functional gradient from M to Φ. We also show that because of the
“pointwise" nature of a typical empirical loss, the gradient of the loss function does not in general exist on the
infinite-dimensional space M for common choices of metrics, such as L2 and Fisher-Rao. The technical issue
is that any such gradient involves delta functions, which are not continuous linear functionals on e.g., L2.
This motivates studying the pullback metric in an RKHS, where by definition delta functions are continuous
linear functionals. In particular, for all common empirical loss functions in supervised learning, the gradient
is well-defined only in the RKHS context. Using an RKHS framework, we introduce a generalized form of the
Neural Tangent Kernel (NTK) (Jacot et al., 2019), which we name the Generalized Tangent Kernel (GTK),
to mathematically express Figure 1’s common framework of natural gradient and standard gradient.

In particular, we show that GTK enjoys an automatic orthonormality property, and as a result, there exists a
family of projected functional gradients (similar to the projection of F in Figure 1), each of which produces a
natural gradient that reflects a well-defined geometric structure on the immersed function space. Standard
gradient is the simplest example of this family in the computational sense that the metric matrix is the
identity matrix.

We then study a known issue of applying natural gradients to modern function approximations, such as neural
networks, namely the potential violation of the immersion/injectivity assumption on ϕ, which leads to a

2By “functional gradient,” we mean the gradient of a loss function on a space of functions.

2

Published in Transactions on Machine Learning Research (02/2025)

singular metric matrix and therefore an ill-defined natural gradient on W . In contrast to existing approaches
resorting to the Moore-Penrose generalized inverse (Ollivier, 2015; Bernacchia et al., 2018; van Oostrum
et al., 2023), we use slice methods to reduce the dimension of W and show that our GTK-based framework
provides a new solution to this issue, leading to new variants of natural/standard gradient for exemplar
neural networks.

To summarize the main theoretical results of the paper, whenever we have a pointwise defined loss function
on a Riemannian Hilbert space/manifold M of functions, the functional gradient exists on M iff each
TfM, f ∈M, is an RKHS. For a finite dimensional parameterized function space Φ ⊂M, the existence of
a natural gradient on Φ (and thus on the parameter space) is then determined by a projection from TfM
to TfΦ. The existence of such a projection is unexpectedly universal and flexible, and is encoded by GTK
theory, which produces a family of projected RKHS structures on each TfΦ, f ∈ Φ, and unifies classic natural
gradient, standard gradient, and beyond. We believe this is a more complete understanding of the geometric
foundation of projected functional gradients than has appeared in the machine learning literature. Viewing
both natural and standard gradients through the lens of GTK also sheds light on why standard gradient
(and thus SGD) work so well in modern machine learning practice, while the advantage of natural gradient is
often minimal.3.

As an outline of the paper, in §2 we introduce the theoretical setup, schematically pictured in Figure 1, which
establishes a projection viewpoint for both natural gradient and standard gradient. In §3, we provide a careful
analysis of the non-existence of natural gradients for empirical loss functions on commonly used function
spaces. This theoretical issue is addressed in §4 by working in an RKHS, which motivates our core concept,
the Generalized Tangent Kernel (GTK). The automatic orthonormality property of GTK (Theorem 4.2)
produces a family of projections of the functional gradient on M onto the tangent space Φ via RKHS theory,
with natural gradient and standard gradient as special cases. A new variant of natural gradient is also
motivated by this RKHS framework; see Appendix G. In §5, we study the ill-defined natural gradients for
non-immersion function approximations widely used in machine learning practice, such as neural networks
with (piecewise) linear activations. We use a GTK-based framework to study the slice/reduction of ϕ for
ReLU MLP as an example and derive new variants of standard gradient algorithms. Preliminary experimental
results of these new algorithms are also reported. We summarize this work and discuss future directions
in §6. Background material, proofs, and preliminary experiments for exemplar new natural gradient variants
motivated by the GTK framework are in the Appendices.

Because of the technical nature of the paper, we encourage the reader to refer to Table 1 in Appendix A for
key mathematical notation, and to Appendix B for background materials on Riemannian manifolds, Sobolev
spaces, and RKHS theory.

2 The Theoretical Setup: A Geometric Perspective

In supervised learning, we typically want to learn an optimal function f : Rn → Rm, or more generally
f : M → N , where M,N are n-dimensional, m-dimensional manifolds, respectively. Here an optimal function
minimizes some loss function F : M→ R, where M is the space of f ’s.

When function approximation is applied, f is parameterized by some parameter vector of finite dimension,
and the general situation can be described by the following simple diagram:

W M

R

ϕ

F̃

F (1)

Here M =M(M,N) is a space of smooth maps from M to N . M is an infinite dimensional manifold with a
reasonable (high Sobolev or Fréchet) topology. The parameter space W , also a manifold, is usually a compact

3For instance, Zhang et al. (2019a) empirically observes that the advantages of natural gradient over standard gradient are
minimal except for impractically large training batchsize, even without worrying about the computational cost.

3

Published in Transactions on Machine Learning Research (02/2025)

subset of a Euclidean space, ϕ : W →M is the parametrization of the image ϕ(W) = Φ ⊂M, F is the loss
function, and F̃ = F ◦ ϕ makes the diagram commute.

In this section, we always assume that ϕ is an immersion, i.e., at every w ∈ W , the differential dϕw : TwW →
Tϕ(w)Φ is injective, where TwW is the tangent space to W at w, and similarly for Tϕ(w)Φ. Then for a fixed
Riemannian metric ḡ on M, the pullback metric on X,Y ∈ TwW is given by

(ϕ∗ḡ)(X,Y) := ḡ(dϕ(X), dϕ(Y)). (2)

The case where ϕ is not an immersion is discussed in §5, giving an alternative to using the Moore-Penrose
inverse as in van Oostrum et al. (2023). Proofs for this section are in Appendix C.

2.1 Smooth Gradients, Orthogonal Projection, and Pullback Metric for Natural Gradient

For a metric ḡ on M, we want to study the gradient flow of F on the image Φ, and this should be equivalent
to studying gradient flow for F̃ on W via the pullback metric (2). The existence of ∇F on M is carefully
studied in §3. For now, assuming that ∇F exists on M, we still have to distinguish between the gradient
flow lines of F in M and the flow lines on Φ. Indeed, a gradient flow line of F starting in Φ will not stay in
Φ in general, since ∇F need not point in Φ directions.

The following lemma establishes the relationship between gradient flow in M and flows on Φ, and the
equivalence between pullback gradients on the parameter space W and gradients on Φ in the function space.
Lemma 2.1. (i) The gradient flow on Φ for F |Φ is given by the flow of P (∇F), where P = Pϕ(w) is the
orthogonal projection from Tϕ(w)M to Tϕ(w)Φ with respect to a Riemannian metric ḡ on M.

(ii) Let g̃ = ϕ∗ḡ be the pullback metric on W given by (2). Then dϕ(∇
g̃
F̃) = ∇ḡF , and γ(t) is a gradient

flow line of F̃ with respect to g̃ iff ϕ(γ(t)) is a gradient flow line of F |Φ.

By this Lemma, to get ∇F̃ on W, we just need to compute P (∇F). Starting below, we use the Einstein
summation convention of summing over repeated indices that occur once as a subscript and once as a
superscript, so e.g., gijviwj =

∑
ij g

ijviwj , ⟨∇F, hi⟩hi =
∑
i ⟨∇F, hi⟩hi.

Proposition 2.1. The orthogonal projection of ∇F onto Φ is

P (∇F) = g̃ij
〈
∇F, ∂ϕ

∂wi

〉
∂ϕ

∂wj
, (3)

where (g̃ij) = g̃ = ϕ∗ḡ is the pullback metric on W, (g̃ij) is its inverse matrix, {(wi)} are the coordinates on
W, and ∂ϕ/∂wi = dϕ(∂/∂wi).

Proposition 2.1 shows that the appearance of the inverse metric matrix (g̃ij) in natural gradients is in fact a
consequence of the orthogonal projection of ∇F from M to Φ. This projection view becomes clearer when
compared with standard gradient where the Euclidean metric is used, which we discuss in the next section.
Remark 2.1. Instead of (3), we can first obtain an orthonormal basis {hi}i=1,...dim(W) of TfΦ, say, by
applying Gram-Schmidt to the pushforward basis { ∂ϕ∂wi } of TfΦ, then compute the orthogonal projection of
∇F onto Φ by

P (∇F) =
∑
i

⟨∇F, hi⟩hi. (4)

Example 2.2. We give a simple example for the results in this section. Let ϕ : W = (0, 2π) ×
(0, π/2) → R3, (θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) be the usual spherical coordinates on S2. Then
∂/∂θ = (− sin θ sinϕ, cos θ sinϕ, 0), ∂/∂ϕ = (cos θ cosϕ, sin θ cosϕ,− sinϕ), and the induced metric ϕ∗ḡ
on W for the standard dot product ḡ on R3 is

g̃ = ϕ∗ḡ =
(

sin2 ϕ 0
0 1

)
.

4

Published in Transactions on Machine Learning Research (02/2025)

Then (3) becomes

P (∇F) = csc2(ϕ)(∇F · (− sin θ sinϕ, cos θ sinϕ, 0)) ∂
∂θ

+∇F · (− cos θ cosϕ, sin θ cosϕ,− sinϕ) ∂
∂ϕ

= csc2(ϕ) (−Fx sin θ sinϕ+ Fy cos θ sinϕ) ∂

∂θ
+ (−Fx cos θ cosϕ+ Fy sin θ cosϕ− Fz sinϕ) ∂

∂ϕ
.

2.2 Surjection and Pushforward Metric for Standard Gradient

In contrast to Proposition 2.1, where the gradient on Φ is obtained by a projection, standard gradient can be
obtained from a surjection S from TfM to TfΦ given by

S(∇F) =
〈
∇F, ∂ϕ

∂wi

〉
∂ϕ

∂wi
. (5)

While S is similar to the orthogonal projection (3) in that S|(Tf Φ)⊥ = 0, S is not a projection: S2 ̸= S, and
S|Tf Φ is not the identity map. Thus Lemma 2.1(i) fails, and the flow lines for ∇(F |Φ) are not related to the
flow lines of S∇F. As will be shown in §4.2, S becomes an orthogonal projection iff we had a Riemannian
metric of M in directions tangent to Φ such that:〈

∂ϕ

∂wi
,
∂ϕ

∂wj

〉
= δij . (6)

In other words, { ∂ϕ∂wi } must be an orthonormal basis of TfΦ, which is in general not true. Nevertheless, under
our projection view, standard gradient uses the metric (6) on Φ, which, by the following Remark, implicitly
uses the pushforward ϕ∗gE of the Euclidean metric from W to Φ.
Remark 2.3. For a smooth map ϕ : W →M, the pushforward of a metric g on W to a metric ϕ∗g on Φ is
given by

(ϕ∗g)(X,Y) := g((dϕ)−1X, (dϕ)−1Y), X, Y ∈ TΦ.
ϕ∗g exists iff ϕ is an immersion. Since dϕ(∂

∂wi) = ∂ϕ
∂wi and gE

(
∂
∂wi ,

∂
∂wj

)
= δij, the Riemannian metric

determined by (6) is the pushforward ϕ∗gE of the Euclidean metric on W.

3 Natural Gradients of the Empirical Loss

Based on the theoretical setup of §2, in this section, we analyze the non-existence issue of natural gradients
for general empirical losses on commonly used function spaces. We consider the most commonly used setting
of M in supervised learning, where the target space N is Rn, and the loss function F is some empirical
loss. In this case, M is an infinite dimensional vector space, so we have to specify its topology. For the
easiest topology, the one induced by the L2 inner product, we show that the gradient of the loss function
does not exist in any strict mathematical sense. More precisely, a follow-your-nose computation of the
gradient produces an expression containing delta functions, which are not elements of L2. To make this
computation mathematically rigorous, we have to change the topology/inner product so that delta functions
are continuous linear functionals on the function space. This property of delta functions characterize RKHSs,
which motivates the use of RKHS theory in §4.

A typical choice of empirical loss term on M is the mean squared error (MSE)

ℓE(f) = 1
2

k∑
i=1
∥f(xi)− yi∥2 (7)

for a set {(xi, yi)}ki=1 ⊂M × Rn of training data. Let f : M → Rn have components f j : M → R, and let δi
be the “δ-vector field", δi(f j) = f j(xi) ∈ R. We formally4 and incorrectly consider δi to be a function on M

4Throughout the paper, "formal/formally" means that a concept does not have a mathematically sound definition, but can be
manipulated mechanically.

5

Published in Transactions on Machine Learning Research (02/2025)

with the following L2 inner product,

⟨δi, r⟩L2 =
∫
M

δir = r(xi), (8)

for r ∈ C∞(M). The integral is with respect to some volume form on M .

Take a curve (ft)t≥0 ∈M with f0 = f , and set h = ḟt|t=0 ∈ TfM≃M. In the following formal computation,
we ignore several nontrivial technicalities, which are detailed in Appendix D. The differential dℓE at f ,
denoted by dℓE,f : TfM→ R, satisfies

dℓE,f (h) = d

dt

∣∣∣∣
t=0

1
2
∑
i

∥ft(xi)− yi∥2 =
∑
i

n∑
j=1

(f j(xi)− yji)hj(xi). (9)

Thus we formally get

dℓE,f (h) =
∫
M

∑
j

(∑
i

(f j(xi)− yji)δi

)
hj . (10)

By the definition of the gradient, for ∇ℓE,f to exist under the L2 inner product (8), we must have

dℓE,f (h) = ⟨∇ℓE,f , h⟩L2 =
∫
M

∑
j

(∇ℓE,f)j ·E hj , (11)

where ·E is the Euclidean dot product. Comparing (10) and (11), the formal gradient of ℓE at f has jth

component given by
(∇ℓE,f)j =

∑
i

(f(xi)− yi)jδi. (12)

In other words, the gradient of the empirical loss (7), if it exists, must formally be a sum of delta functions.
Since delta functions are not L2 functions, the L2 gradient does not exist on M. Thus we cannot apply
Prop. 2.1 to compute the gradient of f on Φ, even though the gradient on the finite dimensional manifold Φ
must exist.
Remark 3.1. We emphasize that the non-existence of the L2 gradient is endemic to supervised learning,
because of the discrete nature of empirical loss function. For a general differentiable function L = L(z, w) : Rn×
Rn → R, the corresponding L-empirical loss is ℓL(f) =

∑
i L(f(xi), yi). For ∇ELz the Euclidean gradient in

the z direction, the formal gradient (12) becomes (∇ℓL,f)j =
∑
i

(
∇ELz(f(xi), yi)

)j
δi, which again is a sum

of delta functions.

