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Abstract
We show a close connection between the mixing
time of an arbitrary Markov process with gener-
ator L and an appropriately chosen generalized
score matching loss that tries to fit Op

p . In the spe-
cial case of O = ∇x, and L being the generator of
Langevin diffusion, this generalizes and recovers
the results from (Koehler et al., 2022). If L cor-
responds to a Markov process corresponding to
a continuous version of simulated tempering, we
show the corresponding generalized score match-
ing loss is a Gaussian-convolution annealed score
matching loss, akin to the one proposed in (Song
& Ermon, 2019). Moreover, we show that if the
distribution being learned is a finite mixture of
Gaussians in d dimensions with a shared covari-
ance, the sample complexity of annealed score
matching is polynomial in the ambient dimension,
the diameter of the means, and the smallest and
largest eigenvalues of the covariance—obviating
the Poincaré constant-based lower bounds of the
basic score matching loss shown in (Koehler et al.,
2022). This is the first result characterizing the
benefits of annealing for score matching—a cru-
cial component in more sophisticated score-based
approaches like (Song & Ermon, 2019; Song et al.,
2020).

1. Introduction
Score matching is an approach to learning probability dis-
tributions parametrized up to a constant of proportionality
(e.g. Energy-Based Models). The idea is to fit the score
of the distribution (i.e. ∇x log p(x)), rather than the like-
lihood, thus avoiding the need to evaluate the constant of
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proportionality. While there’s a clear algorithmic benefit,
the statistical cost can be steep: recent work by (Koehler
et al., 2022) showed that for distributions that have poor
isoperimetric properties (a large Poincaré or log-Sobolev
constant), score matching is substantially statistically less
efficient than maximum likelihood. However, many natural
realistic distributions, e.g. multimodal distributions as sim-
ple as a mixture of two Gaussians in one dimension—have
a poor Poincaré constant. As many distributions of interest
(e.g. images) are multimodal in nature, the score-matching
estimator is likely to be statistically untenable.

The seminal paper by (Song & Ermon, 2019) proposes a
way to deal with multimodality and manifold structure in
the data by annealing: namely, estimating the scores of con-
volutions of the data distribution with different levels of
Gaussian noise. The intuitive explanation they propose is
that the distribution smoothed with more Gaussian noise is
easier to estimate (as there are no parts of the distribution
that have low coverage by the training data), which should
help estimate the score at lower levels of Gaussian noise.
However, making this either quantitative or formal seems
very challenging. Moreover, (Song & Ermon, 2019) pro-
pose annealing as a fix to another issue: using the score to
sample from the distribution using Langevin dynamics is
also problematic, as Langevin mixes slowly in the presence
of multimodality and low-dimensional manifold structure.

In this paper, we show the following:

1. A general framework for designing generalized score
matching losses with good sample complexity from
fast-mixing Markov chains. Precisely, for every time-
homogeneous Markov process with generator L with
Poincaré constant CP , we can choose a linear operator
O (e.g. for self-adjoint L, the choice O = (−L)1/2
works), such that the generalized score matching loss
1
2Ep

∥∥∥Op
p − Opθ

pθ

∥∥∥2
2

has statistical complexity that is a

factor C2
P worse than that of maximum likelihood. (We

recall that CP characterizes the mixing time of the
Markov process with generator L in chi-squared dis-
tance.)
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2. Applying this framework to provide the first analy-
sis of the statistical benefits of annealing for score
matching. Precisely, we exhibit continuously-tempered
Langevin, a Markov process which mixes in time
poly(D, d, 1/λmin, λmax) for finite mixtures of Gaus-
sians in ambient dimension d with identical covariances
whose smallest and largest eigenvalues are lower and up-
per bounded by λmin and λmax respectively, and means
lying in a ball of radius D. (Note, the bound has no de-
pendence on the number of components.) Moreover, the
corresponding generalized score matching loss is a form
of annealed score matching loss (Song & Ermon, 2019;
Song et al., 2020), with a particular choice of weighing
for the different amounts of Gaussian convolution.

2. A Framework for Analyzing Generalized
Score Matching

The goal of this section is to provide a general framework
that provides a bound on the sample complexity of a gen-
eralized score matching objective with operator O, under
the assumption that some Markov process with generator L
mixes fast. In paricular, if L is self-adjoint, the choice of
O = (−L)1/2 will be appropriate. Precisely, we will show:

Theorem 1 (Main, sample complexity bound). Consider
the generalized score matching estimator, defined as in Def-
inition 2 with a continuous operator O, and suppose we
are optimizing it over a parametric family {pθ : θ ∈ Θ}.
Consider furthermore a Markov semigroup generator L,
whose stationary distribution is the data distribution p, with
a (finite) Poincaré constant CP , and such that O,L satisfy:

1. (Asymptotic normality) Let Θ∗ be the set of global
minima of the generalized score matching loss DGSM ,
that is:

Θ∗ = {θ∗ : DGSM (p, pθ∗) = min
θ∈Θ

DGSM (p, pθ)}

Suppose the generalized score matching loss is asymp-
totically normal: namely, for every θ∗ ∈ Θ∗, and every
sufficiently small neighborhood S of θ∗, there exists a
sufficiently large n, such that there is a unique mini-
mizer θ̂n of Êlθ(x) in S, where

lθ(x) =
1

2

∥∥∥∥Opθ(x)

pθ(x)

∥∥∥∥2
2

− 2O+

(
Opθ(x)

pθ(x)

)

Furthermore, assume θ̂n satisfies
√
n(θ̂n − θ∗)

d−→
N (0,ΓSM ).

2. (Realizibility) At any θ∗ ∈ Θ∗, we have pθ∗ = p.

3. (Compatibility of O and L) For every vector w,
the function g(x) = ⟨w,∇θ log pθ(x)|θ=θ∗ ⟩ satisfies

Ep∥Og∥2 = −⟨g,Lg⟩p. Note, in particular, if L is
self-adjoint, that is L+ = L, then O = (−L)1/2 satis-
fies this property.

Then, we have:

∥ΓSM∥OP ≤ 2C2
P ∥ΓMLE∥

2
OP (∥Cov(O∇θ log pθ)|θ=θ∗∥OP

+ ∥Cov((O+O)∇θ log pθ)|θ=θ∗∥OP )

Remark 1. The two terms on the right hand sides qualita-
tively capture two intuitive properties necessary for a good
sample complexity: the factor involving the covariances can
be thought of as a smoothness term capturing how regular
the score is as we change the parameters in the family we
are fitting; the CP term captures how the error compounds
as we “extrapolate” the score into a probability density
function.

Remark 2. This theorem generalizes Theorem 2 in (Koehler
et al., 2022), who show the above only in the case of L be-
ing the generator of Langevin (Definition 7), and O = ∇x,
i.e. when DGSM is the standard score matching loss. Fur-
thermore, they only consider the case of pθ being an expo-
nential family, i.e. pθ(x) ∝ exp(⟨θ, T (x)⟩) for some suf-
ficient statistics T (x). Finally, just as in (Koehler et al.,
2022), we can get a tighter bound by replacing CP by
the restricted Poincaré constant, which is the Poincaré
constant when considering only the functions of the form
⟨w,∇θ log pθ(x)|θ=θ∗ ⟩.

Remark 3. Note that if we know
√
n(θ̂n − θ∗)

d−→
N (0,ΓSM ), we can extract bounds on the expected ℓ22 dis-
tance between θ̂n and θ∗. Namely, from Markov’s inequality
(see e.g., Remark 4 in (Koehler et al., 2022)), we have for
sufficiently large n, with probability at least 0.99 it holds
that

∥θ̂n − θ∗∥22 ≤ Tr(ΓSM )

n
.

Some conditions for asymptotic normality can be readily
obtained by applying standard results from asymp-
totic statistics (e.g. (Van der Vaart, 2000), Theorem
5.23, reiterated as Lemma 4 for completeness).From
that lemma, when an estimator θ̂ = argmin Êlθ(x)
is asymptotically normal, we have

√
n(θ̂ − θ∗)

d−→
N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(x; θ

∗))(∇2
θL(θ

∗))−1
)
,

where L(θ) = Eθl(x). Therefore, to bound the spectral
norm of ΓSM , we need to bound the Hessian and covari-
ance terms in the expression above. The latter is a fairly
straightforward calculation, which results in the following
Lemma, proven in Appendix B.

Lemma 1 (Bound on smoothness). Let lθ(x) =
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1
2

[∥∥∥Opθ(x)
pθ(x)

∥∥∥2
2
− 2O+

(
Opθ(x)
pθ(x)

)]
. Then,

Cov(∇θlθ(x)) ⪯ 2Cov

(
(O∇θ log pθ)

Opθ
pθ

)
+ 2Cov

(
(O+O)∇θ log pθ

)
The bound on the Hessian is where the connection to the
Poincaré constant manifests. Namely, we show:

Lemma 2 (Bounding Hessian). Let the operators O,L
be such that for every vector w, the function g(x) =
⟨w,∇θ log pθ(x)|θ=θ∗ ⟩ satisfies Ep∥Og∥2 = −⟨g,Lg⟩p.
Then it holds that[

∇2
θDGSM (p, pθ∗)

]−1 ⪯ CPΓMLE

3. Instantiating the framework with
Continuously Tempered Langevin Dynamics

In this section, we instantiate the framework from the previ-
ous section to the specific case of a Markov process, Con-
tinuously Tempered Langevin Dynamics, which is a close
relative of simulated tempering (Marinari & Parisi, 1992),
where the number of “temperatures” is infinite, and we
temper by convolving with Gaussian noise. We show that
the generalized score matching loss corresponding to this
Markov process mixes in time poly(D, d) for a mixture of
K Gaussians (with identical covariance) in d dimensions,
and means in a ball of radius D. More precisely, in this sec-
tion, we will consider the following family of distributions:

Assumption 1. Let p0 be a d-dimensional Gaussian dis-
tribution with mean 0 and covariance Σ. We will assume
the data distribution p is a K-Gaussian mixture, namely
p =

∑K
i=1 wipi, where pi(x) = p0(x − µi), i.e. a shift

of the distribution p0 so its mean is µi. We will assume
the means µi lie within a ball with diameter D. We will
denote the min and max eigenvalues of covariance with
λmin(Σ) = λmin and λmax(Σ) = λmax. We will denote the
min and max mixture proportion with mini wi = wmin and
maxi wi = wmax. Let Σβ = Σ + βλminId be the short-
hand notation of the covariance of individual Gaussian at
temperature β.

Mixtures of Gaussians are one of the most classical dis-
tributions in statistics—and they have very rich modeling
properties. For instance, they are universal approximators in
the sense that any distribution can be approximated (to any
desired accuracy), if we consider a mixture with sufficiently
many components (Alspach & Sorenson, 1972). A mixture
of K Gaussians is also the prototypical example of a distri-
bution with K modes — the shape of which is determined
by the covariance of the components.

Note at this point we are just saying that the data distribution
p can be described as a mixture of Gaussians, we are not
saying anything about the parametric family we are fitting
when optimizing the score matching loss—we need not
necessarily fit the natural unknown parameters (the means,
covariances and weights).

