
Explainable Global Fairness Verification of
Tree-Based Classifiers

Stefano Calzavara∗, Lorenzo Cazzaro∗, Claudio Lucchese∗ and Federico Marcuzzi∗
∗Università Ca’ Foscari Venezia, Italy

Email: {name.surname}@unive.it

Abstract—We present a new approach to the global fairness
verification of tree-based classifiers. Given a tree-based classifier
and a set of sensitive features potentially leading to discrimina-
tion, our analysis synthesizes sufficient conditions for fairness,
expressed as a set of traditional propositional logic formulas,
which are readily understandable by human experts. The verified
fairness guarantees are global, in that the formulas predicate
over all the possible inputs of the classifier, rather than just a few
specific test instances. Our analysis is formally proved both sound
and complete. Experimental results on public datasets show that
the analysis is precise, explainable to human experts and efficient
enough for practical adoption.

I. INTRODUCTION

The ever-increasing success of Machine Learning (ML) led
to its massive deployment in a range of different settings over
the last years. Unfortunately, classic approaches to assess the
performance of ML models do not always provide a reliable
picture of their effectiveness in so many varied practical
deployments. For example, traditional deep learning models
with state-of-the-art accuracy may be vulnerable to evasion
attacks, i.e., small perturbations of test inputs designed to force
prediction errors, thus making their deployment in adversarial
settings unfeasible [1], [2]. Similarly, ML models may turn
out to be unfair for automated decision-making. For example,
a commercial recidivism-risk assessment algorithm was found
to be racially biased [3] and an existing algorithm adopted in
the US falsely determined that black patients were healthier
than other patients with similar conditions [4]. These incidents
led to a proliferation of research on fair ML in recent times,
as summarized in different surveys [5], [6], [7].

Fairness in ML has been analyzed from different angles and
can be broadly categorized in two main research lines. The first
one includes the development of new ML algorithms that are
able to mitigate the bias that is directly or indirectly present
in the training data [8], [9], [10]. The second, complementary
research line investigates techniques to estimate or even for-
mally verify the fairness guarantees provided by existing ML
models [11], [12], [13]. This paper contributes to the latter
line of work, which is still at an early stage of development
and suffers from relevant shortcomings.

A very popular approach to assess the fairness guarantees
of ML models is based on testing [14], [15], [16], [17]. The
key common intuition underlying any fairness testing strategy
is straightforward: generating a number of test inputs designed
to automatically identify individuals who may suffer from
discrimination by the ML model. Unfortunately, as for any

testing approach, this type of analysis is under-approximated:
these proposals can identify room for unfair treatment, but
cannot establish formal fairness proofs. This is sub-optimal
because it does not allow one to prove that unfair behavior
can never affect specific classes of individuals. For this reason,
recent papers advocated the adoption of formal fairness veri-
fication techniques to prove lack of discrimination [10], [11],
[12], [13], [18]. Most of the work in the area, however, just
focuses on deep neural networks and disregards tree-based ML
models, such as decision trees [19] and random forests [20],
which are still exceptionally popular, in particular for non-
perceptual classification tasks. The only notable fairness veri-
fication approach designed for tree-based classifiers leverages
abstract interpretation to verify local fairness properties [9].
Unfortunately, local fairness is now recognized as a rather
weak property predicating just on specific test instances, while
global fairness predicates over all the possible inputs of the
classifier and is thus more reliable to assess the actual fairness
guarantees that it provides [18].

A. Contributions

We present a new approach to the global fairness verification
of tree-based classifiers. Given a tree-based classifier and a
set of sensitive features potentially leading to discrimination,
our analysis synthesizes sufficient conditions for fairness,
expressed as a set of traditional propositional logic formulas
F predicating over the entire feature space, rather than just on
a specific test set, thus providing global fairness guarantees.

Our fairness verification approach is formally proved both
sound and complete, i.e., fairness is certified for any instance
satisfying some formula in F , and the formulas in F can char-
acterize all the instances where the classifier is fair. Moreover,
our approach is explainable, i.e., it is readily understandable by
human experts, being based on traditional logic formulas. In
particular, we empirically show that a small set of simple logic
formulas suffices to largely characterize the fairness guarantees
provided by the classifier in practice. This makes our approach
particularly appealing for problems like algorithmic hiring,
where automated decisions must be carefully audited [21].

B. Structure of the Paper

The paper is organized as follows:

• Section II reviews the background and introduces the nec-
essary ingredients to appreciate the technical contribution;

• Section III presents our fairness verification approach
and establishes the formal guarantees provided by our
analysis. Moreover, it describes the implementation of
the analysis in C++. The source code of our analyzer is
publicly available on Github1;

• Section IV reports on our experimental evaluation on
public datasets. Our experiments assess the precision of
the analysis, its explainability, and its performance;

• Section V presents and compares with related work, thus
clarifying the distinctive features of our proposal;

• Section VI briefly concludes the paper and describes
possible future work in the area.

II. BACKGROUND

We here introduce the key technical ingredients required to
appreciate the contribution of the paper.

A. Tree-Based Classifiers

Let X ⊆ Rd be a d-dimensional vector space of features
and let Y be a finite set of class labels. We assume each
element of the feature space ~x = 〈x1, . . . , xd〉, called instance,
to be assigned a correct class y by an unknown target function
g : X → Y . A classifier is a function f : X → Y intended
to approximate the target function g as accurately as possible.
Normally, f is automatically trained by a supervised learning
algorithm, using a training set Dtrain = {(~xi, g(~xi))}i of
correctly labeled instances. The performance of f is then
assessed on a separate test set Dtest = {(~zi, g(~zi))}i, sampled
from the same distribution of the training set.

In this paper, we focus on decision tree classifiers [19].
Decision trees can be inductively defined as follows: a decision
tree t is either a leaf λ(y) for some label y ∈ Y or an internal
node σ(f, v, tl, tr), where f ∈ {1, . . . , d} identifies a feature,
v ∈ R is a threshold for the feature, and tl, tr are decision
trees (left and right respectively). At test time, the instance ~x
traverses the tree t until it reaches a leaf λ(y), which returns
the prediction y, denoted by t(~x) = y. Specifically, for each
traversed tree node σ(f, v, tl, tr), ~x falls into the left sub-
tree tl if xf ≤ v, and into the right sub-tree tr otherwise.
Figure 1 represents an example decision tree of depth two,
which assigns the label +1 to the instance 〈10, 6〉 and the
label −1 to the instance 〈6, 9〉. Decision trees are normally
combined into an ensemble T = {t1, . . . , tn} to improve their
predictive power [20]: in this case, the ensemble prediction
T (~x) is computed by combining together the individual tree
predictions ti(~x), e.g., by performing majority voting on the
individually predicted classes.

B. Fairness in ML

Many definitions of fairness have been proposed in the
literature, each with its pros and cons [22]. Existing fairness
definitions can be broadly categorized in two main classes:
individual fairness definitions, requiring that similar inputs
must result in similar outputs, and group fairness definitions,

1https://github.com/LorenzoCazzaro/explainable-global-fairness-
verification

x1 ≤ 8

x2 ≤ 6

+1 -1

x2 ≤ 7

+1 -1

Fig. 1: Example of decision tree

requiring that a particular group of inputs taken as a whole
must be treated like a different group. It is now acknowledged
that individual fairness and group fairness are both prominent
and useful concepts, however, they may be conflicting and are
normally studied separately [23]. In this paper, we focus on a
specific individual fairness definition known as lack of causal
discrimination, which was introduced in a seminal paper on
fairness testing [14].

We consider this property for several reasons: its intuitive
flavour, its popularity in the literature, and its independence
from the distribution of the class labels (i.e., the target func-
tion), which simplifies its practical application. Moreover, lack
of causal discrimination is a powerful foundation for fairness,
because it does not rely on the choice of a specific test set, but
rather predicates over all the possible instances in (a subset of)
the feature space X , much in line with recent proposals on the
verification of global robustness properties of machine learn-
ing models [24], [25], [26]. This is important in the fairness
setting, because fairness is particularly relevant for minorities
for which it might be hard to collect representative data in the
test set. Indeed, the need for global fairness verification has
been recently advocated for neural networks [18].

Intuitively, lack of causal discrimination requires that any
two similar inputs must lead the classifier to the same outputs,
thus capturing the intuition of individual fairness; more specif-
ically, lack of causal discrimination requires that the classifier
returns the same prediction on any two instances differing just
for the value of a set of sensitive features S ⊆ {1, . . . , d}.
Given an instance ~x, we let δ(~x, S) stand for the set of the
instances differing from ~x just for a (possibly empty) subset
of the sensitive features S. For example, if S included just two
binary features, then δ(~x, S) would include the four instances
obtained from ~x by setting each of the sensitive features in S
to one of their two possible values, while keeping the other
features unchanged. Formally, lack of causal discrimination is
then defined as follows.

Definition 1 (Causal Discrimination). Let f : X → Y be a
classifier and let S be a set of sensitive features. We say that
f does not perform causal discrimination on X ′ ⊆ X if and
only if, for every instance ~x ∈ X ′, we have that ∀~z ∈ δ(~x, S) :
f(~z) = f(~x).

To exemplify the definition at work, suppose a classifier
is used to evaluate the legitimacy of loan requests and that

the set of sensitive features S just includes the customer’s
gender. Lack of causal discrimination on X requires that any
two identical customers differing just for their gender are
guaranteed to get the same response to their loan requests.
Focusing on a specific X ′ ⊆ X allows one to make the fairness
guarantees conditional and thus more practically useful, e.g.,
by requiring that any two identical customers with a monthly
salary higher than $4,000 are guaranteed to receive the same
response to their loan requests, irrespective of their gender.

III. GLOBAL FAIRNESS VERIFICATION

We here present our new approach to the global fairness
verification of tree-based classifiers.

A. Overview

Verifying the lack of causal discrimination is challenging,
because it involves a universal quantification over a set of
instances, possibly drawn from a continuous, unbounded fea-
ture space. Prior work on causal discrimination circumvented
this problem by restricting its focus to a finite feature space
and assessing fairness by means of a testing approach [14]. In
particular, this restriction enables the computation of a causal
discrimination score, defined as the fraction of instances in the
feature space suffering from causal discrimination, a measure
which is only meaningful as long as the feature space is
finite and instances therein can be exhaustively enumerated.
While one can play around this limitation by using binning to
discretize the feature space, the testing approach in [14] is not
exhaustive for scalability reasons, hence it can only identify
counter-examples suffering from causal discrimination, but it
cannot prove a lack of causal discrimination. Similar criticisms
apply to other more recent proposals on fairness testing [15],
[16], [17].

