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ABSTRACT

Building a scalable model from offline datasets to tackle a broad spectrum of
multi-agent sequential decision-making problems across tasks is a crucial step to-
ward reusable and generalizable decision intelligence. However, the mainstream
offline multi-agent reinforcement learning (MARL) methods lack generalization
due to their reliance on fixed observation formats and action spaces. In contrast,
language models offer flexible input representations that are not constrained by
predefined dimensions. Motivated by this, we propose the decision language
model (DLM), a framework that formulates decision-making as a dialogue-style
sequence prediction problem. DLM is trained in two stages: a supervised fine-
tuning (SFT) phase that leverages dialogue-style datasets to enable centralized
training with inter-agent context, generating coordinated actions consistent with
environment constraints; and a group relative policy optimization (GRPO) phase
that further trains DLM-SFT to enhance robustness to out-of-distribution (OOD)
actions through lightweight reward functions, yielding DLM-GRPO. Despite its
simple design, DLM-SFT matches the performance of leading offline MARL
methods across all tasks on the benchmark using only observation and action data.
DLM-GRPO further improves execution reliability by significantly reducing OOD
action risks and achieves strong zero-shot generalization to unseen tasks, reaching
state-of-the-art performance with a single unified model.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Bai et al., 2023; Ouyang et al., 2022; Brown
et al., 2020), trained on diverse offline datasets, have demonstrated remarkable generalization in
a wide range of downstream tasks in natural language processing (Guo et al., 2024; Schick et al.,
2023). Nevertheless, LLMs often fall short when applied to sequential decision-making problems
due to misalignment with task goals and environment dynamics (Ahn et al., 2022), which are bet-
ter handled by reinforcement learning (RL). In contrast, online RL (Sutton & Barto, 1998; Zhang
et al., 2025b; Schulman et al., 2017; Haarnoja et al., 2018) relies on repeated environment inter-
action, which is often expensive, inefficient, and risky in real-world applications. As a result,
offline RL (Kumar et al., 2020; Fujimoto et al., 2019; Kostrikov et al., 2021) has emerged as a
promising alternative that learns from static datasets without additional interaction. However, most
existing offline RL efforts focus on improving performance within a given task by mitigating out-
of-distribution (OOD) issues (Kumar et al., 2019; Zhang et al., 2025a; Levine et al., 2020) and
optimizing from limited data coverage. Although recent offline RL methods advance policy learn-
ing from fixed datasets, they typically focus on single-task performance and overlook the challenge
of generalization across diverse tasks. At the same time, real-world applications such as autonomous
driving (Zhou et al., 2024), collaborative robotics (Seraj et al., 2023), and strategic games (Rashid
et al., 2020; Liu et al., 2025) demand both generalization across various tasks and scalability with
increasing numbers of interacting agents. Addressing these challenges requires a unified model
capable of handling multi-agent sequential decision across tasks within a single framework.

A key reason for the limited generalization in RL lies in the rigid construction of models. States and
actions are encoded in fixed formats that are tightly coupled with specific task definitions, hinder-
ing transferability between environments with different input and output structures. Recent efforts
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such as the decision transformer (DT) (Chen et al., 2021) and the trajectory transformer (TT) (Jan-
ner et al., 2021) address this limitation in single agent settings by casting decision-making as se-
quence modeling, allowing a more flexible and data-driven formulation. However, extending these
methods to multi-task scenarios introduces a representation mismatch challenge. Most existing ap-
proaches perform modality-specific embeddings by normalizing and discretizing continuous inputs
into bounded index representations. Although this encoding strategy works in single-task settings, it
struggles to generalize across tasks due to the large variability in input distributions, making the rep-
resentation unstable and task dependent. The situation becomes even more complex in multi-agent
settings, which introduce additional coordination and scalability challenges. One key challenge is
incompatibility of centralized training with decentralized execution (CTDE) (Lowe et al., 2017).
While the CTDE paradigm aims to leverage global information during training and rely on local
observations at execution, reconciling these two modes within a single model remains difficult, as
it requires balancing global context with agent-level autonomy. Another challenge is the scarcity of
individual rewards. In multi-agent environments, rewards are usually provided at the global level
rather than for each agent individually, making it difficult to apply sequence modeling approaches
that depend on each agent’s reward and introducing the credit assignment problem. Furthermore,
unlike observations and actions that are readily available in offline datasets, step-level reward signals
are often difficult to obtain, further limiting the use of reward-conditioned models.

In this paper, we propose the decision language model (DLM), a scalable framework that addresses
the three key challenges of multi-agent sequential decision-making across tasks while also reducing
OOD errors under limited data. DLM is trained in two stages: a supervised fine-tuning (SFT) phase,
which aligns a pre-trained language model with the decision domain, referred to as DLM-SFT; and
a group relative policy optimization (GRPO) (Shao et al., 2024) phase that enhances robustness
to OOD actions, referred to as DLM-GRPO. To tackle the representation mismatch, we convert
observations and actions into natural language and reformulate decision-making as dialogue-style
sequence modeling, allowing language models to flexibly encode diverse tasks through tokenization.
To address the CTDE incompatibility, we design a dialogue-style trajectory representation for each
agent, which preserves inter-agent context during centralized training while supporting decentralized
execution from local observations. To handle the individual reward scarcity, we discard reward data
and avoid training from scratch, instead fine-tuning a pre-trained language model capable of implicit
credit assignment via temporal attention. Finally, we mitigate OOD risks by introducing a simple
executability-based reward during GRPO to penalize invalid actions.

We extensively evaluate DLM on multiple tasks from the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) and SMACv2 (Ellis et al., 2023). The results show that DLM-
SFT, despite not using reward data, performs competitively with the leading offline MARL meth-
ods. DLM-GRPO further improves performance by reducing OOD actions, achieving state-of-the-
art (SOTA) results and demonstrating strong zero-shot generalization to unseen tasks.Overall, our
study demonstrates the effectiveness of DLM in handling diverse multi-agent decision tasks. The
following is a list of the contributions of this paper.

• We propose DLM, a framework for multi-agent sequential decision across tasks, trained
with a two-stage method improving OOD robustness, addressing representation mismatch,
CTDE incompatibility, and reward scarcity without relying on online interaction.

• We introduce a dialogue-style offline dataset construction method for MARL and design an
LLM-based post-training approach aligned with the CTDE paradigm, enabling centralized
training with inter-agent context and decentralized execution from local observations.

• We demonstrate that DLM achieves SOTA performance across multiple tasks in the SMAC
benchmark using a single model, exhibits strong zero-shot generalization to unseen tasks,
and may provide a pathway toward constructing general decision-making models.

2 RELATED WORKS

Offline MARL Offline RL aims to learn policies from fixed datasets without further environment
interaction, making it suitable for high-risk or cost-sensitive domains. A common approach is to ap-
ply behavior cloning (BC) (Syed et al., 2008), which directly imitates actions in the dataset. While
simple and stable, BC does not account for the distributional shift between the training data and
the learned policy’s behavior, often resulting in compounding errors during deployment. To address
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this, methods such as TD3+BC (Kostrikov et al., 2021) and CQL (Kumar et al., 2020) introduce
value-based regularization to penalize unseen or high-risk actions and reduce overestimation bias,
achieving better performance in the single-agent setting. In the multi-agent setting, these issues be-
come even more severe due to the exponential growth of the joint state-action space and the need
for coordinated behavior. MACQL (Formanek et al., 2024) extends CQL to the multi-agent regime
by applying conservative value estimation under CTDE paradigm. OMIGA (Wang et al., 2024)
improves coordination by shaping local policies with implicit global-to-local value information.
CFCQL (Shao et al., 2023) further enhances robustness through agent-level counterfactual regu-
larization, enabling stable learning even under partial observability or suboptimal data coverage.
Despite these advances, existing offline MARL methods are tied to task-specific architectures or
value-centric learning objectives, limiting their scalability across diverse agents and environments.

