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A B S T R A C T   

Selective laser melting (SLM) is known as one of the most promising metal additive manufacturing technologies, 
and how to ensure its consistent quality is still a main challenge, which urgently needs to be addressed. The metal 
powder spreading quality, as the first stage of SLM, has a direct impact on the subsequent forming and it is 
necessary to be monitored. However, existing deep learning-based methods for monitoring powder spreading 
quality often suffer from the problem of unreliability. The high-resolution property of powder bed images is often 
ignored, and the predicted results are not well evaluated. To address the above issues and achieve trustworthy 
defect detection, this paper proposes an uncertainty-driven trustworthy defect detection method for high- 
resolution powder bed images in SLM. A super resolution module based on ISDNet is first proposed to refine 
the upsampling process. Checkpoint ensemble is adopted for better achieving model uncertainty estimation only 
requiring a single training process, feature reuse helps reduce the computational load, and temperature scaling is 
used to further calibrate each ensemble member to get a more precise uncertainty. Besides, we design an 
uncertainty-driven model improvement method to further improve defect detection performance for regions with 
high uncertainty. Experiments demonstrate the effectiveness of our proposed method, and our work achieves a 
trustworthy defect detection for high-resolution powder bed images in SLM.   

1. Introduction 

Selective laser melting (SLM) is known as one of the most promising 
metal additive manufacturing (MAM) technologies [1]. It utilizes the 
high-energy density laser beam as heat source to melt the mental powder 
selectively according to the planned path layer by layer [2]. Benefited 
from the tiny laser spot size, typically ranged from 20 µm to 100 µm, 
SLM can manufacture high-density components with high forming 
precision, and is suitable for the manufacture of special complex struc-
tures, such as thin walls, complex curved surfaces, and spatial lattices. 
Compared with the traditional manufacturing process, this technology 
can greatly save the processing cycle, avoid waste of materials, and 
reduce mold costs [3]. Therefore, SLM has been widely used in aero-
space, high-end equipment, and industrial design fields [4]. However, 
how to ensure the reliability of component quality and the repeatability 
of manufacturing has gradually been becoming the biggest challenge for 
SLM, which has been considered as one of the main obstacles to the 

development and batch industrial application of SLM and other MAM 
technologies [5]. During the metal powder spreading process, some 
factors, like the vibration of the recoater blade and the insufficient 
amount of powder, will lead to the unevenness of powder bed. If defects 
of the powder spreading are not detected, evaluated, and disposed in 
time, it will inevitably cause hidden defects in the forming component, 
even leading to processing failure [6]. It is unacceptable to use the 
components with internal damages and the processing failure will cause 
huge economic losses, especially for the components with a processing 
cycle of several months. Therefore, it is quite important to monitor the 
powder spreading quality during the SLM process to manufacture 
high-performance mental components. 

Machine vision has been widely adopted to monitor the powder 
spreading quality. It is worth mentioning that the resolution of these 
images collected from the camera is relatively large due to the fact that 
the width of the power bed is generally large and the size of the defects is 
usually small. The higher the resolution, the more defect information 
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can be obtained. However, high resolution will result in the burden of 
computational time for feature extraction. Generally, there are three 
schemes based on machine vision to carry out the powder spreading 
defect detection. One scheme is to obtain the height distribution of the 
powder bed surface by means of active illumination and coherent 
interference. Neef et al. [7] applied low coherence interferometric im-
aging technology to detect the flatness of the powder bed in SLM pro-
cess, which scans the powder bed with a measuring laser beam, 
measures the optical path difference between the reflected light and the 
reference light with a spectrometer, and then compensates the deviation 
caused by the angular deflection to obtain the height distribution of 
different scanning points. This technology can effectively detect the ups 
and downs of the powder bed and can identify grooves with a depth of 
50 µm on the powder bed. Zhang et al. [8] proposed an in-situ fringe 
projection technology to reconstruct the deformation stripes captured 
by the camera to obtain the three-dimensional shape of the object, and 
realize the detailed measurement of the surface topography of the 
powder layer and molten metal surface. DePond et al. [9] adopted 
high-speed spectral domain optical coherence tomography along the 
laser light path to measure the powder height of each layer after melting 
to explore the mechanism of defect formation, thereby improving pro-
cess parameters. Cao et al. [10] applied the structured light technology 
to measure the flatness and contour of the additive manufacturing 
process online and analyzed the flatness of the forming working surface 
to estimate the quality of powder spreading. Based on the height dis-
tribution of powder bed surface, the quality of powder spreading can be 
estimated intuitively and effectively. However, these methods usually 
require active lighting and special image acquisition equipment, which 
is expensive and not conducive to the arrangement in airtight chamber. 

Additionally, some research analyzing the grayscale texture of the 
powder bed picture to detect powder spreading defects has been con-
ducted due to the lower computational complexity and good explana-
tion. This scheme depends on the height distribution of powder bed 
surface essentially because different heights will lead to different gray 
values on the powder bed picture under certain lighting conditions. 
Therefore, the grayscale texture of the powder bed image can be 
analyzed by image processing techniques, such as morphological 
filtering, to distinguish the location and scope of powder spreading 
defects. Craeghs et al. [11] extracted some stripes perpendicular to the 
powder spreading direction on powder bed grayscale images and 
compared the average value with a reasonable grayscale range to 
effectively identify shallow ravines along the moving direction of the 
recoater blade caused by wear and local damages. Jacobsmuhlen et al. 
[12] performed threshold processing on grayscale images and realized 
the effective extraction of both position and area of the super-elevation 
according to the characteristics of the bright area generated by the 
specular reflection of the super-elevation. Abdelrahman et al. [13] 
extracted the area corresponding to the cross-section of the part from 
powder bed images and superimposed it to form a three-dimensional 
part model, which can well reflect the three-dimensional space posi-
tion of the powder bed anomaly. Lin et al. [14] used threshold seg-
mentation to extract the stripe and cladding defects from powder bed 
images after eliminating the effect of light, and then multilayer per-
ceptron and support vector machine were used to perform classification. 
However, this process relies on many manually designed feature ex-
tractors, requires professional knowledge and complex parameter tun-
ing process, and is aimed at specific applications with relatively worse 
generalization ability and robustness. 