In the present work, we improve over the state of the art
by proposing a new verification technique to formally verify
the fairness guarantees supported by tree-based models. In
particular, our technique allows one to automatically identify
subsets of the feature space where lack of causal discrimi-
nation is ensured, rather than just counter-examples suffering
from causal discrimination. Concretely, we first discuss how
one can verify lack of causal discrimination for tree ensembles
given a continuous, unbounded subset of the feature space
X ′ ⊆ X as input (Section III-B). We then build on this idea
to design an effective algorithm to automatically synthesize
sufficient conditions ensuring lack of causal discrimination,
expressed as traditional propositional logic formulas, which
are readily understandable by human experts (Section III-C).
Our algorithm is iterative and its execution can be safely
stopped before convergence to improve performance, without
sacrificing soundness, i.e., only sufficient conditions are re-
turned by the algorithm. Moreover, the algorithm is proved
complete upon termination, i.e., the logic formulas returned
by the algorithm may eventually provide a complete charac-
terization of the fairness guarantees given by the classifier.

B. Verification Algorithm

The first problem we investigate can be formulated as
follows: given a decision tree ensemble T , a set of sensitive
features S and a subset of the feature space X ′ ⊆ X , verify
that T does not perform causal discrimination on X ′.

To answer this question, we leverage the stability notion
from the adversarial machine learning literature [27]. The idea
underlying stability is that classifiers deployed in adversarial
settings should not be fooled by adversarial manipulations of
test instances, designed to force the classifier to return wrong
predictions (so-called evasion attacks). This can be enforced
by requiring the classifier to be “stable” with respect to ad-
versarial manipulations, i.e., to stick to its original predictions
despite such manipulations. For example, malware detectors
must not change their predictions as the result of semantically-
preserving adversarial manipulations of malicious software,
e.g., if malware replaces a given API call with an equivalent
set of instructions, it should still be classified as malware.
Formally, stability is defined as follows.

Definition 2 (Stability). Given a classifier f : X → Y , an
instance ~x ∈ X and a set of adversarial manipulations A(~x),
f is stable on ~x if and only if ∀~z ∈ A(~x) : f(~z) = f(~x).

The idea of stability generalizes from the adversarial setting
to the fairness setting, because lack of causal discrimination
requires that arbitrary changes to the sensitive features S must
not affect the classifier predictions. A similar observation for
a different definition of fairness has been performed in recent
independent work [9]. The important point to note, though, is
that while stability predicates on a specific instance ~x ∈ X ,
lack of causal discrimination predicates over a potentially un-
bounded set of instances X ′ ⊆ X , hence traditional approaches
to stability/fairness verification such as [27] cannot be directly
applied to verify lack of causal discrimination on X ′.

We thus propose to leverage recent solutions for the data-
independent verification of decision tree ensembles [26], [28]
to verify lack of causal discrimination in a continuous, un-
bounded subset of the feature space X ′. These verification
approaches are data-independent because they do not analyze
the behavior of the ensemble on specific test instances, but
they rather analyze the structure of the ensemble to allow the
verification of properties predicating over all the instances in
(a subset of) the feature space. Concretely, data-independent
analyses operate in terms of a set of hyper-rectangles H ⊆ X
such that all instances ~x ∈ H satisfy a property of interest, e.g.,
lead to the same prediction or enjoy stability. In particular, we
build on the following definition of data-independent stability
analysis for our verification purposes.

Definition 3 (Data-Independent Stability Analysis). Let f :
X → Y be a classifier and let S be a set of sensitive features. A
data-independent stability analysis is an algorithm which takes
as input f and S to return as output a set of hyper-rectangles
U satisfying the following property: for every instance ~x ∈ X ,
if there exists ~z ∈ δ(~x, S) such that f(~z) 6= f(~x), then there
exists H ∈ U such that ~x ∈ H .

Intuitively, the output of a data-independent stability anal-
ysis over-approximates the subset of the feature space where
the classifier violates stability for some instances therein, i.e.,
if ~x suffers from causal discrimination, then the result of the
analysis must include a hyper-rectangle H such that ~x ∈ H .
In the fairness setting, this means that the union of the hyper-
rectangles returned by the analysis over-approximates the set
of the counter-examples suffering from causal discrimination.
Note that we only require an over-approximation rather than
an exact characterization, because this is a minimal assumption
for sound fairness verification and data-independent analyses
might be approximated by design for scalability reasons. For
example, the stability analysis in [26] identifies a superset of
the portion of the feature space where the classifier is unstable,
because robustness verification for tree ensembles (an NP-hard
problem [29]) can be reduced to stability analysis.

If a data-independent stability analysis is available, solving
our problem of interest is straightforward. In particular, given
a decision tree ensemble T and a set of sensitive features S,
we can run the data-independent stability analysis on T and
S to produce the set of hyper-rectangles U . To prove that T
does not perform causal discrimination on X ′ ⊆ X , it suffices
to show that there exists no H ∈ U such that H ∩ X ′ 6= ∅.

We now discuss how the verification approaches in [26],
[28] can be used to implement a data-independent stability
analysis as required by our definition, thus allowing us to take
advantage of existing state-of-the-art verification approaches.

1) Resilience Verifier [26]: Recent work on adversarial ma-
chine learning introduced the resilience notion to characterize
the security of classifiers deployed in adversarial settings. At
the core of its resilience verification algorithm, there is a
data-independent stability analysis for decision tree ensembles,
which can be readily leveraged for our purposes by modeling
an attacker such that, for all instances ~x ∈ X , A(~x) = δ(~x, S).
Intuitively, this attacker has full control of the value of the sen-
sitive features S, so stability against such an attacker ensures
that causal discrimination is not possible. The output of the
analysis is a set of hyper-rectangles over-approximating the
subset of the feature space where the decision tree ensemble
is unstable, thus satisfying the conditions of Definition 3.

2) VoTE Checker [28]: The VoTE Checker takes as input a
decision tree ensemble and produces as output a partitioning of
the feature space X in terms of the equivalence classes induced
by the ensemble. Each equivalence class is represented as a
pair (H, y), meaning that all the instances ~x ∈ H traverse the
same path combination in the ensemble leading to prediction y.
If there exist two equivalence classes (H1, y1), (H2, y2) such
that: (i) y1 6= y2, (ii) H1, H2 have a non-empty intersection
for all the features j 6∈ S, and (iii) H1, H2 have different
intervals for some feature k ∈ S, then H1 ∪ H2 includes a
counter-example suffering from causal discrimination, because
it contains two instances differing just for some sensitive
feature k where the classifier returns two different predictions.
It is thus possible to add both H1 and H2 to the set of hyper-
rectangles to be returned by the analysis, thus satisfying the
conditions of Definition 3.

C. Synthesis Algorithm

We now consider a different, more interesting problem:
given a decision tree ensemble T and a set of sensitive features
S, characterize the subset of the feature space X ′ ⊆ X such
that T does not perform causal discrimination on X ′.

Intuitively, this problem can be conservatively solved by
subtracting from X all the hyper-rectangles H ∈ U returned
by the data-independent stability analysis assumed in the
previous section, thus under-approximating the subset of the
feature space where T is stable. This approach would be
sound, but also computationally inefficient, because subtract-
ing hyper-rectangles suffers from an exponential blowup with
respect to the dimensionality of the feature space. Indeed,
given two hyper-rectangles with d features, their subtraction
might generate O(d) hyper-rectangles in the general case,
leading to O(d|U |) hyper-rectangles in the worst case at
the end of the subtraction process. This limitation can be
circumvented by avoiding the computation of the subtraction
and by directly reasoning in terms of instances falling out from
the hyper-rectangles U . However, this would make it hard to
characterize X ′ in a human-understandable way, due to both
the sheer number of the hyper-rectangles and the potentially
large dimensionality of the feature space.

We thus propose an iterative algorithm designed to incre-
mentally generate increasingly complex sufficient conditions
ensuring lack of causal discrimination, expressed as traditional
logic formulas. This way, the first iterations of the algorithm
can efficiently generate conditions that are short and easy to
understand for human experts, while being arguably the most
useful to analysts; the more analysis time and computational
resources are available, the more complex conditions can be
identified, thus detecting other subsets of the feature space
where lack of causal discrimination is ensured. In other words,
each iteration of the algorithm extends the sound approxi-
mation identified by the previous iteration by accounting for
more complicated sufficient conditions for fairness, until the
whole relevant subset of the feature space is covered by the
conditions (or an early stopping criterion is met).

1) Overview: Our algorithm is inspired by the classic
Apriori algorithm for frequent itemset mining [30]. We define
an item i as a formula of the form xf ≤ v or xf > v, where
f ∈ {1, . . . , d} identifies a feature and v ∈ R. An itemset
I is a set of formulas {i1, . . . , in}, interpreted in conjunctive
form. For example, the itemset I = {x1 > 1, x1 ≤ 3, x2 > 5}
identifies all the instances such that the first feature is in the
interval (1, 3] and the second feature is in the interval (5,+∞).
Formally, we write JiK for the set of the instances identified
by item i and we let JIK =

⋂
i∈IJiK stand for the set of the

instances identified by the itemset I . Given a hyper-rectangle
H , we denote with to itemset(H) its itemset representation,
i.e., the itemset I such that JIK = H .

An itemset identifies a subset of the feature space which
is assessed for lack of causal discrimination, thus allowing us
to leverage the following monotonicity property to prune the
search space: if I enjoys lack of causal discrimination, then

any other I ′ ⊇ I does that as well, because JI ′K ⊆ JIK; hence,
I ′ itself does not need to be analyzed. This property allows
one to assess itemsets for lack of causal discrimination by
starting from those with smaller cardinality.