Sequence Modeling for Decision Making Recent advances have recast RL as a sequence model-
ing problem, enabling the use of large-scale Transformer (Vaswani et al., 2017) architectures orig-
inally developed for language understanding. The DT (Chen et al., 2021) pioneers this perspective
by predicting actions autoregressively, conditioned on the return-to-go, past states, and actions. This
formulation bypasses the need for bootstrapped value estimation and instead treats policy learning
as a supervised sequence prediction task. Building on this, the TT (Janner et al., 2021) extends this
idea by modeling full trajectory distributions with tokenized inputs, improving sample efficiency.
Pushing further toward generalist agents, Gato (Reed et al., 2022) unifies vision, language, and con-
trol tasks through sequence modeling, showing that a single transformer can operate across diverse
domains. In the multi-agent setting, however, sequence modeling remains limited. Multi-agent
decision transformer (MADT) (Meng et al., 2023) shares parameters across agents to enable in-
dependent pre-training, and applies online fine-tuning with a centralized critic. While this design
simplifies training, it neglects inter-agent coordination during pre-training and relies on environment
interaction during fine-tuning, deviating from the offline paradigm.

Aligning Pre-trained LLMs for Decision-Making Pre-trained LLMs provide strong priors that
help agents make informed decisions with minimal exploration, making them attractive for offline
decision-making. However, these priors are often misaligned with target tasks or environments, mo-
tivating adaptation through alignment techniques. SFT, together with parameter-efficient methods
such as LoRA (Hu et al., 2021), enables scalable adaptation in multi-agent settings. Beyond SFT, re-
inforcement learning from human feedback (RLHF) (Ouyang et al., 2022) further refines model be-
havior using preference-based rewards, yielding more robust policies. More recently, GRPO (Shao
et al., 2024) has simplified alignment by leveraging lightweight heuristic rewards, making it partic-
ularly suitable for offline RL where explicit reward design is costly or infeasible.

3 METHOD

In this section, we present the DLM, a scalable framework for multi-agent sequential decision-
making cross tasks. As illustrated in Fig. 1, DLM training follows a four-step pipeline: two data
preparation stages and two model training stages. Due to the lack of suitable offline datasets cover-
ing all tasks, we first construct a comprehensive offline multi-task dataset and transform the collected
trajectories into a dialogue-style sequence representation. The dataset is then partitioned into two
subsets for SFT and GRPO, respectively. We initialize DLM with the pre-trained LLaMA-3.2-1B
model (Grattafiori et al., 2024) and fine-tune it through SFT to obtain the DLM-SFT model, enabling
the model to generate valid and rule-compliant actions. Next, we identify the OOD-prone sam-
ples where DLM-SFT exhibits suboptimal performance and apply GRPO with simple executability-
based rewards to further refine the policy and enhance its robustness under distributional shifts.

Problem Formulation We model the cooperative multi-agent sequential decision-making prob-
lem as a decentralized partially observable markov decision process (Dec-POMDP) (Oliehoek &
Amato, 2016), defined by the tuple G = ⟨N ,S,A, P,Ω, O,R, γ⟩. Here, N = {1, . . . , n} denotes
the set of agents, S is the set of global states, and A =

∏n
i=1 Ai is the joint action space, where

Ai is the action space for agent i. At each time step t, the environment is in state st ∈ S, and each
agent i receives a private observation oit ∈ Ωi, where Ω =

∏n
i=1 Ω

i is the joint observation space
and O : S → ∆(Ω) is the observation function. Based on its local observation, each agent selects an
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Data Collection Supervised Fine-tuning OOD GeneralizationData Filtering

“role”: “user”,
“content”:
Own feature ID/T/H/S: ____.
Allies in sight: ____.
Enemies in sight: ____.
“role”: “assistant”,
“content”: 
____.

Messages
“role”: “system”,
“content”:
You are a strategic SMAC AI 
assistant on the ____ map. 
Work with your team to 
complete the task.

Historical messages {...}.

Pretrain Model SFT Model …

Dec-POMDP

Offline Datasets

GenerationTrain

Update 
Datasets

LoRA

…

“role”: 
“assistant”,
“content”: 
Stop.

Response

“role”: 
“assistant”,
“content”: 
Attack ID 5.

Datasets

“role”: 
“user”,
“content”: ...

Prompt
“role”: 
“system”,
“content”: ...

OOD✓ × Train

“role”: 
“assistant”,
“content”: 
Attack ID 5.

Response 1

“role”: 
“assistant”,
“content”: 
Attack ID 4.

Response 3

“role”: 
“assistant”,
“content”: 
Attack ID 4.

Response 2

“role”: 
“assistant”,
“content”: 
No-op.

Response 4

“role”: 
“assistant”,
“content”: 
Attack ID 5.

Datasets

#1 Reward +1

#3 Reward +0

#2 Reward +0
#4 Reward -1

SFT Model GRPO Model

#1 #2 #3 #4 
…

0.13
0.28

0.45

0.1

0.10↓
0.28

0.48↑

0.1

No-op.
Attack ID 4.
Attack ID 5.

Stop.

… …

AgentAgent

Win mean ≥ 0.8 Save policy

Save Datasets Evaluation

[User]：...

[LLaMA]：...

Obs

Action

Online MARL

Mapping

(a) (b) (c) (d)

Figure 1: Overall training pipeline of DLM. (a) Offline data collected from online MARL algorithms
is transformed into dialogue-style sequences and split into two subsets. (b) The pre-trained model
is fine-tuned on the first subset via SFT to align with the decision domain, resulting in DLM-SFT.
(c) DLM-SFT generates policies on the second subset, and OOD-prone samples are filtered by
comparing outputs with the dataset. (d) GRPO further trains DLM-SFT on the filtered subset using
lightweight executability-based rewards, yielding the final DLM-GRPO model.

action according to its individual policy πi : Ωi → ∆(Ai). The joint action at = (a1t , . . . , a
n
t ) in-

duces a transition to the next state st+1 according to the environment dynamics P : S×A → ∆(S).
The system receives a global reward rt = R(st,at), and γ ∈ (0, 1) denotes the discount factor
governing future returns. In the offline setting, we assume access to a fixed dataset D = {τ (k)}Mk=1

consisting of M collected trajectories. Each trajectory τ (k) contains the key elements defined in the
Dec-POMDP tuple G. The goal is to learn decentralized policies {πi}ni=1 to achieve cooperative
behavior across diverse multi-agent tasks.

3.1 DIALOGUE-STYLE OFFLINE DATASET CONSTRUCTION

ID:0,
Obs=[1.0,1.0,1.0,1.0,
[0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0]*5,
[1.0,0.23,0.08,0.22,1
.0,1.0,0.0,1.0],[...]
,[...],[...],[...],
1.0,1.0,1.0,0.0]

ID:0,
Action=[3]

Env name:
SMAC
Map name:
2s3z

Action: move south 
one step.

Own feature, ID/T/H/S: 
0/10/100.00%/100.00%.
Allies in sight, 
ID/T/X/Y/H/S: 
2/01/0.08/0.22/100.00
%/100.00%,...
Enemies in sight:
None.

Observation Prompt

You are a strategic SMAC AI
assistant on the 2s3z map.
Work with your team to
complete the task.

Action Prompt

System PromptEnv

Action

Observation

ID:Identifier
T :Type
X :Relative X
Y :Relative Y
H :Health
S :Shield

Figure 2: Mapping SMAC environment, observa-
tions, and actions into a dialogue-style prompt,
with highlighted text showing key correspon-
dences.

To address the representation mismatch chal-
lenge discussed in Sec. 1, we rethink the en-
coding of observations and actions in multi-
task settings. The wide variability in their
numerical ranges and structures across tasks
makes fixed-format mappings impractical. In
contrast, LLMs leverage tokenization tech-
niques (Mikolov et al., 2013) to embed diverse
concepts into a shared semantic space, enabling
flexible representation learning.