Recently, due to the powerful representation ability, deep learning 
can automatically extract features from massive data and has attracted 
increasingly attention in powder spreading defect detection. This 
scheme directly uses deep learning models to classify or locate the de-
fects from the original images. Scime et al. [15] built a powder bed 
image dataset to detect and classify defects using an unsupervised ma-
chine learning algorithm. They later combined the AlexNet, Multi-scale 
convolutional neural network (CNN) and transfer learning to carry out 

the powder spreading anomaly detection [16]. Based on previous work, 
they further introduced an additional UNet to return pixel-wise seg-
mentation results for defect location [17]. The algorithm was validated 
on six different devices, covering three molding techniques including 
laser fusion, binder jetting, and electron beam fusion. Chen et al. [18] 
proposed a two-stage CNN to detect and segment the powder spreading 
defects. They first adopted EfficientNet B7 to classify the images which 
contained defects and then applied Mask R-CNN to locate the defect 
area. Mehta et al. [19] applied the UNet to divide the whole powder bed 
into three kinds of area: powder, part, and defect. Besides, they utilized 
federated learning to alleviate the constraints of data availability and 
data privacy. Fischer et al. [20] designed a recoater-based line sensor to 
acquire images of powder bed with 6 µm/pixel resolution and applied 
Xception to classify image patches into different defects. The powder 
spreading defect detection based on deep learning can mine the 
advanced semantic features of various defects, which eliminates the 
cumbersome manual extraction. However, as mentioned above, powder 
bed images captured by the industrial camera usually features high 
resolution and existing methods mainly focus on regular resolution 
images instead of the feasibility of larger scale input due to the limita-
tion of computational speed. Above methods either downsample 
high-resolution powder bed images to fit deep learning models, leading 
to loss of image details, or divide powder bed images into patches for 
prediction and then stitch them back together, leading to lose the 
contextual semantics of the patch edges. How to directly and precisely 
classify and locate the defects from the high-resolution powder bed 
images while maintaining low computational time is still an unsolved 
problem. 

However, the deployment of deep learning in real industrial sce-
narios is often hampered by the inherently "black box" property, leading 
to the fact that users often cannot trust the results from deep learning 
models. That is, it is often unknowable what the outcome of a single 
prediction is and why it is the case, which can seriously affect the se-
curity of the decision and cannot achieve a trustworthy result. There-
fore, it is urgent to address whether and how the prediction results of a 
deep learning model are trustworthy. A trustworthy deep learning 
model should be capable of giving accurate predictions, evaluate the 
credibility of predictions additionally, and warn experts in the decision 
loop to handle anomalies when the predictions have high uncertainty. 
However, deep learning models often only give point predictions, fail to 
evaluate the uncertainty, and are often overconfident or diffident in the 
prediction results, which makes their results unreliable and not 
trustworthy.  

• To address above issues, this paper proposes an uncertainty-driven 
trustworthy defect detection method for high-resolution powder 
bed images in SLM. Our main contributions can be summarized as 
follow:To achieve defect segmentation of high-resolution powder 
bed images with high accuracy, a super resolution module to refine 
the upsampling process based on ISDNet is proposed, which well 
balances the performance and computational burden for defect 
detection of high-resolution powder bed images and can obtain a 
finer-grained powder spreading defect segmentation mask.  

• To precisely evaluate the credibility of prediction results, a model 
ensemble approach is designed to achieve model uncertainty esti-
mation, which only requires a single training process. Temperature 
scaling is used to calibrate each ensemble member to eliminate the 
cognitive bias and get a more precise uncertainty.  

• To further utilize uncertainty for trustworthy defect detection, an 
uncertainty-driven model improvement method is proposed for re-
gions with high uncertainty to enhance powder spreading defect 
detection performance.  

• Powder spreading defect image dataset, including super-elevation, 
incompletion, hopping, streaking, and lattice, is collected and 
labeled during the metal powder spreading process of real 
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components manufacture by SLM. Then, the established dataset is 
used to verify the performance of the proposed method. 

The organization of this paper is summarized as follows: Section 2 
presents related research, including semantic segmentation methods for 
high-resolution images and uncertainty evaluation methods in deep 
learning. Our proposed approaches are described in Section 3 and 
verified their effectiveness in Section4. In Section 5, our work is 
summarized. 

2. Preliminary 

2.1. High-resolution image segmentation 

Higher resolution means more details but leads to huge burden for 
the computation and memory, which needs special designs to deal with. 
Some works based on the combination of global features and local fea-
tures has been conducted [21–24]. In the way, high-resolution images 
are downsampled to extract global features while patches are chosen 
from original resolution images by some strategies to extract local fea-
tures. Local features are utilized to compensate for the loss of detail 
information caused by downsampling at the original position. Besides, 
refining the segmentation results by a cascaded structure with reusing 
intermediate features helps deal with the high-resolution image seg-
mentation problem [25–28]. In this case, a fine-grained mask is obtained 
by fusing the coarse mask with other intermediate features in each 
iteration and then feeding to the next iteration. The intermediate fea-
tures in each iteration are considered to contain some information, 
which the output mask does not have and is beneficial to obtain a 
fine-grained mask. Last, the fusion of low-level and high-level features 
has also attracted attention in this field [29–31]. Low-level features have 
higher resolution and retain more image texture information, while 
high-level features contain advanced semantic information and facilitate 
pattern recognition. The effective fusion of these two kinds of features 
can meet the demand for high-resolution image segmentation to obtain 
fine-grained masks. In summary, the first two schemes either need to be 
carried out in two stages or need to repeat the same operation many 
times, and such serial operations are time-consuming. The last scheme, 
which fuses low-level features with high-level features, can well work 
with the special design of effective feature fusion modules. 