To exemplify how the algorithm works at a high level,
consider a two-dimensional feature space and assume U
contains just two hyper-rectangles H1 = 〈(1, 5], (3, 8]〉 and
H2 = 〈(4, 7], (2, 6]〉. Our goal is characterizing those instances
falling outside both H1 and H2. Instances laying outside H1

can be described as the union of the following four hyper-
rectangles:

• H11 = 〈(−∞, 1], (−∞,+∞)〉, represented as the itemset
I11 = to itemset(H11) = {x1 ≤ 1}

• H12 = 〈(5,+∞), (−∞,+∞)〉, represented as the item-
set I12 = to itemset(H12) = {x1 > 5}

• H13 = 〈(−∞,+∞), (−∞, 3]〉, represented as the itemset
I13 = to itemset(H13) = {x2 ≤ 3}

• H14 = 〈(−∞,+∞), (8,+∞)〉, represented as the item-
set I14 = to itemset(H14) = {x2 > 8}

Instances laying outside H2 can instead be described as the
union of the following four hyper-rectangles:

• H21 = 〈(−∞, 4], (−∞,+∞)〉, represented as the itemset
I21 = to itemset(H21) = {x1 ≤ 4}

• H22 = 〈(7,+∞), (−∞,+∞)〉, represented as the item-
set I22 = to itemset(H22) = {x1 > 7}

• H23 = 〈(−∞,+∞), (−∞, 2]〉, represented as the itemset
I23 = to itemset(H23) = {x2 ≤ 2}

• H24 = 〈(−∞,+∞), (6,+∞)〉, represented as the item-
set I24 = to itemset(H24) = {x2 > 6}

To identify instances laying outside both H1 and H2, we
first inspect all the itemsets above and we check whether they
identify subsets of the feature space intersecting H1 or H2.
If we do not find overlaps, the itemsets already represent
instances falling out both H1 and H2, hence causal discrimina-
tion cannot happen there. In our example, we identify the item-
sets I11, I14, I22 and I23 as sufficient conditions for lack of
causal discrimination; note that the first and the third itemsets
only involve the feature x1, while the second and the fourth
itemsets only involve the feature x2. The other itemsets I12,
I13, I21 and I24, instead, identify subsets of the feature space
where causal discrimination might potentially happen. These
itemsets are thus combined together to generate additional
itemsets to check, each possibly using both features x1 and
x2, leading to conditions of higher complexity. For example,
I12 and I24 generate the new itemset {x1 > 5, x2 > 6},
which represents again instances falling out both H1 and
H2, thus identifying sufficient conditions for lack of causal
discrimination. Instead, I12 and I13 generate the new itemset
{x1 > 5, x2 ≤ 3}, which overlaps with H2, hence it identifies
a subset of the feature space where causal discrimination
may happen. This itemset may thus be combined with other
itemsets to undergo further refinements over x1 and x2, leading
to smaller intervals on them, possibly identifying additional
sufficient conditions for proving lack of causal discrimination.

2) Algorithm: Having defined the key intuitions of our pro-
posal, we are now ready to present the details of the synthesis
algorithm (Algorithm 1). The algorithm takes as input a tree
ensemble T and a set of sensitive features S to return as output
a set of sufficient conditions on the feature space ensuring
lack of causal discrimination. The algorithm starts by invoking
the ANALYZE function over T and S, which implements a
data-independent stability analysis (cf. Definition 3) returning
a set of hyper-rectangles U where T may be unstable (line
2). The algorithm then initializes an empty set of fairness
conditions F and generates a set of candidates C, initialized
with itemsets involving just a single feature, as described in
our example; this step is implemented by the GEN ITEMSETS
function (lines 3-4). The definition of GEN ITEMSETS is also
reported in Algorithm 1; it implements the simple intuition
from our previous example to first construct a hyper-rectangle
H ′ constraining just a single feature i and then convert it into
an equivalent itemset. In the first loop of the algorithm, each
itemset I ∈ C is then checked against U : if JIK does not
intersect any hyper-rectangle H ∈ U , the itemset identifies a
sufficient condition for lack of causal discrimination, hence it
is added to the set of fairness conditions F (lines 5-7). The
itemsets which do not immediately contribute to extending F
are instead used in the main loop of the algorithm (lines 8-19).
In particular, all such itemsets are combined with each other
through a meet operator u to produce new itemsets to analyze;
such itemsets can either be proved fair or undergo additional
refinements at later iterations, as long as there are candidates to
process. The meet operator is defined and commented below.

Definition 4 (Meet Operator). Given two itemsets I1, I2 such
that |I1| = |I2| = k and |I1∩I2| = k−1, we define their meet
I1 u I2 as the itemset I = I1 ∪ I2, provided that the following
conditions hold:

1) JIK 6= ∅, i.e., the itemset I identifies a non-empty subset
of instances;

2) JIK ⊂ JI1K and JIK ⊂ JI2K, i.e., the itemset I identifies
less instances than both I1 and I2.

If any of the aforementioned conditions do not hold, the
meet I does not exist.

Observe that, given two itemsets I1, I2 of cardinality k
sharing k − 1 elements, their meet I1 u I2 produces a new
itemset I1∪I2 of cardinality k+1, i.e., itemsets are generated
in increasing order of cardinality to leverage the discussed
monotonicity property. The two technical conditions of Def-
inition 4 just ensure that testing the newly generated itemset
might be useful, i.e., the new itemset is non-empty and differs
from the previously generated itemsets I1, I2. Although these
conditions are formulated in a declarative style to simplify
their understanding, the meet operator u is straightforward to
implement in practice. In particular, let i∗ be the (only) item
such that i∗ ∈ I2\I1 and let f∗ be the feature predicated upon
by i∗, then we let I1 u I2 = I1 ∪ {i∗} provided that the two
conditions of the definition are satisfied. The implementation
of the first condition checks whether all the items i ∈ I1

Algorithm 1 Synthesizing Fairness Conditions

1: function SYNTHESIZE(T, S)
2: U ← ANALYZE(T, S)
3: F ← ∅
4: C ← GEN ITEMSETS(U)
5: for I ∈ C do
6: if ∀H ∈ U : JIK ∩H = ∅ then
7: F ← F ∪ {I}
8: C ← C \ F
9: while C 6= ∅ do

10: C ′ ← ∅
11: for I1 ∈ C do
12: for I2 ∈ C do
13: I ← I1 u I2
14: if I exists ∧ 6 ∃I ′ ∈ F : JIK ⊆ JI ′K then
15: if ∀H ∈ U : JIK ∩H = ∅ then
16: F ← F ∪ {I}
17: else
18: C ′ ← C ′ ∪ {I}
19: C ← C ′

20: return F
21:
22: function GEN ITEMSETS(U)
23: C ← ∅
24: for H = 〈H1, . . . ,Hd〉 ∈ U do
25: for i ∈ {1, . . . , d} do
26: Hi ← (−∞,+∞) \Hi

27: for intv ∈ Hi do
28: H ′ ← 〈(−∞,+∞)i−1, intv, (−∞,+∞)d−i〉
29: C ← C ∪ {to itemset(H ′)}
30: return C

predicating on f∗ have a non-empty intersection with i∗. The
implementation of the second condition amounts to verifying
that adding i∗ to I1 identifies a smaller interval for feature f∗.

Finally, we report the key insight that not all the itemsets
must undergo the potentially expensive intersection test against
U . In particular, if JIK ⊆ JI ′K for some I ′ which we already
proved fair, I can be ignored, because it does not identify new
sufficient conditions for fairness (cf. the check at line 14). Note
that it is easy to move from the declarative style of this check
to its implementation, because checking JIK ⊆ JI ′K amounts
to checking that, for all features f , the interval on f identified
by I is included in the interval on f identified by I ′.

3) Formal Results: We can prove that our algorithm is both
sound and complete, as formalized below. Soundness ensures
that any itemset I returned by the synthesis algorithm is a
sufficient condition for fairness, i.e., instances in JIK cannot
suffer from causal discrimination.

Theorem 1 (Soundness). For any decision tree ensemble T
and set of sensitive features S, the call SYNTHESIZE(T, S)
returns a set of itemsets F such that, for every I ∈ F , T does
not perform causal discrimination on JIK.

Proof. The call ANALYZE(T, S) returns a set of hyper-
rectangles U satisfying the following property: for every
instance ~x ∈ X , if there exists ~z ∈ δ(~x, S) such that
f(~z) 6= f(~x), then there exists H ∈ U such that ~x ∈ H .
This means that T cannot perform causal discrimination on
any X ′ ⊆ X such that ∀H ∈ U : X ′∩H = ∅. The conclusion
follows by observing that any itemset I which is added to F
must satisfy this property (cf. lines 6-7 and lines 15-16).

Completeness, instead, ensures that the combination of all
the itemsets F returned by the synthesis algorithm coincides
with the subset of the feature space disjoint from the result of
the data-independent stability analysis, i.e., it represents the
ideal outcome of the synthesis algorithm. Note that, if the
data-independent stability analysis is not over-approximated
but exact, this ensures that F covers all the instances where
the classifier is fair.

Theorem 2 (Completeness). For any decision tree ensemble
T and set of sensitive features S, the call SYNTHESIZE(T, S)
returns a set of itemsets F such that

⋃
I∈F JIK = X \⋃H∈U H ,

where U is the output of ANALYZE(T, S).

Proof. We prove the equality of the two sets by showing that
the first is included in the second and vice-versa. Specifically:
• Consider any instance ~x ∈ ⋃

I∈F JIK, we show that for all
H ∈ U we have ~x 6∈ H , which implies ~x ∈ X \⋃H∈U H .
Indeed, the algorithm ensures that for all I ∈ F we have
that ∀H ∈ U : JIK ∩ H = ∅ (cf. lines 6-7 and lines
15-16).

• Consider any instance ~x ∈ X \⋃H∈U H , we show that
there exists I ∈ F such that ~x ∈ JIK, which implies
~x ∈ ⋃

I∈F JIK. We first observe that, for all Hj ∈ U ,
the call GEN ITEMSETS(U) returns a set of at most 2d
itemsets:

Cj = {{i1}, . . . , {i2d}},
such that ~x ∈ JikK for some ik; we refer to such item
ik as the witness for Hj . The itemset I includes all the
witnesses for each Hj ∈ U , thus ensures that ~x ∈ JIK =⋂

i∈IJiK. The conclusion follows by observing that either
the itemset I or another itemset I ′ such that JIK ⊆ JI ′K
is eventually enumerated by the algorithm.