Inspired by this, we verbalize multi-agent deci-
sion trajectories as natural language dialogues,
framing sequential decision-making as a lan-
guage modeling problem. Any decision process
can be described by specifying the environ-
ment, the agent’s observation, and the intended
action in natural language. Specifically, taking
SMAC as an example, observations consist of four feature groups: move feats, enemy feats,
ally feats, and feats, encoding attributes such as position, health, and visibility. These fea-
tures, originally designed for computational processing, can be naturally verbalized into textual
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Figure 3: Training and inference frameworks for DLM. (a) Centralized training using dialogue-style
trajectories with inter-agent information. (b) Decentralized inference where each agent indepen-
dently generates actions based on its local trajectory.

descriptions. As illustrated in Fig. 2, environment information, agent observations, and actions are
mapped into a fixed prompt format, where the highlighted text shows the correspondence between
original features and their verbalized forms. As shown in Fig. 1(a), observations are treated as the
user input and actions as the assistant reply, forming a dialogue turn. We further convert the
dialogue into the LLaMA-3 chat format for compatibility, as detailed in Fig. 7. As existing datasets
lack full coverage of SMAC tasks, we collect offline data following the dataset construction method-
ology used in D4RL (Fu et al., 2020). Specifically, we train TGCNet (Zhang et al., 2025b) until the
win rate exceeds 80%, after which we save the model and use it to interact with the environment to
generate trajectories. Details on dataset construction are provided in Appendix A.1.

3.2 SFT FOR MULTI-AGENT SEQUENTIAL DECISION

We adopt an autoregressive sequence modeling approach without relying on explicit value functions
or rewards. Unlike prior single-agent formulations, we design a dialogue-style sequence represen-
tation that supports CTDE. Instead of pre-training from scratch, we initialize DLM with pre-trained
language model and adapt it to the decision domain via SFT on half of the constructed offline dataset
DSFT. The overall training and inference framework is presented in Fig. 3 and described in Alg. 1.
The mathematical analysis and motivation behind this design are provided in the Appendix A.3.

Dialogue-Style Sequence Representation We represent multi-agent decision trajectories as struc-
tured sequences of observation-action pairs. Formally, each trajectory τ (k) is defined as:

τ (k) =
({

(o
(k),i
t , a

(k),i
t )

∣∣ t = 1, . . . , T (k)
})N

i=1
, (1)

where N is the number of agents and T (k) denotes the length of the k-th trajectory. Here, o(k),it

represents the observation of agent i at time t within the k-th trajectory, and a
(k),i
t denotes the corre-

sponding action. Since each observation-action pair has already been verbalized into a dialogue-style
format, the model inputs are constructed by stacking them in the order specified in Eq. 1. To im-
prove scalability for the number of agents, we apply a maximum token limit, truncating sequences
that exceed it and adopting dynamic packing strategies.

SFT Training We fine-tune DLM on the offline dataset, aligning the model’s outputs with multi-
agent decision demonstrations. In practice, DLM is trained to predict the next assistant reply (i.e.,
the action) conditioned on the dialogue history up to the current observation. Formally, the SFT
objective minimizes the following loss:

LSFT = − 1

M

M∑
k=1

T (k)∑
t=1

N∑
i=1

logPθ

(
a
(k),i
t | τ (k)

≤(o
(k),i
t )

)
, (2)
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Algorithm 1 SFT Training (Left) and Inference (Right) Procedures for DLM

1: Input: Offline dataset DSFT, pre-trained model
parameters θinit.

2: Initialize: θSFT ← θinit; tokenizer; system
prompts; max token length L.

3: for each trajectory τ (k) ∈ D do
4: Tokenize τ (k) by stacking (o

(k),i
t , a

(k),i
t ) pairs

with system prompts, truncated to L.
5: end for
6: Construct mini-batches with dynamic packing.
7: for each mini-batch do
8: Predict next action conditioned on dialogue

history.
9: Update θSFT by minimizing the loss in Eq. 2.

10: end for
11: Output: Fine-tuned model θSFT.

1: Input: Fine-tuned model θSFT, tokenizer, envi-
ronment.

2: for each episode do
3: Reset environment and initialize history.
4: while episode not terminated do
5: Encode observations into prompts.
6: for each agent i = 1, . . . , N do
7: Predict action according to Eq. 3.
8: if action invalid or unavailable then
9: Resample from Eq. 4.

10: end if
11: end for
12: Execute actions and update history.
13: end while
14: Record episode win or loss outcome.
15: end for
16: Output: Test win rates.

where M is the number of trajectories, T (k) is the length of the k-th trajectory, N is the number of
agents, and τ

(k)

≤(o
(k),i
t )

denotes the dialogue history up to and including the current observation o
(k),i
t .

Decentralized Inference During inference, DLM enables decentralized decision-making while
maintaining the benefits of centralized training. Each agent independently generates its action based
on its dialogue history, without requiring access to other agents’ observations or actions. Formally,
for each agent i at time step t, the model predicts the next action by:

ait = argmax
a

PθSFT(a | τ≤(oit)
). (3)

If the predicted action is invalid or not allowed by the environment’s available actions, we resample
by drawing from the predicted distribution, sampling an action from the truncated distribution where
only the top-k tokens whose cumulative probability exceeds the top-p threshold are considered:

ait ∼ P top-p,top-k
θSFT

(
· | τ≤(oit)

)
. (4)

3.3 FILTERING OOD SAMPLES

Figure 4: t-SNE projection of ob-
servation distributions from the offline
dataset across all SMAC tasks.

Although DLM-SFT learns reasonable decision behav-
iors from offline data, it occasionally generates in-
valid or OOD actions due to the inherent limitations of
dataset coverage. In multi-agent settings like SMAC, the
observation-action space is vast and continuous, making
exhaustive offline coverage impractical. As illustrated by
the t-SNE visualization in Fig. 4, even with diverse tra-
jectory collection across multiple tasks, the sampled ob-
servations and actions still only occupy a sparse subset of
the overall space. This reveals a fundamental limitation:
simply enlarging the dataset cannot completely eliminate
OOD issues because the environment dynamics are effec-
tively unbounded.

To address this, we apply OOD filtering on the other half
of the offline dataset DGRPO. Specifically, for each obser-
vation oi, we retain samples where the model-predicted
action πi

θSFT
(oi) either differs from the corresponding

dataset action or violates the environment’s executable action constraints. Formally, the filtered
dataset DOOD is defined as:

DOOD =
{
(oi, ai) ∈ DGRPO

∣∣ πi
θSFT

(oi) ̸= ai or πi
θSFT

(oi) /∈ Aavail(o
i)
}
, (5)
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where Aavail(o
i) is the set of available actions based on agent i’s local observation oi. The filter-

ing procedure is illustrated in Fig. 1(c). This filtering strategy selectively retains challenging or
misaligned samples, allowing subsequent GRPO training to focus on improving robustness against
OOD behaviors while reducing overall training cost.

