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Abstract— Foundation models pre-trained on web-scale data
are shown to encapsulate extensive world knowledge beneficial
for robotic manipulation in the form of task planning. However,
the actual physical implementation of these plans often relies on
task-specific learning methods, which require significant data
collection and struggle with generalizability. In this work, we
introduce Robotic Manipulation through Spatial Constraints
of Parts (CoPa), a novel framework that leverages the com-
mon sense knowledge embedded within foundation models to
generate a sequence of 6-DoF end-effector poses for open-
world robotic manipulation. Specifically, we decompose the
manipulation process into two phases: task-oriented grasping
and task-aware motion planning. In the task-oriented grasping
phase, we employ foundation vision-language models (VLMs) to
select the object’s grasping part through a novel coarse-to-fine
grounding mechanism. During the task-aware motion planning
phase, VLMs are utilized again to identify the spatial geometry
constraints of task-relevant object parts, which are then used to
derive post-grasp poses. We also demonstrate how CoPa can be
seamlessly integrated with existing robotic planning algorithms
to accomplish complex, long-horizon tasks. Our comprehensive
real-world experiments show that CoPa possesses a fine-grained
physical understanding of scenes, capable of handling open-set
instructions and objects with minimal prompt engineering and
without additional training. Project page: copa-2024.github.io

I. INTRODUCTION

Developing a general-purpose robot necessitates effective
approaches in two critical areas: (i) high-level task planning,
which determines what to do next, and (i) low-level robotic
control, focusing on the precise actuation of joints [1], [2].
The emergence of high-capacity foundation models [3], [4],
pre-trained on extensive web-scale datasets, has inspired a
surge of recent research efforts aimed at integrating these
models into robotics [5], [6]. Nonetheless, these methods
generally address only the “higher level” aspects of task
planning [7]-[10]. In contrast, the prevailing approach for
low-level control continues to revolve around crafting task-
specific policies via diverse learning methods [11], [12].
Such policies, however, are brittle and prone to failure when
encountering unseen scenarios [13]. Even the largest robotics
models struggle outside environments they have previously
encountered [14], [15].

The question then arises: what makes generalizable low-
level robotic control so hard? We attempt to answer this
question through the lens of human object manipulation. For
instance, when an individual is tasked with hammering a
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Fig. 1. Overview. We present CoPa, a novel framework
that utilizes common sense knowledge embedded within
VLMs for robotic low-level control. Given an instruction
and scene observation, CoPa first generates a grasp pose
through Task-Oriented Grasping Module. Subsequently, a
Task-Aware Motion Planning Module (detailed in Fig. |3)) is
utilized to obtain post-grasp poses.

nail, regardless of their familiarity with the specific hammer,
they intuitively grasp it by the handle (instead of the head),
adjust its orientation so the striking surface aligns with the
nail, and then execute the strike. This process underscores
the importance of a fine-grained understanding of the phys-
ical properties of task-related objects, or more broadly, the
extensive common sense knowledge of the world that fa-
cilitates generalizable object manipulation. Some pioneering
works [16], [17] have sought to leverage the rich semantic
knowledge of Internet-scale foundation models to enhance
low-level robotic control. Yet, these approaches are heavily
dependent on intricate prompt engineering and suffer from a
fundamental limitation: a coarse understanding of the scene,
leading to failures in tasks requiring fine-grained physical
understanding. Such a detailed understanding is essential for
nearly all real-world robotic tasks of interest.