4) Implementation: We implemented the synthesis algo-
rithm presented in this section in C++. Our implementation
leverages the data-independent stability analysis used by the
resilience verifier presented in [26], which we simply leverage
as a black box to implement the ANALYZE function. The
stability analysis is based on an iterative algorithm, whose
computational cost may show an exponential trend, but can be
constrained by fixing the number of iterations, without signifi-
cantly affecting the precision of the results [26]. Although the
rest of the implementation is a rather direct translation of the
pseudocode in Algorithm 1, a few important details are worth
discussing. A first point to note is that our implementation
supports a user-specified early stopping criterion in terms of

TABLE I: Dataset statistics (we report in parentheses the
number of categorical features after one-hot-encoding).

Dataset #Num features #Cat features #Instances %Positive
Adult 6 7 (81) 45,222 25%

German 7 13 (49) 1,000 70%
Health 93 2 (10) 166,842 68%

a maximum number of iterations of the algorithm. This is
useful because, like Apriori, our algorithm has an exponential
time complexity with respect to the number of items in
the worst case [30]. However, we empirically observed in
our experimental evaluation that a small number of short
conditions already allow one to largely characterize the fair-
ness guarantees of tree-based classifiers, hence restricting the
number of iterations saves analysis time, while leading to just
a small loss in precision in practice. Note that early stopping
preserves the soundness of the analysis, while obviously sac-
rificing its completeness. For space reasons, other interesting
implementation details are presented in Appendix A.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally assess the effectiveness of
our global fairness verification approach along different axes.

A. Methodology

We evaluate our proposal on decision tree ensembles trained
over three public datasets used in the fairness literature [9],
each associated with a binary classification task where fair-
ness matters: Adult2, German3 and Health4. The classification
task for Adult requires predicting yearly income (above or
below $50K), while the classification task for German requires
assigning credit scores (good or bad), hence these datasets
could be used to train classifiers deployed, e.g., to assess loan
requests. The classification task for Health, instead, requires
predicting ten-year mortality (above or below the median
Charlson index), hence it could be used to train classifiers
deployed in the health insurance setting. Since in all cases we
do not want to discriminate customers based on their gender,
we use the attribute sex as the binary sensitive feature. For
simplicity, we only consider a single sensitive feature leading
to a clear understanding of the related fairness issues, however,
our proposal supports an arbitrary number of sensitive features.

We pre-process the datasets by following three steps: (i)
we normalize all the numerical features in the interval [0, 1];
(ii) we perform the one-hot-encoding of all the categorical
features; (iii) we remove the features and instances containing
missing values. The characteristics of the datasets are in
Table I, along with the number of categorical features before
and after step (ii). We partition datasets into a training set Dtrain

and a test set Dtest, using 80-20 stratified random sampling.
For each dataset, we use Dtrain to train standard Random Forest
(RF) models as available in sklearn [31]. Experiments are then
conducted on both Dtest and a synthetic dataset Drand including

2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
4https://www.kaggle.com/c/hhp

100k random instances, generated by assigning a random value
to all their features, while restricting categorical features to a
set of plausible values observed in the original dataset. The
rationale for having these two sets is that Dtest is supposed
to follow the same distribution of Dtrain, hence it represents
expected inputs at test time, while Drand provides a much larger
view of the entire feature space, which is interesting because
our fairness guarantees are global and generalize beyond the
test set. Both Dtest and Drand are thus useful to investigate
different aspects of our proposal. We write D to stand for any
between Dtest and Drand, using the notation ~x ∈ D to identify
instances in D while ignoring their class label when D = Dtest.

The experiments are designed to answer three key research
questions:

1) What is the precision of the analysis performed by the
synthesis algorithm? In other words, do the synthesized
fairness conditions cover well the portions of the feature
space where lack of causal discrimination is ensured?

2) What is the explainability of the results returned by the
synthesis algorithm? Can we effectively characterize the
fairness guarantees of classifiers in terms of a small
number of conditions of limited complexity?

3) What is the performance of the synthesis algorithm?
How is the analysis running time influenced by the size
and complexity of the classifiers?

B. Precision of the Analysis

In our first experiment, we estimate the precision of our
verification approach by comparing the set of hyper-rectangles
U returned by the data-independent stability analysis with the
formulas F returned by the synthesis algorithm. The complete-
ness theorem ensures that F identifies the subset of the feature
space disjoint from all the hyper-rectangles in U , provided that
the synthesis algorithm runs up to completion. In practice,
however, we expect the synthesis algorithm to be normally
subject to early stopping, due to the exponential blow-up in the
number of candidates to be analyzed at the different iterations
and the increasing complexity of the synthesized formulas.
We thus estimate the precision of a partial output obtained
when the synthesis algorithm is forcefully stopped after six
iterations, because we are interested in formulas with a small
number of items, amenable for human understanding. Later
experiments assess the impact of the number of iterations on
the analysis results and running times.

We first compute the casual discrimination score on the
dataset D based on the set of hyper-rectangles U . In particular,
we observe that an instance ~x can only suffer from causal
discrimination when it belongs to some H ∈ U , so the casual
discrimination score on D can be conservatively approximated
as follows:

d(U,D) = |{~x ∈ D | ∃H ∈ U : ~x ∈ H}|
|D|

Similarly, we can use the formulas in F to reason about fair-
ness by observing that any instance satisfying some formula

TABLE II: Computed measures for different datasets and
models.

Dtest Drand
Dataset #Trees Depth a d d̃ d d̃

Adult

5 5 0.811 0.003 0.003 0.348 0.348
9 5 0.826 0.003 0.003 0.323 0.323
13 5 0.824 0.014 0.014 0.330 0.330
5 6 0.833 0.004 0.004 0.113 0.113
9 6 0.834 0.004 0.004 0.206 0.206
13 6 0.840 0.006 0.006 0.235 0.235

German

5 5 0.720 0.230 0.230 0.349 0.349
9 5 0.725 0.230 0.230 0.349 0.349
13 5 0.725 0.240 0.240 0.373 0.373
5 6 0.745 0.230 0.230 0.371 0.371
9 6 0.745 0.325 0.325 0.437 0.450
13 6 0.730 0.375 0.415 0.486 0.571

Health

5 5 0.801 0.008 0.008 0.027 0.027
9 5 0.802 0.008 0.008 0.027 0.027
13 5 0.803 0.016 0.016 0.028 0.028
5 6 0.810 0.018 0.018 0.209 0.209
9 6 0.809 0.018 0.018 0.209 0.209
13 6 0.810 0.020 0.020 0.259 0.259

in F cannot suffer from causal discrimination. This allows us
to compute the following over-approximation of d:

d̃(F,D) = 1− |{~x ∈ D | ∃I ∈ F : ~x ∈ JIK}|
|D|

Observe that d̃ is always an upper bound of d, because
our analysis is sound. Table II reports the values of d and d̃
computed for different datasets and models. We observe that
d and d̃ coincide for the very large majority of the cases,
meaning that the formulas in F accurately characterize the
subset of the feature space which is disjoint from all the
hyper-rectangles in U , even when enforcing early stopping
after six iterations. Note that d̃ does not coincide with d just
in three cases, all associated with the German dataset, but we
experimentally assessed that the two scores coincide also there
when increasing the number of iterations of the synthesizer to
seven. The table also reports the accuracy a on the test set
Dtest to show that all the analyzed models perform reasonably
well in practice.

C. Explainability of the Results

To assess to what extent the formulas F are explainable, we
carry out selected experiments on the most complex models
that we trained on the considered datasets, i.e., ensembles of 13
trees with maximum depth six, because they are expected to be
the most challenging to explain. We follow the methodology
used in previous work on the use of rules based on logic
formulas to extract explainable information from classifiers,
like [32], [33], [34]. In these proposals, the complexity of
logic formulas is measured by their length (number of atoms)
and short logic formulas are preferred because of their clearer
understanding. Of course, having a small number of formulas
is also important for explainability.

In the first experiment, we assess how the percentage of
instances for which F is able to provide a proof of fairness
grows when varying the number of iterations of the synthesis
algorithm. Of course, we compute this percentage with respect

to the number of instances which do not suffer from causal
discrimination, i.e., which might actually admit a proof of
fairness. Since a run with k iterations can only produce
formulas involving at most k items, this experiment provides
insights on how complex sufficient conditions for fairness turn
out to be in practice. Figure 2 plots the observed trend. The
experimental results for the Adult dataset show that just four
iterations of the algorithm suffice to establish fairness proofs
for more than 90% of the instances of both Dtest and Drand,
while just two iterations are enough to cover basically all the
instances of the two sets for the Health dataset. The German
dataset is the most challenging, since five iterations of the
algorithm are needed to cover around 80% of the instances in
the two sets. In the end, the experiment shows that short logic
formulas including at most five items are expressive enough to
establish useful fairness proofs in practice, while being small
enough to be easily understandable by human experts.

Clearly, however, our first experiment provides just a partial
picture of explainability, because it captures information about
the complexity of formulas, but it does not tell how many
formulas should be taken into consideration by human analysts
to draw useful conclusions. Indeed, we observe that the
amount of formulas can significantly grow as the number of
iterations of the synthesis algorithm increases. Figure 3 plots
how the number of synthesized formulas grows when varying
the number of iterations of the synthesis algorithm, showing
an exponential trend for the Adult and German datasets. We
see an interesting trend in the results for the Health dataset:
the number of formulas does not necessarily increase from one
iteration to another, since in some cases the synthesizer is not
able to produce longer formulas that provide proof of fairness.
However, the figure shows a significant increase in the number
of formulas when five iterations are performed, revealing that
later iterations could mine longer formulas even when, during
an iteration, new formulas are not discovered.