3.4 PREFERENCE OPTIMIZATION FOR OOD GENERALIZATION

To further improve action feasibility and policy alignment, we introduce a preference optimization
stage that penalizes OOD behaviors and encourages consistency with the filtered DOOD dataset, as
shown in Fig. 1(d). Unlike RLHF-style approaches that rely on learning an additional reward model,
we adopt simple handcrafted objectives to avoid the challenges of reward estimation in offline multi-
agent sequential decision tasks. Specifically, we optimize two criteria: (1) ensuring executability
under environment constraints while maintaining generalization, and (2) promoting agreement with
actions from DOOD. We define a lightweight preference reward r(oi, ai) based on these two criteria:

r(oi, ai) =


1, if ai = âi and ai ∈ Aavail(o

i),

0, if ai ̸= âi and ai ∈ Aavail(o
i),

−1, if ai /∈ Aavail(o
i),

(6)

where âi denotes the dataset action paired with oi in DOOD. Given DOOD and the corresponding
preference rewards, we perform GRPO on the LoRA-adapted DLM-SFT model to refine its decision-
making alignment. For each oi, we sample a group of G candidate actions {aij}Gj=1 from the SFT
policy πθSFT(· | τ≤(oi)). The GRPO loss is formulated as:

LGRPO = Eoi∼DOOD, {ai
j}G

j=1∼πθSFT (·|τ≤(oi))

{
1

G

G∑
j=1

1

|aij |

|ai
j |∑

t=1

min

[
πθ(a

i
j,t | τ≤(oit)

)

πθSFT(a
i
j,t | τ≤(oit)

)
Âj,t, clip

(
πθ(a

i
j,t | τ≤(oit)

)

πθSFT(a
i
j,t | τ≤(oit)

)
, 1− ϵ, 1 + ϵ

)
Âj,t

]

− β DKL [πθ ∥πref]

}
, (7)

where Âj,t denotes the normalized advantage computed from the relative rewards within each sam-
pled group, |aij | is the sequence length of the j-th sampled action, ϵ is the clipping threshold to en-
sure training stability, and β controls the strength of KL divergence regularization. Through GRPO
training, the DLM model achieves improved robustness against OOD actions while maintaining
consistency with in-distribution behaviors established during SFT.

4 EXPERIMENT

In this section, we evaluate DLM against a range of offline multi-agent baselines. Since DLM
adopts sequence modeling without explicit value functions, we focus comparisons on two cate-
gories: (1) value-based offline MARL algorithms that mitigate distributional shift through value
pessimism or action regularization, and (2) imitation learning approaches trained via supervised ob-
jectives. Specifically, we compare against CFCQL (Shao et al., 2023), OMIGA (Wang et al., 2024),
MACQL (Formanek et al., 2024) and TD3+BC (Kostrikov et al., 2021) as value-based baselines,
and benchmark DLM against MADT (Meng et al., 2023) and BC (Syed et al., 2008) as sequence
modeling and supervised learning baselines. Our evaluation spans all tasks in SMAC and a subset of
tasks in SMACv2, covering easy, hard, and super hard settings that require decentralized coordina-
tion under partial observability. We report overall decision quality, analyze improvements in OOD
robustness after preference optimization, and assess DLM’s zero-shot generalization to unseen tasks.
Full experimental setups, including hyperparameter selection and analysis, computational resources,
and other implementation details, are provided in Appendix A.4, while additional experiments are
presented in Appendix A.5.
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DLM-SFT(Ours) BC TD3+BC MACQL OMIGA CFCQLDLM-GRPO(Ours) MADT

(d) (e) (f)

(c)(a) (b)

Figure 5: Performance comparison with baselines on representative SMAC tasks: (a)-(b) easy, (c)-
(d) hard, and (e)-(f) super hard. Only the final test performance of DLM and MADT is reported.

4.1 OVERALL PERFORMANCE ON SMAC BENCHMARK

We evaluate DLM across 15 SMAC tasks. The evaluation focuses on mean test win rates as a mea-
sure of overall decision quality under decentralized partial observability. All baselines are trained on
offline datasets collected following the procedure described in Sec. 3.1. The representative results
are presented in Fig. 5, while the complete set of results can be found in Appendix Fig. 9. For fair
evaluation, all experiments are conducted with five random seeds, and results are reported as means
with a 95% confidence interval. Note that DLM-SFT and DLM-GRPO use a single model across all
tasks, while other baselines are individually trained for each task.

OOD	Rate	(%) =
𝑁!!"
𝑇($)

×100

Figure 6: Comparison of OOD Rates on all
SMAC tasks.

Across all SMAC tasks, DLM-GRPO achieves
the best average win rates with a single model,
matching or surpassing strong value-based
baselines such as OMIGA and CFCQL. DLM-
SFT performs comparably to MACQL but re-
mains slightly behind DLM-GRPO. TD3+BC
and BC achieve reasonable results on eas-
ier tasks but generally fail to learn effec-
tive policies in harder tasks. MADT out-
performs TD3+BC on several tasks but still
struggles compared to DLM-SFT and value-
based methods, although it consistently ex-
ceeds BC. Within imitation-based approaches,
DLM significantly outperforms MADT and BC
across most tasks. This can be attributed to
DLM’s dialogue-style sequence construction
and multi-agent trajectory alignment, which
better preserve decision dependencies across agents and timesteps. Among value-based offline
MARL methods, OMIGA and CFCQL achieve strong results. Despite not utilizing explicit value
functions or environment rewards during training, DLM-GRPO achieves comparable or better re-
sults than OMIGA and CFCQL, highlighting the potential of lightweight preference optimization
combined with autoregressive decision modeling. Finally, it is worth noting that DLM-SFT, trained
on dialogue-style offline data without reward supervision, already matches MACQL, demonstrating
the effectiveness of the DLM framework and its generalization ability. The consistent performance
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improvement from DLM-SFT to DLM-GRPO further validates the role of simple preference opti-
mization in enhancing robustness, mitigating OOD errors, and improving overall decision quality.

4.2 OOD ROBUSTNESS IMPROVEMENT VIA PREFERENCE OPTIMIZATION

To evaluate the impact of preference optimization, we compare OOD action rates before and af-
ter applying GRPO, where OOD actions are defined as those violating environment constraints or
deviating from offline behaviors (Sec.3.3). As shown in Fig. 6, DLM-SFT, despite its competitive
decision quality, occasionally produces OOD actions due to limited data coverage and the absence
of action masking. GRPO substantially reduces OOD rates across all tasks, enhancing robustness
and execution stability. This reduction is especially pronounced in hard and super hard tasks, where
a single OOD action can expose the agent to unseen states and trigger error cascades. A comparison
between Fig. 4 and Fig. 6 reveals that high OOD rates correlate with sparse offline distributions (e.g.,
1c3s5z, 27m vs 30m, corridor), and these tasks also show degraded performance. In contrast,
tasks with lower OOD occurrence typically yield higher win rates. These results confirm that pref-
erence optimization effectively mitigates OOD risks under limited data and improves generalization
without additional reward modeling or environment interaction.

4.3 ZERO-SHOT GENERALIZATION TO UNSEEN TASKS

Table 1: Zero-shot performance comparison of MADT,
DLM-SFT, and DLM-GRPO on unseen tasks. ∗ communi-
cation tasks in SMAC (Wang et al., 2019); † SMACv2 tasks.

Task MADT DLM-SFT DLM-GRPO

3s vs 3z 0.45± 0.03 0.71± 0.02 0.78± 0.02
3s vs 4z 0.73± 0.02 0.79± 0.03 0.82± 0.02
3m 0.92± 0.01 0.90± 0.04 0.93± 0.03
8m 0.69± 0.02 1.00± 0.00 1.00± 0.00
25m 0.57± 0.02 0.98± 0.01 0.99± 0.01
MMM 0.85± 0.02 0.99± 0.01 1.00± 0.00
1o 10b vs 1r∗ 0.13± 0.01 0.57± 0.01 0.64± 0.01
1o 2r vs 4r∗ 0.11± 0.04 0.64± 0.02 0.69± 0.02
protoss 5 vs 5† 0.00± 0.00 0.59± 0.05 0.67± 0.01
terran 5 vs 5† 0.00± 0.00 0.64± 0.01 0.79± 0.02
zerg 5 vs 5† 0.00± 0.00 0.42± 0.03 0.58± 0.02

To evaluate the generalization of
DLM beyond its training distribu-
tion, we assess its zero-shot perfor-
mance on unseen tasks from both
SMAC and SMACv2. These tasks
are excluded from training and in-
troduce novel unit types, asymmet-
ric team compositions, and coor-
dination patterns. As reported in
Tab. 1, the unified DLM-GRPO
model achieves consistently strong
win rates on representative tasks
such as MMM, while maintaining
competitive performance on more
communication-intensive tasks. Al-
though performance decreases in the
most challenging SMACv2 tasks,
the variation aligns with task similarity to the training distribution: tasks closer to the training data
yield higher generalization. Compared with MADT, both DLM-SFT and DLM-GRPO achieve bet-
ter win rates across nearly all tasks, highlighting the advantage of dialogue-style sequence modeling.
Overall, these results confirm that DLM can transfer decision behaviors to structurally novel envi-
ronments, demonstrating scalability and robustness in zero-shot multi-agent settings.