The Markov process we will be analyzing (and the corre-
sponding score matching loss) is a continuous-time analog
of the Simulated Tempering Langevin Monte Carlo chain
introduced in (Ge et al., 2018):

Definition 1 (Continuously Tempered Langevin Dynamics
(CTLD)). We will consider an SDE over a temperature-
augmented state space, that is a random variable
(Xt, βt), Xt ∈ Rd, βt ∈ R+, defined as

dXt = ∇x log p
β(Xt)dt+

√
2dBt

dβt = ∇β log r(βt)dt+∇β log p
β(Xt)dt

+ νtL(dt) +
√
2dBt

where r : [0, βmax] → R denotes the distribution over β,

r(β) ∝ exp
(
− 7D2

λmin(1+β)

)
and βmax = 14D2

λmin
− 1. Let

pβ := p ∗ N (0, βλminId) denotes the distribution p con-
volved with a Gaussian of covariance βλminId. Further-
more, L(dt) is a measure supported on the boundary of the
interval [0, βmax] and νt is the unit normal at the endpoints
of the interval, such that the stationary distribution of this
SDE is p(x, β) = r(β)pβ(x) (Saisho, 1987).

Remark 4. The existence of the boundary measure is a
standard result of reflecting diffusion processes via solutions
to the Skorokhod problem (Saisho, 1987). If we ignore the
boundary reflection term, the updates for CTLD are simply
Langevin dynamics applied to the distribution p(x, β). r(β)
specifies the distribution over the different levels of noise
and is set up roughly so the Gaussians in the mixture have
variance βΣ with probability exp(−Θ(β)).

Remark 5. This chain has several similarities and crucial
differences with the chain proposed in (Ge et al., 2018). The
chain in (Ge et al., 2018) has a finite number of temperatures
and the distribution in each temperature is defined as scaling
the log-pdf, rather than convolution with a Gaussian—this
is because the mode of access in (Ge et al., 2018) is the
gradient of the log-pdf, whereas in score matching, we have
samples from the distribution. The distributions in (Ge et al.,
2018) are geometrically spaced out—so β being distributed
as exp(−Θ(β)) in our case can be thought of as a natural
continuous analogue.

Since CTLD amounts to performing (reflected) Langevin
dynamics on the appropriate joint distribution p(x, β), the
corresponding generator L for CTLD is also readily written
down:
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Proposition 1 (Dirichlet form for CTLD). The Dirichlet
form corresponding to CTLD has the form

E(f(x, β)) = Ep(x,β)∥∇f(x, β)∥2 (1)
= Er(β)Eβ(f(·, β)) (2)

where Eβ is the Dirichlet form corresponding to the
Langevin diffusion (Proposition 4) with stationary distri-
bution p(x|β).

Proof. Equation 1 follows from the fact that CTLD is just a
(reflected) Langevin diffusion with stationary distribution
p(x, β). Equation 2 follows from the tower rule of expec-
tation and the definition of the Dirichlet form for Langevin
from Proposition 4.

Next, we derive the operator O that corresponds to the
CTLD. We show:

Proposition 2. The generalized score matching loss with
O = (−L)1/2, where L is the generator of CTLD satisfies[

∇2
θDGSM (p, pθ∗)

]−1 ⪯ CPΓMLE

Moreover,

DGSM (p, pθ)

= Eβ∼r(β)Ex∼pβ (∥∇x log p(x, β)−∇x log pθ(x, β)∥2

+ ∥∇β log p(x, β)−∇β log pθ(x, β)∥2)
= Eβ∼r(β)Ex∼pβ∥∇x log p(x|β)−∇x log pθ(x|β)∥2

+ λminEβ∼r(β)Ex∼pβ

((Tr∇2
x log p(x|β)− Tr∇2

x log pθ(x|β))
+ (∥∇x log p(x|β)∥22 − ∥∇x log pθ(x|β)∥22))2

Proof. The operator L corresponding to CTLD is self-
adjoint, so the first claim follows by Lemma 2.

For the second claim, the first equality follows since
(−L)1/2 simply gives the standard score matching loss for
the temperature-augmented distribution. The second equal-
ity follows by writing ∇β log p(x|β) and ∇β log pθ(x|β)
through the Fokker-Planck equation for p(x|β) (see
Lemma 10).

This loss was derived from first principles from the Markov
Chain-based framework in Section 2, however, it is readily
seen that this loss is a “second-order” version of the an-
nealed losses in (Song & Ermon, 2019; Song et al., 2020)
— the weights being given by the distribution r(β). Addi-
tionally, this loss has terms matching “second order” be-
havior of the distributions, namely Tr∇2

x log p(x|β) and
∥∇x log p(x|β)∥22 with a weighting of λmin.

Note this loss would be straightforward to train by the
change of variables formula (Proposition 3)—and we also
note that somewhat related “higher-order” analogues of
score matching have appeared in the literature (without
analysis or guarantees), for example, (Meng et al., 2021).

Proposition 3 (Integration-by-part Generalized Score
Matching Loss for CTLD). The loss DGSM in the inte-
gration by parts form (Lemma 3) as:

DGSM (p, pθ) = Eplθ(x, β) +Kp

where

lθ(x, β) = l1θ(x, β) + l2θ(x, β), and

l1θ(x, β) :=
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

l2θ(x, β) :=
1

2
(∇β log pθ(x|β))2 +∇β log r(β)∇β log pθ(x|β)

+ ∆β log pθ(x|β)

Moreover, all the terms in the definition of l1θ(x, β) and
l2θ(x, β) can be written as a sum of powers of partial deriva-
tives of ∇x log pθ(x|β).

The proof of this Lemma is a straightforward calculation,
and is included in Appendix C. We remark that the last point
of the proposition implies that this loss can be in principle fit
by parametrizing the score ∇x log pθ(x|β) as an explicitly
differentiable map (e.g. a neural network).

With this setup in mind, we will prove the following results.

Theorem 2 (Poincaré constant of CTLD). Under Assump-
tion 1, the Poincaré constant of CTLD CP enjoys the fol-
lowing upper bound:

CP ≲ D22d2λ9
maxλ

−2
min

To get a bound on the asymptotic sample complexity of
generalized score matching, according to the framework
from Lemma 2, we also need to bound the smoothness
terms as in Lemma 1. These terms of course depend on the
choice of parametrization for the family of distributions we
are fitting. To get a quantitative sense for how these terms
might scale, we will consider the natural parametrization
for a mixture:

Assumption 2. Consider the case of learning unknown
means, such that the parameters to be learned are a vector
θ = (µ1, µ2, . . . , µK) ∈ RdK .

Remark 6. Note that in this parametrization, we assume
that the weights {wi}Ki=1 and shared covariance matrix
Σ are known, though the results can be straightforwardly
generalized to the natural parametrization in which we are
additionally fitting a vector {wi}Ki=1 and matrix Σ, at the
expense of some calculational complexity.
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With this parametrization, the smoothness term can be
bounded as follows:

Theorem 3 (Smoothness under the natural parameteriza-
tion). Under Assumptions 1 and 2, the smoothness defined
in Theorem 1 enjoys the upper bound

∥Cov (O∇θ log pθ)|θ=θ∗
∥OP

+ ∥Cov
(
(O+O)∇θ log pθ

)
|θ=θ∗

∥OP ≲ poly
(
D, d, λ−1

min

)

Finally, we show that the generalized score matching loss
is asymptotically normal. The proof of this is in Appendix
E, and proceeds by verifying the conditions of Lemma 4.
Putting this together with the Poincaré inequality bound
Theorem 2 and Theorem 1, we get a complete bound on the
sample complexity of the generalized score matching loss
with O:

Theorem 4 (Main, Polynomial Sample Complexity Bound
of CTLD). Let the data distribution p satisfy Assumption 1.
Then, the generalized score matching loss defined in Propo-
sition 3 with parametrization as in Assumption 2 satisfies:

1. The set of optima

Θ∗ := {θ∗ = (µ1, µ2, . . . , µK)|
DGSM (p, pθ∗) = min

θ
DGSM (p, pθ)}

satisfies θ∗ = (µ1, µ2, . . . , µK) ∈ Θ∗ if and only
if ∃π : [K] → [K] satisfying ∀i ∈ [K], µπ(i) =
µ∗
i , wπ(i) = wi}.

2. Let θ∗ ∈ Θ∗ and let C be any compact set containing
θ∗. Denote

C0 = {θ ∈ C : pθ(x) = p(x) almost everywhere }

Finally, let D be any closed subset of C not intersecting
C0. Then, we have:

lim
n→∞

Pr

[
inf
θ∈D

D̂GSM (θ) < D̂GSM (θ∗)

]
→ 0

3. For every θ∗ ∈ Θ∗ and every sufficiently small neigh-
borhood S of θ∗, there exists a sufficiently large n,
such that there is a unique minimizer θ̂n of Êlθ(x) in
S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N (0,ΓSM )

for a matrix ΓSM satisfying

∥ΓSM∥OP ≤ poly
(
D, d, λmax, λ

−1
min

)
∥ΓMLE∥

2
OP

Remark 7. Note that the above result has no dependence
on the number of components, or on the smallest compo-
nent weight wmin—only on the diameter D, the ambient
dimension d, and λmin and λmax. This result thus applies
to very general distributions, intuitively having an arbitrary
number of modes that lie in a ball of radius D, and a bound
on their “peakiness” and “spread”.

3.1. Bounding the Poincaré constant

In this section, we will sketch the proof of Theorem 2.

Notation: By slight abuse of notation, we will define the
distribution of the “individual components” of the mixture
at a particular temperature, namely for i ∈ [K], define:

p(x, β, i) = r(β)wiN (x;µi,Σ+ βλminId).

Correspondingly, we will denote the conditional distribution
for the i-th component by

p(x, β|i) ∝ r(β)N (x;µi,Σ+ βλminId).

The proof will proceed by applying the decomposition Theo-
rem 5 to CTLD. Towards that, we denote by Ei the Dirichlet
form corresponding to Langevin with stationary distribution
p(x, β|i). By Propositions 1 and 4, it’s easy to see that the
generator for CTLD satisfies E =

∑
i wiEi. This verifies

condition (1) in Theorem 5. To verify condition (2), we will
show Langevin for each of the distributions p(x, β|i) mixes
fast (i.e. the Poincaré constant is bounded). The details of
this are provided in Section D.1. To verify condition (3), we
will show the projected chain “between” the components
(as defined in Theorem 5) mixes fast. The details of this are
provided in Section D.2.