Nevertheless, we can show that the number of important
formulas for human analysts is relatively small in practice. We
estimate the importance of a formula by counting the number
of instances in Dtrain which are covered by the formula: the
intuition is that the more instances are covered by the formula,
the more the formula is expressive to prove fairness according
to the training data. We identify the set of the top k most
important formulas by means of a greedy strategy. We first
select the most important formula in terms of number of
covered instances, we then remove the covered instances from
Dtrain before selecting the second most important formula
and so on, until k formulas have been selected. Thus, by
fixing the number of iterations of the synthesis algorithm and
varying the number k, we can assess how the percentage of
instances proved fair by the top k formulas grows. Figure 4
plots the observed trend for six iterations of the synthesis
algorithm. The figure shows that for Adult and Health just
the top 10 formulas suffice to cover around 90% of the Dtest

instances, while for German the top 20 formulas allow one to
establish a proof of fairness for 80% of the instances in Dtest.
This shows that a small number of formulas is sufficient to

1 2 3 4 5 6

#iterations

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

Adult #trees=13, depth=6

Dtest
Drand

(a)

1 2 3 4 5 6

#iterations

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

German #trees=13, depth=6

Dtest
Drand

(b)

1 2 3 4 5 6

#iterations

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

Health #trees=13, depth=6

Dtest
Drand

(c)

Fig. 2: Percentage of instances for which F is able to provide a proof of fairness.

1 2 3 4 5 6

#iterations

0

100

200

300

400

#
co

nd
it

io
ns

Adult #trees=13, depth=6

(a)

1 2 3 4 5 6

#iterations

0

50

100

150

200

250

300

#
co

nd
it

io
ns

German #trees=13, depth=6

(b)

1 2 3 4 5 6

#iterations

0

20

40

60

80

#
co

nd
it

io
ns

Health #trees=13, depth=6

(c)

Fig. 3: Number of formulas in F when varying the number of iterations.

characterize the fairness guarantees on the test data for all the
considered datasets. In general, more formulas are needed to
cover synthetic instances in Drand. Indeed, the figure shows
that, while the top 20 formulas still allow one to cover more
than 90% of the instances in Drand for Health, they cover just
around 30% of the instances of Adult and around 60% of
the instances of German. The difference between the results
on Dtest and Drand can be explained by observing that the
synthesized conditions depend on the thresholds learned from
Dtrain, which is the same set used to rank the conditions, hence
the top conditions generalize better on a test set with the
same distribution of Dtrain than on a set of randomly generated
instances. The good news is that a small number of conditions
still suffice to cover a non-negligible share of Drand in all cases.

We finally perform a more qualitative evaluation of the
explainability of the conditions generated by the synthesis
algorithm by considering the German dataset as a case study.
For space reasons, this is discussed in Appendix B.

D. Performance Evaluation

We finally analyze the performance of the synthesis algo-
rithm when varying different dimensions of our experimental
setting. Recall that the synthesis algorithm invokes the data-
independent stability analysis in [26] as a black box, however
any other analysis like [28] could be used in its place, so we do
not include the cost of this preliminary operation in our perfor-

mance evaluation. For the sake of completeness, we separately
assess the computational cost of the data-independent stability
analysis in Appendix C. Times are computed for our sequential
implementation of the synthesis algorithm, running on a virtual
machine with 20 cores, 98.8GB of RAM and Ubuntu 20.04.4
LTS on a server with an Intel Xeon Gold 6148 2.40GHz.

First, we plot how the analysis times change when increas-
ing the number of analysis iterations from one to seven. For
the sake of readability, we only focus on ensembles of 13 trees
with maximum depth six, which are the most complex models
in our experimental evaluation and likely the most challenging
models to analyze. The results are shown in Figure 5. The first
observation is that all the models can be analyzed in a matter
of minutes when performing six iterations of the algorithm,
like in our previous experiments: the analysis takes around
30 minutes on the Adult dataset, five minutes on the German
dataset and just 13 seconds on the Health dataset. The gap
of the analysis time on the third dataset can be explained by
the smaller number of categorical features therein. In general,
the plots show an exponential growth of the analysis time as
the number of iterations increases. Luckily, previous results
show that conditions containing at most five items are already
enough to cover a large part of the feature space for all
the analyzed models, hence further increasing the number of
analysis iterations for them is unimportant in practice.

We then show how the running times of the synthesis

5 10 15 20 25 30

#top conditions

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

Adult #trees=13, depth=6, #iters=6

Dtest - all

Drand - all

Dtest - top

Drand - top

(a)

5 10 15 20 25 30

#top conditions

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

German #trees=13, depth=6, #iters=6

Dtest - all

Drand - all

Dtest - top

Drand - top

(b)

5 10 15 20 25 30

#top conditions

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

Health #trees=13, depth=6, #iters=6

Dtest - all

Drand - all

Dtest - top

Drand - top

(c)

Fig. 4: Percentage of instances for which the top k formulas of F are able to provide a proof of fairness.

3 4 5 6 7

#iterations

0

2000

4000

6000

8000

10000

12000

ti
m

e
(s

)

Adult #trees=13, depth=6

(a)

3 4 5 6 7

#iterations

0

1000

2000

3000

4000

ti
m

e
(s

)

German #trees=13, depth=6

(b)

3 4 5 6 7

#iterations

0

10

20

30

40

50

ti
m

e
(s

)

Health #trees=13, depth=6

(c)

Fig. 5: Running times when varying the number of analysis iterations.

algorithm are affected by the number of trees in the ensemble,
as well as by their depth. We first run the algorithm over
ensembles including an increasing number of trees of at most
depth six (Figure 6) and then over ensembles including 13
trees of increasing maximum depth (Figure 7), stopping the
analysis after six iterations. All the settings involving tree
ensembles with at most 13 trees or trees with maximum depth
six like in our previous experiments terminate in a matter
of minutes, thus showing the practicality of our proposal.
Nevertheless, both plots show that the analysis times exhibit
an exponential growth with respect to the complexity of the
model, since the complexity of the analysis algorithm is
exponential with respect to the number of items, which in turn
depends on the number of features and thresholds occurring in
the model. Thus, the analysis time for more complex models,
e.g., the tree ensembles with maximum depth seven trained
on the Adult dataset, could significantly increase. This further
motivates the benefits of an iterative analysis approach as the
proposed one, which allows one to leverage an early stopping
criterion to collect partial (yet empirically precise) results even
for cases where analysis convergence may turn out to be too
expensive.

E. Summary

Our previous experiments showed that a small number of
iterations of the synthesis algorithm are sufficient to provide a

precise and human-understandable characterization of the fair-
ness guarantees provided by the analyzed classifiers. Specifi-
cally, for all datasets and models we were consistently able to
obtain practically useful analysis results when terminating the
analysis after six iterations.

The results were precise, because they matched the fairness
guarantees provided by the classifier on both the test set and a
set of synthetic instances randomly created to provide a more
extensive picture of the entire feature space. The results were
explainable, because a small number of conditions of limited
complexity turned out to be sufficient to largely characterize
the fairness guarantees provided by the classifier, in particular
over the test set. Finally, our algorithm is efficient enough for
practical adoption on the analyzed models, because all the ex-
periments terminated in a matter of minutes when limiting the
number of analysis iterations. Yet, we notice that our algorithm
shows an exponential complexity with respect to the number
of items, like the Apriori algorithm it is inspired from [30].
In our application setting, the number of items is correlated
with the number of features and thresholds occurring in the
model, hence we observe that large models in terms of depth or
number of trees may eventually pose challenges to scalability.
Nevertheless, we showed that limiting the number of analysis
iterations is useful to collect meaningful results even for cases
that may be too complicated to analyze up to convergence,
which might be enough to mitigate scalability problems. We

5 7 9 11 13 15

#trees

0

1000

2000

3000

4000

5000

ti
m

e
(s

)

Adult depth=6, #iters=6

(a)

5 7 9 11 13 15

#trees

0

200

400

600

800

ti
m

e
(s

)

German depth=6, #iters=6

(b)

5 7 9 11 13 15

#trees

0

5

10

15

20

ti
m

e
(s

)

Health depth=6, #iters=6

(c)

Fig. 6: Running times when varying the number of the decision trees in the ensemble.

4 5 6 7

Depth

0

10000

20000

30000

40000

ti
m

e
(s

)

Adult #trees=13, #iters=6

(a)

4 5 6 7

Depth

0

200

400

600

800

1000

1200
ti

m
e

(s
)

German #trees=13, #iters=6

(b)

4 5 6 7

Depth

0

2000

4000

6000

8000

ti
m

e
(s

)

Health #trees=13, #iters=6

(c)

Fig. 7: Running times when varying the maximum depth of the decision trees in the ensemble.

leave a more extensive evaluation on larger models and an
additional optimization of our implementation to future work.

V. RELATED WORK

We categorize related work in two broad research areas:
fairness testing and fairness verification. We also briefly dis-
cuss prior work on fairness and explainability, which is a very
recent research area that is getting traction.

A. Fairness Testing

Fairness testing estimates the fairness guarantees of a clas-
sifier by means of the automated generation of a number
of test instances, which are fed to the model to identify
potential room for discrimination. The first work on fairness
testing we are aware of led to the development of the Themis
tool [14], [35]. Themis uses a testing approach to identify
instances which may suffer from causal discrimination, which
is the same notion of fairness used in this paper. Its approach
is based on a random generation of test instances, whose
number is determined by a simple statistical test. Later work
in the area like Aequitas improved the test instance generation
approach by integrating the global random search of Themis
with a perturbation-based local search [16]. Even more recent
work combined symbolic execution with local explanation
techniques to further improve the effectiveness of fairness
testing [15], proposed more advanced statistical tests [36] and
improved the explainability of the testing results [17].

Contrary to our proposal, fairness testing performs an under-
approximated analysis, i.e., it can find counter-examples to
fairness, but it cannot prove fairness for specific classes
of individuals. This is similar to what happens in software
verification, where testing can be used to prove the presence
of bugs, but not their absence. Testing thus plays an orthogonal
role with respect to verification: when fairness guarantees
cannot be proved for specific classes of individuals, one
can rely on testing to identify counter-examples. Indeed, it
would be interesting to study how our fairness verification
approach could boost the effectiveness of fairness testing, in
particular by directing it towards portions of the feature space
where discrimination might potentially happen. We leave the
investigation of this research idea to future work.

B. Fairness Verification

Fairness verification of ML models attracted a lot of at-
tention from the community, as shown by the emergence
of several recent surveys on the topic [5], [6], [7]. Fairness
is indeed a broad research area and several definitions of
fairness have been proposed in the literature, each with its
pros and cons: see [37], [22], [23] for a critical comparison
of different fairness definitions. Of course, when pursuing
formal verification, one has to stick to a specific notion of
fairness, which is lack of causal discrimination in our case.
This property belongs to the class of individual fairness and
we choose it for different reasons: it is intuitive, popular,

and provides global fairness guarantees beyond the test data.
Since individual fairness and group fairness deal with different
concerns and rely on rather different technical tools, we
consider verification of group fairness as complementary to
our work [38], [39], [40], [41].