To endow robots with fine-grained physical understand-
ing, we propose Robotic Manipulation through Spatial
Constraints of Parts (CoPa), a novel framework that incorpo-
rates common sense knowledge embedded within foundation
vision-language models (VLMs), such as GPT-4V, into the
robotic manipulation tasks. We have observed that most
manipulation tasks require a part-level, fine-grained physical
understanding of objects within the scene. Hence, we design
a coarse-to-fine grounding module to identify task-relevant
parts. Then, to leverage VLMs for aiding the robotic low-
level control, it is necessary to design an interface that not
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Fig. 2. Grounding Module. The grounding process is divided into two stages: coarse-grained object grounding and fine-
grained part grounding. Specifically, we first segment and label objects within the scene using SoM. Then, in conjunction with
the instruction, we employ GPT-4V to select the grasping/task-relevant objects. Finally, similar fine-grained part grounding

is applied to locate the specific grasping/task-relevant parts.

only allows VLMs to reason in the form of language but
also facilitates robot’s object manipulation. Therefore, we
propose utilizing spatial constraints as a bridge between
VLMs and robots. Specifically, we utilize VLMs to generate
the spatial constraints that the task-relevant parts must meet
to accomplish the task, and then employ a solver to determine
the robot’s poses based on these constraints. Finally, to
ensure the precise execution of the robot’s actions, transitions
between adjacent poses are achieved through traditional
motion planning methods.

We demonstrate that CoPa is capable of completing every-
day manipulation tasks with a high success rate through ex-
tensive real-world experiments. Attributed to the innovative
design of coarse-to-fine grounding and constraint generation
module, CoPa possesses a profound physical understanding
of the environment and can generate precise 6-Dof poses to
complete complex manipulation tasks, significantly surpass-
ing a strong baseline VoxPoser [16].

Our contributions are summarized as follows:

e We propose CoPa, a novel framework that utilizes
the common sense knowledge of VLMs for low-level
robotic control, which can handle open-set instructions
and objects with minimal prompt engineering and with-
out additional training.

o Through extensive real-world experiments, CoPa is
demonstrated to possess the capability to complete
manipulation tasks that require a fine-grained under-
standing of physical properties of task-relevant objects,
significantly surpassing baselines.

o We show that CoPa can be seamlessly integrated with
high-level planning methods to accomplish complex,
long-horizon tasks (e.g. make pour-over coffee and set
up romantic table).

II. METHOD

A. Promblem Formulation

Most manipulation tasks can be decomposed into two
phases: initial grasp of the object and subsequent motion
required to complete the task. Motivated by this observation,
we structure our approach into two modules: task-oriented
grasping and task-aware motion planning (as shown in
Fig. [T). Additionally, we posit that the execution of robotic

tasks essentially entails generating a series of target poses
for the robot’s end-effector. The transition between adjacent
target poses can be achieved through motion planning.

Given a language instruction [ and the initial scene obser-
vation Og (RGB-D images), our objective in the task-oriented
grasping module is to generate the appropriate grasp pose for
the specified objects of interest. This process is represented
as Py = f(I,0p). We denote the observation after the
robot reaches Py as O;. For the task-aware motion planning
module, our goal is to derive a sequence of post-grasp poses,
expressed as g(I,01) — {P1, Ps, ..., Py}, where N is the
total number of poses required to complete the task. After
acquiring the target poses, the robot’s end-effector can reach
these poses utilizing motion planning algorithms such as
RRT* [18] and PRM* [19].

B. Task-Oriented Grasping

To generate the task-oriented grasp pose, our approach
initially employs a grasping model to produce grasp pose
proposals, and filter out the most feasible one through our
novel grasping part grounding module.

Grasp Pose Proposals. We leverage a pre-trained grasping
model for generating grasp pose proposals. To achieve this,
we first convert RGB-D images into point clouds by back-
projecting them into 3D space. These point clouds are
then input into GraspNet [20], which outputs 6-DOF grasp
candidates. However, given that GraspNet yields all potential
grasps within a scene, it is necessary for us to employ a
filtering mechanism that selects the optimal grasp based on
the specific task outlined by the language instruction.
Grasping Part Grounding.