As another common example in machine learning, we consider the Fisher-Rao metric on the space of C∞

probability distributions P = {p ∈ C∞(M,R) : p > 0,
∫
M
p(x)dµ(x) = 1} on a measure space (M,µ), where M

is a compact manifold without boundary. The tangent space at p ∈ P is TpP = {h ∈ C∞(M,R) :
∫
M
hdµ = 0}

(Lafferty, 1988, §3). Let ϕ : W → P give a parametrized submanifold Φ = ϕ(W) ⊂ P , with ϕ(w)(x) := p(x,w).
The Fisher-Rao metric at Tϕ(w)Φ is gij,ϕ(w) = E[∂wi log p(x,w) · ∂wj log p(x,w)], so the Fisher-Rao metric on
TpP is

gp(h1, h2) = E[h1(log p)h2(log p)] =
∫
M

h1h2

p2 dµ,

since h(log p) = (d/dt)|t=0 log(p+ th) = h/p.

For the MSE loss on P, ℓE(p) = 1
2
∑k
i=1 |p(xi)− yi|2, as in the L2 case we formally get

gp(∇ℓE,p, h) = dℓE,P (h) =
k∑
i=1

(p(xi)− yi)h(xi)

=
∫
M

k∑
i=1

(p(xi)− yi)δi(h)

= gp(p2
k∑
i=1

(p(xi)− yi)δi, h).

6

Published in Transactions on Machine Learning Research (02/2025)

Under the usual assumption that
∫
M
δidµ = 1, the formal gradient is

∇ℓE,p = p2
k∑
i=1

(p(xi)− yi)δi −
k∑
i=1

p2(xi)(p(xi)− yi),

where the constant second term ensures
∫
M
∇ℓE,p = 0 formally. Again, ∇ℓE,p does not exist in TpP, since

delta functions are not elements of TpP . Similarly, if we use a more general loss function L(z, w) : R×R→ R
and set ℓ : P → R by ℓ(p) =

∑
i L(p(xi), yi), then the formal gradient is p2∑

i(∂L/∂x)|(xi,yi)δi, which again
does not exist in TpP.

4 Gradients in RKHS and Generalized Tangent Kernel

The non-existence of the gradient of empirical loss discussed in §3 motivates our study of natural gradient
in an RKHS, which is detailed in §4.1. In particular, whenever we have a pointwise defined loss function
on a Riemannian Hilbert space/manifold M of functions, the functional gradient exists on M iff each
TfM, f ∈M, is an RKHS. For a finite dimensional parameterized function space Φ ⊂M, a natural gradient
on Φ (and thus on the parameter space) is then determined by a projected RKHS from TfM onto TfΦ. Our
study goes further along this line in §4.2, where we introduce the Generalized Tangent Kernel (GTK), the
core concept of this work, and prove an appealing automatic orthonormality property of GTK (Theorem 4.2).
The GTK framework provides a unified understanding of projected functional gradients, producing families
of natural gradients that include both the standard gradient and the classical natural gradient. In fact,
a finite dimensional submanifold Φ ⊂ M has many choices of natural gradients, which are in one-to-one
correspondence with choices of GTKs on each TfΦ. Results in this section have proofs in Appendix E and
numerical examples in Appendix G.

4.1 Natural Gradient in RKHS

In this subsection, we study the gradient of a loss function in an RKHS, which by definition is a function
space where the evaluation/delta functions δx are continuous.

Let H ⊂M(M,Rm) be a vector-valued RKHS with kernel KH. The reproducing property of H (see Appendix
B.3) gives

⟨KH(x, ·), h⟩H = (⟨K1
H(x, ·), h1⟩, . . . , ⟨Kn

H(x, ·), hn⟩) = (h1(x), . . . , hn(x)) = h(x), ∀h ∈ H.

Then there is a “δ-vector" in the dual space of H that evaluates each component of h at point x, i.e.,

[δx(h)]j = δjx(hj) = ⟨Kj
H(x, ·), hj⟩Hj = hj(x),

where Hj is the scalar-valued RKHS corresponding to the j-th component of H. Thus dℓE,f (h) = ⟨∇ℓE,f , h⟩H
defines ∇ℓE,f as an element of H. In contrast, h 7→ dℓE,f (h) is not a continuous linear functional on the
function spaces discussed in §3, so the functional gradient does not exist.

The next Lemma puts (12) into the RKHS framework for more general loss functions.
Lemma 4.1. For L = L(z, w) : Rm × Rm → R a differentiable function, the H-gradient of the L-empirical
loss function ℓL(f) =

∑
i L(f(xi), yi) on H ⊂M(M,Rm) is given by

∇ℓL,f =
∑
i

KH(xi, ·)∇ELz(f(xi), yi), (13)

where ∇ELz is the Euclidean gradient of L in the z direction.

If H =M(M,Rm) with a suitable inner product, we know we should project ∇ℓL,f to the tangent space of
Φ = Im(ϕ). Proposition 2.1 and Remark 2.1 provide two formulas, based on the pushforward basis { ∂ϕ∂wi }
and the H-orthonormal basis {hi} of TfΦ, respectively. Applying them to (13) gives

P∇ℓL,f = g̃kℓH

∑
i

(
∇ELz(f(xi), yi) ·E

∂ϕ

∂wk

∣∣∣∣
xi

)
∂ϕ

∂wℓ
, (14)

7

Published in Transactions on Machine Learning Research (02/2025)

where g̃H is the pullback to W of the inner product ⟨·, ·⟩H on H, and

P∇ℓL,f =
∑
i

(
∇ELz(f(xi), yi) ·E hℓ

∣∣
xi

)
hℓ. (15)

For this RKHS H, the “δ-vector" exists on each tangent space TfΦ and is given by the corresponding
“projected" evaluation function,

δx(h) = ⟨h, PfKH(x, ·)⟩Tf Φ := ⟨h,Kf (x, ·)⟩Tf Φ, for h ∈ TfΦ,

where Kf = PfKH is the projected reproducing kernel. As above, Kf can be written using either the
pushforward basis { ∂ϕ∂wi } or the orthonormal basis {hi} of TfΦ. Combining these results, we have the
following kernel form of the projected gradient, as an equivalent alternative to (14) and (15):
Proposition 4.1. For H = M(M,Rm) an RKHS with kernel KH and L = L(z, w) : Rm × Rm → R a
differentiable function, the projection of the H-gradient of the L-empirical loss function ℓL(f) =

∑
i L(f(xi), yi)

to Φ equals
∇ΦℓL,f := P∇ℓL,f =

∑
i

Kf (xi, ·)∇ELz(f(xi), yi), (16)

where Kf is the projection kernel of KH onto the RKHS TfΦ. Kf can be represented by the pushforward
basis { ∂ϕ∂wi } of TfΦ,

Kf (x, x′) = g̃ijH
∂ϕ

∂wi
(x)⊗ ∂ϕ

∂wj
(x′), (17)

or by an orthonormal basis {hi} of TfΦ,

Kf (x, x′) =
∑
i

hi(x)⊗ hi(x′). (18)

(Note that TfΦ is an RKHS, as it is finite dimensional subspace of the RKHS TfH ≃ H.) In other words, in
RKHS theory the projection view of Figure 1 and §2.1 produces a family of projected RKHSs parametrized
by w ∈ W, with the corresponding projected reproducing kernel Kf , for f = ϕ(w).

From a practical perspective, although different choices of H produce different natural gradients, in general,
it is expensive to compute either g̃ijH in (17) or {hi} in (18). For H = Hs(Rn,Rm) a Sobolev space (detailed
in Appendix B.2), an explicit computation of KH(x, ·) and hence of δx is in Rosenberg (2023). Because of
this, we introduce a new variant of natural gradient, called the Sobolev natural gradient in Appendix G,
where we discuss an RKHS-based approximation of g̃ijH and provide a practical computational method of g̃ijH
based on the Kronecker-factored approximation (Martens & Grosse, 2015; Grosse & Martens, 2016). We also
report preliminary experimental results on image classification benchmarks.

Note that the RKHS form of projected gradient (16), in particular the projected kernel forms (17) and (18),
is consistent with our observations from Proposition 2.1 and Remark 2.1, namely that the inverse metric
matrix of natural gradient appears as a consequence of orthogonal projection from M to Φ. This matrix
becomes an identity matrix iff an orthonormal basis on each tangent space of Φ is used.

4.2 A Unified Perspective with Generalized Tangent Kernel

In this section, we introduce a general form of the kernel (18), which provides a unified characterization as
well as a new understanding of projected functional gradients, including both natural gradient and standard
gradient. The favorable property of this kernel also enables us to address the non-immersion case of ϕ in §5.

From §2, the standard gradient formula (5) for the pushforward basis is similar to the natural gradient
formula (4) for an orthonormal basis. This formal similarity extends to the corresponding RKHS expressions;
as with (16) for the natural gradient, there is a kernel form for the standard gradient (5):

∇ΦℓL,f := S∇ℓL,f :=
∑
i

Θ(xi, ·)∇ELz(f(xi), yi), (19)

8

Published in Transactions on Machine Learning Research (02/2025)

where Θ(x, x′) =
∑
i
∂ϕ
∂wi (x)⊗ ∂ϕ

∂wi (x′) happens to be the Neural Tangent Kernel (NTK) (Jacot et al., 2019).
This observation motivates the following generalized form of both Kf and Θ.
Definition 4.1 (Generalized Tangent Kernel). For ϕ : W → M an immersion, where W is a parameter
space and M is a function space, let {bi} be a basis of the tangent space TfΦ at f = ϕ(w) for some w ∈ W.
The Generalized Tangent Kernel of TfΦ is defined to be

KGTK(x, x′) =
∑
i

bi(x)⊗ bi(x′). (20)

The Generalized Tangent Kernel (GTK) thus provides a unified characterization of gradients on TfΦ, with
natural gradient and standard gradient as special cases. The natural gradient (16) is most closely related to
the functional gradient in M (w.r.t. some functional metric), as it is obtained by an orthogonal projection
and the corresponding GTK (18) is defined by an orthonormal basis of TfΦ. The standard gradient (19), in
contrast, corresponds to NTK, a GTK defined by the pushforward basis from W, which in general is not
orthonormal for the functional metric. Thus NTK and any GTK besides (18) lose extra information about
the functional gradient in M.

So far, our presentation of the role of the orthogonal projection in natural gradient provides an intuitive
justification for the long-believed statement that, regardless of computational cost, natural gradient has an
advantage over standard gradient in capturing the geometric structure of the immersed function space. With
the following favorable property of GTK, however, we see the surprising result that the standard gradient is,
at least locally, as geometrically informative as the natural gradient.
Theorem 4.2 (Automatic Orthonormality of GTK). Given a finite dimensional function space F ⊂
{f : X → Rn}, where X is any set, and any basis {bi} of F , {bi} is an orthonormal basis of the RKHS
associated with the reproducing kernel given by the Generalized Tangent Kernel (20).

Proof. Given a basis {bi}, let HK denote the RKHS associated with the reproducing kernel K defined by the
GTK (20). Then each bi is in the span of {K(x, ·), x ∈ X} (Manton & Amblard, 2015, Lemma 2.1), and can
be respresented as bi(·) =

∑
x∈X K(x, ·)Ci(x), for some function Ci : X → Rn. By (20),

bi(·) =
∑
x∈X

Ci(x)T
∑
ℓ

bℓ(x)⊗ bℓ(·) =
∑
ℓ

(∑
x∈X

Ci(x)T bℓ(x)
)
bℓ(·) =

∑
ℓ

αℓibℓ(·), (21)

where αℓi =
∑
x∈X Ci(x)T bℓ(x). Since {bi} is a basis, the representation (21) must be unique, so αℓi = δℓi .

Thus by (36),

⟨bi, bj⟩HK
=
〈∑
x∈X

K(x, ·)Ci(x),
∑
x′∈X

K(x′, ·)Cj(x′)
〉

HK

=
∑
x∈X

∑
x′∈X

Ci(x)TK(x, x′)Cj(x′)

=
∑
x∈X

∑
x′∈X

Ci(x)T
∑
ℓ

bℓ(x)⊗ bℓ(x′)Cj(x′) =
∑
ℓ

(∑
x∈X

Ci(x)T bℓ(x)
)(∑

x′∈X
Cj(x′)bℓ(x′)

)
=
∑
ℓ

αℓiα
ℓ
j = δij ,

where δij equals 1 when i = j and 0 otherwise.

Theorem 4.2 is the key result in this work, as its direct Corollary expands the scope of natural gradient in an
unexpectedly flexible way.
Corollary 4.3 (Natural Gradient for Arbitrary Basis). For f = ϕ(w), any choice of the basis {bi} of
TfΦ produces an orthogonal projection onto TfΦ and thus a well-defined natural gradient at w. The natural
gradient has the following kernel form,

∇ΦℓL,f := P∇ℓL,f =
∑
i

KGTK(xi, ·)∇ELz(f(xi), yi), (22)

where KGTK is defined by (20).

9

Published in Transactions on Machine Learning Research (02/2025)

As a special case of of Corollary 4.3, for {bi} = { ∂ϕ∂wi }, GTK recovers NTK, and (22) recovers the standard
gradient formula (19), which is equivalent to the conventional standard gradient on the parameter space W:

∇wℓL,ϕ(w) :=
∑
i

∇ELz (ϕ(w)(xi), yi)∇wϕ(w)(xi). (23)

If ϕ is a neural network with parameters w, then ∇ELz is the gradient of the loss function with respect to the
network output and ∇wϕ is the gradient of the the network output with respect to the network parameters.
(23) can be efficiently computed by backpropagation. Corollary 4.3 guarantees that the standard gradient
(23) used everywhere in machine learning is, in fact, a well-defined natural gradient, in the sense that it is
the projection (with respect to some specific Riemannian metric) of the functional gradient in the ambient
function space.

To see the flexibility of Corollary 4.3 in defining valid natural gradients, we now give an example of changing
a GTK by a change of coordinates on W (which corresponds to a change of Riemannian metric on Φ). Let
(ξ1, . . . , ξn) be a new set of coordinates on the parameter space W , given by a full-rank transformation matrix
A = (aji), i.e., ξj = ajiw

i. Then f = ϕ(w) = ϕ(A−1ξ) = ϕ̃(ξ) and ∂ϕ̃
∂ξi = ∂ϕ

∂wj ã
j
i , where (ãji) = A−1. Instead of

choosing the pushforward of { ∂
∂wi } as basis, i.e., {bi} = { ∂ϕ∂wi }, and getting the standard gradient (23), we

choose the pushforward of { ∂
∂ξi }, i.e., {bi} = { ∂ϕ̃∂ξi }, and apply Corollary 4.3 again. A change of coordinate

computation gives the following altered gradient update rule on W:

∇ξℓL,ϕ̃(ξ) :=
∑
i

(
∇ELz

(
ϕ̃(ξ)(xi), yi

)
·E

∂ϕ̃

∂ξj
(xi)

)
∂ϕ̃

∂ξj

=
∑
i

(
∇ELz

(
ϕ̃(ξ)(xi), yi

)
·E

∂ϕ

∂wk
(xi)ãkj

)
∂ϕ

∂wℓ
ãℓj

=
∑
i

(
∇ELz (ϕ(w)(xi), yi) ·E

∂ϕ

∂wk
(xi)

)
ãkj ã

ℓ
j

∂ϕ

∂wℓ
(24)

=
∑
i

(
∇ELz (ϕ(w)(xi), yi)∇wϕ(w)(xi)

)
A−1 (A−1)T

=
(∑

i

∇ELz (ϕ(w)(xi), yi)∇wϕ(w)(xi)︸ ︷︷ ︸
(23)

)
(ATA)−1.