A key difference of our work with respect to the state of the
art is its focus on tree-based models, which have been largely
ignored by prior work. Indeed, the first work on the verification
of individual fairness focused on linear models such as logistic
regression and support vector machines [11]. Most later work,
instead, focused on neural networks and cannot be applied to
decision tree ensembles [18], [12], [10]. A general approach
to fairness verification based on SMT solving was presented
in [13]. The approach can be applied to tree-based models by
encoding them into SMT, however, it treats fairness just as a
binary, unconditional property, i.e., a model is only considered
to be fair when sensitive features never play any role in
classification. This is too restrictive in practice, as shown
by their experimental evaluation which only verified two out
of 40 analyzed models as fair. Our verification approach is
more expressive, because it automatically identifies sufficient
conditions for fairness, defining specific classes of individuals
where discrimination cannot happen; these classes may be
small or large depending on the actual fairness guarantees of
the model. Indeed, observe that the trivially true condition
subsumes the simple verification problem considered in [13].

The only fairness verification approach designed for tree-
based models we are aware of is presented in [9]. Their
approach allows the verification of a local fairness property,
which just predicates on a specific set of test instances, thus
providing weaker fairness guarantees than the global fairness
proofs offered by lack of causal discrimination. Also, their
proposed approach just computes the causal discrimination
score of the classifier over the test set, without providing any
explanation of which individuals cannot suffer from discrimi-
nation. On the other hand, their approach was integrated into
a fair training algorithm called FATT, which is an interesting
avenue for future work we would like to pursue.

C. Fairness and Explainability

Reconciling fairness and explainability has been recognized
as an important problem for specific application scenarios,
such as algorithmic hiring [21]. However, the area is still in its
infancy [42] and there has been limited work on the topic so
far. Recent work focused on designing post-hoc analyses for
fairness that provide feature-level explanations, i.e., estimate
the influence of each feature on the bias of the model w.r.t. a
fairness definition and a specific set of instances [43], [44].
An alternative type of post-hoc fairness analysis is based
on counterfactual explanations computed on specific inputs
to explain the unfair behavior of the ML model [45], [46].
Contrary to post-hoc fairness analysis methods, which allow
one to derive explanations about the fair behavior of the ML
model on a specific set of instances, our verification method
analyzes the classifier itself without relying on a specific set of
instances and provides explanations about the fair behavior of

the classifier over the entire feature space, i.e., all the possible
inputs of the classifier, including unseen ones. Moreover,
recent research also investigated how to train ML models that
are both explainable and fair [47], [48], [49] and explainable
fairness for recommender systems [50], [51].

The use of logic formulas for explainability purposes has
also been investigated by the community. Prior work proposed
approaches to use logic formulas as building blocks of logic-
related models, i.e., rule lists [52] and decision sets [53], that
exhibit high explainability and accuracy. Moreover, since it is
difficult to explain the logic behind decision tree ensembles
because of their large number of trees, several contributions
in the literature proposed methods to extract a set of decision
rules that describe the tree-based model in order to provide
explanations at a global level about the outcome of its pre-
dictions [32], [33], [34], [54], [55], [56]. However, the idea
of using logic formulas to explain the fairness guarantees
provided by a ML model is novel to the best of our knowledge.
In other words, a key difference of our work with respect to
the state of the art is the target of the explanations, because
our proposal aims to explain the fairness guarantees of a tree
ensemble, not the outcome of its predictions.

VI. CONCLUSION

In this paper, we presented a new global fairness verification
approach for tree-based classifiers. Our approach synthesizes
sufficient conditions for fairness that provide global fairness
guarantees, since they predicate over the entire feature space
rather than on a test set of instances. The generated conditions
are expressed as traditional propositional logic formulas that
are readily understandable by human experts, i.e., they are
explainable. The analysis is proved to be sound and complete.
Extensive experimental results on public datasets show that
the analysis is precise, easily understandable by human experts
and efficient enough for practical adoption.

We foresee a few relevant directions for future work. First,
we would like to leverage our verification approach as a power-
ful foundation to train tree ensembles satisfying global fairness
properties. This seems feasible because prior work showed
how a local fairness verifier can be used to train locally fair
models [9]. Moreover, we plan to integrate fairness verification
and fairness testing by using the conditions generated by our
analysis and SMT solving to effectively find counterexamples
suffering from causal discrimination. Indeed, the conditions
returned by our synthesis algorithm identify portions of the
feature space that cannot include such counterexamples, so
fairness testing can be made more effective by sampling
only from different areas. Finally, we would like to explore
the generalization of our approach to capture group fairness
properties of tree-based models [40].

ACKNOWLEDGEMENT

This work was partially supported by iNEST (Intercon-
nected NordEst Innovation Ecosystem, Project ID: ECS
00000043), funded by PNRR (Mission 4.2, Investment 1.5)
NextGeneration EU.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available:
http://arxiv.org/abs/1312.6199

[2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” in
6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=rJzIBfZAb

[3] J. Larson, S. Mattu, L. Kirchner, and J. Angwin, “How we
analyzed the COMPAS recidivism algorithm,” 2016, available at
https://www.propublica.org/article/how-we-analyzed-the-compas-
recidivism-algorithm.

[4] Z. Obermeyer and S. Mullainathan, “Dissecting racial bias in an
algorithm that guides health decisions for 70 million people,” in
Proceedings of the Conference on Fairness, Accountability, and
Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019,
danah boyd and J. H. Morgenstern, Eds. ACM, 2019, p. 89. [Online].
Available: https://doi.org/10.1145/3287560.3287593

[5] S. Caton and C. Haas, “Fairness in machine learning: A survey,”
CoRR, vol. abs/2010.04053, 2020. [Online]. Available: https://arxiv.org/
abs/2010.04053

[6] L. Oneto and S. Chiappa, “Fairness in machine learning,” CoRR, vol.
abs/2012.15816, 2020. [Online]. Available: https://arxiv.org/abs/2012.
15816

[7] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” ACM Comput.
Surv., vol. 54, no. 6, pp. 115:1–115:35, 2021. [Online]. Available:
https://doi.org/10.1145/3457607

[8] S. Aghaei, M. J. Azizi, and P. Vayanos, “Learning optimal and
fair decision trees for non-discriminative decision-making,” in The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 2019, pp. 1418–1426.
[Online]. Available: https://doi.org/10.1609/aaai.v33i01.33011418

[9] F. Ranzato, C. Urban, and M. Zanella, “Fairness-aware training
of decision trees by abstract interpretation,” in CIKM ’21: The
30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5,
2021, G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, and
H. Tong, Eds. ACM, 2021, pp. 1508–1517. [Online]. Available:
https://doi.org/10.1145/3459637.3482342

[10] A. Ruoss, M. Balunovic, M. Fischer, and M. T. Vechev, “Learning
certified individually fair representations,” in Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html

[11] P. G. John, D. Vijaykeerthy, and D. Saha, “Verifying individual
fairness in machine learning models,” in Proceedings of the
Thirty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI 2020, virtual online, August 3-6, 2020, ser. Proceedings of
Machine Learning Research, R. P. Adams and V. Gogate, Eds.,
vol. 124. AUAI Press, 2020, pp. 749–758. [Online]. Available:
http://proceedings.mlr.press/v124/george-john20a.html

[12] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang, “Perfectly parallel
fairness certification of neural networks,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, pp. 185:1–185:30, 2020. [Online]. Available:
https://doi.org/10.1145/3428253

[13] A. Ignatiev, M. C. Cooper, M. Siala, E. Hebrard, and J. Marques-
Silva, “Towards formal fairness in machine learning,” in Principles
and Practice of Constraint Programming - 26th International
Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11,
2020, Proceedings, ser. Lecture Notes in Computer Science, H. Simonis,
Ed., vol. 12333. Springer, 2020, pp. 846–867. [Online]. Available:
https://doi.org/10.1007/978-3-030-58475-7 49

[14] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software
for discrimination,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, E. Bodden, W. Schäfer, A. van
Deursen, and A. Zisman, Eds. ACM, 2017, pp. 498–510. [Online].
Available: https://doi.org/10.1145/3106237.3106277

[15] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box
fairness testing of machine learning models,” in Proceedings of the
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019,
M. Dumas, D. Pfahl, S. Apel, and A. Russo, Eds. ACM, 2019, pp.
625–635. [Online]. Available: https://doi.org/10.1145/3338906.3338937

[16] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed
fairness testing,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, M. Huchard, C. Kästner, and
G. Fraser, Eds. ACM, 2018, pp. 98–108. [Online]. Available:
https://doi.org/10.1145/3238147.3238165

[17] E. Black, S. Yeom, and M. Fredrikson, “Fliptest: fairness testing
via optimal transport,” in FAT* ’20: Conference on Fairness,
Accountability, and Transparency, Barcelona, Spain, January 27-30,
2020, M. Hildebrandt, C. Castillo, L. E. Celis, S. Ruggieri, L. Taylor,
and G. Zanfir-Fortuna, Eds. ACM, 2020, pp. 111–121. [Online].
Available: https://doi.org/10.1145/3351095.3372845

[18] H. Khedr and Y. Shoukry, “Certifair: A framework for certified
global fairness of neural networks,” CoRR, vol. abs/2205.09927, 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2205.09927

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[20] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[21] C. Schumann, J. S. Foster, N. Mattei, and J. P. Dickerson, “We
need fairness and explainability in algorithmic hiring,” in Proceedings
of the 19th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May
9-13, 2020, A. E. F. Seghrouchni, G. Sukthankar, B. An, and
N. Yorke-Smith, Eds. International Foundation for Autonomous
Agents and Multiagent Systems, 2020, pp. 1716–1720. [Online].
Available: https://dl.acm.org/doi/10.5555/3398761.3398960

[22] S. Verma and J. Rubin, “Fairness definitions explained,” in Proceedings
of the International Workshop on Software Fairness, FairWare@ICSE
2018, Gothenburg, Sweden, May 29, 2018, Y. Brun, B. Johnson,
and A. Meliou, Eds. ACM, 2018, pp. 1–7. [Online]. Available:
https://doi.org/10.1145/3194770.3194776