We employ a two-stage process to ground language in-
structions to the specific parts of objects intended for grasp-
ing: coarse-grained object grounding and fine-grained part
grounding. The entire grounding process is shown in Fig.
[l At both stages, we incorporate a recent visual prompting
mechanism known as Set-of-Mark (SoM) [21]. SoM lever-
ages segmentation models to partition an image into distinct
regions, assigning a numeric marker to each, significantly
boosting the visual grounding capabilities of VLMs. During
the coarse-grained object grounding phase, SoM is utilized
at the object level to detect and label all objects within the
scene. Following this, VLMs are tasked with pinpointing the
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Fig. 3. Task-Aware Motion Planning Module. Given the instruction and the current observation, we first employ a grounding
module (detailed in Fig. [2) to identify task-relevant parts within the scene. Subsequently, these parts are modeled in 3D, and
are then projected and annotated onto the scene image. Following this, VLMs are utilized to generate spatial constraints for
these parts. Finally, a solver is applied to calculate the post-grasp poses based on these constraints.

target object for grasping (e.g., a hammer), guided by the
user’s instructions. The selected object is then cropped from
the image, upon which fine-grained part grounding is applied
to determine the specific part of the object to be grasped (e.g.,
the handle of the hammer). This coarse-to-fine design endows
our method with fine-grained physical understanding ability,
enabling generalization across complex scenarios. Finally,
we filter the grasp pose candidates, projecting all the grasp
points onto the image and retaining only those within the
grasping part mask. From these, the pose with the highest
confidence scored by GraspNet is selected as the ultimate
grasp pose P for execution.

C. Task-Aware Motion Planning

After successfully executing task-oriented grasping, now

we aim to obtain a series of post-grasp poses. We divide
this step into three modules: task-relevant part grounding,
manipulation constrains generation and target pose planning.
The entire process is shown in Fig. [3]
Task-Relevant Part Grounding. Similar to the previous
grasp part grounding module, we use coarse-grained object
grounding and fine-grained part grounding to locate task-
relevant parts. Here we need to identify multiple task-relevant
parts (e.g. the hammer’s striking surface, handle and the
nail’s surface). Additionally, we observe that numeric marks
on the robotic arm may affect VLMs’ selection, so we filter
out the masks on the robotic arm (detailed in the Appendix).
Manipulation Constraints Generation. During the execu-
tion of tasks, task-relevant objects are often subject to various
spatial geometric constraints. similarly, when capping a bot-
tle, the lid must be positioned directly above the mouth of
the bottle. These constraints inherently necessitate common
sense knowledge, which includes a profound comprehension
of the physical properties of objects. We aim to leverage
VLMs to generate spatial geometric constraints for the object
manipulated by the robot.

We first model identified task-relevant parts as simple
geometric elements. Specifically, we represent slender parts
(e.g. hammer handle) as vectors, while other parts are
modeled as surfaces. For the parts modeled as vectors, we
directly draw them on the scene image; for those modeled
as surfaces, we ascertain their center points and normal
vectors, which are then projected and marked on the 2D

scene image. The annotated image is used as input for
VLMs, which are prompted to generate spatial constraints for
these geometric elements. We craft a set of descriptions for
spatial constraints, such as collinearity between two vectors,
perpendicularity between a vector and a surface, and so
force. We instruct the VLMs to first generate the constraints
necessary for the first target pose, followed by the subsequent
actions required after reaching that pose. Fig. 3] provides an
illustrative example of this process. Implementation details
of this process are provided in the Appendix.

Target Pose Planning. Upon obtaining manipulation con-
straints, we proceed to derive the sequence of post-grasp
poses. This is equivalent to computing a sequence of SE(3)
matrices such that, when applied to the parts of the object
manipulated by the robotic arm, these parts satisfy the spatial
geometric constraints. We operate under the assumption that
the object part under manipulation and the robotic end-
effector together constitute a rigid body. Consequently, these
calculated SE(3) transformations can be directly applied to
the robotic end-effector. We formalize the computation of
the SE(3) matrix as a constrained optimization problem.
Specifically, we compute a loss for each constraint, and then
a nonlinear constraint solver is used to find the SE(3) matrix
that minimizes the sum of these losses. After obtaining
the first target pose, we solve for subsequent poses in
alignment with the actions specified by VLMs. Concretely,
we sequentially compute a new pose corresponding to each
subsequent action. This process results in a complete set
of post-grasp poses {Pi, Ps,..., Py}, with the transitions
between adjacent poses facilitated by motion planning al-
gorithms. The detailed process for solving SE(3) matrix and
a comprehensive description of the subsequent actions can
be found in the Appendix.

