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Abstract

This paper presents a safe active learning framework for a clinically relevant class
of nonlinear systems with time-varying and uncertain parameters. The framework
aims to provide a systematic trade-off between three competing clinical objectives:
regulation of physiological variables to a safe zone, learning of patient-specific
parameters, and minimization of the medical intervention. To address these chal-
lenges, we integrate the covariance propagation of a Kalman filter used for patient
parameter estimation into an optimization-based control algorithm and enforce
a desired estimation accuracy by introducing a soft constraint on the predicted
covariances. We demonstrate the potential of the safe active learning framework
for healthcare applications in a case study on cerebrospinal fluid dynamics. Our
proposed method improves patient monitoring and shunt therapy for the neurologi-
cal condition hydrocephalus by doubling the parameter estimation accuracy while
requiring less than half the rate of intervention compared to standard approaches.

1 Introduction

Healthcare increasingly relies on time series data to guide both diagnosis and therapy of disease.
Physiological signals, however, are noisy, highly patient-specific, and subject to changing dynamics
over time. To deliver safe and effective interventions, medical systems such as artificial pancreas or
anesthesia machines must balance three competing objectives: (i) regulating physiological variables
within a predefined zone to ensure patient safety and therapeutic efficacy, (ii) accurately learning
uncertain and time-varying patient parameters to support both closed-loop control and clinical
decision-making, and (iii) achieving these goals with minimal intervention to reduce discomfort and
adverse effects [20]. This introduces a fundamental trade-off between regulation, exploration, and
actuation. We aim to address this trade-off by developing a safe active learning framework based on
model predictive control (MPC), which regulates a dynamic system to a safe zone while minimizing
input variations necessary to achieve and maintain a desired parameter estimation accuracy.

MPC is an advanced control strategy for constrained nonlinear systems that computes control inputs
by predicting and optimizing the system’s future trajectory based on a dynamical model [32]. While
traditional MPC is typically designed to regulate the system to a specific set point or track a reference
trajectory [24], for many applications a specific preferred operating point or reference trajectory is not
known. In such cases, zone MPC can be applied to instead steer the system toward a predefined zone
where all states are considered equally valuable [14]. This formulation enables aggressive control
actions when the system is outside the target zone but reduces control interventions once inside,
making the controller less sensitive to disturbances and noise. Zone MPC has been proven successful
in healthcare applications such as chronic kidney disease [29] and diabetes [15, 23].
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Learning accurate dynamical system models from time series requires sufficiently informative data
to be contained in the observed signals. Optimal experiment design provides a principled approach
to design input trajectories that collect informative data for learning system dynamics [12, 31] and
has been widely applied in practice, e.g., in robotics [37] and biomedical engineering [7]. Typically,
system dynamics are learned offline prior to controller design and deployment. In healthcare, however,
patient dynamics often change over time and therefore require closed-loop parameter adaptation. As
time series data collected during closed-loop operation is often not informative enough to precisely
learn the underlying parameters, the system needs to be actively excited to reduce uncertainty [17, 27].

In this work, we integrate optimal experiment design into a zone MPC scheme to develop a safe
active learning framework that systematically balances the trade-off between regulation, exploration,
and actuation. Specifically, we integrate the covariance propagation equations of a Kalman filter used
for parameter estimation into a zone MPC scheme, and control the accuracy of the patient’s parameter
estimates to a desired level by introducing a suitable soft constraint on the predicted covariances.
This formulation enables a structured prioritization of competing objectives: the system shall first
be regulated to the predefined safe zone, then actively excited within the zone until the desired
parameter accuracy is reached, and finally, the least invasive control input necessary to sustain this
accuracy should be applied. To highlight the potential of the proposed safe active learning framework
for healthcare applications, we conduct a simulation-based case study on cerebrospinal fluid (CSF)
dynamics and demonstrate how the framework can be used to improve patient monitoring and shunt
therapy for the neurological condition hydrocephalus [9]. An extended version of this paper, with
an additional application of the proposed method to CSF infusion studies used for the diagnosis of
hydrocephalus, can be found in [8].