[23] K. Makhlouf, S. Zhioua, and C. Palamidessi, “Machine learning
fairness notions: Bridging the gap with real-world applications,” Inf.
Process. Manag., vol. 58, no. 5, p. 102642, 2021. [Online]. Available:
https://doi.org/10.1016/j.ipm.2021.102642

[24] Y. Chen, S. Wang, Y. Qin, X. Liao, S. Jana, and D. A. Wagner, “Learning
security classifiers with verified global robustness properties,” in CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021,
Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds. ACM, 2021, pp. 477–494.
[Online]. Available: https://doi.org/10.1145/3460120.3484776

[25] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural
networks,” in Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser.
Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 2021, pp. 6212–6222. [Online]. Available:
http://proceedings.mlr.press/v139/leino21a.html

[26] S. Calzavara, L. Cazzaro, C. Lucchese, F. Marcuzzi, and S. Orlando,
“Beyond robustness: Resilience verification of tree-based classifiers,”
CoRR, vol. abs/2112.02705, 2021. [Online]. Available: https://arxiv.org/
abs/2112.02705

[27] F. Ranzato and M. Zanella, “Abstract interpretation of decision
tree ensemble classifiers,” in The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020. AAAI Press, 2020, pp. 5478–5486. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5998

[28] J. Törnblom and S. Nadjm-Tehrani, “Formal verification of input-output
mappings of tree ensembles,” Sci. Comput. Program., vol. 194, p.
102450, 2020. [Online]. Available: https://doi.org/10.1016/j.scico.2020.
102450

[29] A. Kantchelian, J. D. Tygar, and A. D. Joseph, “Evasion and
hardening of tree ensemble classifiers,” in Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, ser. JMLR Workshop and
Conference Proceedings, M. Balcan and K. Q. Weinberger, Eds.,
vol. 48. JMLR.org, 2016, pp. 2387–2396. [Online]. Available:
http://proceedings.mlr.press/v48/kantchelian16.html

[30] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994,
Santiago de Chile, Chile, J. B. Bocca, M. Jarke, and C. Zaniolo,
Eds. Morgan Kaufmann, 1994, pp. 487–499. [Online]. Available:
http://www.vldb.org/conf/1994/P487.PDF

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] G. R. Lal, X. Chen, and V. Mithal, “Te2rules: Extracting rule lists from
tree ensembles,” CoRR, vol. abs/2206.14359, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2206.14359

[33] H. Deng, “Interpreting tree ensembles with intrees,” Int. J. Data
Sci. Anal., vol. 7, no. 4, pp. 277–287, 2019. [Online]. Available:
https://doi.org/10.1007/s41060-018-0144-8

[34] M. Mashayekhi and R. Gras, “Rule extraction from random forest:
the RF+HC methods,” in Advances in Artificial Intelligence - 28th
Canadian Conference on Artificial Intelligence, Canadian AI 2015,
Halifax, Nova Scotia, Canada, June 2-5, 2015, Proceedings, ser.
Lecture Notes in Computer Science, D. Barbosa and E. E. Milios,
Eds., vol. 9091. Springer, 2015, pp. 223–237. [Online]. Available:
https://doi.org/10.1007/978-3-319-18356-5 20

[35] R. Angell, B. Johnson, Y. Brun, and A. Meliou, “Themis: automatically
testing software for discrimination,” in Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, G. T. Leavens, A. Garcia, and C. S. Pasareanu, Eds.
ACM, 2018, pp. 871–875. [Online]. Available: https://doi.org/10.1145/
3236024.3264590

[36] B. Taskesen, J. H. Blanchet, D. Kuhn, and V. A. Nguyen, “A
statistical test for probabilistic fairness,” in FAccT ’21: 2021 ACM
Conference on Fairness, Accountability, and Transparency, Virtual
Event / Toronto, Canada, March 3-10, 2021, M. C. Elish, W. Isaac,
and R. S. Zemel, Eds. ACM, 2021, pp. 648–665. [Online]. Available:
https://doi.org/10.1145/3442188.3445927

[37] S. Corbett-Davies and S. Goel, “The measure and mismeasure of
fairness: A critical review of fair machine learning,” CoRR, vol.
abs/1808.00023, 2018. [Online]. Available: http://arxiv.org/abs/1808.
00023

[38] A. Albarghouthi, L. D’Antoni, S. Drews, and A. V. Nori, “Fairsquare:
probabilistic verification of program fairness,” Proc. ACM Program.
Lang., vol. 1, no. OOPSLA, pp. 80:1–80:30, 2017. [Online]. Available:
https://doi.org/10.1145/3133904

[39] O. Bastani, X. Zhang, and A. Solar-Lezama, “Probabilistic verification
of fairness properties via concentration,” Proc. ACM Program. Lang.,
vol. 3, no. OOPSLA, pp. 118:1–118:27, 2019. [Online]. Available:
https://doi.org/10.1145/3360544

[40] B. Sun, J. Sun, T. Dai, and L. Zhang, “Probabilistic verification of neural
networks against group fairness,” in Formal Methods - 24th International
Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings, ser. Lecture Notes in Computer Science, M. Huisman,
C. S. Pasareanu, and N. Zhan, Eds., vol. 13047. Springer, 2021, pp. 83–
102. [Online]. Available: https://doi.org/10.1007/978-3-030-90870-6 5

[41] B. Ghosh, D. Basu, and K. S. Meel, “Justicia: A stochastic SAT
approach to formally verify fairness,” in Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp.

7554–7563. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/16925

[42] J. Zhou, F. Chen, and A. Holzinger, “Towards explainability for AI
fairness,” in xxAI - Beyond Explainable AI - International Workshop,
Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria,
Revised and Extended Papers, ser. Lecture Notes in Computer Science,
A. Holzinger, R. Goebel, R. Fong, T. Moon, K. Müller, and W. Samek,
Eds., vol. 13200. Springer, 2020, pp. 375–386. [Online]. Available:
https://doi.org/10.1007/978-3-031-04083-2 18

[43] A. Ghosh, A. Shanbhag, and C. Wilson, “Faircanary: Rapid continuous
explainable fairness,” in AIES ’22: AAAI/ACM Conference on AI,
Ethics, and Society, Oxford, United Kingdom, May 19 - 21, 2021,
V. Conitzer, J. Tasioulas, M. Scheutz, R. Calo, M. Mara, and
A. Zimmermann, Eds. ACM, 2022, pp. 307–316. [Online]. Available:
https://doi.org/10.1145/3514094.3534157

[44] A. Stevens, P. Deruyck, Z. V. Veldhoven, and J. Vanthienen,
“Explainability and fairness in machine learning: Improve fair
end-to-end lending for kiva,” in 2020 IEEE Symposium Series
on Computational Intelligence, SSCI 2020, Canberra, Australia,
December 1-4, 2020. IEEE, 2020, pp. 1241–1248. [Online]. Available:
https://doi.org/10.1109/SSCI47803.2020.9308371

[45] S. Sharma, J. Henderson, and J. Ghosh, “CERTIFAI: A common
framework to provide explanations and analyse the fairness and
robustness of black-box models,” in AIES ’20: AAAI/ACM Conference
on AI, Ethics, and Society, New York, NY, USA, February 7-
8, 2020, A. N. Markham, J. Powles, T. Walsh, and A. L.
Washington, Eds. ACM, 2020, pp. 166–172. [Online]. Available:
https://doi.org/10.1145/3375627.3375812

[46] S. Wachter, B. D. Mittelstadt, and C. Russell, “Counterfactual
explanations without opening the black box: Automated decisions and
the GDPR,” CoRR, vol. abs/1711.00399, 2017. [Online]. Available:
http://arxiv.org/abs/1711.00399

[47] P. A. Grabowicz, N. Perello, and A. Mishra, “Marrying fairness
and explainability in supervised learning,” in FAccT ’22: 2022 ACM
Conference on Fairness, Accountability, and Transparency, Seoul,
Republic of Korea, June 21 - 24, 2022. ACM, 2022, pp. 1905–1916.
[Online]. Available: https://doi.org/10.1145/3531146.3533236

[48] Y. Qiang, C. Li, M. Brocanelli, and D. Zhu, “Counterfactual
interpolation augmentation (CIA): A unified approach to enhance
fairness and explainability of DNN,” in Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, L. D. Raedt, Ed. ijcai.org, 2022, pp.
732–739. [Online]. Available: https://doi.org/10.24963/ijcai.2022/103

[49] E. A. Soares and P. Angelov, “Fair-by-design explainable models for
prediction of recidivism,” CoRR, vol. abs/1910.02043, 2019. [Online].
Available: http://arxiv.org/abs/1910.02043

[50] J. Tan, S. Xu, Y. Ge, Y. Li, X. Chen, and Y. Zhang,
“Counterfactual explainable recommendation,” in CIKM ’21: The
30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5,
2021, G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, and
H. Tong, Eds. ACM, 2021, pp. 1784–1793. [Online]. Available:
https://doi.org/10.1145/3459637.3482420

[51] Y. Ge, J. Tan, Y. Zhu, Y. Xia, J. Luo, S. Liu, Z. Fu, S. Geng, Z. Li,
and Y. Zhang, “Explainable fairness in recommendation,” in SIGIR
’22: The 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Madrid, Spain, July 11 - 15,
2022, E. Amigó, P. Castells, J. Gonzalo, B. Carterette, J. S. Culpepper,
and G. Kazai, Eds. ACM, 2022, pp. 681–691. [Online]. Available:
https://doi.org/10.1145/3477495.3531973

[52] E. Angelino, N. Larus-Stone, D. Alabi, M. I. Seltzer, and C. Rudin,
“Learning certifiably optimal rule lists,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 2017, pp.
35–44. [Online]. Available: https://doi.org/10.1145/3097983.3098047

[53] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision
sets: A joint framework for description and prediction,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal,
D. Shen, and R. Rastogi, Eds. ACM, 2016, pp. 1675–1684. [Online].
Available: https://doi.org/10.1145/2939672.2939874

[54] M. Mashayekhi and R. Gras, “Rule extraction from decision trees
ensembles: New algorithms based on heuristic search and sparse group

lasso methods,” Int. J. Inf. Technol. Decis. Mak., vol. 16, no. 6, p. 1707,
2017. [Online]. Available: https://doi.org/10.1142/S0219622017500055