III. EXPERIMENTS
A. CoPa for Real-World Manipulation

We design 10 real-world manipulation tasks to study
whether CoPa can generate robot trajectories to perform
real-world manipulation tasks. The quantitative results are
detailed in Table [[l We find that CoPa achieves a remarkable
success rate of 63% across ten different tasks, significantly
outperforming the VoxPoser baseline and various ablation
variants (detailed in the following sections). A key factor



Tasks (((:)(1)1}:'2) Voxposer A B C

Hammer nail 30% 0% 0% 0% 10%
Find scissors 70% 50% 10% 70%  70%
Press button 80% 10% 10% 60% 20%
Open drawer 80% 40% 10% 70% 30%
Pour water 30% 0% 0% 10% 0%
Put eraser 80% 30% 30% 60%  80%
Insert flower into vase 70% 0% 0% 60% 0%
Put glasses onto shelf 60% 20% 30% 50%  60%
Put spoon into cup 60% 10% 0% 30%  30%
Sweep nuts 70% 20% 20% 50%  70%
Total \ 63% 18% 11% 46% 37%

TABLE I. Quantitative results in real-world experiments.

in CoPa’s superior performance is its leverage of common
sense knowledge embedded in VLMs, which enables a fine-
grained understanding of objects’ physical properties during
both part grounding and constraint generation phases.

B. Understanding Properties of CoPa

In this section, we delve deeper into CoPa, shedding light
on its intriguing properties through a comparative analysis
with Voxposer, another method that utilizes the common
sense knowledge embedded in foundation models to synthe-
size robot trajectories. CoPa exhibits significant advantages
in the following three aspects:

Fine-Grained Physical Understanding. Many manipula-
tion tasks require a nuanced physical understanding of the
scene, which necessitates not only identifying object parts
with fine granularity but also comprehending their intricate
attributes. CoPa excels in this aspect, employing a coarse-to-
fine part grounding module to select grasping/task-relevant
object parts, and then utilizing VLMs to provide their spatial
geometry constraints. In contrast, Voxposer only perceives
objects in the scene as a whole. This coarse-grained level
of comprehension often leads to failure in tasks that require
precise operations.

Simple Prompt Engineering. CoPa demonstrates remark-
able generalizability across a wide range of scenarios with
minimal prompt engineering. In our CoPa experiments, we
employ just three examples to aid the VLMs in compre-
hending their roles. In contrast, Voxposer relies on highly
complex prompts containing 85 hand-crafted examples. Its
capability for reasoning predominantly stems from the pro-
vided prompts, thereby limiting its generalizability to new
scenarios. When we attempt to simplify Voxposer’s prompts,
reducing the example count to three for each module, the
system’s performance drastically declines, resulting in almost
complete failure across all evaluated tasks.

Handling Rotation DoF. Robotic manipulation requires not
just the movement of the end-effector to a specified location
but also the precise control of its rotation. CoPa calculates
the end-effector’s 6-DoF pose by considering the spatial
geometric constraints of key object parts within the scene,
allowing for accurate and continuous control over rotation
DoF. Conversely, Voxposer attempts to have LLMs directly
specify the end-effector’s rotation DoF based on simple
examples in prompts, causing the output rotation values to be

selected from a limited set of discrete options. This approach
often overlooks the dynamic interactions and constraints
between objects.

C. Ablation Study

We next conduct a series of ablation studies to demonstrate
the significance of the foundation model within our frame-
work, as well as the design of coarse-to-fine grounding and
constraint generation. The results are shown in Table [, The
three variants are represented in the table as A, B, C.