We omit ∂ϕ
∂wℓ in the last two lines as in (23). (24) can also be efficiently computed by standard backpropagation,

since the only extra term compared to (23) is the fixed (ATA)−1. In the next section, we further leverage
the flexibility of Corollary 4.3 to propose new approaches to address the ill-defined natural gradients for
non-immersion function approximations.

To the best of our knowledge, this is a new understanding of standard gradient, natural gradient, as well as
NTK. It is also worth noting that while GTK is a generalized form of NTK, the theory developed in this
section does not correspond to known results about NTK.

5 Natural Gradient for Non-Immersion Function Approximation

If ϕ is not an immersion, the pullback metric matrix (g̃ij) = ϕ∗ḡ is singular. Therefore, the inverse matrix (g̃ij)
does not exist, and the formula (3) for natural gradient makes no sense. Neural networks with (piecewise) linear
activations (Dinh et al., 2017) are such examples. Specifically, take a two layer neural network ϕθ : Rn → Rm
with activation function ψ, so ϕ(θ)(X) = A2,θ1(ψ(A1,θ2X + b1,θ3) + b2,θ4 , where θ = (θ1, θ2, θ3, θ4) and A2,θ1

has entries θ1, etc. Then ϕ(θ1, θ2, θ3, θ4) = ϕ(λ−1θ1, λθ2, λθ3, θ4) for any λ ̸= 0.

Most existing solutions (Ollivier, 2015; Bernacchia et al., 2018) use the Moore-Penrose generalized inverse to
define a natural gradient formula. However, the Moore-Penrose inverse in general loses more information

10

Published in Transactions on Machine Learning Research (02/2025)

about the function space geometry and gradient than an orthogonal projection from M to TfΦ. Using
Corollary 4.3, we propose an alternative approach in certain explicit cases, consisting of three steps:

1. For the given ϕ, find a slice S (defined in §5.1) of the parameter space W with ϕ|S an immersion.

2. Compute a basis {ci} of each tangent space of S.

3. Choose the basis {bi} on TfΦ from the pushforward of {ci} and construct the corresponding GTK
from {bi}. By Corollary 4.3, (22) then gives a well-defined natural gradient.

This approach applies to any non-immersion function approximation. While finding the slice S may be
difficult depending on the concrete function approximation, once S and its basis {ci} are computed, they can
be used throughout the training.

This approach is also computationally efficient. Due to the flexibility of Corollary 4.3, we are allowed to choose
the computationally simplest basis on TfΦ to construct a GTK and (22) always gives a valid natural gradient.
In the following section, we give two such examples for the ReLU MLP. Our experiments in Section 5.2 show
that the extra computational cost compared to the standard gradient baseline5 is negligible.

Note that a naive slice-based approach without leveraging Corollary 4.3 would make little sense in practice.
In particular, the natural gradient (3) for the immersion case is known to be computationally expensive, and
people rely on a series of approximations (Martens & Grosse, 2015; Grosse & Martens, 2016) to make it
acceptable in practice. Restricting the natural gradient to a slice S is yet more complicated; in fact, it is
unclear if a valid approximation still exists.

5.1 MLP with ReLU Activation

Following Dinh et al. (2017), we use ReLU MLP without bias terms as a concrete example to derive two
variants of well-defined natural gradients. Proofs are in Appendix F, and results and proofs for a general
ReLU MLP with bias terms are in Appendix I.

Our setup is a ℓ-layer MLP with ReLU activations, with parameters wkr in the k-th layer, for r = 1, . . . , nk,
where nk is the number of matrix entries in the k-th layer. The space of parameter vectors is W = {w =
(w1

1, . . . , w
ℓ
nℓ

)} and dim(W) =
∑
ℓ nℓ. The map ϕ : W → Maps(Rn,Rm) takes a parameter vector to the

associated MLP. We abbreviate the subvector for the k-th layer by wk = (wk1 , . . . , wknk
), and w = (w1, . . . , wℓ).

We can assume that wk ̸= 0 for all k, since a MLP with some wk = 0 is trivial.

Define a multiplicative group G = {α = (α1, . . . , αℓ) : αi > 0,
∏ℓ
i=1 αi = 1}. The map G→ Rℓ, (α1, . . . , αℓ) 7→∑

i logαi is a bijection to the plane
∑
i x

i = 0, so G is a manifold of dimension ℓ− 1. G acts on W by

(α1, . . . , αℓ) · (w1, . . . , wℓ) = (α1w
1, . . . , αℓw

ℓ).

It is straightforward to check that

ϕ(w1, . . . , wℓ) = ϕ(α · (w1, . . . , wℓ)), (25)

for all α ∈ G. Thus ϕ is far from injective. As shown below, ϕ is not an immersion.
Proposition 5.1. The dimension of ker(dϕ)w at each w ∈ W is at least ℓ− 1. Thus ϕ is not an immersion.
In fact, the span of{

Zj |w =
n1∑
r=1

w1
r

∂

∂w1
r

∣∣∣∣
w

−
nj∑
s=1

wjs
∂

∂wjs

∣∣∣∣
w

= ∂

∂r1

∣∣∣∣
w1
− ∂

∂rj

∣∣∣∣
wj

: j = 2, . . . , ℓ
}

(26)

is in ker(dϕ)w. Here ri is the radial vector in the parameter space of the ith layer.
5Here we treat the standard gradient as if ϕ were an immersion, so strictly speaking Corollary 4.3 does not apply and this

gradient is not a valid natural gradient.

11

Published in Transactions on Machine Learning Research (02/2025)

Remark 5.1. This issue is fundamentally caused by the homogeneity of a neural network activation function,
as any (piecewise) linear activation function (ReLU, Leaky ReLU, Shifted ReLU, Parameterized ReLU, etc.)
produces a non-immersive ϕ.

We now follow the three steps proposed in the previous section.

Step 1. Find a slice S of W

Note that ϕ is constant along the orbits Ow = {g ·w : g ∈ G}. Thus all the information in ϕ is contained
in a slice for G, i.e., a submanifold S of W that intersects each orbit once. The following theorem gives an
example of S.
Theorem 5.2. Write W = Rn1 × . . .× Rnℓ . A slice S is given by S = {λ(w1, . . . , wℓ) : wi ∈ Sni−1, λ > 0},
where Sk−1 is the unit sphere in Rk.

For w0 ∈ S, it is unlikely that any nonzero v in Tw0S lies in ker(dϕ)w0 . By a dimension count, dim(Tw0S) +
dim(Span{Zj}) = dim(W). Therefore, we expect ker(dϕ)w0 = Span{Zj} in Prop. 5.1, so that ϕ|S is
immersion.

Step 2. Find a basis {ci} of S.

We take a basis {r := c0
0, c

ki

k : k = 1, . . . , ℓ; ki = 1, . . . , nk − 1} of the tangent space TwS for the slice S. In
polar coordinates (rk, ψki

k), ki = 1, . . . , nk − 1, on the kth layer, r :=
∑
k ∂/∂rk, c

ki

k = ∂/∂ψki

k , at x ∈ Rnk .

The Euclidean metric restricts to a metric on S with metric tensor h = h(k,ki),(s,sj) = cki

k · c
sj
s . Details of {ci}

and h are given in Appendix F.

Step 3. Define a GTK.

Given the flexibility of Corollary 4.3, we suggest two approaches for constructing the GTK from pushforward
of {ci}.

Approach I: NTK. We push forward the metric h, the Euclidean inner product restricted to S, to TfΦ. Thus
we replace Θ in (19) with

∑
k,ki

h(k,ki),(r,rj)dϕ(cki

k)⊗ dϕ(cri
r).

Approach II: GTK. We can directly use (20) to get KGTK =
∑
k,ki

dϕ(cki

k)⊗ dϕ(cki

k).

For Approach I, the final expression for the natural gradient is given by the following proposition.
Proposition 5.2. The gradient ∇S F̃ , for F̃ : W → R, is given by

∇S F̃w =
ℓ∑

k=1

nk∑
kj=1

∂F̃

∂wkkj

∂

∂wkkj

− 1
|w1|2

ℓ∑
k=1

(
nk∑
ki=1

wkki

∂F̃

∂wkki

)
nk∑
kj=1

wkkj

∂

∂wkkj

+ ℓ−1

|w1|2

(
ℓ∑
s=1

ns∑
si=1

wssi

∂F̃

∂wssi

)
ℓ∑

k=1

nk∑
kj=1

wkkj

∂

∂wkkj

. (27)

Details of the notation and the proof are in Appendix F. Gradient formulas for Approach II are in Appendix I.2.

The procedure of training MLP with ReLU activations using Proposition 5.2 is summarized in Algorithm 1.
(27) may seem complicated, but in fact, it can be easily implemented, and the extra computational cost versus
standard gradient computation is negligible. Preliminary experimental results of both Approach I and II
are provided in the next section and a PyTorch implementation of Approach I is included in Supplementary
Materials.

5.2 Experiments

Following Algorithm 1, we implemented a stochastic version of the proposed natural gradient descent for a seven-
layer MLP with ReLU activations. We test our implementation (slice SGD) versus standard SGD on the CIFAR-
10 image classification benchmark. We use a seven-layer MLP of layer size (2634, 2196, 1758, 1320, 882, 444, 10),

12

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 1 Slice SGD for MLP with ReLU activations
Require: stepsize α
Init: network weights w0 = (w1,1, . . . , wℓ,nℓ

) ∈ S, t = 0
while stopping criterion not met do

Compute Euclidean gradients ∂F̃
∂wk,ki

∣∣∣∣
w=wt

via standard backpropagation

Compute ∇S F̃wt by (27)
Update weights w̄t+1 = wt + α · ∇S F̃wt

Move w̄t+1 along its G-orbit back into S by wt+1 =
(∏ℓ

i=1 |w̄ti |
)1/ℓ (

w̄t
1

|w̄t+1
1 | , . . . ,

w̄t+1
ℓ

|w̄t+1
ℓ

|

)
∈ S

t← t+ 1
end while

all layers except the last uses the ReLU activation function. This MLP is trained by standard SGD and our
slice SGD methods using a batch size 128 for 200 epochs respectively. To simplify the comparison, we have
not used any weight decay or momentum. The same fixed learning rate of 0.01 is used for all methods. Note
that these basic settings are commonly used for the SGD baseline, which have been extensively optimized by
the ML community. The learning rate is also tuned for the baseline. Our methods simply align everything
with the baseline without specific tuning. All experiments are run on a desktop with an Intel i9-7960X 16-core
CPU, 64GB memory, and a GeForce RTX 2080Ti GPU.

The testing performance vs wall-clock training time is shown in Figure 2(a). Though our proposed slice
SGD formulas seem complicated, the implementation in PyTorch, as attached in Supplementary Materials, is
straightforward. The extra computational cost compared to standard SGD is O(n) scalar multiplications and
additions, where n is the number of network parameters. Note that these extra computations are between
network weights and their gradients (already) obtained by standard backpropagation, which can be effectively
leveraged by modern GPU’s. This is fundamentally different from the sequential nature of backpropagation.
As shown in the wall-clock axis of Figure 2(a), the difference in time cost versus standard SGD is negligible
in practice. We have also tested Approach II described in §5.1, with the corresponding gradient formulas
provided in Appendix I.2. As shown in Figure 2(b), it performs similarly to the Approach I.

(a) Ours vs. Baseline (b) Approach I vs. Approach II

Figure 2: (a) Testing accuracy vs. wall-clock of the slice SGD (ours) vs standard SGD (baseline) on CIFAR-10.
(b) Testing accuracy vs. training epochs of Approach I and Approach II of our slice SGD on CIFAR-10.
Results are averaged over five runs of different random seeds, with the shaded area corresponding to the
standard deviation.

13

Published in Transactions on Machine Learning Research (02/2025)

While our experimental results are still preliminary, we feel that they show the potential of our theory, while
leaving a large room for practical optimization to future work.

6 Discussion

We believe our work is just the beginning of fruitful results in both theory and practice of a broader view of
natural gradient. From a theoretical viewpoint, the Generalized Tangent Kernel, in particular its automatic
orthonormality property, induces a family of Riemannian metrics on the entire function space M, putting
both the natural/pullback metric and the Euclidean/pushforward metric into a unified framework, as both
metrics reflect (different) geometries on the function space. This motivates the question of which metrics in
M lead to better convergence rate for natural gradient descent. Even on a finite dimensional manifold, the
relation between a choice of metric and the convergence rate seems to be not well studied. As a first step
towards comparing pushforward and pullback metrics, we compare notions of flatness in Appendix H.

There are many more topics in Riemannian geometry and machine learning to explore. For example, we have
not discussed the relation between the choice of metric and the generalization ability. A related example
is Kozachkov et al. (2023), which establishes an interesting connection between Riemannian contraction and
an algorithmic stability generalization bound. In another direction, the very intriguing question of which
flows on a manifold can be put into gradient flow form for some Riemannian metric (Shoji et al., 2024) is
equivalent to determining which flows can be put into GTK form; this will be discussed in future work.

Transformers are known to possess the in-context learning capability. It has been shown (Ahn et al., 2023)
that transformers actually learn to implement preconditioned gradient descent for the forward pass. Whether
there is a GTK explanation for this preconditioned gradient descent in forward pass is another interesting
question for future study.

From a practical viewpoint, our study and experiments of the new families of natural/standard gradient
descent methods motivated by our theory are still preliminary. We also hope to study slices of parameter
spaces for non-immersion function approximations beyond MLPs, such as convolutional neural networks,
ResNets, and Transformers. It is therefore appealing from both theoretical and practical perspectives to see
if a general approach to the slice SGD can be designed for different neural network architectures.

References
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement

preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614–45650, 2023.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

Ari Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in function space.
In International Conference on Learning Representations, 2019.

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics.
Kluwer Academic Publishers, Boston, MA, 2004.

Alberto Bernacchia, Máté Lengyel, and Guillaume Hennequin. Exact natural gradient in deep linear networks
and its application to the nonlinear case. Advances in Neural Information Processing Systems, 31, 2018.