Among these methods, ISDNet[31] has proved its ability to balance 
accuracy and speed, outperforming Unet on the DeepGlobe dataset, and 
the whole structure is shown in Fig. 1. It is attributed to the effective 
fusion of high-level features and low-level features. ISDNet employs 

DeepLabv3 with ResNet18 as the deep branch to extract high-level 
features and the lightweight model called Short-Term Dense Concate-
nate (STDC) [32], in which only the first four stages are used, to extract 
low-level features. Original images are downsampled by four times as 
the input of the deep branch while high-frequency residuals, which are 
computed from full-resolution images through Laplacian pyramid, are 
concatenated with full-resolution images as the input to the shallow 
branch. Assume that the original image has the shape of N ∗ 3 ∗ H ∗ W, 
the shape of deep branch’ input is N ∗ 3 ∗ H/4 ∗ W/4, while the shape of 
shallow branch’ input is N ∗ 6 ∗ H ∗ W. For better feature fusion, a 
relation-aware feature fusion module (RAF) is designed as follows: 

Let Fd ∈ ℝC×Hd×Wd and Fs ∈ ℝC×Hs×Ws donate high-level features and 
low-level features, respectively. Global average pooling (GAP) is per-
formed separately for each of them, and each obtains a one-dimensional 
feature vector with the length equal to the number of channels. After-
wards, a multilayer perceptron (MLP) is used to obtain the respective 
channel attention weights, donated as wCA

d ∈ ℝ1×Cd and wCA
s ∈ ℝ1×Cs . 

This process is described as: 

wCA = MLP
(
GAP(F)

)
(1) 

The channel attention weights of high-level features and low-level 
features are orderly divided intokgroups with lengthrto rearranged 
into feature matrices, donated asGd ∈ ℝk×rand Gs ∈ ℝk×r. For easy un-
derstanding, assumeGd = [α1,α2,…, αk]

TandGs = [β1, β2,…, βk]
T, where 

αkandβkare both column vector with lengthr. The feature relationship 
matrix is obtained as: 

R = GsGT
d . (2) 

For any elementRi,jin matrixR, it is calculated as follow: 

Ri,j = βTi αj =< βi, αj >, (3)  

where< βi,αj >represents the inner product ofβiandαj, which describes 
the relevance between two vectors. Through Formula (2), each group of 
channel attention weights from high-level features can make inner 
product with all groups of channel attention weights from low-level 
features, respectively. In this way, the feature relationship between 
low-level features and high-level features is established. 

To further explore the feature interactions between high-level fea-
tures and low-level features, the feature relationship matrix is flattened 
into a one-dimensional vector. The feature interaction reorganization is 
performed using a MLP, and the feature interaction weight is obtained 
as: 

Fig. 1. The pipeline of ISDNet [31].  
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wFI = MLP
(
Flatten(R)

)
(4) 

Referring to residual connection, the channel attention weight is 
added to the feature interaction weight and modulated with a learnable 
parameter α. the sigmoid function is used to obtain the feature fusion 
weight as follow: 

ws = Sigmoid
(
wCA
s + αs × wFI

s

)
(5)  

wd = Sigmoid
(
wCA
d +αd × wFI

d

)
(6) 

Finally, high-level features and low-level features are multiplied with 
their respective feature fusion weights, and the results are summed to 
obtain the final fused feature as follow: 

Ffusion = ws × Fs+Upsample
(
wd × Fd

)
, (7)  

where Upsample(⋅)means upsampling operation to increase the feature 
map resolution. The upsampling operation is achieved through bilinear 
interpolation, which is a method for estimating the value of a function at 
any point inside a rectangle, given the values of the function at the four 
corners of the rectangle. It works by first performing linear interpolation 
in one direction, and then again in the other direction. The result is a 
weighted average of the four corner values, where the weights depend 
on the distance between the point and the corners. 

During the training process, the standard cross-entropy loss is used to 
train the model, donated asLSEG. Cross-entropy loss accepts the label and 
prediction probability as input to measures the difference between the 
true distribution and the predicted distribution, thus reflecting the ac-
curacy of the model. This loss has been widely used in classification. 
Through minimizing its value, the model can be well trained. An 
auxiliary segmentation head is introduced in the deep branch, and it 
utilizes the feature map output by deep branch to generate the seg-
mentation mask in advance and calculates cross-entropy loss (LAUX) as 
part of the total loss. This design performs an additional supervision to 
the feature extraction process of deep branch, which motivates the deep 
branch to extract features efficiently to minimize the loss of downstream 
tasks. Besides, super resolution technique is applied to help reconstruct 
the original image and the super resolution loss (LSR) and the structure 
distillation loss (LSD) are special designed. The pipeline of ISDNet [31] is 

shown in Fig. 1. 
The designs mentioned above enable ISDNet [31] to achieve a 

desirable trade-off between speed and accuracy when solving 
high-resolution image segmentation. However, there still exist some 
problems. After combining the deep branch and the shallow branch with 
the relation-aware feature fusion module, ISDNet [31] adopts a con-
volutional layer with 64 kernels to adjust the feature map channels, then 
applies a convolutional layer with the same number kernels with the 
categories to make every category’ prediction, and then bilinearly 
upsamples the feature maps by eight times reverting to the original 
resolution. Such an operation is harmful to the detection of powder 
spreading defects. Narrow streak-like defects and small dot-like defects 
often appear on the powder bed and occupy only a very small area in the 
high-resolution powder bed images. This way of determining the cate-
gory of pixels in a region by only a few pixels can easily lead to them 
being ignored. In addition, the upsampling amplitude is so large that the 
shape of the detected defect region will be relatively regular. However, 
powder spreading defects usually present a variety of complex shapes. 
This leads to unavoidable deviation in the defect region obtained by 
sampling on a large amplitude, which impairs the defect detection 
performance. Though the super resolution technique is applied in ISD-
Net [31] to help reconstruct the original image, but it works before the 
final upsampling process instead of right in the final upsampling process, 
which doesn’t directly have an intuitive effect on the output. Due to the 
large upsampling amplitude of ISDNet [31], it is not capable of 
obtaining fine-grained powder spreading defect detection results and 
cannot be directly applied to the monitoring of powder spreading in 
SLM. 