1) CoPa w/o foundation: We eliminate the use of founda-
tion vision-language models (GPT-4V). Specifically, we sub-
stitute grasping/task-relevant parts grounding module with an
open-vocabulary detector, Owl-ViT. Additionally, we remove
the constraint generation phase and instead compute post-
grasp poses in a predefined rule-based manner (detailed in
the Appendix). The results, as presented in Table I, reveal
that this approach encounters significant challenges, with
a success rate of merely 11% across all the tasks. This
underscores the crucial role of the common sense knowledge
embedded within VLMs.

2) CoPa w/o coarse-to-fine: We eliminate the coarse-
to-fine design in the grounding module, opting instead for
direct utilization of fine-grained SoM and GPT-4V to select
object parts within scenes. Experimental results indicate
that removing coarse-to-fine design leads to a performance
decline, especially in tasks where identifying important parts
accurately is challenging.

3) CoPa w/o constraint: In this ablation study, we have
VLMs directly output numerical values for the post-grasp
poses of the end-effector, instead of the constraints that need
to be satisfied by the object being manipulated. Experiments
demonstrate that, for most manipulation tasks, directly de-
riving precise pose values from scene images is extremely
challenging. In contrast, utilizing constraints given by VLMs
to solve for post-grasp poses presents a more viable option.

D. Integration with High-Level Planning

High-level planning and low-level control are two critical
and decoupled aspects of robotic task execution. Our low-
level control framework can be seamlessly integrated with
high-level planning methods to accomplish complex long-
horizon tasks. We design two long-horizon tasks, Make
pour—-over coffee and Set up romantic table,
to validate the effectiveness of this combination. Not only
do these two tasks need to be accurately decomposed into
reasonable and actionable steps, but the execution of each
step requires a profound understanding of the physical prop-
erties of the task-relevant objects. Specifically, we employ
VILA [10] as the high-level planning method to decompose
the high-level instruction into a sequence of low-level con-
trol tasks. Subsequently, these low-level control tasks are
executed sequentially using CoPa. Experiments demonstrate
that CoPa, combined with high-level planning methods,
can effectively complete long-horizon tasks, showcasing the
potential of this combination for real-world applications.
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APPENDIX
A. Hardware Setup

We set up a real-world tabletop environment. We use a Franka Emika Panda robot (a 7-DoF arm) and a 1-DoF parallel jaw
gripper. We use Franka ROS and Moveltﬂ to control the robot, which by default uses an RRT-Connect planner for motion
planning. For perception, we mount two RGB-D cameras (Intel RealSense D435) at two opposite ends (left and right from
the top-down view) of the table and calibrate them.

B. Tasks and Evaluations.

We design 10 real-world manipulation tasks (as show in Fig. ), each demanding a comprehensive understanding of the
physical properties of objects. We provide a detailed description of these tasks in Table [l For each task, we evaluate all
methods across 10 different variations of the environment, which encompass alterations in object types and their arrangements.

Hammer nail Instruction: “Hammer the nail.”
Description: This task requires the robot to first grasp the handle of the hammer, then rotate it
until its striking surface aligns with the surface of the nail, and finally hammer downwards. To
accomplish this task, it is essential to accurately identify and model the hammer’s striking surface,
handle and the nail’s surface.

Find scissors Instruction: “Find scissors for me.”
Description: In this task, the scissors may be partially obscured by other objects, such as books.
The robot is required to first locate the scissors and then grasp its handle.

Press button Instruction: “Press the button with the stick.”
Description: This task necessitates initially grasping the stick, then rotating it until its axis is
directly aligned with the button, and finally pressing it. To accomplish this task, it is imperative
to accurately identify and model the stick and the button.

Open drawer Instruction: “Open the drawer.”
Description: This task requires the initial grasping of the drawer handle, followed by a linear pull
along the handle’s normal vector.