5 CONCLUSION

In this paper, we present DLM, a scalable decision language model for offline multi-agent sequential
decision-making cross tasks. By reformulating decision processes as dialogue-style sequence mod-
eling, DLM bridges the gap between LLMs and decentralized decision problems. The two-stage
training framework, consisting of SFT followed by GRPO, enables DLM to align with environment
constraints, mitigate OOD errors, and generalize across tasks without relying on explicit rewards.
Experiments on the SMAC benchmark show that DLM-SFT, trained solely on observations and ac-
tions, performs competitively with strong offline baselines. Building on this, DLM-GRPO further
enhances robustness and decision quality, outperforming SOTA offline methods with a single unified
model. Detailed analysis reveals that GRPO effectively reduces OOD action rates, particularly in
complex tasks with limited data coverage. DLM also exhibits strong zero-shot generalization to un-
seen tasks, demonstrating scalability and adaptability. Overall, DLM provides a scalable solution to
the long-standing generalization bottlenecks in offline MARL, laying the groundwork for building
universal decision models that can be deployed in real-world embodied systems.
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action in simulation, and no proprietary assets are redistributed. The research poses no direct societal
or ethical risks beyond the standard concerns of deploying decision-making models in safety-critical
domains, which is outside the scope of this paper. The authors declare no conflicts of interest.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of dataset construction (Sec. 3.1), model design (Sec. 3), and train-
ing objectives (Eqs. 2–7). Experimental settings, hyperparameters, and ablations are reported in
Appendix A.4 and A.5. All results are averaged over five random seeds with 95% confidence inter-
vals. Supplementary Material contains the corresponding code and configuration files.
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A APPENDIX

A.1 DATASET CONSTRUCTION DETAILS

Data Collection To ensure the credibility and reproducibility of our experimental results, we ini-
tially explored the use of publicly available offline MARL datasets. While several recent datasets,
such as OG-MARL (Formanek et al., 2023), provide high-quality offline trajectories for MARL,
they typically cover only a limited subset of SMAC (Samvelyan et al., 2019) tasks and do not sup-
port comprehensive multi-task evaluation. To address this limitation, we construct our own dataset
following the data collection methodology of D4RL (Fu et al., 2020). Specifically, we adopt TGC-
Net (Zhang et al., 2025b) as the behavior policy for data collection, due to its ability to achieve
near-perfect performance across all SMAC tasks. For each task, we train TGCNet in an online set-
ting and apply early stopping once the win rate exceeds 80%, using a test interval of 50000 steps.
The resulting checkpoint is then used to interact with the environment and collect 4000 high-quality
trajectories per task. Each collected trajectory includes standard components commonly used in
offline MARL benchmarks: actions, actions onehot, avail actions, filled, obs,
reward, state and terminated. As detailed in Sec.3.1, this process yields a diverse and con-
sistent dataset spanning all 15 SMAC tasks. For DLM, the dataset is split into two subsets, one for
SFT and the other for GRPO. Importantly, all baseline algorithms, including both value-based and
imitation-based methods, are trained using the full dataset without any modifications. Therefore,
although DLM employs a two-stage training procedure with a dataset split, it uses the same total
amount of data as other baselines. All methods operate on an identical data distribution to ensure
fairness and comparability.

Dataset Quality To verify the reliability and quality of the collected trajectories, we conduct a
quantitative analysis of the dataset. For each SMAC task, we divide the 4000 collected episodes
evenly into two subsets of 2000 trajectories. This partition supports the two-stage training procedure
of DLM, where one subset is used for SFT and the other for GRPO. We compute the average return
and standard deviation for each subset by summing the per-step rewards within each episode and
then aggregating statistics over 2000 trajectories. The results are presented in Tab. 2, which reports
the mean ± standard deviation of episode returns for every task in both subsets, along with the
overall average across all tasks. Although the maximum achievable return varies by task depending
on episode length and reward sparsity, most of the collected trajectories yield returns consistent with
the threshold used in our early-stopping strategy, where trajectory generation begins once TGCNet
reaches a win rate of at least 80%. This confirms that the dataset meets the expected quality standard
and is suitable for training reliable offline policies.

Dialogue-Style Conversion For training DLM, we apply an additional transformation to the orig-
inal offline dataset, converting it into a dialogue-style format suitable for multi-turn sequence mod-
eling. In this process, we retain only the obs and actions fields at each timestep and orga-
nize them into observation–action pairs. Each pair is then verbalized as a natural language dia-
logue turn, as illustrated in Fig. 2 of the main text. We begin by constructing the system prompt,
which corresponds to the system role in the chat interface and provides high-level scenario con-
text. Since each SMAC task corresponds to a specific map, we generate map-specific instruc-
tions in the form: "You are a strategic SMAC AI assistant on the map.
Work with your team to complete the task." This prompt guides the model to be-
have as a cooperative agent grounded in the given environment. Next, we generate the observation
prompt, which corresponds to the user role in the chat interaction and encodes the agent’s local ob-
servation at the current timestep. To construct this prompt, we assign each agent a unique ID and
extract key features from its observation vector. The agent’s own attributes, such as ID, unit type,
health, and shield, are obtained from the own feats field. Information about allied units within the
agent’s sight is retrieved from ally feats, which includes their IDs, types, relative positions in
X and Y coordinates, health, and shield. Likewise, the enemy feats field provides corresponding
information for visible enemies. These features are verbalized into a structured natural language de-
scription that captures the agent’s local perspective. Finally, we construct the action prompt, which
corresponds to the assistant role in the chat interaction and represents the agent’s response based on
its selected action. Since actions in the dataset are represented as discrete indices, we first decode
each index based on the SMAC action mapping. For example, action 0 corresponds to "no-op",
action 1 to "stop", and action 2 to "move north one step". The decoded action is then
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Table 2: Trajectory return (mean ± std) per SMAC task in the collected offline dataset. Each map
contains 2000 trajectories divided equally into two subsets.

Task SFT Subset GRPO Subset Total Dataset
2s vs 1sc 19.18 ± 2.78 19.17 ± 2.79 19.17 ± 2.78
2s3z 19.89 ± 0.89 19.89 ± 0.88 19.89 ± 0.89
3s5z 19.74 ± 1.19 19.76 ± 1.08 19.75 ± 1.14
1c3s5z 19.98 ± 0.44 19.97 ± 0.55 19.97 ± 0.50
10m vs 11m 19.79 ± 1.15 19.72 ± 1.35 19.75 ± 1.25
2c vs 64zg 20.00 ± 1.12 19.99 ± 1.14 19.99 ± 1.12
5m vs 6m 18.28 ± 3.74 18.35 ± 3.59 18.34 ± 3.66
bane vs bane 20.00 ± 0.00 20.00 ± 0.00 20.00 ± 0.00
3s vs 5z 21.64 ± 1.33 21.62 ± 1.39 21.63 ± 1.36
8m vs 9m 19.07 ± 2.57 19.04 ± 2.58 19.06 ± 2.58
3s5z vs 3s6z 19.83 ± 1.14 19.84 ± 1.07 19.83 ± 1.11
27m vs 30m 19.17 ± 2.20 19.25 ± 2.20 19.21 ± 2.20
6h vs 8z 18.46 ± 2.47 18.45 ± 2.50 18.45 ± 2.48
MMM2 19.41 ± 1.96 19.38 ± 1.99 19.40 ± 1.98
corridor 19.76 ± 2.11 19.69 ± 2.22 19.72 ± 2.17

Average 19.61 ± 1.67 19.60 ± 1.68 19.61 ± 1.68

ChatSMAC

<|begin_of_text|>
<|start header id|>system<|end header id|>
You are a strategic SMAC AI assistant on the 2s_vs_1sc map.
Work with your team to complete the task. <|eot id|>
...
<|start header id|>user<|end header id|>
Own feature, ID/T/H/S: 0/-/100.00%/62.50%.
Allies in sight, ID/T/X/Y/H/S: 1/-/0.65/0.00/100.00%/100.00%.
Enemies in sight, ID/T/X/Y/H/S:
2/-/0.32/0.58/100.00%/0%. <|eot id|>

<|start header id|>assistant<|end header id|>
attack ID 2. <|eot id|>

<|start header id|>user<|end header id|>
Own feature, ID/T/H/S: 0/-/97.50%/62.50%.
Allies in sight, ID/T/X/Y/H/S: 1/-/0.65/0.00/100.00%/100.00%.
Enemies in sight, ID/T/X/Y/H/S:
2/-/0.32/0.58/80.00%/0%. <|eot id|>

<|start header id|>assistant<|end header id|>
attack ID 2. <|eot id|>
...