2 Related work

A substantial body of work on safe active learning for dynamical systems exists in both reinforcement
learning (RL) [35] and MPC. In RL, active learning is often achieved through random excitation
strategies that are undesirable for applications with humans in the loop, though there is an increasing
amount of work that explicitly incorporate safety constraints into RL [16]. While these safe RL
methods have shown strong empirical results, the resulting models and decisions are generally given
by black box neural network functions, which makes them difficult to interpret and trust for clinicians.
In contrast, the physiological states and parameter estimates from clinically established patient models
can support both patient monitoring and clinical decision making processes [21]. This motivates
the use of MPC schemes grounded in physiological models, which provide both safety guarantees
and clinically meaningful insights. However, most existing active learning MPC approaches excite
the system independently of the current parameter uncertainty, potentially leading to unnecessary or
undesired interventions. See also Appendix D for a more detailed discussion.

3 Methods

We consider the following class of nonlinear discrete-time dynamical systems, which can represent
CSF dynamics for hydrocephalus (see Appendix E) as well as other physiological processes,

x(k+1) = Φ(x(k), u(k))θ(k) + w(k), (1)

with state x(k) ∈ Rnx , input u(k) ∈ Rnu , known non-linear features Φ(x(k), u(k)) ∈ Rnx×nθ ,
unknown time-varying parameters θ(k) ∈ Rnθ , and additive noise w(k) ∈ Rnx . For the state x(k),
we consider the desired zone X = {x ∈ Rnx | xmin ≤ x ≤ xmax} with element-wise inequalities and
xmin, xmax ∈ Rnx . We further consider hard constraints on the input u(k) ∈ U ⊂ Rnu and the input
rate ∆u(k) = u(k)− u(k−1) ∈ ∆U ⊂ Rnu . The evolution of the unknown time-varying system
parameters is modeled as a random walk

θ(k+1) = θ(k) + v(k), (2)

where v(k) ∈ Rnθ is a noise term that represents the parameter drift. We assume that w(k) and
v(k) are i.i.d. Gaussian random variables with w ∼ N (0, Σw) and v ∼ N (0, Σv), respectively.
Additionally, we assume that a prior distribution of the parameter θ0 ∼ N (θ̂0,Σ0) is given and that
noise-free measurements of the state x(k) are available.
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The goal of this work is to achieve the following list of ranked objectives:

1. The state x(k) is regulated to the desired zone X.
2. A desired estimation accuracy for the system parameters θ(k) is achieved and maintained.
3. The input change ∥∆u(k)∥ is minimized.

To achieve the outlined objectives, we design a safe active learning framework by integrating Kalman
filtering, optimal experiment design, and zone MPC. This is done in two steps. First, the covariance
propagation equations of the Kalman filter (see Appendix B) are integrated into the optimization
problem of a zone MPC formulation (see Appendix C). This enables the MPC to predict the future
covariance matrices Σi=0:N−1 of the patient parameters and directly assess the effect of the inputs
ui=0:N−1 on the uncertainty of the future parameter estimates, similar to [18, 3]. Second, to enforce
a desired parameter estimation accuracy, a desired covariance matrix Σ̄ ≻ 0 is introduced as an upper
bound. A computationally tractable comparison between the predicted covariance and the upper
bound is implemented using a function ξ(Σi) that maps the covariance matrix to a scalar value. In
optimal experiment design, common choices include the trace (A-optimal) and the determinant (D-
optimal) [12, 31]. The desired parameter accuracy is encoded with a soft constraint ξ(Σi) ≤ ξ(Σ̄)+ηi
to ensure feasibility, and the slack variable ηi ≥ 0 is minimized with a user-defined scaling s > 0 to
incentivize active learning until the desired parameter estimation accuracy is achieved. The resulting
active learning zone MPC is described by the following nonlinear program. At each time step k,
given the previous input u(k−1), the measured state x(k), the estimated parameter mean θ̂(k) and
covariance Σ(k), the following optimization problem is solved

min
x,u,ϵ,η
S,K,Σ

N−1∑
i=0

∥Qϵi∥1 + ∥∆ui∥2R + sηi (3a)

s.t. ∀ i = 0, . . . , N−1,

Φi = Φ(xi, ui), (3b)

Si = Φi(Σi +Σv)Φ
⊤
i +Σw, (3c)

Ki = (Σi +Σv)ΦiS
−1
i , (3d)

Σi+1 = (I−KiΦi)(Σi +Σv), (3e)

xi+1 = Φiθ̂(k), (3f)
∆ui = ui − ui−1, (3g)
(ui,∆ui) ∈ U×∆U, (3h)
xmin − ϵi ≤ xi ≤ xmax + ϵi, (3i)

ξ(Σi) ≤ ξ(Σ̄) + ηi, (3j)
ϵi ≥ 0, ηi ≥ 0, (3k)
x0 = x(k), u−1 = u(k−1), Σ0 = Σ(k), (3l)

where N is the prediction horizon, the constants Q ≻ 0, R ≻ 0, and s > 0 are user-chosen weights
prioritizing the different objectives of the MPC formulation, and the variables S and K are the
innovation covariance and Kalman gain of the Kalman filter, respectively.