2.2. Model uncertainty estimation 

Uncertainty in deep learning can be divided into two categories: 
aleatoric uncertainty and epistemic uncertainty. The former refers to the 
introduction of random noise due to the influence of external factors on 
data collection, labeling, etc. The latter refers to whether the model can 
correctly recognize the data [33]. In this paper, we mainly focus on 
epistemic uncertainty, which is also referred to model uncertainty. In 
original neural networks, the network weights are all fixed-point esti-
mates, and certain inputs will only yield certain outputs. This certainty 

Fig. 2. Our improved ISDNet (including the designed SR module and the refined upsampling method) can be divided into three modules: feature extraction module, 
feature fusion module and segmentation head. 
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mechanism does not allow for model uncertainty estimation. Bayesian 
inference sets the network weights θ = (W1,…,Wn) as probability dis-
tributions and applies Bayesian theory to derive the probability distri-
bution of the output to achieve model uncertainty estimation. 
Specifically, for a given training dataset (x,y), assuming a priori distri-
bution p(θ), the posterior distribution can be modeled as: 

p(θ|x, y
)

=
p(y|x, θ)p(θ)
p(y|x)

∝p(y|x, θ
)

p(θ), (8)  

where p(y|x) is called model evidence and is defined as: 

p
(

y|x) =
∫

p(y|x, θ)p(θ)dθ. (9) 

Once the posterior distribution on the network weights has been 
established, given a new input x∗, the predictive distribution of the 
output y∗ can be obtained as: 

p
(

y ∗
⃒
⃒
⃒
⃒x∗, x, y

)

=

∫

p(y ∗ |x∗, θ)p(θ|x, y)dθ. (10) 

The posterior probability is difficult to find because the network 
weights cannot be exhausted in practice. Therefore, variational infer-
ence and sampling methods are commonly used to approximate the 
posterior distribution. Variational inference [34] uses KL divergence to 
constrain the probability distribution q(θ) to approximate the posterior 
distribution. Monte Carlo-dropout [35] adds a dropout layer after each 
network weight to achieve random sampling, which has been proved to 
approximate the posterior distribution. But it decreases the capacity of 
the model and thus sometimes hurts performance. 

In addition, model ensemble [36] is also a common method for 
model uncertainty estimation. Compared to Bayesian inference, model 
ensemble is easy to implement and has good predictive robustness. For a 
multi-classification semantic segmentation problem, suppose that there 
areCcategories. Then a model will makeCpredictions for each pixel, 
correspondingCcategories. After the model output is processed by the 
Softmax function, the prediction probability of each category will be 
obtained. And the index of the maximum probability is regarded as the 
true category of the pixel. For example, for (0.1, 0.2, 0.7), 0.7 is the 
maximum value, and its index is 2 (numbering starts from 0). For model 
ensemble, it combines multiple trained models to obtain multiple 

outputs with the same inputs. Suppose that there areMmodels used for 
ensemble and all outputs are processed by Softmax function. Then each 
category of a pixel will obtainMprediction probabilities. Their mean is 
regarded as the final prediction probability of the category. With the 
final prediction probabilities ofCcategories，the true category of a pixel 
is the index with the maximum probability and the prediction uncer-
tainty in this pixel can be measured through the variance. This process is 
described as: 

y =
1
M

∑M

i=1
Softmax

(

fi(x)

)

, (11)  

ŷ = Argmax(y), (12)  

Var = E
(
y2) − [E(y)]2. (13)  

whereMdonates the number of ensembled members,f(⋅)donates models 
used for ensemble, Argmax(⋅)donates the operation to search the cate-
gory index with the maximum prediction probability, ydonates the final 
prediction probability,ŷdonates the final prediction,E(⋅)donates math-
ematical expectation, and Var donates variance. 

How to obtain multiple trained models has been extensively studied, 
including random initialization of network weights, data augmentation, 
and network structure differences. However, it is time-consuming and 
laborious to train and tune multiple models. And the burden of memory 
and computation increases with the number of ensembled models, 
especially for powder bed images with high resolution inherently cause 
pressure on memory and computation. More importantly, because of 
random training, each model has different representation capacity, 
leading to the bias in the perception of the same input. A model may 
make predictions with low prediction accuracy as well as low model 
uncertainty, or high prediction accuracy as well as high model uncer-
tainty. This is due to the mismatch between the prediction confidence 
and the prediction accuracy. Using a model with such bias for ensemble 
will influence the effectiveness of the model uncertainty estimation and 
make it difficult to exploit the uncertainty effectively later. 

3. The proposed method 

3.1. Improved ISDNet for powder spreading defect detection 

As mentioned above, ISDNet demonstrates its advantages in high- 
resolution image segmentation, but its large upsampling amplitude re-
sults in the failure to obtain fine-grained defect detection results, 
limiting its application in powder-laying defect detection. Based on 
ISDNet, we propose a step-wise upsampling strategy combined with the 
super resolution technique to replace the original upsampling method 
for fine-grained identification. 

Specifically, we introduce the Super Resolution (SR) module to 
ISDNet, for dividing the upsampling step to recover the original reso-
lution into three same operations to complete. In the SR module, the 
input feature map is first upsampled twice in the nearest way. And then a 
convolutional layer with a kernel size of 3 × 3 and a stride of 1 is 
applied, followed by batch normalization and ReLU activation function. 
After that, a dropout function is added with a dropout rate of 0.2 to 
avoid overfitting. Last, a convolutional layer with a kernel size of 3 × 3 
and a stride of 1 is applied. After the fusion of high-level features and 
low-level features, the feature map will be reverted to the original res-
olution through repeating the SR module three times. SR module limits 
each upsampling to twice, and then uses the convolution operation to 
aggregate the detailed information of the upsampled feature map, which 
supplements the information in the upsampling process and the 
connection between pixels is relatively continuous. Eight times upsam-
pling is realized through three super-resolution modules, which is 
conducive to the detection of small powder coating defects. The range of 
detected defects is relatively continuous, which is conducive to the 

Fig. 3. Powder bed image acquisition.  
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generation of fine-grained masks. 
We give out the auxiliary segmentation head introduced into the 

deep branch as we find it not helpful for existing structures. Besides, we 
remain the standard cross-entropy loss (LCE) for final segmentation re-
sults and add the mean- squared-error loss (LMSE) for the SR module, 
further abandoning other setups in original ISDNet. The feature map 
outputted by the deep branch is upsambled by two times before input-
ting the relation-aware feature fusion module in ISDNet. But this oper-
ation is not combined with any other features. Thus, we replace it by 
downsampling the original image by two times instead of four times 
before inputting into the deep branch. Our improved ISDNet is shown in 
Fig. 2. 