3.2. Smoothness under the natural parametrization

To obtain the polynomial upper bound in Theorem
3, we note the two terms ∥Cov (O∇θ log pθ) ∥OP and
∥Cov ((O+O)∇θ log pθ) ∥OP can be completely character-
ized by bounds on the higher-order derivatives with respect
to x and µi of the log-pdf since derivatives with respect
to β can be related to derivatives with respect to x via
the Fokker-Planck equation (Lemma 10). The polynomial
bound requires three ingredients: In Lemma 9, we relate
the derivatives of the mixture to derivatives of components
by recognizing the higher-order score functions (Janzamin
et al., 2014) of the form Dp

p is closely related to the convex
perspective map. In Lemma 6, we derive a new result in
mixed derivatives of Gaussian components based on Her-
mite polynomials. In Corollary 1, we handle log derivatives
with higher-order versions of the Faá di Bruno formula (Con-
stantine & Savits, 1996), which is a combinatorial formula
characterizing higher-order analogues of the chain rule. See
Appendix F for details.
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A. Preliminaries
A.1. Generalized Score Matching

The conventional score-matching objective (Hyvärinen, 2005) is defined as

DSM (p, q) =
1

2
Ep ∥∇x log p−∇x log q∥22

=
1

2
Ep

∥∥∥∥∇xp

p
− ∇xq

q

∥∥∥∥2
2

Note, in this notation, the expression is asymmetric: p is the data distribution, q is the distribution that is being fit. Written
like this, it is not clear how to minimize this loss, when we only have access to data samples from p. The main observation
of (Hyvärinen, 2005) is that the objective can be rewritten (using integration by parts) in a form that is easy to fit given
samples:

DSM (p, q) = EX∼p

[
Tr∇2 log q +

1

2
∥∇ log q∥2

]
+Kp

where Kp is some constant independent of q. To turn this into an algorithm given samples, one simply solves

min
q∈Q

EX∼p̂

[
Tr∇2 log q +

1

2
∥∇ log q∥2

]
for some parametrized family of distributions Q, where p̂ denotes the uniform distribution over the samples from p. This
objective can be calculated efficiently given samples from p, so long as the gradient and Hessian of the log-pdf of q can be
efficiently calculated.1

Generalized Score Matching, first introduced in (Lyu, 2012), generalizes ∇x to an arbitrary linear operator O:

Definition 2. Let F1 and Fm be the space of all scalar-valued and m-variate functions of x ∈ Rd, respectively. The
Generalized Score Matching (GSM) loss with a general linear operator O : F1 → Fm is defined as

DGSM (p, q) =
1

2
Ep

∥∥∥∥Op

p
− Oq

q

∥∥∥∥2
2

This loss can also be turned into an expression that doesn’t require evaluating the pdf of the data distribution (or gradients
thereof), using a similar “integration-by-parts” identity:

Lemma 3 (Integration by parts, (Lyu, 2012)). The GSM loss satisfies

DGSM (p, q) =
1

2
Ep

[∥∥∥∥Oq

q

∥∥∥∥2
2

− 2O+

(
Oq

q

)]
+Kp

where O+ is the adjoint of O defined by ⟨Of, g⟩L2 = ⟨f,O+g⟩L2 .

A.2. Dirichlet forms and Poincaré inequalities

In this section, we introduce the key definitions related to continuous-time Markov chains and diffusion processes:

Definition 3 (Markov semigroup). We say that a family of functions {Pt(x, y)}t≥0 on a state space Ω is a Markov semigroup
if Pt(x, ·) is a distribution on Ω and

Pt+s(x, dy) =

∫
Ω

Pt(x, dz)Ps(z, dy)

for all x, y ∈ Ω and s, t ≥ 0.
1In many score-based modeling approaches, e.g. (Song & Ermon, 2019; Song et al., 2020) one directly parametrizes the score ∇ log q

instead of the distribution q.
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Definition 4 (Continuous time Markov processes). A continuous time Markov process (Xt)t≥0 on state space Ω is defined
by a Markov semigroup {Pt(x, y)}t≥0 as follows. For any measurable A ⊆ Ω

Pr(Xs+t ∈ A|Xs = x) = Pt(x,A) =

∫
A

Pt(x, dy)

Moreover, Pt can be thought of as acting on a function g as

(Ptg)(x) = EPt(x,·)[g(y)] =

∫
Ω

g(y)Pt(x, dy)

Finally, we say that p(x) is a stationary distribution if X0 ∼ p implies that Xt ∼ p for all t.

Definition 5. The generator L corresponding to Markov semigroup is

Lg = lim
t→0

Ptg − g

t
.

Moreover, if p is the unique stationary distribution, the Dirichlet form and the variance are

E(g, h) = −Ep⟨g,Lh⟩ and Varp(g) = Ep(g − Epg)
2

respectively. We will use the shorthand E(g) := E(g, g).

Next, we define the Poincaré constant, which captures the mixing time of the process in the χ2-sense:

Definition 6 (Poincaré inequality). A continuous-time Markov process satisfies a Poincaré inequality with constant C if for
all functions g such that E(g) is defined (finite),2

E(g) ≥ 1

C
Varp(g).

We will abuse notation, and for a Markov process with stationary distribution p, denote by CP the Poincaré constant of p,
the smallest C such that above Poincaré inequality is satisfied.

The Poincaré inequality implies exponential ergodicity for the χ2-divergence, namely:

χ2(pt, p) ≤ e−2t/CPχ2(p0, p).

where p is the stationary distribution of the chain and pt is the distribution after running the Markov process for time t,
starting at p0.

We will heavily use Langevin diffusion in our paper, for which the Dirichlet form has a particularly simple form:

Definition 7 (Langevin diffusion). Langevin diffusion is the following stochastic process:

dXt = −∇f(Xt)dt+
√
2dBt

where f : Rd → R, dBt is Brownian motion in Rd with covariance matrix I . Under mild regularity conditions on f , the
stationary distribution of this process is p(x) : RN → R, s.t. p(x) ∝ e−f(x).

Proposition 4 ((Bakry et al., 2014)). The Dirichlet form corresponding to Langevin has the form E(f) = Ep∥∇f∥22.

We will analyze mixing times using a decomposition technique similar to the ones employed in (Ge et al., 2018; Moitra &
Risteski, 2020). Intuitively, these results “decompose” the Markov chain by partitioning the state space into sets, such that:
(1) the mixing time of the Markov chain inside the sets is good; (2) the “projected” chain, which transitions between sets
with probability equal to the probability flow between sets, also mixes fast.

An example of such a result is Theorem 6.1 from (Ge et al., 2018):

Theorem 5 (Decomposition of Markov Chains, Theorem 6.1 in (Ge et al., 2018)). Let M = (Ω,L) be a continuous-time
Markov chain with stationary distribution p and Dirichlet form E(g, g) = −⟨g,Lg⟩p. Suppose the following hold.

2We will implicitly assume this condition whenever we discuss Poincaré inequalities.
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1. The Dirichlet form for L decomposes as ⟨f,Lg⟩p =
∑m

j=1 wj⟨f,Ljg⟩pj
, where

p =

m∑
j=1

wjpj

and Lj is the generator for some Markov chain Mj on Ω with stationary distribution pj .

2. (Mixing for each Mj) The Dirichlet form Ej(f, g) = −⟨f,Lg⟩pj
satisfies the Poincaré inequality

Varpj
(g) ≤ CEj(g, g).

3. (Mixing for projected chain) Define the χ2-projected chain M̄ as the Markov chain on [m] generated by L̄, where L̄ acts
on g ∈ L2([m]) by

L̄ḡ(j) =
∑

1≤k≤m,k ̸=j

[ḡ(k)− ḡ(j)]P̄ (j, k)

where P̄ (j, k) =
wk

max{χ2(pi, pk), χ2(pk, pj), 1}
.

Let p̄ be the stationary distribution of M̄ . Suppose M̄ satisfies the Poincaré inequality Varp̄(ḡ) ≤ C̄Ē(g, g).

Then M satisfies the Poincaré inequality

Varp(g) ≤ C

(
1 +

C̄

2

)
E(g, g).

A.3. Asymptotic efficiency

We will need a classical result about asymptotic convergence of M-estimators, under some mild identifiability and differen-
tiability conditions. For this section, n will denote the number of samples, and Ê will denote an empirical average, that is
the expectation over the n training samples. The following result holds:
Lemma 4 ((Van der Vaart, 2000), Theorem 5.23). Consider a loss L : Θ 7→ R, such that L(θ) = Ep[ℓθ(x)] for lθ : X 7→ R.
Let Θ∗ be the set of global minima of L, that is

Θ∗ = {θ∗ : L(θ∗) = min
θ∈Θ

L(θ)}

Suppose the following conditions are met:

• (Gradient bounds on lθ) The map θ 7→ lθ(x) is measurable and differentiable at every θ∗ ∈ Θ∗ for p-almost every x.
Furthermore, there exists a function B(x), s.t. EB(x)2 < ∞ and for every θ1, θ2 near θ∗, we have:

|lθ1(x)− lθ2(x)| < B(x)∥θ1 − θ2∥2

• (Twice-differentiability of L) L(θ) is twice-differentiable at every θ∗ ∈ Θ∗ with Hessian ∇2
θL(θ

∗), and furthermore
∇2

θL(θ
∗) ≻ 0.

• (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is

sup
θ∈Θ

∣∣∣Êlθ(x)− L(θ)
∣∣∣ p−→ 0

Then, for every θ∗ ∈ Θ∗, and every sufficiently small neighborhood S of θ∗, there exists a sufficiently large n, such that
there is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N (0,(∇2
θL(θ

∗))−1

Cov(∇θℓ(x; θ
∗))(∇2

θL(θ
∗))−1)
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A.4. Continuous Markov Chain Decomposition

The Poincaré constant bounds we will prove will also use a “continuous” version of the decomposition Theorem 5, which
also appeared in (Ge et al., 2018):

Theorem 6 (Continuous decomposition theorem, Theorem D.3 in (Ge et al., 2018)). Consider a probability measure π
with C1 density on Ω = Ω(1) × Ω(2), where Ω(1) ⊆ Rd1 and Ω(2) ⊆ Rd2 are closed sets. For X = (X1, X2) ∼ P with
probability density function p (i.e., P (dx) = p(x) dx and P (dx2|x1) = p(x2|x1) dx2), suppose that

• The marginal distribution of X1 satisfies a Poincaré inequality with constant C1.

• For any x1 ∈ Ω(1), the conditional distribution X2|X1 = x1 satisfies a Poincaré inequality with constant C2.

Then π satisfies a Poincaré inequality with constant

C̃ = max

{
C2

(
1 + 2C1

∥∥∥∥∫
Ω(2)

∥∇x1
p(x2|x1)∥2

p(x2|x1)
dx2

∥∥∥∥
L∞(Ω(1))

)
, 2C1

}

A.5. Hermite Polynomials

To obtain polynomial bounds on the moments of derivatives of Gaussians, we will use the known results on multivariate
Hermite polynomials.

Definition 8 (Hermite polynomial, (Holmquist, 1996)). The multivariate Hermite polynomial of order k corresponding to a
Gaussian with mean 0 and covariance Σ is given by the Rodrigues formula:

Hk(x; Σ) = (−1)k
(Σ∇x)

⊗kϕ(x; Σ)

ϕ(x; Σ)

where ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, and ⊗ denotes the Kronecker product.

Note that ∇⊗k
x can be viewed as a formal Kronecker product, so that ∇⊗k

x f(x), where f : Rd → R is a Ck-smooth function
gives a dk-dimensional vector consisting of all partial derivatives of f of order up to k.

Proposition 5 (Integral representation of Hermite polynomial, (Holmquist, 1996)). The Hermite polynomial Hk defined in
Definition 8 satisfies the integral formula:

Hk(x; Σ) =

∫
(x+ iu)⊗kϕ(u; Σ)du

where ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ.

Note, the Hermite polynomials are either even functions or odd functions, depending on whether k is even or odd:

Hk(−x; Σ) = (−1)kHk(x; Σ) (3)

This property can be observed from the Rodrigues formula, the fact that ϕ(·; Σ) is symmetric around 0, and the fact that
∇−x = −∇x.

We establish the following relationship between Hermite polynomial and (potentially mixed) derivatives in x and µ, which
we will use to bound several smoothness terms appearing in Section F.