Aymeric Dieuleveut, Francis Bach, et al. Nonparametric stochastic approximation with large step-sizes.
Annals of Statistics, 44(4):1363–1399, 2016.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Joshua Bengio. Sharp minima can generalize for deep
nets. arXiv preprint arXiv:1703.04933, 2017.

Peter B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, second edition, 1995.

14

Published in Transactions on Machine Learning Research (02/2025)

Roger Grosse and James Martens. A Kronecker-factored approximate Fisher matrix for convolution layers.
In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. arXiv preprint arXiv:1806.07572, 2019.

Sham M. Kakade. A natural policy gradient. Advances in Neural Information Processing Systems, 14, 2001.

Leo Kozachkov, Patrick Wensing, and Jean-Jacques Slotine. Generalization as dynamical robustness–the role
of riemannian contraction in supervised learning. Transactions on Machine Learning Research, 2023.

John Lafferty. The density manifold and configuration space quantization. Trans. Amer. Math. Soc., 305(2):
699–741, 1988.

John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer,
New York, second edition, 2013.

Wuchen Li and Guido Montúfar. Natural gradient via optimal transport. Information Geometry, 1(2):
181–214, 2018.

Jonathan H Manton and Pierre-Olivier Amblard. A primer on reproducing kernel Hilbert spaces. Foundations
and Trends® in Signal Processing, 8(1–2):1–126, 2015.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193,
2014.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate curvature.
In International Conference on Machine Learning, pp. 2408–2417. PMLR, 2015.

Yann Ollivier. Riemannian metrics for neural networks I: Feedforward networks. Information and Inference:
A Journal of the IMA, 4(2):108–153, 2015.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Steven Rosenberg. A note on reproducing kernels for Sobolev spaces. arXiv preprint arXiv:2307.08696, 2023.

Konrad Schmüdgen. Unbounded self-adjoint operators on Hilbert spaces, volume 265 of Graduate Texts in
Mathematics. Springer, Dordrecht, 2012.

Lucas Shoji, Kenta Suzuki, and Leo Kozachkov. Is all learning (natural) gradient descent? arXiv preprint
arXiv:2409.16422, 2024.

Jesse van Oostrum, Johannes Müller, and Nihat Ay. Invariance properties of the natural gradient in
overparametrised systems. Information Geometry, 6(1):51–67, 2023.

Chaoqi Wang. https://github.com/alecwangcq/KFAC-Pytorch. 2019.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris Shallue, and
Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic
model. Advances in Neural Information Processing Systems, 32, 2019a.

Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent for
over-parameterized neural networks. Advances in Neural Information Processing Systems, 32, 2019b.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay regularization.
In International Conference on Learning Representations, 2019c.

15

https://github.com/alecwangcq/KFAC-Pytorch

Published in Transactions on Machine Learning Research (02/2025)

A Key Notations

Table 1: Key Notations

M = M(M, N): the space of differentiable functions from a manifold M to a manifold N ;

usually M = Rn, N = Rm

ϕ : W → M : function approximation, i.e., the mapping from parameter space W to function space M

Φ = ϕ(W) ⊂ M : the parameterized function space, i.e., the image of ϕ on M

F : M → R : the loss function on M

F̃ = F ◦ ϕ : W → R : the loss function on W from F induced by ϕ

ḡ = (ḡij) : the Riemannian metric on M

g̃ = (g̃ij) = ϕ∗ḡ : the pullback metric on W

ℓE : the empirical MSE loss on M, given some finite training set

∇Φ: the orthogonal projection of the gradient on a function space or RKHS to Φ

W = {w = (w1
1, . . . , wℓ

nℓ
)}: the parameter space for ℓ-layer ReLU MLP,

nk is the number of parameters of the k-th layer

wk = (wk
1 , . . . , wk

nk
) : the vector of parameters of the k-th layer; we assume that wk ̸= 0

G = {α = (α1, . . . , αℓ) : αi > 0,
∏ℓ

i=1 αi = 1}: the multiplicative group acting on (MLP) W by

α · w = (α1w1, . . . , αℓwℓ)

Ow = {g · w : g ∈ G} : the orbit of the w ∈ W under the group action; ϕ is constant on Ow

S = {λ(w1, . . . , wℓ) : wi ∈ Sni−1, λ > 0}: a slice in W for the group action,

where Sk−1 is the unit sphere in Rk

H ⊂ M(M,Rm) : a vector-valued RKHS with kernel KH

ℓL : the more general L-empirical loss on M, where L = L(z, w) : Rm × Rm → R is differentiable

∇ELz : the Euclidean gradient of L(z, w) in the z direction

g̃H = (g̃H,ij) : the pullback to W of the inner product ⟨·, ·⟩H on H

Kf = Pf KH : the projected reproducing kernel of KH on the tangent space Tf Φ

Θ(x, x′) =
∑

i
∂ϕ

∂wi (x) ⊗ ∂ϕ
∂wi (x′) : the Neural Tangent Kernel (NTK) (Jacot et al., 2019)

KGT K(x, x′) =
∑

i
bi(x) ⊗ bi(x′) : the Generalized Tangent Kernel (GTK)

16

Published in Transactions on Machine Learning Research (02/2025)

B Background Material

Since our framework involves Riemannian manifolds, RKHS, and Sobolev spaces, we briefly review aspects of
this material. General references are Lee (2013) for manifolds, Gilkey (1995) for Sobolev spaces on domains
in Rn and on manifolds, and Berlinet & Thomas-Agnan (2004) or Manton & Amblard (2015) for RKHSs.

B.1 Riemannian Manifolds

We assume the reader is familiar with the concepts of manifolds and local charts. To avoid technicalities,
we assume all manifolds are smooth and are embedded in some RN . Let M be an m-dimensional manifold,
denoted Mm. At a point p ∈Mm, the tangent space TpM ≃ Rm is the collection of tangent vectors to smooth
curves passing through p: TpM = {(d/dt|t=0)γ(t)}, where γ : (−ϵ, ϵ)→M is a smooth map for some ϵ > 0
with γ(0) = p.

Associated to a smooth map f : Mm → Nn between manifolds is its differential dfp : TpM → Tf(p)N ,
the best linear approximation to f at p, defined by dfp(X) = (d/dt|t=0)f(γ(t)), where γ(t) has γ(0) =
p, (d/dt|t=0)γ(t) = X. (In many texts, dfp is denoted by f∗,p.) We suggest the reader draw a picture for
this definition. The differential is a linear transformation between tangent spaces; for M = Rm, N = Rn,
the differential is the usual Jacobian matrix dfp = (∂f i/∂xj |p)n×m. The equality d(f ◦ g) = df ◦ dg for
f : M → N , g : W →M has a picture proof, and for M,N,W Euclidean spaces is exactly the chain rule. As
a special case, for f : M → R, dfp : TpM → Tf(p)R ≃ R is an element of T ∗

pM , the dual vector space of linear
functionals on TpM.

A manifold M is a Riemannian manifold if it has a positive definite inner product gp on each TpM , with
the condition that gp depends smoothly on p in a technical sense. Thus gp : TpM × TpM → R, with (i)
g(X,Y) = g(Y,X) and (ii) g(X,X) ≥ 0 with g(X,X) = 0 iff X = 0. The dot product X ·m Y on M = Rm is
the basic example of a Riemannian metric, and for M ⊂ RN , we can set gp(X,Y) = X ·N Y. However, M
has uncountably many Riemannian metrics; for example, we can take hp(X,Y) = ApX ·N Y for any positive
definite symmetric matrix Ap depending smoothly on p.

A finite dimensional vector space V and its dual space V ∗ of linear functionals λ : V → R are isomorphic,
just because they have the same dimension, but there is no canonical/natural isomorphism that doesn’t
involve choosing a basis of V . (“Canonical” means “without adding any more data.”) In contrast, if V has
a positive definite inner product ⟨·, ·⟩, then we have a canonical isomorphism V

≃→ V ∗ given by v 7→ λv,
where λv(w) = ⟨v, w⟩ for w ∈ V. In particular, on a Riemannian manifold there is a canonical isomorphism
between TpM and T ∗

pM . Thus for a smooth function f : M → R, the differential dfp ∈ T ∗
pM corresponds to

a unique tangent vector in TpM , the gradient vector ∇fp. By the canonical isomorphism above, we have the
fundamental formula

dfp(X) = gp(∇fp, X).

As expected, for M = Rm, the gradient is the usual Euclidean gradient.

In Prop. 5.1, we will use the fact that for f : M → N and n ∈ N , df |f−1(n) = 0, i.e. the differential
vanishes on the level set f−1(n): intuitively, f does not change on the level set. (This assumes that the
level set is a submanifold of M .) It follows that any tangent vector v ∈ Tmf−1(n) has df(v) = 0. Thus
Tmf

−1(n) = Ker(dfm).

All this theory is useless unless we can do explicit calculations in local coordinates. If αp : Up → Rm is a local
chart around p ∈ Mm, then dαp : TpU → Tα(p)Rm ≃ Rm is a vector space isomorphism. (Apply the chain
rule to d(α−1 ◦ α) = dId = Id.) Thus the standard basis {e1, . . . , em} of Rm corresponds to a basis of TpM ,
confusingly denoted {∂/∂x1|p, . . . , ∂/∂xm|p}, or just {∂x1 |p, . . . , ∂xm |p}. In this basis, the Riemannian metric
has the local expression as a symmetric matrix:

gp = (gij)p, gij = g(∂xi |p, ∂xj |p).

Dropping the p index, if X,Y ∈ TpM are written as X = Xi∂xi , Y = Y j∂xj (using the Einstein summation
convention that repeated indices are summed over), then g(X,Y) = gijX

iY j .

17

Published in Transactions on Machine Learning Research (02/2025)

The corresponding dual basis of T ∗
pM is also confusingly denoted by {dx1, . . . , dxm}, where dxi(∂/∂xj) = δij ,

the Kronecker delta function. It follows that the local expression for dfp is dfp = (∂f/∂xi)dxi. Thus the
coordinate-independent differential dfp keeps track of all first derivative information of f in any local coordinate
chart. The positive definite matrix (gij) is invertible, and its inverse is denoted by (gij). The canonical
isomorphism T ∗

pM → TpM is given by β = βidx
i ∈ T ∗

pM 7→ gijβi∂xj ∈ TpM. As a result, the local expression
for the gradient of f at p is ∇fp = gijp (∂f/∂xi)|p∂xj |p.

As a final technical point, a smooth function ϕ : M → N pulls an inner product g on N back to an inner
product denoted ϕ∗g on M by setting

(ϕ∗g)p(X,Y) = gϕ(p)(dϕp(X), dϕp(Y)). (28)

However, a Riemannian metric may not pull back to a Riemmanian metric: if X ≠ 0 but dϕ(X) = 0, then
(ϕ∗g)(X,X) = 0. Thus we must require that ϕ is an immersion, which by definition means that dϕp is injective
for all p ∈M , in which case the pullback ϕ∗g of a Riemannian metric is a Riemannian metric.

B.2 Sobolev Spaces

One motivation for Sobolev spaces comes from the fact that linear transformations on infinite dimensional
normed vector spaces may not be continuous; this never happens in finite dimensional linear algebra. In
fact, the simplest differential operator d/dx on smooth functions on [0, 1] does not extend to a continuous
operator on the Hilbert space L2[0, 1]: the functions fn(x) = n−1/2 sin(2πnx) have limn→∞ ∥fn∥L2 = 0, but
limn→∞ ∥(d/dx)fn∥L2 =∞.

There are two approaches to handling differential operators as linear transformations on Banach/Hilbert
spaces: (i) develop a theory of discontinuous/unbounded operators as in e.g., Schmüdgen (2012); (ii) use
Sobolev spaces to make the operators continuous. For (ii), if we define the first Sobolev space H1[0, 1] to be
the Hilbert space completion of C∞[0, 1] with respect to the norm ∥f∥1 := ∥f∥L2 + ∥(d/dx)f∥L2 , then it is
immediate that d/dx : H1 → L2 is continuous: limn→∞ ∥fn∥1 = 0 implies limn→∞ ∥fn∥L2 = 0.

In higher dimensions, let Ω be a bounded open set in Rn. For s a positive integer, we define the s-Sobolev
space Hs(Ω) to be the Hilbert space completion of C∞

c (Ω,C) (smooth functions with compact support in Ω)
with respect to the norm

∥f∥2
s =

∑
|α|≤s

∥∂αf∥2
L2 .

Here α = (α1, . . . , αn) is a multi-index with |α| =
∑
i αi, and ∂α = ∂|α|/∂xα

1
. . . ∂xα

n

. Thus the norm
measures the L2 norm of all partial derivatives of f up to order s. By standard properties of the Fourier
transform,

∥f∥2
s =

∫
Rn

∑
|α|≤s

|ξα|2|f̂(ξ)|2dξ1 . . . dξ
n,

where ξ = (ξ1, . . . , ξn) and ξα = xiα1
1 · . . . · ξαn

n . There are positive constants C1, C2 such that

C1(1 + |ξ|2)s ≤
∑

|α|≤s

|ξα|2 ≤ C2(1 + |ξ|2)s,

since these polynomials in the components of ξ have the same degree, so the Sobolev s-norm is equivalent to
the (renamed) norm

∥f∥2
s =

∫
Rn

|f̂(ξ)|2(1 + |ξ|2)sdξ1...dξn, (29)

with the associated inner product ⟨f, g⟩s =
∫
Rn |f̂(ξ)| · |ĝ(ξ)|(1 + |ξ|2)sdξ1...dξn. The advantage of (29) is that

we can now define Hs for any s ∈ R, and we have the basic fact that there is a continuous nondegenerate
pairing Hs⊗H−s → C, f ⊗ g 7→

∫
Ω f · g. This implies that the dual space (Hs)∗ to Hs is isomorphic to H−s:

(H−s) ≃−→ (Hs)∗ via f ∈ H−s 7→
(
g ∈ Hs 7→

∫
Ω
f · g

)
. (30)

18

Published in Transactions on Machine Learning Research (02/2025)

By the fundamental Sobolev Embedding Theorem, for s > (n/2) + s′, Hs(Ω) is continuously embedded in
Cs

′(Ω), the space of s′ times continuously differentiable functions on Ω with the sup norm. We always assume
s satisfies this lower bound for s′ = 0. As a result, for any x ∈ Ω, the delta function δx is in H∗

s (Ω): if fi → f
in Hs, then fi → f in sup norm, so δx(fi) = fi(x)→ f(x) = δx(f). Thus there exists dx ∈ Hs(M) such that

δx(f) = ⟨dx, f⟩s,∀f ∈ Hs. (31)

All this extends to vector-valued functions. For f = (f1, ..., fm) ∈ Hs(Ω,Rm), we can extend the inner
product by

⟨f, g⟩sn =
∑
j

⟨f j , gj⟩s. (32)

Then ∥f∥2
s =

∑m
j=1 ∥f j∥2

s, and we proceed as above to define Hs(Ω,Rm). The delta function generalizes to
δx, where

δx(f) = f(x), i.e., [δx(f)]j = ⟨dx, f j⟩s. (33)

We also have Sobolev spaces Hs(M) on manifolds M , which are defined first in local coordinates on each
element in a coordinate cover of M , and then patched together using a partition of unity. Finally, we can
combine these constructions to form Hs(M,Rm) for functions f : M → Rm.