3.2. Uncertainty estimation 

We utilize checkpoints to achieve model ensemble for model un-
certainty estimation, which only requires a single training process. To 
reduce computational load raised by model ensemble, we adjust the 
network structure to achieve feature reuse. To eliminate cognitive bias 
in the ensembled checkpoints, we apply temperature scaling to cali-
bration each checkpoint used for ensemble, leading to better uncertainty 
estimation. 

3.2.1. Model ensemble 
All parameters of a network saved during training process are called 

checkpoint or snapshot. It is often saved after several training epochs. 
Since the order of samples is random and parameters is updated in each 
epoch, each checkpoint contains inconsistent weights, which can be 
exploited for model ensemble. Adopting checkpoints to achieve model 
ensemble has been researched before. Huang et al. [37] exploited SGD to 
converge to and escape from local minima as the learning rate is low-
ered, which allow the model to visit several weight assignments to 
obtain checkpoints for ensemble. Chen et al. [38] explored the perfor-
mance of checkpoint ensemble in a vanilla neural network, a convolu-
tional neural network, and a long short term memory network. Garipov 
et al. [39] showed that the optima of deep neural networks are con-
nected by simple pathways and proposed a training procedure to find 
these pathways for fast ensemble. Das et al. [40] presented the approach 
of using checkpoints to create ensembles of BERT-based transformers, 
which improved the performance of classification. Wang et al. [41] 
proposed a novel method to ensemble the checkpoints, where a boosting 
scheme is utilized to accelerate model convergence and maximize the 
checkpoint diversity. Due to the convenience of not having to train 
multiple times, we adopt checkpoints to achieve model ensemble for 
model uncertainty estimation. On the premise that the training process 
can converge, a relatively large learning rate is set so that the network 
can achieve better performance at multiple stages of the training pro-
cess, and multiple sets of checkpoints are obtained for model ensemble. 
This mode only requires training and tuning of a single model, which 
greatly reduces the workload. The overall procedure is summarized in 
Algorithm 1. 

To alleviate the problem of slow inference caused by multiple for-
ward propagations, we restructure the individual models and reduce the 
computational time via feature reuse. The network structure of the 
modified ISDNet mentioned above can be divided into three parts: the 
feature extraction module, the feature fusion module, and the segmen-
tation head. Among them, the feature extraction module uses two 
network branches, resulting in a large amount of computational time. In 
comparison, the network structure of the feature fusion module and the 
segmentation head is quite lightweight. Therefore, we adapt the model 
structure to a feature extraction module, a feature fusion module, and 
multiple segmentation heads to achieve model ensemble. The forward 
propagation of model ensemble can be formulated as: 

y =
1
M

∑M

i=1
Softmax(Si(F1(H1(x))), (14)  

where H(⋅) is the feature extraction module, F(⋅) is the feature extraction 
module, S(⋅) is the segmentation head,M donates the number of 
ensembled members, and the best checkpoint number by default is 1. 
This approach to achieve model ensemble using only lightweight 
structures can significantly reduce the computational complexity 
compared to using the full network. To ensure effective feature extrac-
tion and fusion, the best performing checkpoint is applied in the feature 
extraction module and the feature fusion module. As for the segmenta-
tion heads, all checkpoints are sorted in descending order according to 
their performance on the evaluation metrics, and the top M checkpoints 
are chosen according to the scale of model ensemble. The ensemble 
output yis obtained according to Eq. 9. Model uncertainty is then 
calculated according to Eq. 10. 

3.2.2. Model calibration 
In addition, because of random training, each model has different 

representation capacity, leading to the bias in the perception of the same 
input. That is, the trained model would be overconfident or diffident. 
The biased model will influence the estimation of uncertainty. Thus, 
temperature scaling is used to calibrate each model used for ensemble to 
better uncertainty estimation. For a binary classifier, a well-calibrated 
model should be that its predicted probability is consistent with the 
actual empirical probability [42], which can be defined as: 

ℙ(Ŷ = Y|P̂ = p) = p,∀p ∈ [0, 1] (15)  

where P̂denotes the prediction confidence, Ŷdenotes the prediction 
category, and Ydenotes the label. An example of the well-calibration 
model is that a model predicts a probability of 0.6 that it will rain in 
the next 10 days, and then it does rain on 6 days of those 10 days. 

To judge how well a classification model is calibrated, reliability 
diagram and expected calibration error (ECE) are widely adopted [43]. 
Divide the confidence interval of 0–1 into K bins and assume that Bk 
donates the bin of samples with prediction confidence in the range of 
( k− 1

K , k
K
]
. The average confidence on bin Bk is calculated as: 

Fig. 4. Powder spreading defects: super-elevation, incompletion, hopping, streaking and lattice.  
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Confk =
1

|Bk|

∑

i∈Bk

p(ŷi = yi|xi, θ), (16)  

whereθdonates the model parameters and p(ŷi = yi|xi, θ) means pre-
diction confidence made by each sample in Bk through model parame-
tersθ. The expected accuracy on each bin Bk is calculated as: 

Acck =
1

|Bk|

∑

i∈Bk

I(ŷi = yi), (17)  

whereI(⋅)is indicator function, and its value is one when the prediction is 
correct, otherwise it is zero. With theMpairs of values, reliability dia-
gram can be plotted, in which confidence and accuracy are used as 
horizontal and vertical axes respectively. Besides, The ECE is calculated 
as: 

ECE =
∑M

k=1

|Bk|
N

|Acck − Confk|, (18)  

whereNdonates the number of samples. The closer the curve of the 
reliability plot is to the diagonal and the smaller the value of ECE, the 
better the model is calibrated. 

