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Abstract

We introduce the SIMILARITY-DISTANCE-MAGNITUDE (SDM) activation function, a more
robust and interpretable formulation of the standard softmax activation function, adding
SIMILARITY (i.e., correctly predicted depth-matches into training) awareness and DISTANCE-
to-training-distribution awareness to the existing output MAGNITUDE (i.e., decision-boundary)
awareness, and enabling interpretability-by-exemplar via dense matching. We further in-
troduce the SDM estimator, based on a data-driven partitioning of the class-wise empirical
CDFs via the sDM activation, to control the class- and prediction-conditional accuracy among
selective classifications. When used as the final-layer activation over pre-trained language
models for selective classification, the SDM estimator is more robust to co-variate shifts and
out-of-distribution inputs than existing calibration methods using softmax activations, while
remaining informative over in-distribution data.

1 Introduction

Neural-network-based language models (LMs) pose a challenge for interpretable and reliable deployment
given the non-identifiability of their parameters (Hwang & Ding, (1997} inter alia)EI, which can number in the
billions or more. Instead of directly interpreting parameters, one option is to move the focus of interpretation
to auditing predictions as a form of interpretability by example, or exemplar, over the representation space
of such models via dense matching. However, for real-world deployments, robust approaches for predictive
uncertainty are also needed, both for human decision-making and for constructing sequentially dependent
LM pipelines.

Known theoretical results limit the statistical quantities that can be derived over LMs. Statistical guarantees
in the distribution-free setting are limited to approximately conditional quantities (Valiant| (1984} [Lei &
‘Wassermanl, 2014; Foygel Barber et all 2020, inter alia). Further, even typical approximately conditional
quantities can be difficult to obtain in practice, since the minimal assumption of exchangeability with a known
held-out data set is itself often violated with co-variate and label shifts, which can be difficult to foresee with
existing methods. Epistemologically, the prevalence of hallucinations and highly-confident wrong answers with
widely deployed LMs suggests a technical impasse in effectively modeling the predictive uncertainty, despite
significant work from Bayesian, Frequentist, and empirically motivated perspectives (Gal & Ghahramani
2016} [Angelopoulos et al.| [2021; |Guo et al.| [2017; [Lakshminarayanan et all [2017; |Ovadia et al., [2019) inter
alia). A foundational piece is evidently missing from the picture.

Given these intrinsic challenges, we approach the problem of uncertainty quantification over LMs from a new
angle and ask: Can we leverage the metric learning and dense matching capabilities of neural networks over
high-dimensional inputs to at least aim to maximize, with minimal distributional assumptions, the separation
of aleatoric (irreducible) uncertainty and epistemic (reducible) uncertainty, decomposing the sources of the
latter in a manner that is interpretable and actionable?

We answer this question in the affirmative with a conceptually parsimonious, data-driven partitioning of the
data to decompose sources of epistemic uncertainty: Correctly predicted depth-matches into the training set

nformally, this means that two or more distinct sets of values for the parameters can result in identical output distributions.
As a consequence, interpreting the parameters of such models is typically much more complicated than with a simple linear
regression model, for example.
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(SIMILARITY), the DISTANCE to the training set, and the distance to the decision-boundary (MAGNITUDE).
We use these signals to construct a new activation function, the SDM activation, which can be used as
a replacement for the standard softmax activation, as, for example, the final-layer activation. The SDM
activation enables more reliable estimates of the predictive uncertainty for selective classification (Chowy, (1957}
Geifman & El-Yaniv, 2017, inter alia), which addresses the need for uncertainty quantification with LMs used
in multi-stage decision pipelines, in settings subject to co-variate shifts and out-of-distribution inputs.

In summary, in this work:

o We introduce the SIMILARITY-DISTANCE-MAGNITUDE (SDM) activation function, which encodes
strong signals of epistemic uncertainty, for use with neural networks.

e We introduce the SDM estimator for use in controlling class- and prediction-conditional accuracy among
selective classifications, based on a data-driven partitioning of the class-wise empirical cumulative
distribution functions (eCDFs) over the output via the SDM activation.

e We examine the behavior of the SDM activation as a final-layer activation over pre-trained language
models, using the SDM estimator for selective classification. We demonstrate empirically that the SDM
estimator is more robust to co-variate-shifts and out-of-distribution inputs than existing classes of post-
hoc calibration methods over softmax activations, while remaining informative over in-distribution
data.