Figure 7: An example trajectory from the ChatSMAC dataset formatted in chat format.

used as the assistant’s response, completing the observation–action dialogue turn. Each complete
turn is wrapped using the chat format adopted by LLaMA-3 (Grattafiori et al., 2024), ensuring com-
patibility with mainstream language models. This process produces the final dialogue-style dataset,
which we refer to as ChatSMAC. It serves as the foundation for training DLM. Full examples of
prompt construction and template specifications are provided in Fig. 7.
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(a) (b) (c)

Figure 8: Screenshots of SMAC tasks at different difficulty levels: (a) 2s3z (easy), (b)
2c vs 64zg (hard), and (c) corridor (super hard).

Table 3: SMAC task difficulty classification.
Difficulty Level Task

Easy

2s vs 1sc
2s3z
3s5z
1c3s5z
10m vs 11m

Hard

2c vs 64zg
5m vs 6m
bane vs bane
3s vs 5z
8m vs 9m

Super Hard

3s5z vs 3s6z
27m vs 30m
6h vs 8z
MMM2
corridor

A.2 DETAILS ABOUT BENCHMARKS

SMAC Overview The SMAC (Samvelyan et al., 2019) benchmark, built upon the StarCraft II
engine, has been widely used for evaluating cooperative multi-agent reinforcement learning. It
focuses on micromanagement tasks where each agent controls a single unit and must coordinate
with others under partial observability and sparse global rewards. Recently, SMACv2 (Ellis et al.,
2023) was introduced to address the limitations of SMAC by introducing additional randomness,
restricting agents’ field of view, and providing more diverse and challenging tasks, making it a more
rigorous testbed for assessing generalization, robustness, and scalability of multi-agent learning
methods.

Task Grouping SMAC tasks are commonly divided into three difficulty levels: easy, hard, and
super hard. This classification is based on factors such as unit types, asymmetry between teams, and
the complexity of required coordination. Easy tasks typically involve symmetric unit compositions
and can often be solved with basic strategies. In contrast, hard and super hard tasks introduce het-
erogeneous units, asymmetric team settings, and demand more sophisticated tactics such as precise
positioning, focus firing, and kiting. Representative examples of each difficulty level are illustrated
in Fig. 8, highlighting the increasing complexity across categories. A full list of task groupings by
difficulty is summarized in Tab. 3.

Observation and Action Spaces In each SMAC task, agents receive low-dimensional local ob-
servations that encode information about nearby allies, enemies, and the agent’s own state. The
observation space has a fixed dimensionality, but the content depends on the number of visible
units, reflecting the partial observability of the environment. The action space is discrete and in-
cludes primitive operations such as moving in four directions, attacking or healing specific enemies
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or allies, stopping, and executing a no-operation. Notably, the set of available actions is dynamic,
determined by the agent’s current local visibility and unit-specific constraints.

Choice of Multi-Task Benchmarks We adopt SMAC (Samvelyan et al., 2019) and its extension
SMACv2 (Ellis et al., 2023) as the primary benchmarks for evaluating DLM in a multi-task setting.
Following prior work such as MADT (Meng et al., 2023), each task within SMAC is conventionally
treated as a distinct task, since maps differ in agent types and numbers, available abilities, team com-
positions, and coordination requirements. This diversity spans simple symmetric battles to highly
asymmetric matchups that demand fine-grained cooperation, thereby aligning with common defi-
nitions of multi-task reinforcement learning as learning across a distribution of environments with
varied state/action spaces and task goals. Compared with SMAC, SMACv2 introduces additional
randomness, restricted fields of view, and more heterogeneous unit compositions, which further
increase task variability and difficulty. Together, SMAC and SMACv2 provide a scalable and re-
producible platform where heterogeneous cooperative tasks can be systematically evaluated under a
unified framework, making them suitable for assessing the generalization capacity of large decision
models like DLM.

A.3 MOTIVATION BEHIND THE DESIGN

A central component of DLM is the representation of multi-agent trajectories as sequences of
observation–action pairs:

τ (k) =
({

(o
(k),i
t , a

(k),i
t )

∣∣ t = 1, . . . , T (k)
})N

i=1
, (8)

where o
(k),i
t and a

(k),i
t denote the local observation and executed action of agent i at timestep t in

the k-th trajectory, and T (k) is the episode length. This design is motivated by a careful analysis of
the limitations of BC in multi-agent settings.

Limitation 1: Absence of Inter-Agent Information Conventional BC learns a local policy
πi(oi) = p(a | oi) by mapping the agent’s private observation oi to an action a, while ignoring
critical dependencies on other agents’ information. In cooperative multi-agent tasks, a common ide-
alization is to treat all agents as components of a single joint agent operating over the full global state
s, in which case the optimal policy is defined as πi(s) = p(a | s). However, under partial observ-
ability, the agent’s local observation oi may correspond to multiple possible global states, causing
p(a | oi) to become a weighted mixture over the optimal policies for different s. This discrepancy
leads to a mismatch between p(a | oi) and the true optimal policy p(a | s). Formally, we can express
this mismatch as:

p(a | oi) =
∑
s

p(a | s) · p(s | oi), (9)

where the posterior p(s | oi) represents a distribution over global states consistent with oi. When
p(s | oi) has high entropy, the resulting policy becomes a blurred mixture, leading to suboptimal
actions. Now consider conditioning on the joint observations of all agents (o1, . . . , on). The corre-
sponding policy is:

p(a | o1, . . . , on) =
∑
s

p(a | s) · p(s | o1, . . . , on). (10)

From the information-theoretic property that conditioning reduces entropy (Cover & Thomas, 2006),
we have:

H(s | oi) ≥ H(s | o1, . . . , on), (11)

which implies that the posterior p(s | o1, . . . , on) is more concentrated than p(s | oi).
As a result, the weighted average in Eq. 10 more closely approximates the true optimal policy
p(a | s) than Eq. 9. This analysis highlights that incorporating full agent trajectories, as in our
dialogue-style formulation, reduces the representation gap and leads to higher-quality decision mak-
ing compared to conventional BC.
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Limitation 2: Lack of Temporal Dependency BC also suffers from ignoring temporal depen-
dencies by treating each timestep independently, i.e., modeling the policy as p(ait | oit) without
incorporating past observations or actions. However, in partially observable environments, the cur-
rent observation oit alone is generally insufficient to infer the true latent state of the environment.
As a result, this memoryless policy lacks the contextual information required for strategic reasoning
over time.

To formalize this limitation, consider that the optimal policy in a Dec-POMDP depends on the full
action-observation history hi

t = (oi1, a
i
1, . . . , o

i
t−1, a

i
t−1, o

i
t). The true optimal policy is therefore:

πi
opt = p(ait | hi

t), (12)

whereas BC approximates this as:
πi

BC = p(ait | oit). (13)
Applying the data processing inequality (Cover & Thomas, 2006), we know that:

I(ait;h
i
t) ≥ I(ait; o

i
t), (14)

where I(· ; ·) denotes mutual information. This inequality highlights that conditioning on full history
provides strictly more information about the optimal action than conditioning on oit alone.