Pour water Instruction: “Pour water from kettle to funnel/cup.”
Description: This task requires that the spout needs to be moved directly above the funnel, and
the kettle needs to be rotated at a certain angle so that the water can flow out. This task imposes
stringent demands on the robot’s control over its rotation DoF.

Put eraser into drawer Instruction: “Put eraser into the drawer.”
Description: In this task, a portion of the eraser is encapsulated by a protective cover, necessitating
that the robot exclusively grasps this protective cover.

Insert flower into vase Instruction: “Put flowers into the vase.”
Description: This task requires first grasping the flower by its stem (not the petals), then moving
the flower directly above the vase while rotating the flower to an upright position, and finally
inserting it straight down into the vase.

Put glasses onto shelf Instruction: “Put glasses onto the shelf.”
Description: In this task, We need to utilize common sense knowledge to determine that, when
picking up glasses, one should grasp the frame rather than the lenses.

Put spoon into cup Instruction: “Put spoon into the cup.”
Description: This task requires first grasping the spoon’s handle, then rotating it to the vertical
direction, moving it directly above the cup, and finally inserting it vertically down into the cup.

Sweep nuts Instruction: “Select a tool to sweep nuts aside.”
Description: This task requires the robot to first identify a tool (e.g. rasp) suitable for sweeping
nuts through common sense knowledge, and then to grasp the handle of the selected tool.

TABLE II. A List of 10 Real-World Manipulation Tasks. These tasks require a profound physical understanding of the
scene. We provide the instructions used in our experiments and detailed descriptions for each task.

C. VLMs and Prompting.

We employ GPT-4V from OpenAl API as the VLM. CoPa involves minimal few-shot prompts to aid VLMs in
comprehending their roles. Additionally, the chain-of-thought technique [22] is utilized to facilitate a deeper understanding
of the scene by VLMs. Prompts used in Section and Section can be found as follows:

Uhttp://docs.ros.org/en/kinetic/api/moveit_tutorials/html/


https://openai.com/api/
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/

“Find scissors”

T

“Hammer nail”

“Put eraser into drawer”  “Insert flower into vase”  “Put glasses onto shelf’ “Put spoon into cup” “Sweep nuts”

Fig. 4. 10 real-world experiments. Boasting a fine-grained physical understanding of scenes, CoPa can generalize to open-
world scenarios, handling open-set instructions and objects with minimal prompt engineering and without the need for
additional training.

Align striking surface with nail Insert spoon vertically down

" ) il H

VoxPoser

Grasp flower Move hammer to top of nail Rotate to face the cup

Fig. 5. Comparison with VoxPoser. We illustrate the execution of CoPa (top) and VoxPoser (bottom), demonstrating that
CoPa possesses a fine-grained physical understanding of scenes and can effectively handle rotation DoF. The tasks from left
to right are sequentially Insert flower into vase, Hammer nail, Put spoon into cup.

Coarse-Grained Grasping Object Grounding: copa-2024.github.io/prompts/coarse_grained_grasping_object_grounding.pdf
Fine-Grained Grasping Part Grounding: copa-2024.github.io/prompts/fine_grained_grasping_part_grounding.pdf

Coarse-Grained Task-Relevant Object Grounding: copa-2024.github.io/prompts/coarse_grained_relevant_object_grounding.pdf

Fine-Grained Task-Relevant Part Grounding: copa-2024.github.io/prompts/fine_grained _relevant_part_grounding.pdf]
Constraint Generation: copa-2024.github.io/prompts/constraint_generation.pdf

D. Baselines.

We compare with Voxposer [16], a method capable of synthesizing closed-loop robot trajectories without necessitating
additional training through the utilization of a series of foundational models. Following Huang et al [16], we employ GPT-4
from OpenAl API as the LLM, and utilize the open-vocabulary detector Owl-ViT [23] and Segment Anything [24] for
perception. Additionally, we adopt their real-world prompt as the prompt for Voxposer in our experiments. We show the
comparison between our method and VoxPoser in Fig. [3]