Lemma 5. If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2Eu∼N (0,Σ)[Σ

−1(x− µ+ iu)]⊗(k1+k2)

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2 .
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Proof. Using the fact that ∇x−µ = ∇x in Definition 8, we get:

Hk(x− µ; Σ) = (−1)k
(Σ∇x)

⊗kϕ(x− µ; Σ)

ϕ(x− µ; Σ)

Since the Kronecker product satisfies the property (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD), we have (Σ∇x)
⊗k = Σ⊗k∇⊗k

x .
Thus, we have:

∇k
xϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k(Σ−1)⊗kHk(x− µ; Σ) (4)

Since ϕ(µ− x; Σ) is symmetric in µ and x, taking derivatives with respect to µ we get:

Hk(µ− x; Σ) = (−1)k
(Σ∇µ)

kϕ(µ− x; Σ)

ϕ(µ− x; Σ)

Rearranging again and using (3), we get:

∇k
µϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (Σ−1)⊗kHk(x− µ; Σ) (5)

Combining (4) and (5), we get:

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2

∇k1
µ [(Σ−1)⊗k2Hk2

(x− µ; Σ)ϕ(x− µ; Σ)]

ϕ(x− µ; Σ)

= (−1)k2
∇k1

µ [∇k2
µ ϕ(x− µ; Σ)]

ϕ(x− µ; Σ)

= (−1)k2
∇k1+k2

µ ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

= (−1)k2(Σ−1)⊗(k1+k2)Hk1+k2
(x− µ; Σ)

Applying the integral formula from Proposition 5, we have:

∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)
= (−1)k2

∫
[Σ−1(x− µ+ iu)]⊗(k1+k2)ϕ(u; Σ) du

as we needed.

Now we are ready to obtain an explicit polynomial bound for the mixed derivatives for a multivariate Gaussian with mean µ
and covariance Σ. We have the following bounds:
Lemma 6. If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:∥∥∥∥∥∇k1

µ ∇k2
x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

≲ ∥Σ−1(x− µ)∥k1+k2
2 + d(k1+k2)/2λ

−(k1+k2)/2
min

where the left-hand-side is understood to be shaped as a vector of dimension Rdk1+k2 .

Proof. We start with Lemma 5 and use the convexity of the norm∥∥∥∥∥∇k1
µ ∇k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

≤ Eu∼N (0,Σ)∥[Σ−1(x− µ+ iu)]⊗(k1+k2)∥2

Bounding the right-hand side, we have:

Eu∼N (0,Σ)∥[Σ−1(x− µ+ iu)]⊗(k1+k2)∥2 ≲ ∥Σ−1(x− µ)∥k1+k2
2 + Eu∼N (0,Σ)∥Σ−1u∥k1+k2

2

= ∥Σ−1(x− µ)∥k1+k2
2 + Ez∼N (0,Id)∥Σ

− 1
2 z∥k1+k2

2

≤ ∥Σ−1(x− µ)∥k1+k2
2 + ∥Σ− 1

2 ∥k1+k2

OP Ez∼N (0,Id)∥z∥
k1+k2
2

Applying Lemma 26 yields the desired result.
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Similarly, we can bound mixed derivatives involving a Laplacian in x:

Lemma 7. If ϕ(x; Σ) is the pdf of a d-variate Gaussian with mean 0 and covariance Σ, we have:∥∥∥∥∥∇k1
µ ∆k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥ ≲
√
dk2∥Σ−1(x− µ)∥k1+2k2

2 + d(k1+3k2)/2λ
−(k1+2k2)/2
min

Proof. By the definition of a Laplacian, and the AM-GM inequality, we have, for any function f : Rd → R

(∆kf(x))2 =

 d∑
i1,i2,...,ik=1

∂2
i1∂

2
i2 · · · ∂

2
ik
f(x)

2

≤ dk
d∑

i1,i2,...,ik=1

(
∂2
i1∂

2
i2 · · · ∂

2
ik
f(x)

)2
≤ dk∥∇2k

x f(x)∥22

Thus, we have ∥∥∥∥∥∇k1
µ ∆k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

≤
√
dk2

∥∥∥∥∥∇k1
µ ∇2k2

x ϕ(x− µ; Σ)

ϕ(x− µ; Σ)

∥∥∥∥∥
2

Applying Lemma 6, the result follows.

A.6. Logarithmic derivatives

Finally, we will need similar bounds for logarithic derivatives—that is, derivatives of log p(x), where p is a multivariate
Gaussian.

We recall the following result, which is a consequence of the multivariate extension of the Faá di Bruno formula:

Proposition 6 ((Constantine & Savits, 1996), Corollary 2.10). Consider a function f : Rd → R, s.t. f is N times
differentiable in an open neighborhood of x and f(x) ̸= 0. Then, for any multi-index I ∈ Nd, s.t. |I| ≤ N , we have:

∂xI
log f(x) =

|I|∑
k,s=1

∑
ps(I,k)

(−1)k−1(k − 1)!

s∏
j=1

∂ljf(x)
mj

f(x)mj

∏d
i=1(Ii)!

mj !lj !mj

where ps(I, k) = {{li}si=1 ∈ (Nd)s, {mi}si=1 ∈ Ns : l1 ≺ l2 ≺ · · · ≺ ls,
∑s

i=1 mi = k,
∑s

i=1 mili = I}.

The ≺ ordering on multi-indices is defined as follows: (a1, a2, . . . , ad) := a ≺ b := (b1, b2, . . . , bd) if:

1. |a| < |b|

2. |a| = |b| and a1 < b1.

3. |a| = |b| and ∃k >= 1, s.t. ∀j ≤ k, aj = bj and ak+1 < bk+1.

As a straightforward corollary, we have the following:

Corollary 1. For any multi-index I ∈ Nd, s.t. |I| is a constant, we have

|∂xI
log f(x)| ≲ max

(
1,max

J≤I

∣∣∣∣∂Jf(x)f(x)

∣∣∣∣|I|
)

where J ∈ Nd is a multi-index, and J ≤ I iff ∀i ∈ d, Ji ≤ Ii.
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A.7. Moments of mixtures and the perspective map

The main strategy in bounding moments of quantities involving a mixture will be to leverage the relationship between the
expectation of the score function and the so-called perspective map. In particular, this allows us to bound the moments of
derivatives of the mixture score in terms of those of the individual component scores, which are easier to bound using the
machinery of Hermite polynomials in the prior section.

Note in this section all derivatives are calculated at θ = θ∗ and therefore p(x, β) = pθ(x, β).
Lemma 8. (Convexity of perspective, Boyd & Vandenberghe (2004)) Let f be a convex function. Then, its corresponding
perspective map g(u, v) := vf

(
u
v

)
with domain {(u, v) : u

v ∈ Dom(f), v > 0} is convex.

We will apply the following lemma many times, with appropriate choice of differentiation operator D and power k.
Lemma 9. Let D : F1 → Fm be a linear operator that maps from the space of all scalar-valued functions to the space of
m-variate functions of x ∈ Rd and let θ be such that p = pθ. For k ∈ N, and any norm ∥ · ∥ of interest

E(x,β)∼p(x,β)

∥∥∥∥ (Dpθ)(x|β)
pθ(x|β)

∥∥∥∥k ≤ max
β,i

Ex∼p(x|β,i)

∥∥∥∥ (Dpθ)(x|β, i)
pθ(x|β, i)

∥∥∥∥k

Proof. Let us denote g(u, v) := v∥u
v ∥

k. Note that since any norm is convex by definition, so is g, by Lemma 8. Then, we
proceed as follows:

E(x,β)∼p(x,β)

∥∥∥∥ (Dpθ)(x|β)
pθ(x|β)

∥∥∥∥k = Eβ∼r(β)Ex∼p(x|β)

∥∥∥∥ (Dpθ)(x|β)
pθ(x|β)

∥∥∥∥k
= Eβ∼r(β)

∫
g((Dpθ)(x|β), pθ(x|β))dx

= Eβ∼r(β)

∫
g

(
K∑
i=1

wi(Dpθ)(x|β, i),
K∑
i=1

wipθ(x|β, i)

)
dx (6)

≤ Eβ∼r(β)

∫ K∑
i=1

wig((Dpθ)(x|β, i), pθ(x|β, i))dx (7)

= Eβ∼r(β)

K∑
i=1

wiEx∼p(x|β,i)

∥∥∥∥ (Dpθ)(x|β, i)
pθ(x|β, i)

∥∥∥∥k
≤ max

β,i
Ex∼p(x|β,i)

∥∥∥∥ (Dpθ)(x|β, i)
pθ(x|β, i)

∥∥∥∥k
where (6) follows by linearity of D, and (7) by convexity of the function g.

B. A Framework for Analyzing Generalized Score Matching
Proposition 7 (Hessian of GSM loss). The Hessian of DGSM satisfies

∇2
θDGSM (p, pθ∗) = Ep

[
∇θ

(
Opθ∗

pθ∗

)⊤

∇θ

(
Opθ∗

pθ∗

)]

Proof. By a straightforward calculation, we have:

∇θDGSM (p, pθ) = Ep∇θ

(
Opθ
pθ

)(
Opθ
pθ

− Op

p

)
∇2

θDGSM (p, pθ) = Ep

[
∇θ

(
Opθ
pθ

)⊤

∇θ

(
Opθ
pθ

)
−

m∑
i=1

(
Opθ
pθ

− Op

p

)
i

∇2
θ

(
Opθ
pθ

)
i

]
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Since Opθ∗
pθ∗

= Op
p , the second term vanishes at θ = θ∗, which proves the statement.

Proof of Lemma 1. We have

∇θlθ(x) = ∇θ

(
Opθ(x)

pθ(x)

)
Opθ(x)

pθ(x)
−∇θO+

(
Opθ(x)

pθ(x)

)
=

(
(O∇θ log pθ)

Opθ
pθ

)
− (O+O)∇θ log pθ

By Lemma 2 in (Koehler et al., 2022), we also have

cov(∇θlθ(x)) ⪯ 2cov
(
(O∇θ log pθ)

Opθ
pθ

)
+ 2cov

(
(O+O)∇θ log pθ

)
which completes the proof.

Proof of Lemma 2. To reduce notational clutter, we will drop |θ=θ∗ since all the functions of θ are evaluated at θ∗. Consider
an arbitrary direction w. We have:

〈
w,∇2

θDGSM (p, pθ)w
〉
=
〈
w,Ep

[
O (∇θ log pθ)

⊤ O (∇θ log pθ)
]
w
〉

= Ep ∥O (∇θ log pθ)w∥22
1
= Ep

∥∥∥∥∥∑
i

wiO (∇θ log pθ)i

∥∥∥∥∥
2

2

2
= Ep

∥∥∥∥∥O
(

dθ∑
i=1

wi
∂

∂θi
log pθ

)∥∥∥∥∥
2

2

= Ep∥O (⟨w,∇θ log pθ⟩) ∥22
3
= −⟨⟨w,∇θ log pθ⟩,L⟨w,∇θ log pθ⟩⟩p
4
≥ 1

CP
Varp(⟨w,∇θ log pθ⟩)

5
=

1

CP
wTΓ−1

MLEw

where 1 follows by commuting O and ∇θ, which holds by Lemma 24, 2 from linearity of O, and 3 since by our
assumption for any function g, we have Ep∥Og∥2 = −⟨g,Lg⟩p and we apply this condition to g = ⟨w,∇θ log pθ⟩.
4 follows from the definition of Poincaré inequality, applied to the function ⟨w,∇θ log pθ⟩, and 5 follows since
ΓMLE =

[
Ep∇θ log pθ∇θ log p

⊤
θ

]−1
(i.e. the inverse Fisher matrix (Van der Vaart, 2000)).