As for multiclass classifier, the category with the highest confidence 
is regarded as the final prediction and its confidence is regarded as the 
prediction confidence. Based on whether the prediction is correct or not, 
the problem is reduced to the binary classifier [44]. 

The checkpoint for model ensemble is calibrated here with temper-
ature scaling [42] because it is easy to implement and works well. For a 
given dataset(X,Y), all samples are inputted to the improved ISDNet and 
their corresponding outputs are defined as follow: 

Z = S(F(H(X)) (19) 

Then, a temperature factor Tis introduced to the Softmax function 
and applied toZfor confidence outputs, described as: 

Y′ = Softmax(Z/T) (20) 

After that, the negative log likelihood loss LNLL between sample la-
bels Y and confidence outputs Y′is minimized to get the proper tem-
perature factor. Note that the temperature factor that minimizes the 
negative log-likelihood loss does not necessarily minimize the ECE. We 
only use the process of minimizing the negative log likelihood to find the 
appropriate temperature factor. After calibration, the output of the 
proposed model ensemble is described as: 

y =
1
M
∑M

i=1
Softmax(Si(F1(H1(y))/Ti), (21)  

where the best checkpoint number by default is 1. The overall procedure 
is summarized in Algorithm 1. 

Algorithm 1. Model Uncertainty Estimation with Model Ensemble and 

Model Calibration. 

3.3. Uncertainty-driven model improvement 

Model uncertainty indicates the extent to which the model is 
cognizant of the inputs, providing additional information for decision 
making, and thus beyond only uncertainty estimation, we make a 
further step towards improving the model performance via uncertainty 
information to achieve a more trustworthy defect detection. We observe 
two types of regions with high model uncertainty on the segmentation 
mask: regions where the model produces misclassification and the 
contour edges of objects. The former demonstrates that the model is 
incapable of cognizing the region correctly and requires the intervention 
of a decision expert when it reaches a certain level. The latter is because 
the contour edge is in the transition region between the two textures, 
which is naturally difficult to distinguish and inevitably generates a high 
level of uncertainty. We also observe that the background is the best 
predicted class, and the true label of the misclassified region tends to be 
consistent with the class of the surrounding region in exception to the 
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background. Therefore, we propose an uncertainty-driven model 
improvement scheme that utilizes model uncertainty for improving 

segmentation performance as follow: 
First, the uncertainty heatmap obtained by model ensemble is 

normalized and a proper threshold δ, is set to extract regions with high 
uncertainty as follow: 

ui,j =
ui,j − umin

umax − umin
, 1 ≤ i ≤ H, 1 ≤ j ≤ W (22)  

δ =
u1,1 + u1,W + uH,1 + uH,W

4
+ 0.05 (23)  

whereHandWrepresent the height and weight of the heatmap, respec-
tively, ui,jdonates the pixel located in the position(i, j)of the uncertainty 
heatmap, uminand umaxrepresent the minimum value and maximum 
value of the uncertainty heatmap, and ui,jdonates the pixel located in the 
position(i,j)of the normalized uncertainty heatmap. For determining the 
threshold of the high uncertainty region, we refer to the uncertainty 
value of the background region for determination. The threshold is set 
by the values of the four corners of each uncertainty heatmap, which are 
the most accessible background regions. Here the high uncertainty re-
gion uHU is obtained. 

Then we apply connected domain detection to these regions with 
high uncertainty to further refine the high uncertainty regions and avoid 
mistakes in the judgement of the true category if the region is too large. 
Then, the circumscribing rectangle bk for each connected domain uk

HU is 
obtained, and the pixels of each category are counted inside the rect-
angular box on the mask. The category with the highest number of 
pixels, that is not the background, is treated as the true categoryCk of 
that high uncertainty region, which is modified on the predicted result. 
The overall procedure is summarized in Algorithm 2. 

Algorithm 2. Uncertainty-driven Model Improvement. 

4. Experiments and discussion 

4.1. Powder spreading defect dataset 

For powder bed image acquisition, the industrial camera is arranged 
off-axis on top of the chamber to capture images from the side, shown in 
Fig. 3. The acquired images are adjusted to the front view by perspective 
transformation, and then cropped to remove excess region and keep only 
the powder bed region. We collected some powder bed images of SLM 
from our collaborator (Xi’an Kongtian Electromechanical Intelligent 
Manufacturing Co., Ltd.) and labeled them at the pixel level. Due to the 
small layer thickness of the powder spreading, there is little difference 
between the powder bed layers, leading to many similar images. 
Furthermore, the occurrence frequency of some defects is low so that the 
collected images is limited. The dataset ended up with 406 images. The 
resolutions of these images span from 1400 * 1400–4300 * 4300. For 
the training convenience, we downsample it to 1024 * 1024. Totally, 
five types of defects were included in the dataset, which were named: 
super-elevation, incompletion, hopping, streaking, and lattice, and 
shown in Fig. 4. 

The occurrence of super-elevation is because the molten layer is too 
high for the metal powder to completely cover it, which is caused by the 
thermal stress, and often occurs with the edge of the contour. Incom-
pletion is due to insufficient metal powder amount or abnormality of the 
powder spreading device, which results in forming areas not covered by 
metal powder. Hopping is caused by the collision between the recoater 
and the protrusion on the powder bed, which is featured by the stripes 
on the powder bed perpendicular to the direction of recoater movement. 
Streaking is resulted from recoater damage or large contaminants on the 

Table 1 
Number of images for each category.  

Categories Background Super-elevation Incompletion Hopping Streaking Lattice 

Number  406  377  52  193  229  134  
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powder bed dragged by recoater, which is characterized by the stripes 
on the powder bed parallel to the direction of recoater movement. Lat-
tice is a special shape left on the powder bed by the support set to ensure 
the forming quality, and it is not a defect in the strict sense. However, to 
effectively distinguish other defects, it is also classified as a special 
defect. The common point-support and sheet-support are vaguely visible 
in full on the powder bed, often in large area. Since there are multiple 
defects on one powder bed image, the sum of the number of images for 
each defect is greater than the number of images in the dataset. The 
number of images for each category in the dataset is shown in Table 1. 