Thus, ignoring historical context reduces the model’s capacity to learn strategies that rely on long-
term planning, multi-agent coordination, or temporal disambiguation. Such strategies are frequently
required in complex tasks, including kiting, flanking maneuvers, or delayed action execution. DLM
addresses this limitation by formulating decision-making as an autoregressive sequence modeling
problem. By retaining the full sequence of past observation–action pairs as dialogue history, the
model can effectively leverage long-range temporal dependencies to make more informed and co-
herent decisions.

Design Motivation of DLM To address these limitations, DLM reformulates the decision process
as a dialogue-style sequence modeling problem. Instead of fitting per-timestep policies indepen-
dently, it models the entire trajectory as a structured autoregressive sequence of (o, a) pairs. This
design allows:

• Contextual Encoding: Inter-agent relationships are captured implicitly in the structured
dialogue, where each agent’s input includes both its own and nearby agents’ attributes,
encoded in natural language.

• Temporal Dependency: By modeling decisions autoregressively, the model naturally
learns from the accumulated context of previous observations and actions, thus capturing
history without explicit recurrence.

• CTDE Compatibility: Representing trajectories in language format naturally supports the
CTDE paradigm. Each dialogue-style trajectory encodes the full decision process of an in-
dividual agent, while maintaining access to global information across agents during train-
ing. This enables the model to learn coordinated strategies centrally, yet make decisions
based solely on local observations during execution.

In summary, the design of Eq. 8 serves as a unified interface that preserves agent-level autonomy
while enabling temporally and contextually grounded decision-making. This structure is essential
for bridging the gap between language models and multi-agent sequential decision processes.

A.4 TRAINING AND IMPLEMENTATION DETAILS

Supplementary Results for Sec. 4.1 In Sec. 4.1, we reported results on six representative tasks
from the SMAC benchmark. Here we provide results for the remaining nine tasks in Fig. 9. Taken
together with Fig. 5, the overall trends across all tasks remain consistent with the earlier analysis.

Baseline Implementation We compare DLM with a set of representative offline MARL base-
lines, which fall into two major categories: value-based methods and imitation-based methods.
Among value-based methods, TD3+BC (Kostrikov et al., 2021) applies a conservative value esti-
mation strategy by combining actor-critic learning with behavior cloning regularization, aiming to
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DLM-SFT(Ours) BC TD3+BC MACQL OMIGA CFCQLDLM-GRPO(Ours) MADT

(c)(a) (b)

(d) (e) (f)

(g) (h) (i)

Figure 9: Performance comparison with baselines on remaining SMAC tasks: (a)-(c) easy, (d)-(f)
hard, and (g)-(i) super hard. Only the final test performance of DLM and MADT is reported.

reduce overestimation and improve stability. MACQL (Formanek et al., 2024) extends the idea of
CQL (Kumar et al., 2020) to the multi-agent setting by incorporating joint action masking under the
CTDE paradigm. OMIGA (Wang et al., 2024) improves upon previous methods by incorporating
global-to-local value shaping to better guide decentralized agents during training. CFCQL (Shao
et al., 2023) further enhances robustness by introducing counterfactual regularization at the agent
level, allowing better credit assignment under partial observability. On the imitation-based side,
BC (Syed et al., 2008) directly learns policies via supervised learning from offline action labels
without any value estimation. MADT (Meng et al., 2023) formulates decision-making as an autore-
gressive sequence prediction problem and leverages return-conditioning to generalize across tasks
and agent configurations, although it requires environment interaction for online fine-tuning.

For implementation, we build all value-based baselines on top of the EPyMARL framework (Pa-
poudakis et al., 2020), which is designed for flexible MARL experimentation. For imitation-based
baselines, we adapt publicly available implementations released by the original authors. Where no
official code is available, we reproduce the algorithms based on their published descriptions and
validate the implementations by replicating reported performance. All baseline methods are trained
on our collected offline dataset to ensure consistency and fairness in comparison with DLM.

Implementation of DLM DLM is implemented using the Hugging Face Transformers library and
integrated with standard multi-agent datasets. We adopt LLaMA-3.2-1B as the pre-trained language
model backbone. The training process is divided into two stages: SFT and preference-based align-
ment via GRPO. In the SFT stage, we perform full-parameter fine-tuning on the first half (2000
trajectories) of our collected offline dataset. All 15 SMAC tasks are mixed and fed into the model in
a single training run. We choose not to use parameter-efficient methods like LoRA (Hu et al., 2021)
at this stage because our experiments show that, although LoRA can reduce training cost, it limits the
model’s representation capacity when dealing with diverse multi-task data. Given the small model
size (1B parameters), full fine-tuning ensures sufficient capacity to fully adapt to all environments.
Moreover, training on all tasks jointly avoids catastrophic forgetting that may occur if the model is
fine-tuned sequentially on different tasks. In the GRPO stage, we freeze the base model from SFT
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(a) (b)

Figure 10: Training curves of DLM. (a) DLM-SFT: cross-entropy loss and token accuracy over
tokens. (b) DLM-GRPO: reward (top), exact match rate (middle), and penalty (bottom).

and apply LoRA-based fine-tuning on the remaining half of the dataset (another 2000 trajectories).
This stage focuses on reducing OOD errors by leveraging lightweight executability-based reward
signals. Using LoRA here allows efficient alignment while preserving the general decision-making
capability acquired during SFT. This design balances robustness and generalization and enables
DLM to adapt without overwriting previously learned behaviors. Fig. 10 summarizes the learning
dynamics. In subplot (a), we observe a consistent decline in SFT loss alongside a steady increase in
token-level accuracy, which eventually reaches 94%, indicating that DLM-SFT can effectively learn
to reproduce behaviors from the offline trajectories across all tasks. In subplot (b), during the GRPO
stage, the preference reward steadily improves. At the same time, the exact match rises suggesting
that the model’s outputs increasingly match preferred actions even in challenging or OOD-prone
observations. The penalty term also gradually approaches zero, indicating a decreasing frequency of
invalid or infeasible actions. These trends validate the effectiveness of our two-stage design in first
imitating multi-agent behavior and then refining it through preference optimization.

Hyperparameter Settings All value-based baselines, including CFCQL, OMIGA, MACQL, and
TD3+BC, are implemented within the EPyMARL framework. We follow the default hyperparameter
settings provided in the official implementations or corresponding papers to ensure reproducibility
and fairness. For example, buffer sizes are set to 5000, the learning rate is fixed at 5e-4, and ϵ-greedy
exploration is applied with ϵ linearly annealed from 1.0 to 0.05 over 50,000 steps. All imitation-
based baselines, including MADT and BC, are trained using the same offline dataset with their
original configurations where available, ensuring consistent training conditions across all methods.
Key training hyperparameters for DLM are summarized in Tab. 4. All experiments are conducted
on 8 NVIDIA L40 GPUs.

Hyperparameter Tuning We adopt systematic strategies to tune the hyperparameters of DLM and
ensure fair comparison with baseline algorithms. For all value-based methods (CFCQL, OMIGA,
MACQL, and TD3+BC), we use the official hyperparameter settings from their original papers or
public implementations. These configurations have been validated across the SMAC benchmark.
For DLM, we perform controlled hyperparameter tuning on both the SFT and GRPO stages. Specif-
ically, we tune the learning rate, context length, LoRA rank, KL divergence coefficient (β), PPO
clipping threshold (ϵ), and sampling parameters (top-k, top-p). The search process is guided by per-
formance on a held-out subset of SMAC tasks (e.g., 3s5z, 10m vs 11m, and MMM2). Considering
the substantial computational cost of training across all tasks, we limit the search to a representative
subset to efficiently explore the hyperparameter space. For each hyperparameter combination, we
train the model under three different random seeds and select the configuration that achieves the
highest average win rate across these runs.