Since this holds for every vector w, we have

∇2
θDGSM ⪰ 1

CP
Γ−1
MLE

By monotonicity of the matrix inverse operator (Toda, 2011), the claim of the lemma follows.
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C. Overview of Continuously Tempered Langevin Dynamics
Lemma 10 (β derivatives via Fokker Planck). For any distribution pβ such that pβ = p ∗ N (0, λminβI) for some p, we
have the following PDE for its log-density:

∇β log p
β(x) = λmin

(
Tr
(
∇2

x log p
β(x)

)
+ ∥∇x log p

β(x)∥22
)

As a consequence, both p(x|β, i) and p(x|β) follow the above PDE.

Proof. Consider the SDE dXt =
√
2λmindBt. Let qt be the law of Xt. Then, qt = q0 ∗N(0, λmintI). On the other hand,

by the Fokker-Planck equation, d
dtqt(x) = λmin∆xqt(x). From this, it follows that

∇βp
β(x) = λmin∆xp

β(x)

= λmin Tr(∇2
xp

β(x))

Hence, by the chain rule,

∇β log p
β(x) =

λmin Tr(∇2
xp

β(x))

pβ(x)
(8)

Furthermore, by a straightforward calculation, we have

∇2
x log p

β(x) =
∇2

xp
β(x)

pβ(x)
−
(
∇x log p

β(x)
) (

∇x log p
β(x)

)⊤
Plugging this in (8), we have

λmin Tr(∇2
xp

β(x))

pβ(x)
= λmin

(
Tr
(
∇2

x log p
β(x)

)
+Tr

((
∇x log p

β(x)
) (

∇x log p
β(x)

)⊤))
= λmin

(
Tr
(
∇2

x log p
β(x)

)
+Tr

((
∇x log p

β(x)
)⊤ (∇x log p

β(x)
)))

= λmin

(
Tr
(
∇2

x log p
β(x)

)
+ ∥∇x log p

β(x)∥22
)

as we needed.

We also provide the proof of Lemma 3:

Proof of Lemma 3.

DGSM (p, pθ) =
1

2
Ep

[∥∥∥∥Opθ
pθ

∥∥∥∥2
2

− 2O+

(
Opθ
pθ

)]

=
1

2
Ep[
∥∥∇(x,β) log pθ(x, β)

∥∥2
2
+ 2∆(x,β) log pθ(x, β)]

=
1

2
Ep[∥∇x log pθ(x, β)∥22 + 2∆x log pθ(x, β) + ∥∇β log pθ(x, β)∥22 + 2∆β log pθ(x, β)]

=
1

2
Ep[∥∇x log pθ(x|β) +∇x log r(β)∥22 + 2∆x log pθ(x|β) + 2∆x log r(β)

+ ∥∇β log pθ(x|β) +∇β log r(β)∥22 + 2∆β log pθ(x|β) + 2∆β log r(β)]

= Ep[
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

+
1

2
∥∇β log pθ(x|β)∥22 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)] + C
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By Lemma 10, ∇β log pθ(x|β) is a function of partial derivatives of the score ∇x log pθ(x|β). Similarly, ∇2
β log pθ(x|β)

can be shown to be a function of partial derivatives of the score ∇x log pθ(x|β) as well:

∆β log pθ(x|β) = ∇βλmin(Tr(∇2
x log pθ(x|β)) + ∥∇x log pθ(x|β)∥22)

= λmin(Tr(∇2
x∇β log pθ(x|β)) + 2∇x∇β log pθ(x|β)⊤∇x log pθ(x|β))

D. Polynomial mixing time bound: proof of Theorem 2
Proof. The proof will follow by applying Theorem 5. Towards that, we need to verify the three conditions of the theorem:

1. (Decomposition of Dirichlet form) The Dirichlet energy of CTLD for p(x, β), by the tower rule of expectation, decom-
poses into a linear combination of the Dirichlet forms of Langevin with stationary distribution p(x, β|i). Precisely, we
have

E(x,β)∼p(x,β)∥∇f(x, β)∥2 =
∑
i

wiE(x,β)∼p(x,β|i)∥∇f(x, β)∥2

2. (Polynomial mixing for individual modes) By Lemma 11, for all i ∈ [K] the distribution p(x, β|i) has Poincaré constant
Cx,β|i with respect to the Langevin generator that satisfies:

Cx,β|i ≲ D20d2λ9
maxλ

−1
min

3. (Polynomial mixing for projected chain) To bound the Poincaré constant of the projected chain, by Lemma 14 we have

C̄ ≲ D2λ−1
min

Putting the above together, by Theorem 6.1 in (Ge et al., 2018) we have:

CP ≤ Cx,β|i

(
1 +

C̄

2

)
≤ Cx,β|iC̄

≲ D22d2λ9
maxλ

−2
min

D.1. Mixing inside components

In this section, we will show is that we have fast mixing “inside” each of the components of the mixture. Formally, we show:

Lemma 11. For i ∈ [K], let Cx,β|i be the Poincaré constant of p(x, β|i). Then, we have

Cx,β|i ≲ D20d2λ9
maxλ

−1
min

.

The proof of this lemma proceeds via another (continuous) decomposition theorem. Intuitively, what we show is that for
every β, p(x|β, i) has a good Poincaré constant; moreover, the marginal distribution of β, which is r(β), is log-concave and
supported over a convex set (an interval), so has a good Poincaré constant. Putting these two facts together via a continuous
decomposition theorem (Theorem D.3 in (Ge et al., 2018)), we get the claim of the lemma. The details are in Appendix D.1.

Proof. The proof will follow by an application of a continuous decomposition result (Theorem D.3 in (Ge et al., 2018),
repeated as Theorem 6) , which requires three bounds:
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1. A bound on the Poincaré constants of the distributions p(β|i): since β is independent of i, we have p(β|i) = r(β). Since
r(β) is a log-concave distribution over a convex set (an interval), we can bound its Poincaré constant by standard results
(Bebendorf, 2003). The details are in Lemma 12, Cβ ≤ 14D2

πλmin
.

2. A bound on the Poincaré constant Cx|β,i of the conditional distribution p(x|β, i): We claim Cx|β,i ≤ λmax + βλmin.
This follows from standard results on Poincaré inequalities for strongly log-concave distributions. Namely, by the Bakry-
Emery criterion, an α-strongly log-concave distribution has Poincaré constant 1

α (Bakry & Émery, 2006). Since p(x|β, i)
is a Gaussian whose covariance matrix has smallest eigenvalue lower bounded by λmax+βλmin, it is (λmax+βλmin)

−1-
strongly log-concave. Since β ∈ [0, βmax], we have Cx|β,i ≤ λmax + βmaxλmin ≤ λmax + 14D2.

3. A bound on the “rate of change” of the density p(x|β, i), i.e.
∥∥∥∫ ∥∇βp(x|β,i)∥2

2

p(x|β,i) dx
∥∥∥
L∞

: This is done via an explicit
calculation, the details of which are in Lemma 13.

By Theorem D.3 in (Ge et al., 2018), the Poincaré constant Cx,β|i of p(x, β|i) enjoys the upper bound:

Cx,β|i ≤ max

{
Cx|βmax,i

(
1 + Cβ

∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

)
, 2Cβ

}

≲ max

{(
λmax + 14D2

)(
1 +

14D2

πλmin
d2 max{λ8

max, D
16}
)
,
28D2

πλmin

}
≲

D20d2λ9
max

λmin

which completes the proof.

Lemma 12 (Bound on the Poincaré constant of r(β)). Let Cβ be the Poincaré constant of the distribution r(β) with respect
to reflected Langevin diffusion. Then,

Cβ ≤ 14D2

πλmin

Proof. We first show that r(β) is a log-concave distribution. By a direct calculation, the second derivative in β satisfies:

∇2
β log r(β) = − 14D2

λmin(1 + β)3
≤ 0

Since the interval is a convex set, with diameter βmax, by (Bebendorf, 2003) we have

Cβ ≤ βmax

π
=

14D2

πλmin
− 1

π

from which the Lemma immediately follows.

Lemma 13 (Bound on “rate of change" of the density p(x|β, i)).∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

≲ d2 max{λ8
max, D

16}

Proof. ∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

=

∥∥∥∥∫ (∇β log p(x|β, i))2 p(x|β, i)dx
∥∥∥∥
L∞(β)

= sup
β

Ex∼p(x|β,i) (∇β log p(x|β, i))2
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We can apply Lemma 10 to derive explicit expressions for the right-hand side:

∥∥∥∥∫ ∥∇βp(x|β, i)∥22
p(x|β, i)

dx

∥∥∥∥
L∞(β)

= sup
β

Ex∼p(x|β,i)λ
2
min

[
Tr(Σ−1

β ) + ∥Σβ(x− µi)∥22
]2

1
≤ 2λ2

min sup
β

[
Tr(Σ−1

β )2 + Ex∼p(x|β,i)∥Σβ(x− µi)∥42
]

≤ 2λ2
min sup

β

[
d2((1 + β)λmin)

−2 + Ez∼N (0,I)∥Σ
3
2

β zΣ
1
2

β ∥
4
2

]
≤ 2λ2

min sup
β

[
d2((1 + β)λmin)

−2 + ∥Σ
3
2

β ∥
4
OP ∥Σ

1
2

β ∥
4
OPEz∼N (0,I)∥z∥42

]
2
≤ 4 sup

β

[
d2(1 + β)−2 + λ2

min∥Σβ∥8OP d
2
]

= 4 sup
β

[
d2(1 + β)−2 + λ2

min(λmax + βλmin)
8d2
]

= 4
(
d2 + λ2

min(λmax + βmaxλmin)
8d2
)

3
≤ 4d2 + 4d2λ2

min(λmax + 14D2)8

≤ 16d2 max{λ8
max, 14

8D16}

In 1 , we use (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0; in 2 we apply the moment bound for the Chi-Squared distribution of
degree-of-freedom d in Lemma 26; and in 3 we plug in the bound on βmax.

D.2. Mixing between components

In this section, we show the “projected” chain between the components mixes fast:

Lemma 14 (Poincaré constant of projected chain). Define the projected chain M̄ over [K] with transition probability

T (i, j) =
wj

max{χ2
max(p(x, β|i), p(x, β|j)), 1}

where χ2
max(p, q) = max{χ2(p, q), χ2(q, p)}. If

∑
j ̸=i T (i, j) < 1, the remaining mass is assigned to the self-loop T (i, i).

The stationary distribution p̄ of this chain satisfies p̄(i) = wi. Furthermore, the projected chain has Poincaré constant

C̄ ≲ D2λ−1
min.

The intuition for this claim is that the transition probability graph is complete, i.e. T (i, j) ̸= 0 for every pair i, j ∈ [K].
Moreover, the transition probabilities are lower bounded, since the χ2 distances between any pair of “annealed” distributions
p(x, β|i) and p(x, β|j) can be upper bounded. The reason for this is that at large β, the Gaussians with mean µi and µj are
smoothed enough so that they have substantial overlap; moreover, the distribution r(β) is set up so that enough mass is
placed on the large β.