4 Experiments and results

Hydrocephalus is a neurological condition in which disturbed CSF dynamics lead to physical and
mental impairment [9]. While the assessment of CSF dynamics is typically performed using infusion
studies [5], therapy is based on shunt systems that drain excessive CSF out of the cerebral ventricular
system [1]. In this simulation study, we demonstrate how smart shunt systems [6] capable of CSF
drainage control can achieve both objectives simultaneously by utilizing the proposed safe active
learning framework. To this end, we perform a T = 60min long shunt control simulation with
sampling time ∆t = 1 s, starting from the initial state x(0) = 13. The initial patient parameters are
uniformly sampled from a physiological range (see Appendix E) and a random walk with parameter
drift covariance Σv = I · 10−6 is performed. For the active learning zone MPC (3), the prediction
horizon is chosen as N = 10 and the desired estimation accuracy is defined as ξ(Σ̄) = tr(Σ̄) = 10−3.
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Figure 1: Closed-loop trajectories comparing proportional-integral (PI) control, standard zone model
predictive control (MPC), and the proposed active learning zone MPC. Panels show cerebrospinal
fluid (CSF) pressure (top), CSF drainage rate (middle), and parameter estimation uncertainty (bottom).
Dashed lines indicate constraints on the state, input, and parameter estimates.

Table 1: Results of the hydrocephalus case study

Approach tx/∈X ∆urms θ̂rmse

PI 24 s 0.0600 0.0335
Zone MPC 24 s 0.0079 0.0537
Active Learning Zone MPC 25 s 0.0267 0.0163

The scalar weights of the cost function are chosen as Q > s > R, prioritizing zone regulation first,
estimation accuracy second, and input rate minimization last. The desired state zone is defined as
X = [8, 12], covering a range of physiological pressure values [26]. As for medical safety reasons
shunt systems must avoid CSF backflow, the input and input rate constraints are defined as U = [0, 1]
and ∆U = [−0.25, 0.25], respectively. Two methods are used for comparison. First, a standard
zone MPC with the same constants and constraints as the active learning zone MPC. Second, a
proportional-integral (PI) controller, which has been the predominant control approach for automated
CSF drainage systems [6, 22]. The PI controller is designed to regulate the state to the center of the
desired state zone and the control inputs are saturated to enforce the input and input-rate constraints.
Both MPC problems are implemented in Python using CasADi [2] and solved with IPOPT [36].
Mean computation times for the zone MPC and active learning zone MPC are 4.4ms and 34.2ms,
respectively, which is well below the sampling time ∆t = 1 s.

The closed-loop trajectories of the simulation study are sown in Figure 1. All approaches apply
maximum input first to regulate the state to the zone or reference. Once inside the desired zone,
the active learning zone MPC switches between maximum and minimum input to excite the CSF
dynamics. After around 4min, the desired estimation accuracy is achieved and the rate of input
change reduced to maintain this accuracy. While the standard zone MPC quickly converges to a
stable drainage rate after entering the desired zone, the PI controller conducts frequent input changes
to counteract adverse effects of the noise on the set-point regulation. These results are quantitatively
reflected in Table 1. The root mean square (RMS) value for the input change is the lowest for the
standard zone MPC and the highest for the PI controller. The best parameter estimation performance
in terms of the root mean square error (RMSE) is achieved by the proposed active learning zone
MPC. In comparison to the predominantly used PI controller, the active learning zone MPC achieves
more than double the estimation accuracy with less than half the input variation. The time outside the
desired safe zone tx/∈X is negligible for all approaches.
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5 Conclusion and future work