4.2. Evaluation metrics and detailed settings 

We randomly divide the powder spreading defect dataset into three 
parts for training, validation, and testing by 8:1:1. Due to the small 
dataset scale, we make a manual adjustment to ensure that each type of 
defect has a certain number in each set to avoid that a set does not 
contain certain defects. Finally, 320 images are used for training, 40 
images for validation, and 46 images for testing. For ISDNet, we used its 
official code, and the hyperparameter settings are consistent with those 
in the corresponding paper. Besides, we have implemented our method 
using PyTorch with the changes mentioned above. The learning rate is 
set to 0.01 and held constant. The optimizer selects Adam, the model is 
trained for 1000 rounds, and the network weights are saved for each 
round of training. All results are obtained by running on an RTX 3090 
GPU. 

For evaluation metrics, in addition to calculating Class Pixel Accu-
racy (CPA) and Intersection over Union (IoU) for each category, we also 
used Mean Pixel Accuracy (MPA) and Mean Intersection over Union 
(MIoU) to evaluate the defect classification and location performance. 
The definitions of evaluation metrics are as follows: 

CPA =
TP

TP + FP
, (24)  

IoU =
TP

TP + FP + FN
, (25)  

MPA =
1
C

∑C

i=1
CPAi, (26)  

MIoU =
1
C
∑C

i=1
IoUi, (27)  

where TP means True Positive, FP means False Positive, FN means False 
Negative, and C donates the number of categories. 

4.3. Defect segmentation result 

Our model eventually achieves MPA of 0.8169 and MIoU of 0.7551 
on the validation set, while ISDNet achieves MPA of 0.7832 and MIoU of 
0.7011. The performance of the two methods on the test set is shown in 
Table 2, demonstrating that our improvements can significantly 

improve the segmentation performance. Among them, the detection 
performance of super-elevation, incompletion and hopping has been 
significantly improved. The improvement of the first two is very 
important for powder spreading monitoring. Super-elevation will 
accumulate during the forming process, which may lead to the forma-
tion of hopping on the one hand, and on the other hand, such defect may 
even lead to processing failure when they reach a certain area. If 
incompletion is not detected in time and occurs in several consecutive 
layers, it will affect the forming accuracy and lead to scrap of the formed 
part. Compared to ISDNet, although our method has three extra super 
resolution modules, the impact on the inference speed is negligible. 

The improvement in super-elevation segmentation performance is 
attributed to the refined upsampling process, where the super-resolution 
module reorganizes the features, resulting in a finer-grained mask 
compared to the direct eight-fold upsampling practice of ISDNet. This is 
reflected in the more continuous detection of defect areas and the 
effective detection of defects with small areas, as shown in Fig. 5. It is 
also the reason for the degraded performance of lattice segmentation. 
The lattice segmented by ISDNet presents the characteristic of a com-
plete area, while our method leads to the appearance of holes. However, 
for some dense dotted super-elevation, ISDNet is preferred to identify 
them as lattice, and our method can better discriminate them. Incom-
pletion has the feature of a relatively large defective area, which is easy 
to confuse with super-elevation when the area of super-elevation is 
large. Our approach has improved the performance for the segmentation 
of super-elevation and indirectly helped the segmentation of incom-
pletion. The reason for the poor performance of both methods for the 
segmentation of streaking is related to the morphology of the streaking 
itself. Streaking often appears as a shallow stripe on high-resolution 
powder bed images, making it difficult to confirm its edges when la-
beling. Streaking is sometimes dense and difficult to identify completely, 
so we can only label the obvious stripes. By comparing the mask with the 
original image, we find that the model still performs quite well in 
recognizing stripes. Even unlabeled stripes can be recognized, which 
leads to a poor performance on the metrics. 

4.4. Uncertainty estimation 

During the training process of the improved ISDNet, the network 
weights of each training round are saved as checkpoint. As for the 
checkpoint selection, we define: 

Score = 0.5 × MPA+ 0.5 × MIoU. (28) 

The scores of all checkpoints are calculated and the results are sorted 
in descending order. Too large a scale of model ensemble will lead to an 
increase in computation burden, and too small a scale will not manifest 
the diversity of predictions. Hence, we set the scale of model ensemble to 
5. The highest scoring checkpoint is applied to the feature extraction and 
fusion modules, and the top five scoring checkpoints are applied to each 
of five segmentation heads. 

The selected checkpoint is calibrated using temperature scaling prior 
to ensemble, as shown in Algorithm 1. Temperature scaling is performed 

Table 2 
Defect segmentation performance comparison between ISDNet and our method on the testing set.  

Categories Background Super-elevation Incompletion Hopping Streaking Lattice 

ISDNet CPA 0.9976  0.6097  0.9673  0.5273  0.5179  0.9158 
Ours 0.9980  0.7918  0.9760  0.5385  0.4902  0.8482 
ISDNet IoU 0.9928  0.4734  0.8606  0.4211  0.4427  0.8639 
Ours 0.9927  0.6298  0.8819  0.4657  0.4289  0.8054 
ISDNet MPA 0.7559 
Ours 0.7738 
ISDNet MIoU 0.6757 
Ours 0.7008 
ISDNet Time (per 46 images) 5 s 
Ours 6 s  
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Fig. 5. Segmentation visualization comparison for both our method and ISDNet.  
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Table 3 
Performance of selected checkpoints and the corresponding temperature factors.  