[55] J. Hatwell, M. M. Gaber, and R. M. A. Azad, “CHIRPS: explaining
random forest classification,” Artif. Intell. Rev., vol. 53, no. 8, pp.
5747–5788, 2020. [Online]. Available: https://doi.org/10.1007/s10462-
020-09833-6

[56] C. Bénard, G. Biau, S. D. Veiga, and E. Scornet, “Interpretable random
forests via rule extraction,” in The 24th International Conference
on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15,
2021, Virtual Event, ser. Proceedings of Machine Learning Research,
A. Banerjee and K. Fukumizu, Eds., vol. 130. PMLR, 2021, pp. 937–
945. [Online]. Available: http://proceedings.mlr.press/v130/benard21a.
html

APPENDIX A
IMPLEMENTATION DETAILS

Another important aspect of the implementation is the
treatment of categorical features, i.e., features which do not
take arbitrary values in R, but may only take values from a
set of unordered options, e.g., gender or ethnicity. Categorical
features are not part of our model for simplicity, however, they
are not difficult to handle in practice. In particular, we handle
binary features just like numerical features, since the threshold
0.5 can be used to tell apart the two possible values of the
feature. As for other categorical features, we deal with them
by using one-hot-encoding, i.e., we generate a new feature f
for each possible value of the original feature, with the idea
that just one such feature will have a value greater than 0.5.
We then enforce that an itemset cannot contain two or more
items of the form xf > 0.5 that predicate on features resulting
by one-hot-encoding the same categorical feature. Since the
categorical features and the result of their one-hot-encoding
are known, the implementation of the meet operator checks
whether the generated itemsets respect the described integrity
condition and the meet is considered undefined in case of
violations. The resulting itemsets in the result F are post-
processed in order to improve their readability. In particular,
we collapse itemsets that differ just for formulas predicating
on different values of the same categorical feature by merging
these formulas in a single formula using a disjunction.

Finally, we mention a few optimizations of the imple-
mentation that we borrowed and adapted from Apriori [30].
The items within an itemset and the itemsets themselves
are kept ordered to reduce the number of executions of the
meet operator at line 13 and optimize its checks. The items
within an itemset are ordered as follows: first, we follow the
lexicographic order of the feature involved in the item; then,
for any two items involving the same feature, the formulas
with predicate ≤ precede the ones with predicate >; finally,
the items with predicate ≤ are ordered by decreasing value
of the threshold, while we do the opposite for the other
items. The order of the items makes it possible to define
the prefix of an itemset of size k as the ordered sequence
of its first k − 1 items. Itemsets are ordered to examine
itemsets sharing the same prefix consecutively, since only
itemsets sharing the same prefix satisfy the preconditions for
performing the meet operation. This allows one to reduce the
number of times that the meet operation is attempted between
two itemsets that do not satisfy the preconditions of the meet

TABLE III: Top 5 logic formulas obtained for the German
dataset (ensemble with 13 trees of maximum depth six). The
formulas are ordered by decreasing importance.

Rank Formula

1
status = “no checking account”
∧ savings 6= “unknown/no savings account”
∧ installment plans = “None”

2

250.00 ≤ credit amount ≤ 7,464.50
∧ status = “no checking account”
∧ (credit history = “no credits/all credits paid back duly”
∨ credit history = “existing credits paid back duly till now”
∨ credit history = “delay in paying off in the past”)

3
status = “no checking account”
∧ credit history 6= “critical account/other credits existing”
∧ savings 6= “unknown/no savings account”

4

250.00 ≤ credit amount ≤ 7,464.50
∧ status = “no checking account”
∧ credit history = “critical account/other credits existing”
∧ installment plans = “None”

5

telephone = False
∧ status = “no checking account”
∧ (credit history = “all credits at this bank paid back duly”
∨ credit history = “existing credits paid back duly till now”
∨ credit history = “delay in paying off in the past”)

definition. In particular, two ordered itemsets of size k are
lexicographically sorted using the established order of the
items: at first, their prefixes are compared starting from the
first item to the (k − 1)-th item; then, if the two itemsets
share the same prefix, they are ordered by comparing their
last, different item. Moreover, the order of the items followed
by the itemsets sharing the same prefix enables an optimization
of the checks of the meet operation. Indeed, for any itemset
I ′ listed after an itemset I sharing the same prefix we have
JIK 6⊂ JI ′K. As a result, the implementation of the second
condition of the meet I u I ′ just needs to check JI ′K ⊂ JIK.
Another optimization involves the condition at line 15, which
would require scanning the entire set U for every generated
itemset. We optimize this step by assigning to each H ∈ U
an identifier idH ∈ N and associating to each itemset I ∈ C
a set idsI = {idH : H ∈ U ∧ H ∩ JIK = ∅}. Then, the set
of the identifiers associated to the meet I = I1 u I2 of two
itemset I1 and I2 is idsI = idsI1 ∪ idsI2 , since I identifies less
instances than both I1 and I2 by definition. This information
is useful, because the condition at line 15 amounts just to
checking whether |idsI | = |U |, rather than scanning U .

APPENDIX B
CASE STUDY: GERMAN DATASET

In this section, we present some examples of logic formulas
generated by our synthesis algorithm to show that they provide
effective explanations about the fairness of the model.

We consider logic formulas synthesized for a tree ensemble
with 13 trees of maximum depth six, trained on the German
dataset. This dataset consists of 1,000 people who would like
to get credit from a bank and the corresponding classification
task consists in classifying their requests as high or low
risk. We consider sex as the sensitive feature, so the logic
formulas provide us the description of subsets of people whose
credit risk prediction does not change by flipping their sex.

We present the top 5 most important formulas generated
after six iterations of the synthesis algorithm in Table III, in
decreasing order of importance. We immediately observe that
the formulas are explainable, since they predicate on at most
four features. We then comment three representative formulas
below.

The first-ranked logic formula is interesting to examine,
since it covers a subset of people that we expect to be highly
represented also in the test set, because the formulas are
ranked by the importance computed on the training set (see
Section IV). In particular, it indicates that an individual that
has no checking account, possesses a saving account whose
amount is registered with the bank and has no installment
plans will not receive a different credit risk depending on their
sex. The formula suggests that the person’s savings represent
enough information for assigning the credit risk irrespective
of the sex of the requester, at least when no information about
the individual’s checking account or other installment plans is
available.

The second formula is interesting too. In particular, the
formula indicates that the model does not discriminate by sex
individuals who request a small credit amount (between 250
and ∼ 7,500 DM), do not have a registered checking account
and do not present a critical credit history. The formula
highlights a reasonable behavior of the ML classifier: when
requesting small credit amounts, the presence of a good credit
history already suffices for taking a decision, without relying
also on the individual’s sex.

Finally, the fourth formula is the only one in the top 5
formulas that predicates on individuals with a bad credit
history. In particular, it explains that an individual who re-
quests a small credit amount, has no checking account and
other installment plans, but presents a critical credit history,
is not discriminated by the classifier based on his sex. This
is interesting because bad credit history should be the most
important information when assessing a loan request. The
reason why this only emerges for small loan requests might be
twofold. First, assessing requests for small loans is expected
to be easier, hence the corresponding proof of fairness is also
easier and is established with a small number of analysis
iterations. Moreover, the dataset includes many such requests,
hence the importance of the formula increases and leads to its
inclusion in the top formulas.

In conclusion, the synthesized logic formulas are useful to
the analyst to conclude whether fairness guarantees can be
provided for particular subgroups of instances in the domain
of interest, not just for specific instances in the test set.

APPENDIX C
PERFORMANCE OF THE STABILITY ANALYSIS

We present some additional results about the time required
by the stability analysis proposed in [26]. The analysis is based
on an iterative algorithm that supports iterative refinements in
order to deal with the exponential complexity characterizing
the problem of verifying decision tree ensembles [29]. In our
experiments, we fix the number of analysis iterations to 100,

since a limited number of iterations already suffices to obtain
a reasonably accurate over-approximation of the subset of the
feature space where the ensemble is unstable [26]. We evaluate
the performance of the stability analysis when varying the
number of trees in the ensemble, as well as their depth, on
the three datasets used in Section IV to assess our proposal.

The experimental results are shown in Figure 8 and Figure 9,
which show how the running time of the stability analysis
changes when increasing the number of trees and their max-
imum depth respectively. For all the considered datasets and
models, the analysis for 100 iterations terminates in a matter of
seconds, thus showing the practicality of the stability analysis
for the considered cases. Even though the analysis of models
trained on the Adult dataset requires more time than analyzing
the same models trained on the other two datasets, the stability
analysis takes at most 16 seconds on the ensemble of 13 trees
with maximum depth seven.

Note that the time required by the stability analysis normally
represents a small amount of the time required by the synthesis
algorithm developed in our work. For example, consider the
case of an ensemble of 13 trees with maximum depth six,
trained on the Adult dataset: the stability analysis just takes
six seconds, while the synthesis algorithm takes more than 30
minutes (to generate conditions of length six). We do not try
to further improve the precision of the stability analysis, since
the main goal of our experimental evaluation is to assess the
effectiveness of the synthesis algorithm. However, these results
show that it would be certainly possible to replace the current
implementation of the stability analysis with a more expensive,
yet more precise alternative.

5 7 9 11 13 15

#trees

2

3

4

5

6

7

8

ti
m

e
(s

)

Adult depth=6, #iters=100

(a)

5 7 9 11 13 15

#trees

2

3

4

5

6

ti
m

e
(s

)
German depth=6, #iters=100

(b)

5 7 9 11 13 15

#trees

2

3

4

5

6

ti
m

e
(s

)

Health depth=6, #iters=100

(c)

Fig. 8: Running times of the stability analysis when varying the number of the decision trees in the ensemble.

4 5 6 7

Depth

0

2

4

6

8

10

12

14

16

ti
m

e
(s

)

Adult #trees=13, #iters=100

(a)

4 5 6 7

Depth

0

1

2

3

4

5

6

7

ti
m

e
(s

)

German #trees=13, #iters=100

(b)

4 5 6 7

Depth

3

4

5

6

7

8

9

ti
m

e
(s

)

Health #trees=13, #iters=100

(c)

Fig. 9: Running times of the stability analysis when varying the maximum depth of the decision trees in the ensemble.