This paper introduces a safe active learning framework that combines zone MPC, optimal experiment
design, and Kalman filtering. The proposed method provides a structured trade-off between the three
competing clinical objectives of physiological state regulation, accurate patient parameter estimation,
and minimal medical intervention. Its potential for healthcare applications was demonstrated in a
case study on hydrocephalus shunt therapy, where minimal actuation effort was used to regulate
CSF pressure to a safe zone while continuously generating informative time series data to learn
accurate patient parameters. While the proposed method assumes noise-free state measurements, this
assumption is restrictive in clinical practice. Integrating joint state and parameter estimation for CSF
dynamics [7] into the framework remains an important open problem to facilitate clinical application.
Future work may also investigate the proposed methods for different model descriptions of the CSF
dynamics [30] and their deployment on hardware for in vitro testing [10].
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A Notation

For a vector x ∈ Rn and a positive semi-definite matrix Q ∈ Rn×n, we abbreviate ∥x∥2Q = x⊤Qx.
We write the p-norm with p ∈ {1, 2,∞} of the vector x as ∥x∥p and refer to the n-th element of x as
x[n]. For a square matrix A ∈ Rn×n, the trace and determinant of A are denoted as tr(A) and det(A),
respectively. We use I to describe an identity matrix of appropriate size. A normally distributed
variable z with mean µ and covariance matrix Σ is denoted by z ∼ N (µ, Σ).

B Kalman filtering

Since the considered dynamical system (1) is linear in the unknown parameters θ(k), learning the
system dynamics reduces to a parameter estimation problem. Given the Gaussian noise w(k) and v(k),
a time-varying Kalman filter [19] can be designed using the random walk (2) as a process model and
the dynamical system (1) as a measurement model. The posterior distribution θ(k) ∼ N (θ̂(k),Σ(k))
of the system parameters is computed via the following Kalman filter recursions

Φ(k) = Φ(x(k), u(k)), (4a)

S(k) = Φ(k)(Σ(k) + Σv)Φ(k)
⊤ +Σw, (4b)

K(k) = (Σ(k) + Σv)Φ(k)S(k)
−1, (4c)

θ̂(k+1) = θ̂(k) +K(k)(x(k+1)− Φ(k)θ̂(k)), (4d)
Σ(k+1) = (I−K(k)Φ(k))(Σ(k) + Σv), (4e)

where S(k) is the innovation covariance, K(k) is the Kalman gain, θ̂(k+1) is the updated parameter es-
timate, and Σ(k+1) is the updated parameter covariance. The prior distribution θ(0) ∼ N (θ̂(0),Σ(0))
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of the system parameters can be chosen such that the true initial parameter lies in the following
confidence ellipsoid

Θp = {θ | (θ − θ̂(0))⊤Σ(0)−1(θ − θ̂(0)) ≤ χ2
nθ
(p)} (5)

with probability threshold 0 < p < 1 and Chi-squared distribution χ2
nθ
(p). A detailed overview of

Bayesian filtering and estimation can be found in [33].

C Zone model predictive control

A standard zone MPC [14] without active learning for system (1) is defined by the following
optimization problem

min
x, u, ϵ

N−1∑
i=0

∥Qϵi∥1 + ∥∆ui∥2R (6a)

s.t. ∀ i = 0, . . . , N−1,

xi+1 = Φ(xi, ui)θ̂(k), (6b)
∆ui = ui − ui−1, (6c)
(ui,∆ui) ∈ U×∆U, (6d)
xmin − ϵi ≤ xi ≤ xmax + ϵi, (6e)
ϵi ≥ 0, x0 = x(k), u−1 = u(k−1), (6f)

where N is the prediction horizon length and ϵ is a slack variable quantifying the violations of zone
constraints on the system state. The slacks ϵ are penalized with Q ≻ 0 using a 1-norm to impose an
exact penalty cost on these violations, while R ≻ 0 weights the quadratic cost on the input rate. The
described zone MPC follows a certainty-equivalence approach, where the mean parameter estimate
θ̂(k) is used to predict the future system trajectory. The zone MPC operates in a receding horizon
fashion, i.e., at each time step k, the optimization problem is solved using the previous input u(k−1),
the current state measurement x(k) and parameter estimate θ̂(k), but only the first element of the
optimized input sequence u(k) = u⋆

0 is applied to system (1). Due to the soft constraints, the problem
is recursively feasible.