B.3 RKHS

The most common Hilbert space is an L2 space, e.g., L2[0, 1], the space of real-valued functions defined on
[0, 1] which are L2 with respect to e.g., Lebesgue measure. One subtlety of L2 spaces is that two functions
f1, f2 define the same element in L2[0, 1] if f1 = f2 except on a set S of measure zero. As a result, the
evaluation maps (often called delta functions) δx : L2[0, 1]→ R, x ∈ [0, 1], δx(f) = f(x), are not well-defined;
if x ∈ S, then δx(f1) ̸= δx(f2). Even on well-defined functions, evaluation maps need not be continuous: for
example, if fn(x) = xn, then limn→∞ ∥fn∥L2 = 0, but |δ1(fn)| = 1 ̸→ 0. This is a major issue in §3.

The simplest definition of a Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space (H, ⟨·, ·⟩H) of
real-valued functions defined on a set X such that the evaluation maps δx : H → R are continuous for all
x ∈ X. Our basic example of an RKHS is Hs(Ω), s > n/2, in the previous subsection.

As in (31), by the Riesz representation theorem, for each x ∈ X, there exists dx ∈ H such that

f(x) = δx(f) = ⟨dx, f⟩H. (34)

Note that this key equation fails if δx is not continuous. We usually write dx(y) = KH(x, y), so

f(x) = ⟨KH(x, ·), f⟩, (35)

and call KH the reproducing or Mercer kernel of the RKHS. It is elementary to show that H is an RKHS iff
it has a reproducing kernel, a function KH : X ×X → R with KH(x, ·) ∈ H for all x ∈ X and with (35).

Note that
KH(x, y) = ⟨KH(x, ·),KH(y, ·)⟩H, (36)

where we consider KH : X → H. More generally, consider a feature map ϕ : X → H′ from X to a Hilbert
space H′ and the associated kernel function K(x, y) = ⟨ϕ(x), ϕ(y)⟩H′ . Then there is an RKHS HK with
reproducing kernel K. In fact, HK is the Hilbert space completion of Span{K(x, ·) : x ∈ X}. As a consistency
check, if we start with an RKHS H with associated KH, and set ϕ(x) = KH(x, ·), we get K = KH and
H′ = HK = H, so we recover the original RKHS.

As with Sobolev spaces, this theory extends to a Hilbert space H of vector-valued functions f : X → Rm. Let
πi : Rm → R be projection to the ith coordinate, and set Hi = {πi ◦ f : f = (f1, . . . fm) ∈ H}. Assuming δx
in (33) is continuous, the Hilbert space Hi has a reproducing kernel Ki, and we obtain a reproducing kernel
K : X ×X → Rm by

⟨K(x, ·), f⟩H = (⟨K1(x, ·), f1⟩H1 , . . . , ⟨Kn(x, ·), fm⟩Hn) = (f1(x), . . . , fm(x)) = f(x). (37)

19

Published in Transactions on Machine Learning Research (02/2025)

Notation: If a kernel is written as as finite sum K(x, y) =
∑
i ai(x)⊗bi(y) for ai, bi ∈ H, then ⟨K(x, ·), f(·)⟩H

is by definition
∑
i ai(x)⟨bi, f⟩H ∈ H. If the sum is infinite, convergence issues must be treated.

C Proofs for §2

Proof of Lemma 2.1. (i) Take X ∈ Tϕ(w)Φ and a curve γ(t) ⊂ Φ with γ(0) = ϕ(w), γ̇(0) = X. Then

d(F |Φ)(X) = d

dt

∣∣∣∣
t=0

(F |Φ) (γ(t)) = d

dt

∣∣∣∣
t=0

(F) (γ(t)) = ⟨∇F,X⟩ϕ(w) = ⟨P (∇F), X⟩ϕ(w).

Since d(F |Φ)(X) = ⟨∇(F |Φ), X⟩ determines ∇(F |Φ), we conclude that

P (∇F) = ∇ (F |Φ) . (38)

The result follows.

(ii) Take a gradient flow line γ(t) for F̃ , so γ̇(t) = ∇F̃γ(t). Then ϕ ◦ γ is a gradient flow line of F |Φ iff

dϕ(γ̇)(γ(t)) = (ϕ ◦ γ)̇(t) = ∇(F |Φ)(ϕ◦γ)(t).

Substituting in γ̇(t) = ∇F̃γ(t), and using (38), we need to show that

dϕ(∇F̃w) = P (∇Fϕ(w)). (39)

Take X̃ ∈ TwW. Because ϕ is an isometry from (W, g̃) to (Φ, ḡ), we have for each w

⟨dϕ(∇F̃), dϕ(X̃)⟩ḡ = ⟨∇F̃ , X̃⟩
g̃

= dF̃ (X̃) = d(F ◦ ϕ)(X̃) = dF ◦ (dϕ(X̃)) = ⟨∇F, dϕ(X̃)⟩ḡ
= ⟨P (∇F), dϕ(X̃)⟩ḡ.

Since dϕ(TwW) spans Tϕ(w)Φ, this proves (39) and dϕ(∇F̃) = ∇F . □

Proof of Proposition 2.1. In general, we can compute the projection P in a vector space as the solution to the
minimization problem: the projection Pv of a vector v onto a subspace B is

Pv = argminy∈B∥v − y∥2.

If {bj} is a basis of B, we want argminai∈R∥v −
∑
aibi∥2. Taking first derivatives of ∥v −

∑
aibi∥2 with

respect to ai, we get
0 = −2⟨v, bi⟩+ 2

∑
j

aj⟨bi, bj⟩.

For g̃ = (g̃ij) = (⟨bi, bj⟩), we get aj = g̃ij⟨v, bi⟩ and thus Pv = g̃ij⟨v, bi⟩bj , where (g̃ij) = (g̃ij)−1. For
v = ∇F, bi = ∂ϕ/∂wi, we recover (3). □

D Technicalities Ignored in §3

In the formal computation of §3, for the sake of clarity in presentation, we ignore several nontrivial technical
questions.

Firstly, we ignore the nontrivial question of the norm topologies onM and TfM. Instead, we formally assume
an easy topology induced by the L2 inner product, as this is common in the machine learning literature. In
this topology, the gradient for the MSE loss function does not exist. We use abstract RKHS theory as a
setting where this gradient exists, with a Sobolev topology for large enough Sobolev parameter as a concrete
example. This highlights the fundamental issue that norm topologies on infinite dimensional vector spaces
can be inequivalent, unlike in finite dimensions.

20

Published in Transactions on Machine Learning Research (02/2025)

Secondly, the differential-gradient formula (11),

dℓE,f (h) = ⟨∇ℓE,f , h⟩L2 =
∫
M

∑
j

(∇ℓE,f)j · hj ,

is again formal, since a linear functional ℓ : H → R on a Hilbert space H satisfies ℓ(h) = ⟨w, h⟩ for some
w ∈ H iff ℓ is continuous. Since we haven’t specified the topology on M, we can’t discuss the continuity of
dℓE . As in Remark 3.1, for ℓ a discrete loss function like MSE, ℓ is not continuous on L2 but is continuous on
high Sobolev spaces.

E Proofs for §4

Proof of Lemma 4.1. In the notation in §B.2, we have

⟨∇ℓL,f , h⟩sn = dℓL,f (h) = d

dt

∣∣∣∣
t=0

L(ft(xi), yi) =
∑
i,j

(
∂L

∂zj
(f(xi), yi)

)
· hj(xi). (40)

For ∇ELz the Euclidean gradient of L with respect to z only, we have∑
j

(
∂L

∂zj
(f(xi), yi)

)
· hj(xi) =

∑
j

(∇ELz(f(x), yi))j · ⟨Kj
H(xi, ·), hj⟩s

= ⟨KH(xi, ·)(∇ELz(f(x), yi)), h⟩sn .

□

Proof of Proposition 4.1. The projection of KH is given by

Kf (x, x′) = ⟨KH(x, ·), hi⟩hi(x′) =
∑
i

hi(x)⊗ hi(x′),

which proves (18).

For (17), write bi = aji∂/∂w
j , bk = aℓk∂/∂w

ℓ. Using the trace map a⊗ b 7→ ⟨a, b⟩Tf Φ, we get

δik = ⟨bi, bk⟩Tf Φ = ajia
ℓ
k⟨∂/∂wj , ∂/∂wℓ⟩Tf Φ = ajia

ℓ
i g̃jℓ.

Thus ajiaℓi = g̃jℓ, and Kf (x, x′) =
∑
i bi(x)⊗ bi(x′) =

∑
i a
j
i∂/∂w

j ⊗ aℓi∂/∂wℓ = g̃jℓ∂/∂wj ⊗ ∂/∂wℓ. □

Proof of Corollary 4.3.

To produce an orthogonal projection and thus a well-defined natural gradient from an arbitrary basis {bi} on
TfΦ, there are two steps.

The first step is making {bi} an orthonormal basis of the RKHS TfΦ, i.e.,
⟨bi, bj⟩KGT K

= δij , (41)
which is guaranteed by Theorem 4.2.

The second step is to define a normal space Nf to TfΦ inside TfM, so that any v ∈ TfM can be decomposed
into tangential and normal components, i.e.,

v = vT + vN , where vT ∈ TfΦ, vN ∈ Nf .

Since TfM comes with a Riemannian metric ḡ (e.g., a Sobolev metric), the easiest choice for the normal
space is Nf = {v ∈ TfM : ⟨v, v′⟩ḡ = 0, ∀v′ ∈ TfΦ}. Now we have a mixed metric on a tubular neighborhood
of Φ inM, which is given by (41) in directions tangent to Φ and by ḡ in ḡ-normal directions. We then extend
this metric to all of M by a partition of unity. By Proposition 4.1, the natural/pullback gradient under this
mixed metric is given by the following kernel form,

∇ΦℓL,f := P∇ℓL,f =
∑
i

KGTK(xi, ·)∇ELz(f(xi), yi).

□

21

Published in Transactions on Machine Learning Research (02/2025)

F Proofs for §5

F.1 Proof of Proposition 5.1

(25) is equivalent to

ϕ(w1, . . . , λwi, . . . , λ−1wj , . . . , wℓ) = ϕ(w1, . . . , wi, . . . , wj , . . . , wℓ). (42)

Note that λλ−1 = 1, so this is the two-layer analogue of
∏
αi = 1.

Differentiate (42) at a fixed w0 for i = 1 by taking (d/dλ)|λ=1 of both sides. This yields

n1∑
r=1

∂ϕ

∂w1
r

∣∣∣∣
w0

w0,1
r −

nj∑
s=1

∂ϕ

∂wjs

∣∣∣∣
w0

w0,j
s = 0 ∈ Rm. (43)

(43) is equivalent to

dϕw0

(
n1∑
r=1

w0,1
r

∂

∂w1
r

)
− dϕw0

(
nj∑
s=1

w0,j
s

∂

∂wjs

)
= 0. (44)

Thus the ℓ− 1 vectors {
Zj |w0 =

n1∑
r=1

w0,1
r

∂

∂w1
r

−
nj∑
s=1

wj,0s
∂

∂wjs
: j = 2, . . . , ℓ

}
(45)

are in ker(dϕ)w0 . Since w0
j ̸= 0 for all j, these vectors are nonzero. They are clearly linearly independent,

since only the k-th vector involves the k-th layer. Thus the span of the Zj is contained in ker(dϕ)w0 . □

Proof of Theorem 5.2. We first show that every element w = (w1, . . . , wℓ) ∈ W lies on the orbit through
some slice element.

Let α = (α1, . . . , αℓ), with

αj =
(

ℓ∏
i=1
|wi|

)1/ℓ

|wj |−1, j = 1, . . . , ℓ.

Then α ∈ G and α ·w ∈ S.

We now show that each orbit of G meets S at exactly one point. If α1 ·w1 = α2 ·w2, then in the obvious
notation,

α1
kλ

1 = α1
k|wk1 | = α2

k|wk2 | = α2
kλ

2 for all k,

which implies

(λ1)ℓ =
∏
k

α1
kλ

1 =
∏
k

α2
kλ

2 = (λ2)ℓ.

Thus |wk1 | = λ1 = λ2 = |wk2 | for all k, so α1
k = α2

k. Since wk1 , wk2 are on the same ray, they must be equal.
Therefore, w1 = w2,α

1 = α2. □

F.2 Details of the basis and the restricted metric on slice S

We take a basis {r := c0
0, c

ki

k : k = 1, . . . , ℓ; ki = 1, . . . , nk − 1} of the tangent space TwS for the slice S. In
polar coordinates (rk, ψki

k), ki = 1, . . . , nk − 1, on the kth layer, r :=
∑
k ∂/∂rk, c

ki

k = ∂/∂ψki

k , at x ∈ Rnk .

The Euclidean metric restricts to a metric on S with metric tensor h = h(k,ki),(s,sj) = cki

k · c
sj
s .

22

Published in Transactions on Machine Learning Research (02/2025)

On Rn = (w1, . . . , wn), introduce spherical coordinates (r, ψ1, . . . , ψn−1) by

wn = r cos(ψn−1), (46)

wk = r

(
n−1∏
s=k

sin(ψs)
)

cos(ψk−1), k = 2, . . . , n− 1,

w1 = r

n−1∏
s=1

sin(ψs).

Thus ψn−1 ∈ [0, π] is the pitch angle from (w1, . . . , wn) to the wn-axis, ψn−2 ∈ [0, π] is the pitch angle from
(w1, . . . , wn−1, 0) to the wn−1 axis, etc., down to ψ2 ∈ [0, π]. ψ1 ∈ [0, 2π] is the clockwise angle to the w2-axis.
(If the usual polar angle in the plane is θ, then θ + ψ2 = π/2.) Using

∂

∂ψℓ
= ∂wk

∂ψℓ
∂

∂wk
,
∂

∂r
= ∂wk

∂r

∂

∂wk
,

we get

∂r = ∂

∂r
=
(
n−1∏
s=1

sin(ψs)
)
∂w1 +

n−1∑
ℓ=2

(
n−1∏
s=ℓ

sin(ψs)‘
)

cos(ψℓ−1)∂wℓ + cos(ψn−1)∂wn

∂ψ1 = r

(
n−1∏
s=2

sin(ψs)
)

cos(ψ1)∂w1 − r

(
n−1∏
s=1

sin(ψs)
)
∂w2

∂ψℓ = r

(
n−1∏
s=ℓ+1

sin(ψs)
)

cos(ψℓ)
(
ℓ−1∏
s=1

sin(ψs)
)
∂w1

+ r

ℓ∑
k=2

cos(ψℓ) cos(ψk−1)
(
ℓ−1∏
s=k

sin(ψs)
)
·

(
n−1∏
s=ℓ+1

sin(ψs)
)
∂wk (47)

− r

(
n−1∏
s=ℓ

sin(ψs)
)
∂wℓ+1 , ℓ = 2, . . . , n− 2,

∂ψn−1 = r cos(ψn−1)
(
n−2∏
s=1

sin(ψs)
)
∂w1 + r

n−2∑
k=2

cos(ψn−1) cos(ψk−1) ·
(
n−2∏
s=k

sin(ψs)
)
∂wk

+ r cos(ψn−1) cos(ψn−2)∂wn−1 − r sin(ψn−1)∂wn .