Proof. The stationary distribution follows from the detailed balance condition wiT (i, j) = wjT (j, i).

We upper bound the Poincaré constant using the method of canonical paths (Diaconis & Stroock, 1991). For all i, j ∈ [K],
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we set γij = {(i, j)} to be the canonical path. Define the weighted length of the path

∥γij∥T =
∑

(k,l)∈γij ,k,l∈[K]

T (k, l)−1

= T (i, j)−1

=
max{χ2

max(p(x, β|i), p(x, β|j)), 1}
wj

≤ 14D2

λminwj

where the inequality comes from Lemma 15 which provides an upper bound for the chi-squared divergence. Since D is an
upper bound and λmin is a lower bound, we may assume without loss of generality that χ2

max ≥ 1.

Finally, we can upper bound the Poincaré constant using Proposition 1 in (Diaconis & Stroock, 1991)

C̄ ≤ max
k,l∈[K]

∑
γij∋(k,l)

∥γij∥Twiwj

= max
k,l∈[K]

∥γkl∥Twkwl

≤ 14D2wmax

λmin

≤ 14D2

λmin

Next, we will prove a bound on the chi-square distance between the joint distributions p(x, β|i) and p(x, β|j). Intuitively,
this bound is proven by showing bounds on the chi-square distances between p(x|β, i) and p(x|β, j) (Lemma 16) — which
can be explicitly calculated since they are Gaussian, along with tracking how much weight r(β) places on each of the β.
Moreover, the Gaussians are flatter for larger β, so they overlap more — making the chi-square distance smaller.

Lemma 15 (χ2-divergence between joint “annealed” Gaussians).

χ2(p(x, β|i), p(x, β|j)) ≤ 14D2

λmin

Proof. Expanding the definition of χ2-divergence, we have:

χ2(p(x, β|i), p(x, β|j)) =
∫ (

p(x, β|i)
p(x, β|j)

− 1

)2

p(x, β|i)dxdβ

=

∫ βmax

0

∫ +∞

−∞

(
p(x|β, i)r(β)
p(x|β, j)r(β)

− 1

)2

p(x|β, i)r(β)dxdβ

=

∫ βmax

0

χ2(p(x|β, i), p(x|β, j))r(β)dβ

≤
∫ βmax

0

exp

(
7D2

λmin(1 + β)

)
r(β)dβ (9)

=

∫ βmax

0

exp

(
7D2

λmin(1 + β)

)
1

Z(D,λmin)
exp

(
− 7D2

λmin(1 + β)

)
dβ

=
βmax

Z(D,λmin)
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where in Line 9, we apply our Lemma 16 to bound the χ2-divergence between two Gaussians with identical covariance. By
a change of variable β̃ := 7D2

λmin(1+β) , β = 7D2

λminβ̃
− 1, dβ = − 7D2

λmin

1
β̃2
dβ̃, we can rewrite the integral as:

Z(D,λmin) =

∫ βmax

0

exp

(
− 7D2

λmin(1 + β)

)
dβ

= − 7D2

λmin

∫ 7D2

λmin(1+βmax)

7D2

λmin

exp
(
−β̃
) 1

β̃2
dβ̃

=
7D2

λmin

∫ 7D2

λmin

7D2

λmin(1+βmax)

exp
(
−β̃
) 1

β̃2
dβ̃

≥ 7D2

λmin

∫ 7D2

λmin

7D2

λmin(1+βmax)

exp
(
−2β̃

)
dβ̃

=
7D2

2λmin

(
exp

(
− 14D2

λmin(1 + βmax)

)
− exp

(
−14D2

λmin

))

Since D is an upper bound and λmin is a lower bound, we can assume D2

λmin
≥ 1 without loss of generality. Plugging in

βmax = 14D2

λmin
− 1, we get

Z(D,λmin) ≥
7

2
(exp (−1)− exp (−14)) ≥ 1

Finally, we get the desired bound

χ2(p(x, β|i), p(x, β|j)) ≤ βmax =
14D2

λmin
− 1

The next lemma bounds the χ2-divergence between two Gaussians with the same covariance.

Lemma 16 (χ2-divergence between Gaussians with same covariance).

χ2(p(x|β, i), p(x|β, j)) ≤ exp

(
7D2

λmin(1 + β)

)
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Proof. Plugging in the definition of χ2-distance for Gaussians, we have:

χ2(p(x|β, i), p(x|β, j))

≤ det(Σβ)
1
2

det(Σβ)
det
(
Σ−1

β

)− 1
2

exp

(
1

2

(
Σ−1

β (2µj − µi)
)⊤

(Σ−1
β )−1

(
Σ−1

β (2µj − µi)
)
+

1

2
µ⊤
i Σ

−1
β µi − µ⊤

j Σ
−1
β µj

)
(10)

= exp

(
1

2

(
Σ−1

β (2µj − µi)
)⊤

(Σ−1
β )−1

(
Σ−1

β (2µj − µi)
)
+

1

2
µ⊤
i Σ

−1
β µi

)
exp

(
−µ⊤

j Σ
−1
β µj

)
≤ exp

(
1

2
(2µj − µi)

⊤Σ−1
β (2µj − µi) +

1

2
µ⊤
i Σ

−1
β µi

)
(11)

≤ exp

(
∥2µj − µi∥22 + ∥2µi∥22

2λmin(1 + β)

)
≤ exp

(
(∥2µj∥2 + ∥µi∥2)2 + 4∥µi∥22

2λmin(1 + β)

)
≤ exp

(
2∥2µj∥22 + 2∥µi∥22 + 4∥µi∥22

2λmin(1 + β)

)
≤ exp

(
7D2

λmin(1 + β)

)
In Equation 10, we apply Lemma G.7 from (Ge et al., 2018) for the chi-square divergence between two Gaussian distributions.
In Equation 11, we use the fact that Σ−1

β is PSD.

E. Asymptotic normality of generalized score matching for CTLD
The main theorem of this section is proving asymptotic normality for the generalized score matching loss corresponding to
CTLD. Precisely, we show:
Theorem 7 (Asymptotic normality of generalized score matching for CTLD). Let the data distribution p satisfy Assumption 1.
Then, the generalized score matching loss defined in Proposition 3 satisfies:

1. The set of optima
Θ∗ := {θ∗ = (µ1, µ2, . . . , µK)|DGSM (p, pθ∗) = min

θ
DGSM (p, pθ)}

satisfies

θ∗ = (µ1, µ2, . . . , µK) ∈ Θ∗ if and only if ∃π : [K] → [K] satisfying ∀i ∈ [K], µπ(i) = µ∗
i , wπ(i) = wi}

2. Let θ∗ ∈ Θ∗ and let C be any compact set containing θ∗. Denote

C0 = {θ ∈ C : pθ(x) = p(x) almost everywhere }

Finally, let D be any closed subset of C not intersecting C0. Then, we have:

lim
n→∞

Pr
[
inf
θ∈D

D̂GSM (θ) < D̂GSM (θ∗)

]
→ 0

3. For every θ∗ ∈ Θ∗ and every sufficiently small neighborhood S of θ∗, there exists a sufficiently large n, such that there
is a unique minimizer θ̂n of Êlθ(x) in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N (0,ΓSM )

for some matrix ΓSM .
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Proof. Part 1 is shown in Lemma 17: the claim roughly follows by classic results on the identifiability of the parameters of
a mixture (up to permutations of the components) (Yakowitz & Spragins, 1968).

Part 2 is shown in Lemma 19: it follows from a uniform law of large numbers.

Finally, Part 3 follows from an application of Lemma 4—so we verify the conditions of the lemma are satisfied. The
gradient bounds on lθ are verified Lemma 18—and it largely follows by moment bounds on gradients of the score derived in
Section F. Uniform law of large numbers is shown in Lemma 19, and the the existence of Hessian of L = DGSM is trivially
verified.

For the sake of notational brevity, in this section, we will slightly abuse notation and denote DGSM (θ) := DGSM (p, pθ).

Lemma 17 (Uniqueness of optima). Suppose for θ := (µ1, µ2, . . . , µK) there is no permutation π : [K] → [K], such that
µπ(i) = µ∗

i and wπ(i) = wi,∀i ∈ [K]. Then, DGSM (θ) > DGSM (θ∗)

Proof. For notational convenience, let DSM denote the standard score matching loss, and let us denote DSM (θ) :=
DSM (p, pθ). For any distributions pθ, by Proposition 1 in (Koehler et al., 2022), it holds that

DSM (θ)−DSM (θ∗) ≥ 1

LSI(pθ)
KL(pθ∗ , pθ)

where LSI(q) denotes the Log-Sobolev constant of the distribution q. If θ = (µ1, µ2, . . . , µK) is such that there is no
permutation π : [K] → [K] satisfying µπ(i) = µ∗

i and wπ(i) = wi,∀i ∈ [K], by (Yakowitz & Spragins, 1968) we have
KL(pθ∗ , pθ) > 0. Furthermore, the distribution pθ, by virtue of being a mixture of Gaussians, has a finite log-Sobolev
constant (Theorem 1 in (Chen et al., 2021)). Therefore, DSM (θ) > DSM (θ∗).

However, note that DGSM (pθ) is a (weighted) average of DSM losses, treating the data distribution as pβθ∗ , a convolution of
pθ∗ with a Gaussian with covariance βλminId; and the distribution being fitted as pβθ . Thus, the above argument implies that
if θ ̸= θ∗, we have DGSM (θ) > DGSM (θ∗), as we need.

Lemma 18 (Gradient bounds of lθ). Let lθ(x, β) be as defined in Proposition 3. Then, there exists a constant C(d,D, 1
λmin

)

(depending on d,D, 1
λmin

), such that

E∥∇θl(x, β)∥2 ≤ C

(
d,D,

1

λmin

)
Proof. By Proposition 3,

lθ(x, β) = l1θ(x, β) + l2θ(x, β), and

l1θ(x, β) :=
1

2
∥∇x log pθ(x|β)∥22 +∆x log pθ(x|β)

l2θ(x, β) :=
1

2
(∇β log pθ(x|β))2 +∇β log r(β)∇β log pθ(x|β) + ∆β log pθ(x|β)

Using repeatedly the fact that ∥a+ b∥2 ≤ 2
(
∥a∥2 + ∥b∥2

)
, we have:

E ∥lθ(x, β)∥22 ≲ E
∥∥l2θ(x, β)∥∥22 + E

∥∥l2θ(x, β)∥∥22
E
∥∥l1θ(x, β)∥∥22 ≲ E ∥∇x log pθ(x, β)∥42 + E (∆x log pθ(x, β))

2

E
∥∥l2θ(x, β)∥∥22 ≲ E (∇β log pθ(x|β))4 + E (∇β log r(β)∇β log pθ(x|β))2 + E (∆β log pθ(x|β))2

We proceed to bound the right hand sides above. We have:

E
∥∥l1θ(x, β)∥∥22 ≲ E ∥∇x log pθ(x, β)∥42 + E (∆x log pθ(x, β))

2

≲ max
β,i

Ex∼p(x|β,i) ∥∇x log pθ(x|β, i)∥42 +max
β,i

Ex∼p(x|β,i) (∆x log pθ(x|β, i))2 (12)

≤ poly

(
d,

1

λmin

)
(13)
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Where (12) follows by Lemma 9, and (13) follows by combining Corollaries 2 and 1.