D Active learning in model predictive control

Within the context of MPC, the classical approach to collect informative data during closed-loop
operation is to integrate a constraint in the optimization problem that enforces the input trajectory
to be persistently exciting [11, 25]. A more direct approach to active learning MPC integrates the
parameter estimator equations into the MPC constraints, facilitating the prediction of the covariance
of the future parameter estimates and providing a direct assessment of the control input’s effect
on the parameter estimation uncertainty [18, 3]. However, instead of using a slacked information
constraint that allows to directly define a desired parameter estimation accuracy as in our proposed
active learning zone MPC, these approaches directly penalize the predicted covariance matrices in
the objective function, requiring more involved hyperparameter tuning for the MPC cost function.

Few works exist that specifically address the problem of active learning in zone MPC. In [34],
excitation is enforced by adding a dithering signal in the cost function of the steady-state target
optimizer used for the zone MPC. In [13], a zone MPC is proposed that regulates the system into an
invariant set, inside which a persistently exciting input is safely applied. In [38], a two-stage approach
adapts the nominal zone MPC trajectory to maximize the smallest eigenvalue of the incremental
information matrix, subject to a bound on the cost increase. A drawback of these approaches is that
in contrast to our proposed active learning zone MPC, the active system excitation is performed
independently of the current information about the system parameters, potentially resulting in
unnecessary or even undesired control interventions.
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E Cerebrospinal fluid dynamics

The description of the CSF dynamics in this work is based on the well-established Marmarou model
[28]. The CSF system is modeled as a scalar system, where the change of CSF Volume V̇csf depends
on the constant natural CSF formation Qform, the natural CSF absorption Qabsorb, the externally
applied drainage or infusion of CSF Qex, and the physiological CSF fluctuations Qphy, such that

V̇csf(t) = Qform −Qabsorb(t)−Qex(t) +Qphy(t). (7)

Assuming that Pcsf always lies above the constant dural sinus pressure Pds, the natural absorption of
CSF is defined as

Qabsorb(t) =
Pcsf(t)− Pds

Rout
, (8)

where Rout is the CSF outflow resistance. If no external input is applied, i.e., Qex = 0, the CSF
pressure will converge to a resting pressure Pr at which the natural formation of CSF equals the
natural absorption and it holds that

Qform =
Pr − Pds

Rout
. (9)

The CSF pressure is modeled as an exponential function

Pcsf(t) = P0 exp(kelVcsf(t)), (10)

where kel is the cerebral elastance and P0 a constant. Finally, the change in CSF pressure over time
can be described as

Ṗcsf =
∂Pcsf

∂Vcsf

∂Vcsf

∂t
(11a)

= P0 exp(kelVcsf)kelV̇csf (11b)

=
kelPr

Rout
Pcsf −

kel
Rout

P 2
csf − kelPcsfQex + kelPcsfQphy, (11c)

where the time argument (t) has been omitted for brevity. After defining the state x = Pcsf and
input u = Qex, Euler discretization with sampling time ∆t is performed to derive the nonlinear
discrete-time system model

x(k+1) = x(k) + ∆tẋ(k) (12)

=
[
x(k) −x(k)2 −x(k)u(k)

]︸ ︷︷ ︸
Φ(x(k),u(k))

1 + ∆t
kelPr

Rout

∆t
kel

Rout

∆tkel


︸ ︷︷ ︸

θ

+∆tkelx(k)Qphy︸ ︷︷ ︸
w(k)

with unknown parameters θ but known features Φ(xk, uk). There exists a one-to-one mapping to
compute the physiological parameters kel, Rout and Pr from the technical parameters θ via the
following equations

kel =
θ[3]

∆t
, Rout =

θ[3]

θ[2]
, Pr =

θ[1] − 1

θ[2]
. (13)
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Table 2: Variables of the cerebrospinal fluid dynamics model

Variable Name Unit
Qform Formation rate mL/min
Qabsorb Absorption rate mL/min
Qex Drainage or infusion rate mL/min
Qphy Physiological disturbance rate mL/min
Vcsf Cerebrospinal fluid volume mL
Pcsf Cerebrospinal fluid pressure mmHg
Pds Dural sinus pressure mmHg
Pr Resting pressure mmHg
Rout Outflow resistance mmHgmin/mL
kel Cerebral elastance 1/mL

Table 3: Range of physiological parameters for simulations

Parameter Mean Std. Dev. Range Source
Rout 10.45 2.03 [6.47 14.43] [4]
kel 0.33 0.08 [0.17 0.49] [4]
Pr 14.63 0.57 [13.50 15.75] [26]
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