From (47), it is straightforward to check that

⟨∂r, ∂ψi⟩ = ⟨∂ψi , ∂ψk⟩ = 0, for i ̸= k, ⟨∂r, ∂r⟩ = 1,

⟨∂ψi , ∂ψi⟩ = r2
n−1∏
s=i+1

sin2(ψs). (48)

Then the Euclidean metric/dot product restricts to a metric on S with metric tensor

h = h(k,ki),(s,sj) = cki

k · c
sj
s =


0, k ̸= s,
0, k = s ̸= 0, ki ̸= sj ,

|wk|2
∏nk−1
t=ki+1 sin2(ψtk), k = s ̸= 0, ki = sj ,

ℓ, k = s = 0, i = j = 0.

(49)

Here the metric is computed at w = (w1, . . . , wℓ) ∈ S with wk = (rk, ψik) the spherical coordinates of w in
the kth layer. Note that |wk|2 = r2

k independent of k. h is diagonal, so h−1 is easy to compute.

For computational purposes, we need the right hand side of (47) in Euclidean coordinates. Set

aℓ =
(

ℓ∑
i=1

(wi)2

)1/2

,

23

Published in Transactions on Machine Learning Research (02/2025)

so in particular an = r. We have

cos(ψn−1) = wn

an
, sin(ψn−1) =

(
a2
n − (wn)2)1/2

an

cos(ψℓ) = wℓ+1

an
∏n−1
s=ℓ+1 sin(ψs)

, ℓ = 1, . . . , n− 2 (50)

sin(ψℓ) = (1− cos2(ψℓ))1/2 =

(
a2
n

∏n−1
s=ℓ+1 sin2(ψs)−

(
wℓ+1)2

)1/2

an
∏n−1
s=ℓ+1 sin(ψs)

Using (50), a downward induction from ℓ = n− 1 to 1 gives

cos(ψℓ) = wℓ+1

aℓ+1
, sin(ψℓ) = aℓ

aℓ+1
, ℓ = 1, . . . , n− 1. (51)

Plugging (51 into (47) gives expressions for ∂r, ∂ψi in Euclidean coordinates. In particular, in (49) we have
the simplification

r2 sin2(ψnk−1
k) · . . . · sin2(ψki+1

k) = a2
ki+1. (52)

We can also rewrite (47) as

∂r = 1√
(w1)2 + . . . (wn)2

n∑
k=1

wk∂wk ,

∂ψ1 = w2∂w1 − w1∂w2 , (53)

∂ψℓ =
ℓ∑

k=1

wkwℓ+1√
(w1)2 + . . .+ (wℓ)2

∂wk −
√

(w1)2 + . . .+ (wℓ)2∂wℓ+1 , ℓ = 2, . . . , n− 1.

F.3 Proof of Proposition 5.2

For w in the slice S, write w = (w1, . . . , wℓ) with wk = (wk1 , . . . , wknk
). Since the gradient is independent of

coordinates, on the kth layer, k = 1, . . . , ℓ− 1, for any F̃ : W → R and any w = (w1, . . . , wk) ∈ W, we have

∇Euc,kF̃wk =
nk∑
ki=1

∂F̃

∂wkki

∂

∂wkki

= h0,0
k

∂F̃

∂rk

∂

∂rk
+ h0,ki

∂F̃

∂rk

∂

∂ψki

k

+ hki,0 ∂F̃

∂ψki

k

∂

∂rk
+ hkikj

∂F̃

∂ψki

k

∂

∂ψ
kj

k

= ∂F̃

∂rk

∂

∂rk
+
nk−1∑
ki=1

(
ki+1∑
b=1

(wkb)2

)−1
∂F̃

∂ψki

k

∂

∂ψki

k

.

The right hand side is evaluated at wk. Here h0,0
k := ⟨∂rk

, ∂rk
⟩−1 = 1, we abbreviate h(k,ki),(k,kj) by hki,kj

when the context is clear, and we have used (52). For w in the slice S, write w = (w1, . . . , wℓ) with

24

Published in Transactions on Machine Learning Research (02/2025)

wk = (wk1 , . . . , wknk
). Using a mixture of ordinary summation and summation convention, we have

∇S F̃w = h0,0 ∂F̃

∂r

∂

∂r
+

ℓ∑
k=1

hkikj
∂F̃

∂ψki

k

∂

∂ψ
kj

k

= ℓ−1

(
ℓ∑

k=1

∂F̃

∂rk

)(
ℓ∑
s=1

∂

∂rs

)
+

ℓ∑
k=1

nk−1∑
ki=1

(
ki+1∑
b=1

(wkb)2

)−1
∂F̃

∂ψki

k

∂

∂ψki

k

= ∇Euc,W F̃ −
ℓ∑

k=1

∂F̃

∂rk

∂

∂rk
+ ℓ−1

ℓ∑
k=1

ℓ∑
s=1

∂F̃

∂rk

∂

∂rs
(54)

=
ℓ∑

k=1

nk∑
kj=1

∂F̃

∂wkkj

∂

∂wkkj

−
ℓ∑

k=1

nk∑
ki,kj=1

wkki
wkkj

|wk|2
∂F̃

∂wkki

∂

∂wkkj

+ ℓ−1
ℓ∑

k=1

ℓ∑
s=1

nk∑
ki=1

ns∑
sj=1

wkki
wssj

|wk||ws|
∂F̃

∂wkki

∂

∂wssj

.

In the last two terms, |wk| = |wj |, so it suffices to compute |w1|.

Let
(
kj

k

)
denote the component of ckj

k = ∂
∂wk

kj

of ∇S F̃w. Label the first three terms on the last line of (54) by
I, II, III. Then

1. In I,
(
kj

k

)
= ∂F̃

∂wk
kj

.

2. In II, (
kj
k

)
= − 1

|w1|2︸ ︷︷ ︸
independent of k,kj

 n′
k∑

ki=1
wkki

∂F̃

∂wkki


︸ ︷︷ ︸

independent of kj

wkkj
.

3. In III, by switching the s and k indices,

(
kj
k

)
= ℓ−1

|w1|2

 ℓ∑
s=1

n′
s∑

si=1
wssi

∂F̃

∂wssi


︸ ︷︷ ︸

independent of k,kj

wkkj
□

G Sobolev Natural Gradient

For H = Hs(Rn,Rm) a Sobolev space (detailed in Appendix B.2), as shown in (14), in order to compute
the Sobolev Natural Gradient on W, we have to efficiently compute the inverse of the Sobolev metric tensor
g̃H,ij , which is analogous to the Fisher information matrix in Amari’s natural gradient. In §G.1, we discuss
an RKHS-based approximation of g̃H,ij . In §G.2, we provide a practical computational method of g̃H,ij based
on the Kronecker-factored approximation (Martens & Grosse, 2015; Grosse & Martens, 2016). In §G.4, we
report experimental results on supervised learning benchmarks.

G.1 An approximate computation of g̃H,ij

In general, it is not possible to exactly compute g̃H,ij =
〈
∂ϕ
∂wi ,

∂ϕ
∂wj

〉
H

for H = Hs. We therefore resort to
approximation. Following (13), if we do a gradient descent (Dieuleveut et al., 2016) in the RKHS H with a

25

Published in Transactions on Machine Learning Research (02/2025)

sequence of data points (x1, y1), (x2, y2), · · · , (xT , yT), under the initial condition f0(x) = 0, we get

fT (x) = −
T∑
t=1

ηtKH(xt, x)∇Lz(f(xt), yt). (55)

Therefore, the gradient descent iterate fT lies in the subspace KX of H spanned by {KH(xt, ·)}Tt=1 for a
given dataset X = {xt}Tt=1. From the proof of Proposition 2.1 (in Appendix C), for any f ∈ H, the projection
is PKX f = K−1

ij ⟨f,K(xi, ·)⟩H K(xj , ·), where Kij = ⟨K(xi, ·),K(xj , ·)⟩H. We then approximate g̃H,ij as
follows,

g̃H,ij =
〈
∂ϕ

∂wi
,
∂ϕ

∂wj

〉
H
≈
〈
PKX

∂ϕ

∂wi
, PKX

∂ϕ

∂wj

〉
H

=
〈
K−1
ab

〈
∂ϕ

∂wi
,K(xa, ·)

〉
H
K(xb, ·),K−1

cd

〈
∂ϕ

∂wj
,K(xc, ·)

〉
H
K(xd, ·)

〉
H

=
〈
∂ϕ

∂wi
,K(xa, ·)

〉
H
K−1
ac

〈
∂ϕ

∂wj
,K(xc, ·)

〉
H

= ∂ϕ

∂wi
(xa)K−1

ac

∂ϕ

∂wj
(xc). (56)

Note that by setting Kij to the identity matrix, (56) becomess the Gauss-Newton approximation of the
natural gradient metric (Zhang et al., 2019c). For a practical implementation of (56) used in the next
subsection, we only need to invert a Kab matrix of size B ×B, where B is the mini-batch size of supervised
training, which is quite manageable in practice.

Now all we need is to compute Kij = ⟨K(xi, ·),K(xj , ·)⟩H for all xi, xj ∈ X . When H is the Sobolev space
Hs, Rosenberg (2023) proves the following Lemma that computes Kij = dxi(xj),
Lemma G.1. For s = dim(M) + 3,

dxi(x) = Cne
−∥x−xi∥(1 + ∥x− xi∥), (57)

where Cn is some constant only depends on n.

Even with (56), exact computation of the pullback metric for neural networks is in general extremely hard. To
efficiently approximate (56) in practice, in the next subsection, we adapt the Kronecker-factored approximation
techniques (Martens & Grosse, 2015; Grosse & Martens, 2016).

G.2 Kronecker-factored approximation of g̃H

Kronecker-factored Approximation Curvature (K-FAC) has been successfully used to approximate the Fisher
information matrix for natural gradient/Newton methods. We now use fully-connected layers as an example
to show how to adapt K-FAC (Martens & Grosse, 2015) to approximate g̃H in (56). Approximation techniques
for convolutional layers can be similarly adapted from (Grosse & Martens, 2016). We omit standard K-FAC
derivations and only focus on critical steps that are adapted for our approximation purposes. For full details
of K-FAC, see (Martens & Grosse, 2015; Grosse & Martens, 2016).

As with the K-FAC approximation to the Fisher matrix, we first assume that entries of g̃H corresponding to
different network layers are zero, which makes g̃H a block diagonal matrix, with each block corresponding to
one layer of the network.

In the notation of (Martens & Grosse, 2015), the ℓ-th fully-connected layer is defined by

sℓ = W̄ℓāℓ−1 āℓ = ψℓ(sℓ),

where W̄ℓ = (Wℓ bℓ) denotes the matrix of layer bias and weights, āℓ = (aTℓ 1)T denotes the activations with
an appended homogeneous dimension, and ψℓ denotes the nonlinear activation function.

26

Published in Transactions on Machine Learning Research (02/2025)

For g̃(ℓ)
H the block of g̃H corresponding to the ℓ-th layer, the argument of (Martens & Grosse, 2015) applied

to (56) gives
g̃

(ℓ)
H = EK

[
āℓ−1āTℓ−1 ⊗DsℓDsTℓ

]
, (58)

where Dsℓ = ∂ϕ
∂sℓ

, ⊗ denotes the Kronecker product, and EK is defined by

EK [X ⊗ Y] = X(xi)K−1
ij Y (xj).

Just as K-FAC pushes the expectation of E
[
āℓ−1āTℓ−1 ⊗DsℓDsTℓ

]
inwards by assuming the independence of

āℓ−1 and sℓ, we apply the same trick to (58) by assuming the following K−1-independence between āℓ−1
and sℓ:

EK
[
āℓ−1āTℓ−1 ⊗DsℓDsTℓ

]
= EK

[
āℓ−1āTℓ−1

]
⊗ EK

[
DsℓDsTℓ

]
. (59)

The rest of the computation follows the standard K-FAC for natural gradient. Let Aℓ−1 and Sℓ be the
Kronecker factors

Aℓ−1 = EK
[
āℓ−1āTℓ−1

]
= āℓ−1(xi)K−1

ij āTℓ−1(xj), (60)

Sℓ = EK
[
DsℓDsTℓ

]
= Ds(xi)ℓK−1

ij DsTℓ (xj). (61)
Then our natural gradient for the ℓ-th layer can be computed efficiently by solving the linear system,(

g̃
(ℓ)
H

)−1
vec(Vℓ) = (Aℓ−1 ⊗ Sℓ)−1 vec(Vℓ) =

(
A−1
ℓ−1 ⊗ S−1

ℓ

)
vec(Vℓ) = vec(S−1

ℓ VℓA
−1
ℓ−1),

where vec(Vℓ) denotes the vector form of the Euclidean gradients of loss with respect to the parameters of
the ℓ-th layer. All Kronecker factors Aℓ and Sℓ are estimated by moving averages over training batches.

G.3 Summary of Sobolev Natural Gradient Algorithm

Lemma §4.1 provides the following basic formula for our proposed Sobolev Natural Gradient,

P∇ℓL,f = g̃kℓH

∑
i

(
∇ELz(f(xi), yi) ·E

∂ϕ

∂wk

∣∣∣∣
xi

)
∂ϕ

∂wℓ
, (62)

where L = L(z, y) : Rn × Rn → R is some loss function and ∇ELz denotes the standard Euclidean gradient
of L w.r.t. its first input z. Note that summands on the RHS of (62) are just standard Euclidean gradient
of L w.r.t. model parameters w’s evaluated on training pairs (xi, yi), which can be obtained by standard
back-propagation. Then the only extra computation needed is the term g̃kℓH , which is the inverse of the
Sobolev metric tensor g̃H,ij . Applying this extra inverse of metric tensor is the main computational difference
of all natural gradient methods vs. standard Euclidean gradients. For instance, Amari’s original natural
gradient applies the inverse of the Fisher information matrix.