The same argument, along with Lemma 10, and the fact that maxβ(∇β log r(β))
4 ≲ D8λ−4

min by a direct calculation shows
that

E
∥∥l2θ(x, β)∥∥22 ≲ E (∇β log pθ(x|β))4 + E (∇β log r(β)∇β log pθ(x|β))2 + E (∆β log pθ(x|β))2

≤ poly

(
d,D,

1

λmin

)

Lemma 19 (Uniform convergence). The generalized score matching loss satisfies a uniform law of large numbers:

sup
θ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ p−→ 0

Proof. The proof will proceed by a fairly standard argument, using symmetrization and covering number bounds. Precisely,
let T = {(xi, βi)}ni=1 be the training data. We will denote by ÊT the empirical expectation (i.e. the average over) a training
set T .

We will first show that

ET supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ ≤ C

(
K, d,D, 1

λmin

)
√
n

(14)

from which the claim will follow. First, we will apply the symmetrization trick, by introducing a “ghost training set”
T ′ = {(x′

i, β
′
i)}ni=1. Precisely, we have:

ET supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ = ET supθ∈Θ

∣∣∣ÊT lθ(x, β)−DGSM (θ)
∣∣∣

= ET supθ∈Θ

∣∣∣ÊT lθ(x, β)− ET ′ÊT ′ lθ(x, β)
∣∣∣ (15)

≤ ET,T ′supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

(lθ(xi, βi)− lθ(x
′
i, β

′
i))

∣∣∣∣∣ (16)

where (15) follows by noting the population expectation can be expressed as the expectation over a choice of a (fresh)
training set T ′, (16) follows by applying Jensen’s inequality. Next, consider Rademacher variables {εi}ni=1. Since a
Rademacher random variable is symmetric about 0, we have

ET,T ′supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

(lθ(xi, βi)− lθ(x
′
i, β

′
i))

∣∣∣∣∣ = ET,T ′supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εi (lθ(xi, βi)− lθ(x
′
i, β

′
i))

∣∣∣∣∣
≤ 2ET supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣
For notational convenience, let us denote by

R :=

√√√√ 1

n

n∑
i=1

∥∇θlθ(xi, βi)∥2

We will bound this supremum by a Dudley integral, along with covering number bounds. Considering T as fixed, with
respect to the randomness in {εi}, the process 1

n

∑n
i=1 εilθ(xi, βi) is subgaussian with respect to the metric

d(θ, θ′) :=
1√
n
R∥θ − θ′∥2



Sample-Efficient Generalized Score Matching

In other words, we have

E{εi} exp

(
λ
1

n

n∑
i=1

εi (lθ(xi, βi)− lθ′(xi, βi))

)
≤ exp

(
λ2d(θ, θ′)

)
(17)

The proof of this is as follows: since εi is 1-subgaussian, and

|lθ(xi, βi)− lθ′(xi, βi)| ≤ ∥∇θlθ(xi, βi)∥∥θ − θ′∥

we have that εi (lθ(xi, βi)− lθ′(xi, βi)) is subgaussian with variance proxy ∥∇θ(xi, βi)∥2∥θ − θ′∥2. Thus,
1
n

∑n
i=1 εilθ(xi, βi) is subgaussian with variance proxy 1

n2

∑n
i=1 ∥∇θlθ(xi, βi)∥2∥θ − θ′∥22, which is equivalent to (17).

The Dudley entropy integral then gives

supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣ ≲
∫ ∞

0

√
logN(ϵ,Θ, d)dϵ (18)

where N(ϵ,Θ, d) denotes the size of the smallest possible ϵ-cover of the set of parameters Θ in the metric d.

Note that the ϵ in the integral bigger than the diameter of Θ in the metric d does not contribute to the integral, so we may
assume the integral has an upper limit

M =
2√
n
RD

Moreover, Θ is a product of K d-dimensional balls of (Euclidean) radius D, so

logN(ϵ,Θ, d) ≤ log

((
1 +

RD√
nϵ

)Kd
)

≤ KdRD√
nϵ

Plugging this estimate back in (18), we get

supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣ ≲
√
KdRD/

√
n

∫ M

0

1√
ϵ
dϵ

≲
√
MKdRD/

√
n

≲ RD

√
Kd

n

Taking expectations over the set T (keeping in mind that R is a function of T ), by Lemma 18 we get

ET supθ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εilθ(xi, βi)

∣∣∣∣∣ ≲ ET [R]D

√
Kd

n

≲
C
(
K, d,D, 1

λmin

)
√
n

This completes the proof of (14). By Markov’s inequality, (14) implies that for every ϵ > 0,

PrT
[
supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ > ϵ

]
≤

C
(
K, d,D, 1

λmin

)
√
nϵ

Thus, for every ϵ > 0,
lim
n→∞

PrT
[
supθ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ > ϵ

]
= 0

Thus,
sup
θ∈Θ

∣∣∣D̂GSM (θ)−DGSM (θ)
∣∣∣ p−→ 0

as we need.
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F. Polynomial smoothness bound: proof of Theorem 3
First, we need several easy consequences of the machinery developed in Section A.5, specialized to Gaussians appearing in
CTLD.

Lemma 20. For all k ∈ N, we have:

max
β,i

Ex∼p(x|β,i)∥Σ−1
β (x− µi)∥2k2 ≤ dkλ−k

min

Proof.

Ex∼p(x|β,i)∥Σ−1
β (x− µi)∥2k2 = Ez∼N (0,Id)∥Σ

− 1
2

β z∥2k2
≤ Ez∼N (0,Id)∥Σ

−1
β ∥kOP ∥z∥2k2

≤ λ−k
minEz∼N (0,Id)∥z∥

2k
2

≤ dkλ−k
min

where the last inequality follows by Lemma 26.

Combining this Lemma with Lemmas 6 and 7, we get the following corollary:

Corollary 2.

max
β,i

Ex∼p(x|β,i)

∥∥∥∥∥∇k1
µi
∇k2

x p(x|β, i)
p(x|β, i)

∥∥∥∥∥
2k

≲ d(k1+k2)kλ
−(k1+k2)k
min

max
β,i

E(x,β)∼p(x|β,i)

∥∥∥∥∥∇k1
µi
∆k2

x p(x|β, i)
p(x|β, i)

∥∥∥∥∥
2k

≲ d(k1+3k2)kλ
−(k1+3k2)k
min

Finally, we will need the following simple technical lemma:

Lemma 21. Let X be a vector-valued random variable with finite Var(X). Then, we have

∥Var(X)∥OP ≤ 6E∥X∥22

Proof. We have

∥Var(X)∥OP =
∥∥∥E [(X − E[X]) (X − E[X])

⊤
]∥∥∥

OP

≤ E ∥X − E[X]∥22 (19)

≤ 6E∥X∥22 (20)

where (19) follows from the subadditivity of the spectral norm, (20) follows from the fact that

∥x+ y∥22 = ∥x∥22 + ∥y∥22 + 2⟨x, y⟩ ≤ 3(∥x∥22 + ∥y∥22)

for any two vectors x, y, as well as the fact that by Jensen’s inequality, ∥E[X]∥22 ≤ E∥X∥22.

Given this lemma, it suffices to bound E∥(O∇θ log pθ)
Opθ

pθ
∥22 and E∥(O+O)∇θ log pθ∥22, which are given by Lemma 22

and Lemma 23, respectively.



Sample-Efficient Generalized Score Matching

Lemma 22.

E(x,β)∼p(x,β)

∥∥∥∥(O∇θ log pθ(x, β))
Opθ(x, β)

pθ(x, β)

∥∥∥∥2
2

≤ poly

(
D, d,

1

λmin

)

Proof. Recall that θ = (µ1, µ2, . . . , µK), where each µi is a d-dimensional vector, and we are viewing θ as a dK-
dimensional vector.

E(x,β)∼p(x,β)

∥∥∥∥(O∇θ log pθ(x, β))
Opθ(x, β)

pθ(x, β)

∥∥∥∥2
2

≤ E(x,β)∼p(x,β)

[
∥O∇θ log pθ(x, β)∥2OP

∥∥∥∥Opθ(x, β)

pθ(x, β)

∥∥∥∥2
2

]

≤
√
E(x,β)∼p(x,β) ∥O∇θ log pθ(x, β)∥4OP

√
E(x,β)∼p(x,β)

(
∥Opθ(x, β)∥2

pθ(x, β)

)4

where the last step follows by Cauchy-Schwartz. To bound both factors above, we will essentially first use Lemma 9 to
relate moments over the mixture, with moments over the components of the mixture. Subsequently, we will use estimates
for a single Gaussian, i.e. Corollaries 2 and 1.

Proceeding to the first factor, we have:

E(x,β)∼p(x,β) ∥O∇θ log pθ(x, β)∥4OP

≲ E(x,β)∼p(x,β) ∥∇x∇θ log pθ(x, β)∥4OP + E(x,β)∼p(x,β) ∥∇β∇θ log pθ(x, β)∥42 (21)

≲ E(x,β)∼p(x,β) ∥∇x∇θ log pθ(x|β)∥4OP + E(x,β)∼p(x,β) ∥∇β∇θ log pθ(x|β)∥42
≲ max

β,i
Ex∼p(x|β,i) ∥∇x∇θ log pθ(x|β, i)∥4OP +max

β,i
Ex∼p(x|β,i) ∥∇β∇θ log pθ(x|β, i)∥42 (22)

≤ poly(d, 1/λmin) (23)

where (21) follows from the fact that Of = (∇xf,∇βf)
T , (22) follows from Lemma 9, and (23) follows by combining

Corollaries 2 and 1 and Lemma 10.

The second factor is handled similarly3. We have:

E(x,β)∼p(x,β)

(
∥Opθ(x, β)∥2

pθ(x, β)

)4

≲ E(x,β)∼p(x,β)

(
∥∇xpθ(x, β)∥2

pθ(x, β)

)4

+ E(x,β)∼p(x,β)

(
∇βpθ(x, β)

pθ(x, β)

)4

= E(x,β)∼p(x,β)∥∇x log pθ(x, β)∥42 + E(x,β)∼p(x,β) (∇β log pθ(x, β))
4

≲ E(x,β)∼p(x,β)∥∇x log pθ(x|β)∥42 + E(x,β)∼p(x,β) (∇β log pθ(x|β))4 + Eβ∼r(β) (∇β log r(β))
4

≲ max
β,i

Ex∼p(x|β,i)∥∇x log pθ(x|β, i)∥42 +max
β,i

Ex∼p(x|β,i)(∇β log pθ(x|β, i))4 +max
β

(∇β log r(β))
4 (24)

≤ poly(d,D, 1/λmin) (25)

where (24) follows from Lemma 9, and (25) follows by combining Corollaries 2 and 1 and Lemma 10, as well as the fact
that maxβ(∇β log r(β))

4 ≲ D8λ−4
min by a direct calculation.

Together the estimates (23) and (25) complete the proof of the lemma.
3Note, ∇βf(β) for f : R → R is a scalar, since β is scalar.
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Lemma 23.