Unlike prior methods that require task-specific tuning, DLM uses a unified set of hyperparameters
across all 15 SMAC tasks. This design choice enhances generalization and prevents overfitting to
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Table 4: Hyperparameters used for DLM training.
Hyperparameter Value

DLM-SFT

Learning rate 2e-5
Batch size 8
Gradient accumulation steps 8
Max length 1024 tokens
Epochs 2
Packing True

DLM-GRPO

LoRA rank (r) 128
LoRA α 256
Batch size 8
Number of generations per sample 4
Epochs 2
Learning rate 5e-5
KL coefficient (β) 0.1
PPO clipping threshold (ϵ) 0.2
Top-k / Top-p sampling 50 / 0.95

any particular map. The final selected hyperparameters are summarized in Tab. 4, and all reported
results are obtained using this fixed configuration without further tuning.

Computational Cost We analyze the computational cost of all algorithms in terms of mean train-
ing duration per difficulty level and total GPU hours across all SMAC tasks. As shown in Fig. 11(a),
we observe two key trends. First, more complex algorithms, such as OMIGA and CFCQL, gener-
ally require longer training time, particularly on easy and hard tasks. Second, task difficulty tends
to correlate positively with training duration, as more challenging environments typically demand
longer convergence. An exception is observed with BC, which exhibits unusually high training time
even on some easy tasks. A plausible explanation is that BC struggles to converge in these cases,
and as a result, it often interacts with the environment until reaching the maximum episode length
during each training iteration, thereby increasing the overall runtime.

In contrast, as shown in Fig. 11(b), DLM exhibits the lowest overall computational cost among all
evaluated methods, despite its two-stage training pipeline. Specifically, DLM-SFT and DLM-GRPO
require approximately 60 and 70 GPU-hours respectively when trained across the full benchmark.
Notably, this is significantly lower than the cumulative training cost of value-based baselines, which
must be trained independently for each task. As such, the total cost reported for these baselines is
obtained by summing their per-task training durations. In comparison, DLM benefits from its unified
text-based formulation, enabling multi-task generalization via a single language model. This elim-
inates the need for repeated training or task-specific value function updates, resulting in substantial
computational savings. These properties highlight DLM’s efficiency and scalability in large-scale
offline MARL settings, offering a compelling balance of performance and resource efficiency.

A.5 ADDITIONAL EXPERIMENTAL RESULTS

A.5.1 ABLATION ON GRPO USAGE

To assess the necessity of second-stage preference optimization (GRPO), we conduct an ablation
study where all 4000 trajectories are used solely for SFT, omitting GRPO updates. We compare three
configurations: DLM-SFT trained on 2000 trajectories, full-data SFT trained on all 4000 trajectories,
and the full DLM pipeline combining SFT and GRPO. Tab. 5 reports win rates and OOD action rates
across representative SMAC tasks.

We observe that increasing the training data from 2000 to 4000 trajectories can lead to marginal
improvements in some challenging environments such as 27m vs 30m and MMM2, where data cov-
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(a) (b)

Figure 11: Computational cost comparison. (a) Average training time per difficulty level for each
baseline. (b) Total standardized GPU hours across all tasks.

Table 5: Comparison of win rate (%) and OOD rate (%) across three configurations: DLM-SFT
(2000), full-data DLM-SFT (4000), and DLM (SFT+GRPO).

Task Win Rate (%) OOD Rate (%)
SFT (2000) SFT (4000) DLM SFT (2000) SFT (4000) DLM

2s3z 98.5 98.4↓ 99.7↑ 0.00 0.00 0.00
3s5z vs 3s6z 84.2 81.2↓ 89.5↑ 0.23 0.19↓ 0.02↓
27m vs 30m 80.1 81.9↑ 84.6↑ 2.65 2.41↓ 0.78↓
MMM2 90.8 91.7↑ 97.3↑ 0.70 0.58↓ 0.10↓
1c3s5z 97.7 99.0↑ 98.8↑ 2.69 2.23↓ 0.59↓

erage helps mitigate underfitting. For example, in MMM2, win rate increases from 90.8% to 91.7%.
However, these gains are modest and come with persistently high OOD rates, indicating that naive
data scaling does not eliminate OOD behavior. In easier tasks such as 2s3z, full-data SFT provides
only limited benefit and may even induce slight overfitting, as shown by the stagnating or slightly
decreased win rates. In contrast, the full DLM configuration consistently improves both win rate
and OOD robustness. These results confirm that data quantity alone is insufficient to address OOD
generalization in multi-agent settings. This supports the analysis in Sec. 3.1, that increased data
alone cannot resolve OOD issues, and explicit alignment mechanisms like GRPO are essential.

A.5.2 ABLATION ON OOD FILTERING

We further examine the impact of executability-based filtering before applying GRPO. In the abla-
tion setting, GRPO is directly applied to all remaining trajectories without removing OOD-prone
samples identified during the SFT stage. Empirically, we observe significant training instability:
unlike the clean and steadily improving curves shown in Fig. 10(b), reward signals, exact match
rates, and penalties fluctuate erratically throughout training. This behavior suggests that the model
struggles to converge when exposed to a mixture of already-correct and severely misaligned sam-
ples. Furthermore, in tasks where DLM-SFT already achieves high performance (e.g., 2s3z), the
absence of filtering introduces noisy gradient updates that degrade accuracy and increase training
time. These results underscore the necessity of targeted optimization and validate the role of OOD
filtering in enabling stable and efficient GRPO alignment.

A.5.3 SCALABILITY TO ADDITIONAL BENCHMARKS

To further evaluate the scalability of DLM beyond SMAC, we expand training and testing to ad-
ditional multi-agent benchmarks. Following the dataset construction methodology in Sec. 3.1, we
collect dialogue-style offline datasets specifically from two tasks: Hallway:4×6×10 (Wang et al.,
2019) and LBF:11×11-6p-4f (Papoudakis et al., 2020). Based on these two datasets, we train a
DLM following the methodology described in this paper. Tab. 6 summarizes the results, where
DLM-GRPO consistently outperforms or matches strong baselines across both benchmarks.
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Table 6: Performance on additional training benchmarks.
Task DLM-GRPO DLM-SFT MADT BC TD3+BC MACQL OMIGA CFCQL
Hallway:4×6×10 0.83± 0.04 0.79± 0.05 0.77± 0.02 0.18± 0.05 0.16± 0.03 0.58± 0.17 0.70± 0.06 0.64± 0.16
LBF:11×11-6p-4f 0.96± 0.02 0.91± 0.03 0.85± 0.09 0.28± 0.06 0.30± 0.05 0.69± 0.08 0.85± 0.07 0.77± 0.09

Beyond training benchmarks, we also assess zero-shot transfer to additional tasks. On Hallway:6×6,
DLM-GRPO achieves a win rate of 0.76 ± 0.07, while on LBF:20×20-10p-6f it achieves 0.69 ±
0.05. These results indicate that DLM maintains strong generalization across structurally diverse
environments without task-specific adaptation.

A.6 LIMITATIONS AND POSSIBLE NEGATIVE SOCIETAL IMPACTS

One limitation of our approach is the need to convert structured trajectory data into natural language
dialogue format, which introduces additional preprocessing steps. Although this transformation
requires some effort and time, it is a one-time process and remains manageable in practice. We find
that the benefits of enabling compatibility with language models outweigh the modest cost of this
data preparation phase.

A.7 THE USE OF LARGE LANGUAGE MODELS

This paper has used large language models (LLMs) solely for language polishing, grammar check-
ing, and improving clarity of presentation. No LLMs were involved in designing the research ideas,
developing algorithms, conducting experiments, or analyzing results. All technical contributions,
datasets, experiments, and conclusions were produced entirely by the authors.
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