The approximate computation technique for g̃H,ij is addressed in §G.1, given by the following formula,

g̃H,ij = ∂ϕ

∂wi
(xa)K−1

ac

∂ϕ

∂wj
(xc), (63)

where Kac = dxa
(xc) can be computed by Lemma G.1 as following,

Kac = Cne
−∥xa−xc∥(1 + ∥xa − xc∥). (64)

As discussed in §G.1 and detailed in §G.2, in practice, (64) is the only extra computation step of our approach
compared to the baseline. In fact, if Kac is set to the identity matrix, (63) becomes exactly the Gauss-Newton
approximation of Amari’s natural gradient metric (Zhang et al., 2019c), which is the baseline of all our
experiments. This is another reason that we use the PyTorch codebase (Wang, 2019) of (Zhang et al., 2019c)
to implement our algorithm and follow the experimental setup of (Zhang et al., 2019c) in our experiments.

Following the notations of §G.2, in Algorithm 2 below, we first copy (with slight tweaking for readability) the
Algorithm 1 of (Zhang et al., 2019c), which gives the common algorithmic steps of our approach and the
baseline, where we highlight in red the key step that our approach differs underneath from the baseline. We
then zoom in on the highlighted step and provide computational details of it in Algorithm 3.

27

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 2 K-FAC with weight decay (Zhang et al., 2019c)
Require: η : stepsize
Require: β : weight decay
Require: stats and inverse update intervals Tstats and Tinv
Init: {W̄ℓ}Lℓ=1, {Sℓ}Lℓ=1, {Aℓ−1}Lℓ=1, k = 0

while stopping criterion not met do
k ← k + 1
if k mod 0 (mod Tstats) then

Update the factors {Sℓ}Lℓ=1, {Aℓ−1}Lℓ=1 with moving average
end if
if k mod 0 (mod Tinv) then

Calculate the inverses {[Sℓ]−1}Lℓ=1, {[Aℓ−1]−1}Lℓ=1
end if
Vℓ = ∇W̄ℓ

L

W̄ℓ ← W̄ℓ − (η[Aℓ−1]−1Vℓ[Sℓ]−1 + β · W̄ℓ)
end while

Algorithm 3 Update of factors {Sℓ}Lℓ=1 and {Aℓ−1}Lℓ=1
Compute: Kij by (64) for all samples of the current training batch
Compute: the inverse K−1

ij

Update: Aℓ−1 by (60)
Update: Sℓ by (61)

G.4 Experimental results

Given that comparisons between natural gradient descent and Euclidean gradient descent have been conducted
extensively in the literature (Zhang et al., 2019c;a) and that our proposed approach ends up being a new
variant of natural gradient, our numerical experiments focus on comparing our Sobolev natural gradient
(ours) with the most widely-used natural gradient (baseline) originally proposed by (Amari, 1998) in the
supervised learning setting.

Since we borrow the K-FAC approximation techniques in designing an efficient computational method for
our Sobolev natural gradient, we follow the settings of (Zhang et al., 2019c), which applies the K-FAC
approximation to Amari’s natural gradient, to test both gradient methods on the VGG16 neural network
on the CIFAR-10 and the CIFAR-100 image classification benchmarks. Our implementations and testbed
are based on the PyTorch K-FAC codebase (Wang, 2019) provided by one of the co-authors of (Zhang
et al., 2019c). We did a grid search for the optimal combination of the hyper-parameters for the baseline:
learning rate, weight decay factor, and the damping factor. We end up using learning rate 0.01, weight decay
0.003, and damping 0.03 for the baseline through out our experiments reported in Figure 3 and Figure 4.
For learning rate scheduling of the baseline, we follow the suggested default scheduling of (Wang, 2019) to
decrease the learning rate to 1/10 after every 40% of the total training epochs.

For our method, we use the same learning rate 0.01, weight decay 0.003, and damping 0.03 as the baseline
throughout our experiments. We only tune two extra hyper-parameters for our method,

• For the learning rate scheduling, we decrease our learning rate to 1/5 after the first 40% of total
epochs, and decrease again to 1/5 after another 20% of total epochs.

• From (57), the Sobolev kernel Kij(dxi
(xj)) contains an exponential function with the exponent

−∥xi − xj∥, as a result, this kernel reduces to identity matrix if the set of points {xi} are not close
to each other. Given that input data points are by default normalized when loaded in from these
classification benchmarks, we just introduce for our method a scaling factor to further down scale all
input data. We fix this scaling factor to be 20 throughout our experiments.

28

Published in Transactions on Machine Learning Research (02/2025)

We also run the baseline under different combinations of these tuned extra hyper-parameters, as shown in
Figure 5 and Figure 6, they cannot bring any benefit to the baseline. All experiments are run on an desktop
with an Intel i9-7960X 16-core CPU, 64GB memory, and an a GeForce RTX 2080Ti GPU.

When comparing the natural gradient with the SGD, (Zhang et al., 2019c) trains natural gradients for 100
epochs while training the SGD for 200 epochs, highlighting the training efficiency of natural gradient methods.
Following the same philosophy, in comparing the two natural gradient variants, we further shorten the training
epochs to 50 in all our experiments, and we have found that the final performance is almost on par with
that trained with 100 epochs. The training and testing behavior of ours vs. the baseline on CIFAR-10 and
CIFAR-100 is shown in Figure 3 and Figure 4, respectively. While the final testing performance of both
natural gradient variants are similar, as expected, our method shows a clear advantage regarding convergence
speed, with the margin increased on the more challenging CIFAR-100 benchmark.

(a) Testing Accuracy (b) Training Accuracy (c) Training Loss

Figure 3: Training and testing behaviors of Sobolev Natural Gradient (ours) vs Amari’s Natural Gradient
(baseline) on CIFAR-10. Results are averaged over four runs of different random seeds, with the shaded area
corresponding to the standard deviation.

(a) Testing Accuracy (b) Training Accuracy (c) Training Loss

Figure 4: Training and testing behaviors of Sobolev Natural Gradient (ours) vs Amari’s Natural Gradient
(baseline) on CIFAR-100. Results are averaged over four runs of different random seeds, with the shaded area
corresponding to the standard deviation.

H Pullback metric vs. pushforward metric: an example involving flatness

Our GTK theory specifies a Riemannian metric on the function space which makes the standard gradient, at
least locally, as “natural" as the natural gradient in capturing the intrinsic structure of the parameterized
function space. In this section, we compare the pullback metric and the pushforward metric from a purely
mathematical viewpoint, emphasizing that the pullback metric has better compatibility properties. For
example, suppose W ⊂ W ′, and ϕ : W →M extends to ϕ′ : W ′ →M. Then the pullback metrics behave

29

Published in Transactions on Machine Learning Research (02/2025)

(a) Testing Accuracy (b) Training Accuracy (c) Training Loss

Figure 5: Training and testing behaviors of Amari’s Natural Gradient (baseline) on CIFAR-10. baseline_lr
is the baseline method with the same learning rate scheduling as our method. baseline_scale is the baseline
method with the same input scaling as our method. baseline_lr_scale is the baseline method with the same
learning rate scheduling and input scaling as our method.

(a) Testing Accuracy (b) Training Accuracy (c) Training Loss

Figure 6: Training and testing behaviors Amari’s Natural Gradient (baseline) on CIFAR-100. baseline_lr is
the baseline method with the same learning rate scheduling as our method. baseline_scale is the baseline
method with the same input scaling as our method. baseline_lr_scale is the baseline method with the same
learning rate scheduling and input scaling as our method.

well: (ϕ′)∗ḡ = ϕ∗ḡ for a metric ḡ on M. In contrast, there is no relationship in general between (ϕ′)∗gE and
ϕ∗gE .

A key point is that pullback metrics are independent of change of coordinates on the parameter space W,
while pushforward metrics depend on a choice of coordinates. As a simple example, if we scale the standard
coordinates (x1, . . . , xk) on W ⊂ Rk to (y1, . . . , yk) = (2x1, . . . , 2xk), then in (1) the pushforward metric
ϕ∗gE =

∑
i(∂ϕ/∂xi)⊗(∂ϕ/∂xi) of the Euclidean metric onW changes to

∑
i(∂ϕ/∂yi)⊗(∂ϕ/∂yi) = (1/4)ϕ∗gE .

More generally, if y = α(x) is a change of coordinates on W given by a diffeomorphism α, the pushforward
metrics for the two coordinate systems will be very different.

In contrast, the pullback metric is well behaved (“natural" in math terminology) with respect to coordinate
changes. If ḡ is a Riemannian metric on M, then (ϕ ◦ α)∗ḡ = α∗(ϕ∗ḡ). In particular, for v, w tangent vectors
at a point in W, we have

⟨v, w⟩(ϕ◦α)∗ḡ = ⟨dα(v), dα(w)⟩ϕ∗ḡ. (65)

Since v in the x-coordinate chart is identified with dα(v) in the y = α(x)-coordinate chart, (65) says that the
inner product of tangent vectors to W is independent of chart for pullback metrics.

For the rest of this section, we give a concrete example in machine learning where these properties of the
pullback metric have an explicit advantage over the pushforward metric. In particular, we consider the
various notions of flatness associated to the basic setup (1) near a minimum. In (Dinh et al., 2017, §5),

30

Published in Transactions on Machine Learning Research (02/2025)

ϵ-flatness of F̃ : W → R near a minimum w0 is defined by e.g., measuring the Euclidean volume of maximal
sets S ⊂ W on which F (w) < F (w0) + ϵ for all w in S. The authors note that their definitions of flatness
are not independent of scaling the Euclidean metric by different factors in different directions. Here the
pushforward of the Euclidean metric is implicitly used. As above, scaling is the simplest version of a change of
coordinates of the parameter space. Since this definition of flatness is not coordinate free, it has no intrinsic
differential geometric meaning.

This issue is discussed in (Dinh et al., 2017), Fig. 5. Under simple scaling of the x-axis, the graph of a
function f : R→ R will “look different” Of course, f is independent of scaling, but the graph looks different
to an eye with an implicit fixed scale for the x-axis, i.e., from the point of view of a fixed coordinate chart.

We instead obtain the following coordinate free notion of flatness by measuring volumes in the pullback
metric ϕ∗ḡ.

Definition H.1. In the notation of (1), the ϵ-flatness of F̃ near a local minimum w0 is
∫
S

dvolϕ∗ḡ where S
is a maximal connected set such that F̃ (S) ⊂ (F̃ (w0), F̃ (w0) + ϵ).

Since
∫
S

dvol(ϕ◦α)∗ḡ =
∫
S

dvolϕ∗ḡ =
∫
ϕ(S) dvolḡ, for any orientation preserving diffeomorphism ofW , ϵ-flatness

is independent of coordinates on W , and can be measured on S or on M. In contrast, the Euclidean volume
of S is not related to the volume of ϕ(S) ⊂M.

I MLP with ReLU Activation - General Case with Bias Vectors

In Appendix E, we discuss the gradient for an MLP and with no bias vectors. In this Appendix, we give the
necessary changes for an MLP with bias vectors.

The setup is an MLP with ℓ layers with ReLU activation function, with parameters wkr in the k-th layer, for
r = 1, . . . , nk, where nk is the number of matrix entries plus the number of components of the bias vector in
the k-th layer. The space of parameter vectors is W = {w = (w1

1, . . . , w
ℓ
nℓ

)}, where each parameter in R.
Thus dim(W) =

∑
ℓ nℓ.The map ϕ : W → Maps(Rn,RM) takes a parameter to the associated MLP.

We abbreviate the subvector for the k-th level by wk = (wk1 , . . . , wknk
), so w = (w1, . . . , wℓ). We further refine

wk = (wk1 , . . . , wkak
, w̄k1 , . . . w̄

k
ck

) := (wAk
, wbk

), where the matrix Ak in the kth layer has ak entries and the
bias vector bk has ck entries. We may have ck = 0 for some k. We can assume that wk ̸= 0 for all k, since a
MLP with some wk = 0 is trivial.

Define a multiplicative group G = {g = (g1, . . . , gℓ) : gi > 0,
∏ℓ
i=1 gi = 1}. The map G→ Rℓ : (g1, . . . , gℓ) 7→∑

i log gi is a bijection to the plane
∑
i x

i = 0, so G is a manifold of dimension ℓ− 1. Then G acts on W by

(g1, . . . , gℓ) · (w1, . . . , wℓ)

= (

(g1·wA1 ,g1·wb1)︷ ︸︸ ︷
(g1 · (w1

1, . . . , w
1
a1

), g1 · (w̄1
1, . . . , w̄

1
c1

)),
(g2 · (w2

1, . . . , w
2
a2

), g1g2 · (w̄2
1, . . . , w̄

2
c2

)),
... (66)

(gℓ−1 · (wℓ−1
1 , . . . , wℓ−1

aℓ−1
), g1g2 · . . . · gℓ−1 · (w̄ℓ−1

1 , . . . , w̄ℓ−1
cℓ−1

)),
(gℓ · (wℓ1, . . . , wℓaℓ

), (w̄ℓ1, . . . , w̄ℓcℓ
)︸ ︷︷ ︸

(gℓ·wAℓ
,wbℓ

)

).

By Dinh et al. (2017, Appendix B),

ϕ(w1, . . . , wℓ) = ϕ(g · (w1, . . . , wℓ)), (67)

for all g ∈ G. Thus, as in §5.1, ϕ is far from injective, and in fact is not an immersion.

31

Published in Transactions on Machine Learning Research (02/2025)

Proposition I.1. The dimension of ker(dϕ)w at each w ∈ W is at least ℓ− 1. Thus ϕ is not an immersion.
In fact, the span ofZr|w =

n1∑
k=1

wk1
1

∂

∂wk1
1

∣∣∣∣
w

+
c2∑

k2=1
w̄k2

2
∂

∂w̄k2
2

∣∣∣∣
w

+ . . .+
cr−1∑

kr−1=1
w̄
kr−1
r−1

∂

∂w̄
kr−1
r−1

∣∣∣∣
w

−
cr∑

kr=1
w̄kr
r

∂

∂w̄kr
r

∣∣∣∣
w

 (68)

is in ker(dϕ)w.