E. Task-Oriented Grasping Pipeline.

We show the entire process of task-oriented grasping in Fig. [f]


https://copa-2024.github.io/prompts/coarse_grained_grasping_object_grounding.pdf
https://copa-2024.github.io/prompts/fine_grained_grasping_part_grounding.pdf
https://copa-2024.github.io/prompts/coarse_grained_relevant_object_grounding.pdf
https://copa-2024.github.io/prompts/fine_grained_relevant_part_grounding.pdf
https://copa-2024.github.io/prompts/constraint_generation.pdf
https://openai.com/api/
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Fig. 6. Task-Oriented Grasping Module. This module is employed to generate grasp poses. Grasp pose candidates are
generated from the scene point cloud using GraspNet. Concurrently, given the instruction and the scene image, the grasping
part is identified by a grounding module (detailed in Fig. [2). Ultimately, the final grasp pose is selected by filtering candidates
based on the grasping part mask and GraspNet scores.

F. Robotic Arm Filtering.

Based on the camera’s extrinsic parameters, we render the robot’s URDF model onto the camera plane, thereby obtaining
the robot’s mask.

G. Part Modeling and Annotation.

In the task-aware motion planning phase (Section [[I-C), we need to model task-relevant parts selected by the grounding
module and annotate them in the scene image. We complete this through the following stages:
Part Modeling. We model identified task-relevant parts as vectors or surfaces. Specifically, we commence by obtaining the
minimum bounding rectangle for each part. Parts with an aspect ratio exceeding a predetermined threshold are considered
slender and are modeled as vectors. The remaining parts are modeled as surfaces.
Part Formulation. We need to obtain the mathematical representation of each part on the 2D image in this stage. For parts
modeled as vectors, we first perform linear regression to fit a line that best corresponds to their 2D masks, then identify the
intersection points of the line with the boundaries of the parts, which serve as the endpoints of the vector. For parts modeled
as surfaces, we first employ the RANSAC algorithm to determine their 3D center points and normal vectors, which are then
projected onto the 2D image.
Part Annotation. Now we need to annotate the parts according to their formulation on the scene image. First, each part is
masked with color and translucency on the image. Then for the parts modeled as vectors, we connect the two endpoints and
put a numerical label adjacent to the endpoint farther from the robot arm. For parts modeled as faces, we mark the center
point and normal vector, and label adjacent to the center point.

H. Details of Constraints.

For each task, we obtain a set of constraints through vision-language models. We then utilize optimization algorithms
(e.g., the BFGS algorithm or Trust-Region Constrained Optimization) to solve for an SE(3) matrix that minimizes the
cumulative loss associated with these constraints. In Table we provide a detailed description of the constraints used in
our experiments, along with their corresponding loss calculation methods. In the descriptions of these constraints, Point
A and Vector A are located on the object being manipulated, and thus require an SE(3) transformation when calculating
loss. Other points and vectors are considered static and do not require SE(3) transformation.

We define the SE(3) matrix we need to solve as follows:

R ¢t
T {OT J € SE(3), (1)
where Euclidean group SE(3) := {R,t | R € SO(3),t € R3}. We denote the points as p € R?, and the normalized vectors
as V € R3. Furthermore, we denote 7 as the SE(3) transformation, which can be applied to both points and vectors:

T(p)=Rp+t, T(V)=RV, 2)

L. Details of Subsequent Actions.

In Table we provide a detailed description of the subsequent actions utilized in our experiments, along with their
corresponding methodologies for calculating new poses.