Checkpoints MPA MIoU Score Temperature ECE Before Calibration ECE After Calibration 

#1  0.8169  0.7551  0.7860  0.8324  0.00146116  0.00064222 
#2  0.8140  0.7562  0.7851  0.7629  0.00144244  0.00083944 
#3  0.8155  0.7510  0.7835  0.8526  0.00125335  0.00060728 
#4  0.8124  0.7532  0.7828  0.5887  0.00136726  0.00035785 
#5  0.8098  0.7540  0.7819  0.8567  0.00146539  0.00085154  

Fig. 6. Model Uncertainty Heatmap.  
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on the validation set, a temperature factor is introduced in the softmax 
function for smoothing the prediction confidence, the negative log- 
likelihood loss is used as the optimization objective, and Adam is used 
for the optimizer. The performance and temperature factors of the 
checkpoints we selected for integration are shown in the table below. 
The temperature factors in Table 3 are all less than one, indicating that 
the model is biased with underconfidence. The prediction confidence of 
the model can be appropriately increased by introducing a temperature 
factor less than one. We divided the confidence interval from zero to one 
into ten bins and plotted the reliability diagram before and after cali-
bration for each checkpoint separately, as shown in Fig. 7. The fold line 
before calibration was located above the diagonal, which means that the 
model does not behave confidently enough. After temperature scaling, 
the fold of the reliability plot is closer to the diagonal and the ECE is 
significantly reduced. That is the model is calibrated somewhat. Besides, 
we use a third-party library for PyTorch, called thop, to calculate the 
number of floating point operations (FLOPs) when the improved ISDNet 
is inputted a powder bed image with a resolution of 1024 * 1024. Our 
improved ISDNet performs almost 165.1 GFLOPs while model ensemble 
performs almost 299.4 GFLOPs with 5 checkpoints. In the normal way of 
model ensemble, the FLOPs would be 5 times more than that of the 
original model. However, via adjusting the network structure to achieve 
feature reuse, the FLOPs are less than twice as much as the original 
model. 

Utilizing the checkpoints selected above and the corresponding 
temperature factors, we implement model ensemble and measure the 
model uncertainty more precisely, and the results are shown in Fig. 6. It 
can be clearly seen that there is higher uncertainty at the edges of the 
contours of the objects. In addition, there is also a high uncertainty in the 
region of the model misclassification, which does not completely cover 
the misclassified region, but encompasses the edges of the misclassified 
region. This information can be leveraged to improve the segmentation 
performance of defects and inform subsequent decisions. Furthermore, 
the model has low uncertainty for super-elevation and incompletion, 
indicating that the model perceives both well, which is related to the fact 
that these two defects present a metallic luster and are better distin-
guished from the background. Defects like streaking, hopping and lattice 

are more like the background and easy to misjudge. Among them, lattice 
will show a larger area of misclassification and contain more high un-
certainty areas. And as the reason mentioned before, streaking’s edge 
region presents high uncertainty. Besides, we compare the defect seg-
mentation performance between improved ISDNet and model ensemble, 
and the results are shown in Table 4. Although model ensemble will 
cause a little performance loss, it can easily achieve model uncertainty 
estimation and help evaluate the credibility of predictions. 

For whether the checkpoint needs to be calibrated for better uncer-
tainty estimation, we made separate uncertainty heatmaps before and 
after calibration, as shown in Fig. 8. It can be clearly seen that the 
ensemble using the calibrated checkpoints can make the uncertainty 
levels show a more obvious stratification effect, which is reflected in the 
fact that the background areas can be more clearly distinguished from 
the high uncertainty areas, facilitating the extraction of high uncertainty 
areas. 

4.5. Uncertainty-driven improvement 

Regions with high model uncertainty are often found at the contour 
edges of objects and in misclassified regions, most prominently within 
the regions of lattice. Therefore, the post-processing method based on 
uncertainty here is for lattice area. The powder bed image is inputted 
into the model to get the prediction mask and uncertainty heatmap. The 
uncertainty heatmap is processed as shown in Algorithm 2. 

The threshold is set by the values of the four corners of each un-
certainty heatmap, which are the most accessible background regions. 
The comparison of the masks before and after post-processing is shown 
in Fig. 9. The proposed uncertainty-driven improvement method can 
improve the segmentation performance of lattice to some extent. How-
ever, this enhancement is relatively limited because the misclassified 
regions are not completely covered, and only the edge regions of the 
misclassified regions are encompassed. Our work shows that exploiting 
uncertainty for defect segmentation is helpful to improve model per-
formance. It is worthwhile to continue exploring how to improve defect 
segmentation based on model uncertainty. 

Fig. 7. Comparison of reliability diagram before and after calibration.  
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Fig. 8. Comparison of whether checkpoints are calibrated or not for uncertainty estimation.  

Table 4 
Defect segmentation performance comparison between improved ISDNet and model ensemble.  

Categories Background Super-elevation Incompletion Hopping Streaking Lattice 

Improved ISDNet CPA 0.9980  0.7918  0.9760  0.5385  0.4902  0.8482 
Ensemble 0.9983  0.7547  0.9631  0.5325  0.4799  0.8397 
Improved ISDNet IoU 0.9927  0.6298  0.8819  0.4657  0.4289  0.8054 
Ensemble 0.9927  0.6299  0.8834  0.4631  0.4238  0.8019 
Improved ISDNet MPA 0.7738 
Ensemble 0.7614 
Improved ISDNet MIoU 0.7008 
Ensemble 0.6991 
Improved ISDNet Time (per 46 images) 6 s 
Ensemble 7 s  
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5. Conclusions 

To address the problem of unreliability in monitoring the quality 
powder spreading of SLM, we improve ISDNet for defect segmentation of 
high-resolution powder bed images, and the proposed super resolution 
module can effectively improve the segmentation performance of the 
model and obtain fine-grained masks by refining the upsampling pro-
cess. Checkpoint ensemble is adopted for better achieving model un-
certainty estimation, using checkpoints saved in a single train process to 
quickly achieve ensemble, utilizing feature reuse to reduce computa-
tional load carried by ensemble, and eliminating cognitive bias for each 
ensemble member by calibration with temperature scaling. The uncer-
tainty region is effectively distinguished and facilitates post-processing 
after model calibration. An uncertainty-driven model improvement 
approach to improve the performance of partial defect segmentation 
based on uncertainty is also proposed. Our work achieves an effective 
segmentation of powder spreading defects and evaluates the segmen-
tation results, further applying uncertainty to improve the performance 
of defect segmentation. Uncertainty estimation gives a reference of 
whether the prediction is trustworthy and helps making safe decisions. 
In the future, we will utilize uncertainty estimation in this work to 
control the powder spreading in SLM. 
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