Proof. For fixed r ∈ {2, . . . , ℓ}, take g1 > 0, gr = g−1
1 , and all other gi = 1, and then take (d/dg1)|g1=1 of

both sides of (25). This gives

0 =
n1∑
k=1

∂ϕ

∂wk1
1
wk1

1 +
c2∑

k2=1

∂ϕ

∂w̄k2
2
w̄k2

2 + . . .+
cr−1∑

kr−1=1

∂ϕ

∂w̄
kr−1
r−1

w̄
kr−1
r−1 −

cr∑
kr=1

∂ϕ

∂w̄kr
r

w̄kr
r , (69)

where the first sum is over all the neurons in the first layer, and the other sums are over the bias vector
neurons. (69) is equivalent to

dϕ

 n1∑
k=1

wk1
1

∂

∂wk1
1

+
c2∑

k2=1
w̄k2

2
∂

∂w̄k2
2

+ . . .+
cr−1∑

kr−1=1
w̄
kr−1
r−1

∂

∂w̄
kr−1
r−1

−
cr∑

kr=1
w̄kr
r

∂

∂w̄kr
r

 = 0. (70)

Thus the ℓ− 1 vectors in TwW

Zr|w =
n1∑
k=1

wk1
1

∂

∂wk1
1

∣∣∣∣
w

+
c2∑

k2=1
w̄k2

2
∂

∂w̄k2
2

∣∣∣∣
w

+ . . .+
cr−1∑

kr−1=1
w̄
kr−1
r−1

∂

∂w̄
kr−1
r−1

∣∣∣∣
w

−
cr∑

kr=1
w̄kr
r

∂

∂w̄kr
r

∣∣∣∣
w

(71)

are in ker(dϕ)w. Since wj ̸= 0 for all j, these vectors are nonzero. They are clearly linearly independent.
Thus the span of the Zr is contained in ker(dϕ)w0 .

As in Appendix F, the Zr at w form a basis of TwO by a dimension count. Since ϕ is not an immersion for
ReLU MLPs, as in §3.2 the natural gradient does not exist, and we must find a slice for the group action.
Theorem I.1. Write W = Rn1 × . . .× Rnℓ . A slice is given by

S = {λ(v1, . . . , vℓ) : (v1, . . . , vℓ) ∈ Sn1−1 × Sn2−2 × . . .× Snℓ−1−1 × Saℓ , λ > 0} × Rcℓ,∗,

where Sk−1 is the unit sphere in Rk and Rk,∗ = Rk \ {0}.

The orbit Ow = {g ·w : g ∈ G} is contained in (and probably equals) a level set of ϕ. It is unlikely that
any nonzero vector in TwS lies in ker(dϕ)w. Since dim(TwS) + dim(Span{Zr}) = dim(W), we expect that
ker(dϕ)w = Span{Zr} in Prop. I.1, so that ϕ|S is an immersion.

Proof. We prove that every element w = (w1, . . . , wℓ) ∈ W lies on the orbit through some slice element.
Write wk = (Ak, bk) with Ak = (wk,1, . . . , wk,ak

), bk = (wak+1, . . . , wnk
), where ak is the number of entries of

the matrix in the kth layer. Set

g′
1 = |(A1, b1)|−1, g′

2 = |(A2, g
′
1b2)|−1, . . . , g′

ℓ−1 = |(Aℓ−1, g
′
ℓ−2g

′
ℓ−3 · . . . · g′

1bℓ−1)|−1, g′
ℓ = |Aℓ|−1. (72)

Then

(g′
1, . . . , g

′
ℓ) · ((A1, b1), . . . , (Aℓ, bℓ))

=
(
(g′

1A1, g
′
1b1), (g′

2A2, g
′
2g

′
1b2), . . . , (g′

ℓ−1Aℓ−1, g
′
ℓ−1 · . . . · g′

1bℓ−1), (g′
ℓAℓ, bℓ)

)
(73)

∈ Sn1 × Sn2 × . . .× Snℓ−1 × Saℓ × Rcℓ .

Set
gk = g′

k(∏ℓ
i=1 g

′
i

)1/ℓ .

Then g = (g1, . . . , gℓ) ∈ G, and g ·w ∈ S.

32

Published in Transactions on Machine Learning Research (02/2025)

For an ℓ-layer MLP with ReLU activation function, the slice S in Theorem I.1 has codimension ℓ− 1 in W,
contains all the information in ϕ : W →M(Rn,Rm), and probably has ϕ|S an immersion.

§5.1 suggests three approaches to treat the non-immersion case. We take a basis {r := c0
0, c

ki

k : k =
1, . . . , ℓ; ki = 1, . . . , nk−1} of the tangent space TwS for the slice S in Thm. I.1. We use spherical coordinates
(rk, ψki

k), ki = 1, . . . , nk − 1, on the kth layer, for k = 1, . . . , ℓ − 1, while for the ℓth layer we use (rℓ, ψℓi

ℓ),
ℓi = 1, . . . , aℓ, and rectangular coordinates (x1, . . . , xbℓ) on Rbℓ,∗. Then r :=

∑
k ∂/∂rk; cki

k = ∂/∂ψki

k ,
k = 1, . . . , ℓ − 1; cℓi

ℓ = ∂/∂ψℓi

ℓ , ℓi = 1, . . . , aℓ; cℓi

ℓ = ∂/∂xℓi , ℓi = aℓ + 1, . . . , nℓ. The Euclidean metric/dot
product restricts to a metric on S with metric tensor

h = h(k,ki),(s,sj) = cki

k · c
sj
s (74)

=



0, for k ̸= s,
0, for k = s ̸= 0, ki ̸= sj ,

|wk|2 sin2(ψnk−1
k) · sin2(ψnk−2

k) · . . . · sin2(ψki+1
k), for k = s ̸= 0, ℓ; ki = sj ,

|wℓ|2 sin2(ψnℓ−1
ℓ) · sin2(ψnℓ−2

ℓ) · . . . · sin2(ψki+1
ℓ), for k = s = ℓ, ki = sj ≤ aℓ,

1, for k = s = ℓ, ki = sj > aℓ,
ℓ, for k = s = 0, i = j = 0.

Here the metric is computed at w = (w1, . . . , wℓ) ∈ S. Note that |wk|2 = r2
k independent of k (except for

|wℓ,A|2 = r2
ℓ). h is diagonal, so h−1 is easy to compute. (74) follows from (48).

We can use this metric in any of Approaches I-III of §5. The implementation of gradient descent in any
approach is similar to §5, although moving a parameter vector back into the slice is a little more complicated,
as we now explain.

To implement gradient descent on W, start with w0 ∈ S and take w̄1 = w0 + α · dϕ−1 (∇ΦLℓ,ϕ(w0)
)
, where

α is the step size. Move w̄1 along its G-orbit back to w1 ∈ S as follows: for w̄1 = ((A1, b1), . . . , (Aℓ, bℓ)),
define g′

i by

g′
1 = |(A1, b1)|−1, g′

2 = |(A2, g
′
1b2)|−1, . . . , g′

ℓ−1 = |(Aℓ−1, g
′
ℓ−2g

′
ℓ−3 · . . . · g′

1bℓ−1)|−1, g′
ℓ = |Aℓ|−1,

and set

w1 = B
(
(g′

1A1, g
′
1b1), (g′

2A2, g
′
2g

′
1b2), . . . , (g′

ℓ−1Aℓ−1, g
′
ℓ−1 · . . . · g′

1bℓ−1), (g′
ℓAℓ, B

−1bℓ)
)
, (75)

where B =
(∏ℓ

i=1 g
′
i

)−1/ℓ
. This ensures both that (Bg′

1, . . . , Bg
′
ℓ) ∈ G and that bℓ is not modified. Now

continue with w1.

I.1 Loss function gradient: Approach I

In particular, for Approach I we need:

Proposition I.2. The gradient ∇S F̃ , for F̃ : W → R, is given by

∇S F̃w = ∇Euc,W F̃w −
1
|w1|2

ℓ∑
k=1

 n′
k∑

ki=1
wkki

∂F̃

∂wkki

wkkj

∂

∂wkkj

+ ℓ−1

|w1|2

 ℓ∑
s=1

n′
s∑

si=1
wssi

∂F̃

∂wssi

wkkj

∂

∂wkkj

,

where

n′
k =

{
nk, k ̸= ℓ,
ak, k = ℓ.

33

Published in Transactions on Machine Learning Research (02/2025)

Proof. For w in the slice S, write w = (w1, . . . , wℓ) with wk = (w1
k, . . . , w

nk

k). Since the gradient is independent
of coordinates, on the kth layer, k = 1, . . . , ℓ− 1, for any F̃ : W → R and any w = (w1, . . . , wk) ∈ W , we have

∇Euc,kF̃wk =
nk∑
ki=1

∂F̃

∂wkki

∂

∂wkki

= h0,0
k

∂F̃

∂rk

∂

∂rk
+ h0,ki

∂F̃

∂rk

∂

∂ψki

k

+ hki,0 ∂F̃

∂ψki

k

∂

∂rk
+ hkikj

∂F̃

∂ψki

k

∂

∂ψ
kj

k

= ∂F̃

∂rk

∂

∂rk
+
nk−1∑
ki=1

(
ki+1∑
b=1

(wkb)2

)−1
∂F̃

∂ψki

k

∂

∂ψki

k

.

The right hand side is evaluated at wk. As before, h0,0
k := ⟨∂rk

, ∂rk
⟩−1 = 1, we abbreviate h(k,ki),(k,kj) by

hki,kj when the context is clear, and we have used (52). For k = ℓ, we use spherical coordinates (rℓ, ψkℓ) on
the first aℓ components and rectangular coordinates on the bias vector components. This gives

∇Euc,ℓF̃wℓ =
nℓ∑
ℓi=1

∂F̃

∂wℓℓi

∂

∂wℓℓi

= ∂F̃

∂rℓ

∂

∂rℓ
+
aℓ−1∑
ℓi=1

(
ℓi+1∑
b=1

(wkb)2

)−1
∂F̃

∂ψℓi

ℓ

∂

∂ψℓi

ℓ

+
nℓ∑

ℓi=aℓ+1

∂F̃

∂wℓℓi

∂

∂wℓℓi

.

To compress the notation, set

n′
k =

{
nk, k ̸= ℓ,
ak, k = ℓ.

Using a mixture of ordinary summation and summation convention, we have

∇S F̃w = h0,0 ∂F̃

∂r

∂

∂r
+
ℓ−1∑
k=1

hkikj
∂F̃

∂ψki

k

∂

∂ψ
kj

k

+
aℓ∑

ℓi,ℓj=1
hℓiℓj

∂F̃

∂ψℓi

ℓ

∂

∂ψ
ℓj

ℓ

+
nℓ∑

ℓi=aℓ+1

∂F̃

∂wℓℓi

∂

∂wℓℓi

= ℓ−1

(
ℓ∑

k=1

∂F̃

∂rk

)(
ℓ∑
s=1

∂

∂rs

)
+

ℓ∑
k=1

n′
k−1∑
ki=1

(
ki+1∑
b=1

(wkb)2

)−1
∂F̃

∂ψki

k

∂

∂ψki

k

+
nℓ∑

ℓi=aℓ+1

∂F̃

∂wℓℓi

∂

∂wℓℓi

= ∇Euc,W F̃ −
ℓ∑

k=1

∂F̃

∂rk

∂

∂rk
+ ℓ−1

ℓ∑
k=1

ℓ∑
s=1

∂F̃

∂rk

∂

∂rs

= ∇Euc,W F̃ −
ℓ∑

k=1

n′
k∑

ki,kj=1

wkki
wkkj

|wk|2
∂F̃

∂wkki

∂

∂wkkj

+ ℓ−1
ℓ∑

k=1

ℓ∑
s=1

n′
k∑

ki=1

n′
s∑

sj=1

wkki
wssj

|wk||ws|
∂F̃

∂wkki

∂

∂wssj

(76)

In the last two terms, |wk| = |wj |, so it suffices to compute |w1|.

Let
(
kj

k

)
denote the component of ckj

k of ∇S F̃w. Label the first three terms on the last line of (76) by I, II,
III. Then

1. In I,
(
kj

k

)
= ∂F̃

∂wk
kj

.

2. In II, (
kj
k

)
= − 1

|w1|2︸ ︷︷ ︸
independent of k,kj

 n′
k∑

ki=1
wkki

∂F̃

∂wkki


︸ ︷︷ ︸

independent of kj

wkkj
.

34

Published in Transactions on Machine Learning Research (02/2025)

3. In III, by switching the s and k indices,

(
kj
k

)
= ℓ−1

|w1|2

 ℓ∑
s=1

n′
s∑

si=1
wssi

∂F̃

∂wssi


︸ ︷︷ ︸

independent of k,kj

wkkj
□

I.2 Loss function gradient: Approach II

We show that in Approach II, formulas (54) and (76) are altered only by removing the ℓ−1 factor in the last
term. For (54), we note that the metric h in (49) is replaced by δ(k,ki),(s,sj). Thus the proof of Prop. 5.2
changes to

∇Euc,kF̃wk = ∂F̃

∂rk

∂

∂rk
+
nk−1∑
ki=1

∂F̃

∂ψki

k

∂

∂ψki

k

,

and

∇S F̃w =
(

ℓ∑
k=1

∂F̃

∂rk

)(
ℓ∑
s=1

∂

∂rs

)
+

ℓ∑
k=1

nk−1∑
ki=1

∂F̃

∂ψki

k

∂

∂ψki

k

= ∇Euc,W F̃ −
ℓ∑

k=1

∂F̃

∂rk

∂

∂rk
+

ℓ∑
k=1

ℓ∑
s=1

∂F̃

∂rk

∂

∂rs

= ∇Euc,W F̃ −
ℓ∑

k=1

nk∑
ki,kj=1

wkki
wkkj

|wk|2
∂F̃

∂wkki

∂

∂wkkj

+
ℓ∑

k=1

ℓ∑
s=1

nk∑
ki=1

ns∑
sj=1

wkki
wssj

|wk||ws|
∂F̃

∂wkki

∂

∂wssj

.

In the notation of the proof of Prop. 5.2,
(
kj

k

)
are unchanged for I and II, while for III

(
kj
k

)
= 1
|w1|2

 ℓ∑
s=1

n′
s∑

si=1
wssi

∂F̃

∂wssi

wkkj
.

The same argument works for (76).

35

	Introduction
	The Theoretical Setup: A Geometric Perspective
	Smooth Gradients, Orthogonal Projection, and Pullback Metric for Natural Gradient
	Surjection and Pushforward Metric for Standard Gradient

	Natural Gradients of the Empirical Loss
	Gradients in RKHS and Generalized Tangent Kernel
	Natural Gradient in RKHS
	A Unified Perspective with Generalized Tangent Kernel

	Natural Gradient for Non-Immersion Function Approximation
	MLP with ReLU Activation
	Experiments

	Discussion
	Key Notations
	Background Material
	Riemannian Manifolds
	Sobolev Spaces
	RKHS

	Proofs for §2
	Technicalities Ignored in §3
	Proofs for §4
	Proofs for §5
	Proof of Proposition 5.1
	Details of the basis and the restricted metric on slice S
	Proof of Proposition 5.2

	Sobolev Natural Gradient
	An approximate computation of g"0365gH,ij
	Kronecker-factored approximation of g"0365gH
	Summary of Sobolev Natural Gradient Algorithm
	Experimental results

	Pullback metric vs. pushforward metric: an example involving flatness
	MLP with ReLU Activation - General Case with Bias Vectors
	Loss function gradient: Approach I
	Loss function gradient: Approach II