E(x,β)∼p(x,β)∥(O+O)∇θ log pθ(x, β)∥22 ≤ poly

(
d,

1

λmin

)

Proof. Since O+O = ∆(x,β), we have

(O+O)∇θ log pθ(x, β)

= ∇θ∆(x,β) log pθ(x, β) (26)

= ∇θ∆x log pθ(x, β) +∇θ∇2
β log pθ(x, β) (27)

= ∇θ∆x log pθ(x|β) +∇θ∆x log r(β) +∇θ∇2
β log pθ(x|β) +∇θ∇2

β log r(β)

= ∇θ∆x log pθ(x|β) +∇θ∇2
β log pθ(x|β) (28)

where (26) follows by exchanging the order of derivatives, (27) since β is a scalar, so the Laplacian just equals to the
Hessian, (28) by dropping the derivatives that are zero in the prior expression.

To bound both summands above, we will essentially first use Lemma 9 to relate moments over the mixture, with moments
over the components of the mixture. Subsequently, we will use estimates for a single Gaussian, i.e. Corollaries 1 and 2.
Precisely, we have:

E(x,β)∼p(x,β)∥(O+O)∇θ log pθ∥22
≲ E(x,β)∼p(x,β)∥∇θ Tr(∇2

x log pθ(x|β))∥22 + E(x,β)∼p(x,β)∥∇θ∇2
β log pθ(x|β)∥22

≲ max
β,i

Ex∼p(x|β,i)

∥∥∥∥∇θ∆xpθ(x|β, i)
pθ(x|β, i)

∥∥∥∥2
2

+max
β,i

Ex∼p(x|β,i)

∥∥∥∥∇θ∇xpθ(x|β, i)
pθ(x|β, i)

∥∥∥∥4
OP

(29)

≤ poly(d, 1/λmin) (30)

where (29) follows from Lemma 9 and Lemma 10, and (30) follows by combining Corollaries 1 and 2.

G. Technical Lemmas
G.1. O and ∇θ commute

The proof of Lemma 2 requires that we commute the application of ∇θ and O. This is obviously the case in the standard
score matching (O = ∇x) by Clairaut’s Theorem (or equality of mixed partials) — even in the case of the operator O
corresponding to CTLD, since it just requires exchanging partial derivatives. This section shows this property holds for
much more general O.

Lemma 24. Let O : F → R, be a continuous linear operator, where F is a space of univariate functions, and R a space of
(possibly multivariate) functions. Let {pθ}θ∈Θ be a space of parametrized functions by a vector of parameters θ ∈ Rm.

Then O and ∇θ commute, that is for every pθ ∈ F , such that ∂θipθ(x) exists for every x and ∂θipθ ∈ F ,∀i ∈ [m], we have:

∇θOpθ(x) = Õ∇θpθ(x)

where Õ is defined to be the element-wise extension of O to vector valued functions (i.e. O is applied to each coordinate).

Proof. We start with the left-hand side and rewrite it as follows:
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∂

∂θj
(Op)i(x) = lim

h→0

(Op)i(x; θ + hej)− (Op)i(x; θ)

h

= lim
h→0

O
(
p(·; θ + hej)− p(·; θ)

h

)
i

(x)

= O
(
lim
h→0

p(·; θ + hej)− p(·; θ)
h

)
i

(x) (31)

= O
(

∂p

∂θj

)
i

(x)

In equation 31, we used the fact that the operator O is continuous. With this assumption in place, we have

∇θOp =


∂

∂θ1
(Op)1 · · · ∂

∂θdθ
(Op)1

...
. . .

...
∂

∂θ1
(Op)dout

· · · ∂
∂θdθ

(Op)dout



=


O
(

∂p
∂θ1

)
1

· · · O
(

∂p
∂θdθ

)
1

...
. . .

...

O
(

∂p
∂θ1

)
dout

· · · O
(

∂p
∂θdθ

)
dout


=
[
O
(

∂p
∂θ1

)
· · · O

(
∂p

∂θdθ

)]
= Õ∇θp

This completes the proof.

By way of remarks, note that the operator O = ∇x (which corresponds to standard score matching) is bounded when viewed
as an operator ∇x : H1(Rd) → L2(Rd). Namely, for a function f ∈ H1(Rd), we have

∥f∥H1(Rd) = ∥f∥L2(Rd) + ∥∇f∥L2(Rd)

Thus, trivially,
∥∇f∥L2(Rd) ≤ ∥f∥H1(Rd)

i.e. the operator H1 is bounded.

G.2. Moments of a chi-squared random variable

For the lemmas in this subsection, we consider a random variable z ∼ N (0, Id) and random variable x ∼ N (µ,Σ) where
∥µ∥ ≤ D and Σ ⪯ σ2

maxI .

Lemma 25 (Norm of Gaussian). The random variable z enjoys the bound

E∥z∥2 ≤
√
d

Proof.

(E∥z∥2)2 ≤ E∥z∥22 (32)

= E
d∑

i=1

z2i

= d (33)

where (32) follows from Jensen, and (33) by plugging in the mean of a chi-squared distribution with d degree of freedom.
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Lemma 26 (Moments of Gaussian). Let z ∼ N (0, Id). For l ∈ Z+, E∥z∥2l2 ≲ dl.

Proof. The key observation required is ∥z∥22 =
∑d

i=1 z
2
i is a Chi-Squared distribution of degree d.

E∥z∥2l2 = E
(
∥z∥22

)l
= Eq∼χ2(d)q

l

=
(d+ 2l − 2)!!

(d− 2)!!
≤ (d+ 2l − 2)l

≲ dl

H. Related work
Our work draws on and brings together, theoretical developments in understanding score matching, as well as designing and
analyzing faster-mixing Markov chains based on strategies in annealing.

Score matching: Score matching was originally proposed by (Hyvärinen, 2005), who also provided some conditions under
which the estimator is consistent and asymptotically normal. Asymptotic normality is also proven for various kernelized
variants of score matching in (Barp et al., 2019). Recent work by (Koehler et al., 2022) proves that when the family of
distributions being fit is rich enough, the statistical sample complexity of score matching is comparable to the sample
complexity of maximum likelihood only when the distribution satisfies a Poincaré inequality. In particular, even simple
bimodal distributions in 1 dimension (like a mixture of 2 Gaussians) can significantly worsen the sample complexity of
score matching (exponential with respect to mode separation). For restricted parametric families (e.g. exponential families
with sufficient statistics consisting of bounded-degree polynomials), recent work (Pabbaraju et al., 2023) showed that score
matching can be comparably efficient to maximum likelihood, by leveraging the fact that a restricted version of the Poincaré
inequality suffices for good sample complexity.

On the empirical side, breakthrough work by (Song & Ermon, 2019) proposed an annealed version of score matching, in
which they proposed fitting the scores of the distribution convolved with multiple levels of Gaussian noise. They proposed
this as a mechanism to alleviate the poor estimate of the score inbetween modes for multimodal distributions, as well in
the presence of low-dimensional manifold structure in the data. They also proposed using the learned scores to sample via
annealed Langevin dynamics, which uses samples from Langevin at higher levels of Gaussian convolution as a warm start
for running a Langevin at lower levels of Gaussian convolution. Subsequently, this line of work developed into score-based
diffusion models (Song et al., 2020), which can be viewed as a “continuously annealed” version of the approach in (Song &
Ermon, 2019).

Theoretical understanding of annealed versions of score matching is still very impoverished. A recent line of work (Lee et al.,
2022; 2023; Chen et al., 2022) explores how accurately one can sample using a learned (annealed) score, if the (population)
score loss is successfully minimized. This line of work can be viewed as a kind of “error propagation” analysis: namely, how
much larger the sampling error with a score learned up to some tolerance. It does not provide insight on when the score can
be efficiently learned, either in terms of sample complexity or computational complexity.

Sampling by annealing: There are a plethora of methods proposed in the literature that use temperature heuristics
(Marinari & Parisi, 1992; Neal, 1996; Earl & Deem, 2005) to alleviate the slow mixing of various Markov Chains in the
presence of multimodal structure or data lying close to a low-dimensional manifold. A precise understanding of when such
strategies have provable benefits, however, is fairly nascent. Most related to our work, in (Ge et al., 2018; Lee et al., 2018),
the authors show that when a distribution is (close to) a mixture of K Gaussians with identical covariances, the classical
simulated tempering chain (Marinari & Parisi, 1992) with temperature annealing (i.e. scaling the log-pdf of the distribution),
along with Metropolis-Hastings to swap the temperature in the chain mixes in time poly(K). In subsequent work (Moitra &
Risteski, 2020), the authors show that for distributions sufficiently concentrated near a manifold of positive Ricci curvature,
Langevin mixes fast.

Decomposition theorems and mixing times The mixing time bounds we prove for CTLD rely on decomposition
techniques. At the level of the state space of a Markov Chain, these techniques “decompose” the Markov chain by
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partitioning the state space into sets, such that: (1) the mixing time of the Markov chain inside the sets is good; (2) the
“projected” chain, which transitions between sets with probability equal to the probability flow between sets, also mixes
fast. These techniques also can be thought of through the lens of functional inequalities, like Poincaré and Log-Sobolev
inequalities. Namely, these inequalities relate the variance or entropy of functions to the Dirichlet energy of the Markov
Chain: the decomposition can be thought of as decomposing the variance/entropy inside the sets of the partition, as well as
between the sets.

Most related to our work are (Ge et al., 2018; Moitra & Risteski, 2020; Madras & Randall, 2002), who largely focus on
decomposition techniques for bounding the Poincaré constant. Related “multiscale” techniques for bounding the log-Sobolev
constant have also appeared in the literature (Otto & Reznikoff, 2007; Lelièvre, 2009; Grunewald et al., 2009).

Learning mixtures of Gaussians Even though not the focus of our work, the annealed score-matching estimator with
the natural parametrization (i.e. the unknown means) can be used to learn the parameters of a mixture from data. This
is a rich line of work with a long history. Identifiability of the parameters from data has been known since the works of
(Teicher, 1963; Yakowitz & Spragins, 1968). Early work in the theoretical computer science community provided guarantees
for clustering-based algorithms (Dasgupta, 1999; Sanjeev & Kannan, 2001); subsequent work provided polynomial-time
algorithms down to the information theoretic threshold for identifiability based on the method of moments (Moitra & Valiant,
2010; Belkin & Sinha, 2010); even more recent work tackles robust algorithms for learning mixtures in the presence of
outliers (Hopkins & Li, 2018; Bakshi et al., 2022); finally, there has been a lot of interest in understanding the success and
failure modes of practical heuristics like expectation-maximization (Balakrishnan et al., 2017; Daskalakis et al., 2017).

Speeding up mixing via tempering techniques There are many related techniques for constructing Markov Chains by
introducing an annealing parameter (typically called a “temperature”). Our chain is augmented by a temperature random
variable, akin to the simulated tempering chain proposed by (Marinari & Parisi, 1992). In parallel tempering (Swendsen
& Wang, 1986; Hukushima & Nemoto, 1996), one maintains multiple particles (replicas), each evolving according to the
Markov Chain at some particular temperature, along with allowing swapping moves. Sequential Monte Carlo (Yang &
Dunson, 2013) is a related technique available when gradients of the log-likelihood can be evaluated.

Analyses of such techniques are few and far between. Most related to our work, (Ge et al., 2018) analyze a variant of
simulated tempering when the data distribution looks like a mixture of (unknown) Gaussians with identical covariance, and
can be accessed via gradients to the log-pdf. We compare in more detail to this work in Section 3. In the discrete case (i.e.
for Ising models), (Woodard et al., 2009b;a) provide some cases in which simulated and parallel tempering provide some
benefits to mixing time.