Descriptions of Constraints Loss Calculation

Vector Aand Vector B are on the same line,

with the opposite direction. loss = |[T(Va) x Vel + [(T(pa) —pp) x VBl +[IT(Va) + V5|

The target position of Point A is x cm along

Vector B from Point C’s current position. loss = |(T(pa) —po) - Ve — x| + [(T(pa) —pc) x V|

Vector A is parallel to the table surface. loss = |T(Va) - Viabie|

Point A is & cm above the table surface. loss = |(T(pa) — pravie) * Viabie — |

Vector A is perpendicular to the table surface. loss = || T(Va) X Viabiel|

TABLE III. Desciptions of Constraints and Their Corresponding Loss Calculation Methods. ||-|| represents /o-norm.
The variables p;qpe and Viqpe respectively denote the coordinate and the normal vector of the table, with their values being
(0.5,0,0.07) and (0,0, 1) respectively. Each Vector corresponds to a Point. The normal vector of the part modeled as
the surface corresponds to the center point of the surface, while the point corresponding to the part modeled as the vector
is the point farther away from the robotic arm among its two endpoints.

Descriptions of Subsequent Actions New Pose Calculation

Move vertically down x cm. Subtract = cm from the current pose on the z-axis.

Move forward x cm. Move x cm along the current orientation of the end-effector.
Open the gripper. Open the gripper.

Rotate the joint corresponding to the end-effector (the 7th

End-effector rotates 180 degrees. joint for Franka Emika Panda robot) by 180 degrees.

TABLE 1V. Desciptions of subsequent actions and their corresponding new pose calculation methods.

J. Predefined Rule-Based Post-Grasp Pose Generation.

We design a rule-based method to replace the constraint generation module within our framework to generate post-grasp
poses. This method entails a prescribed pose calculation protocol specific to each format of instruction. The formats of the
instructions along with their corresponding post-grasp poses calculation methodologies are detailed in Table [V]

Instruction Format Post-Grasp Pose Calculation

. Move hammer to 5 cm above A.

Hammer A. 1
2. Move vertically down 6 cm.

Press A with B. 1. Move B to 5 cm above A.

2. Move vertically down 6 cm.
Open A. 1. Move backward 10 cm.
Pour water from A to B. 1. Move A to 5 cm above B.

2. End-effector rotates 180 degrees.

. Move A to 5 cm above B.
. Open the gripper.

Put A into B.

Do =

TABLE V. Predefined rule-based pose calculation methods. A and B in the instruction can refer to any object.

K. Long-Horizon Tasks

We show the execution process of the two long-horizon tasks, Make pour—-over coffee and Set up romantic
table in Figure
L. More Visualization.

Additional visualization for grounding module are presented in Fig. [§] for in Fig. 0] and for
task-relevant motion planning in Fig. [T0]



Long-Horizon Tasks Sequential Steps

‘Scoop beans into container” “Put funnel onto carafe”  “Pour powder into funnel”
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@ Set up romantic table v “Put flowers into vase”

Fig. 7. Long-Horizon Tasks. We show the execution process of two long-horizon tasks: Make pour-over coffee and
Set up romantic table. We demonstrate that CoPa can be seamlessly integrated with high-level planning methods
to accomplish complex long-horizon tasks.

Environment Image Coarse-Grained SoM Fine-Grained SoM Grasping Part

“Put eraser into drawer”

“Open drawer”

“Insert flower into vase”

Fig. 8. Visualization for Grounding Module.
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Fig. 9. Visualization for Task-Oriented Grasping.
Environment Image Task-Relevant 3D Components Constraints
T
- . 3 Spatial Constraints:
. 1. Vector 1 and Vector 2 are
'S colinear with opposite direction.
£ 2. Point 1 is 5 cm along Vector
a 2 from Point 2.
@
E Subsequent Actions:
: 1. Move forward 6 cm.
Spatial Constraints:
1. Vector 2 and Vector 1 are
% colinear with opposite direction.
© 2. Vector 2 is 3 cm Vector 1
E along from Point 1.
3
o Subsequent Actions:

None

Spatial Constraints:

1. Vector 2 and are
colinear with opposite direction.
2. Point 2 is 2 cm along

from

Subsequent Actions:
1. Move vertically down 6 cm.
2. Open the gripper.

“Put spoon into cup”

Fig. 10. Visualization for Task-Aware Motion Planning.
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