2 Preliminaries

2.1 Setting

We consider the standard multi-class classification setting (e.g., predicting the sentiment of a movie review).
We are given a training dataset, Dy = {(€n,yn)})_; of inputs, € X, paired with their corresponding
ground-truth discrete labels, y € Y = {1,...,C}, and a labeled calibration dataset, D,, drawn from the same
distribution as D;,. We are then given a new test instance, @, from an unlabeled test set, D;e, and seek to
estimate the label with a prediction, ¢, via the un-normalized log probabilities (“logits”, informally) of a final
linear layer: z = WTh + b, where h = network(x; 6) is the final hidden state of a network parameterized
by 6. The discrete prediction is taken as §j = arg max z; however, for learning 6, W, and b, and for human
decision-making, we also seek an estimate of the predictive uncertainty, p(y | ), which is typically obtained
by normalizing z via the softmax activation described next. We will make a distinction between models, M
(defined by 8, W and b, and when applicable, the exemplar adaptor, described below), which produce the
prediction, ¢, and estimators, £, which provide an estimate of p(y | x), because different estimators can be
used over the same model.

2.2 Softmax and the Cross-Entropy loss

The softmax activation is commonly used in neural network architectures, including, for example, as a router
in self-attention mechanisms (Vaswani et al., 2017)) and mixture-of-experts models (Shazeer et all 2017, and
forming the basis of the cross-entropy loss used for next-token training of LMs. It is the typical final output
layer of LMs, converting the un-normalized model logits to a normalized probability distribution:

eT'ZrL'

softmax(z); = —5———,1<i<C,7>0 (1)

Zc:l eT Ze ’

The inverse-temperature parameter, 7, controls the sharpness of the distribution. As 7 — 0, the output of
softmax(z) converges to a uniform distribution where each class has probability %; as T — 00, the output
converges to a distribution in which all of the mass is assigned to a single class. In deep learning, 7 is treated
as a learnable, global hyper-parameter; instance-wise variation in the distance to the decision-boundary is
thus determined by the relative MAGNITUDE of z;. This model is learned by minimizing the cross-entropy
loss between z and the index of the true labels over D;,.. The natural logarithm of the loss is the counterpart
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to the base e of the softmax:

L(0,W,b;Dy,) = Zlogp< ”y". ) 2)

c—l eTFe
3 Methods

In this work, we revisit Eq. [[Jand [2] We seek to decouple the sources of epistemic uncertainty via a new
activation function that is conceptually:

SIMILARITYDISTANCE - MAGNITUDE;

SDM(z); =

: : (3)
Zf:l SIMILARITYDISTANCL - MAGNITUDE,,

with a corresponding negative log likelihood loss that takes into account the change of base (§ . Unique
to this setting, a modification to label-conditional conformal prediction (Vovk et al., |2005)) then follows via a
parsimonious partitioning of the class-wise empirical CDFs, providing a principled basis for controlling the class-
conditional accuracy among selective classifications, combined with empirically-robust prediction-conditional
estimates.

3.1 Similarity-Distance-Magnitude Activation Functions

Calculating the sDM activation involves training an exemplar adaptor, a 1-D CNN adaptor (with a final
linear layer) over the frozen hidden states of a network, to induce distilled, compressed representations of
the underlying network’s representation space conditional on its predictions. The resulting representations
provide a probabilistic mapping to the training, or support, set. In this way, neural networks, including large
pre-trained networks, can be viewed as hidden instance-based metric learners, from which we can then derive
signals of the epistemic uncertainty.

3.1.1 Exemplar Adaptor

We take as the CNN of our exemplar adaptor g : h € RP — h' € RM, a 1-D CNN that takes as input h of
the underlying network. The CNN has M filters, the filter applications of which produce h’, the distilled
representation of the underlying network. A final linear layer, 2/ = W'Th’/ + b/, 2’ € RY, then replaces
the underlying network’s linear layer, with the discrete prediction taken as §j = arg max z’. This exemplar
adaptor will then enable us to derive the SIMILARITY, DISTANCE, and MAGNITUDE values, as defined next.

3.1.2 Similarity

We define the SIMILARITY (g) of an instance to the training set as the count of consecutive nearest matches
in Dy, that are correctly predicted and match ¢ of the test instanceﬂ Concretely, we first sort Dy,
(for which we have both model predictions and ground-truth labels) based on the L? distance from h/,
[(w(l),gjﬁ),y(l)) ,(z (N)’@ZV)’Z’(N))]’ such that |[h" — h{{j[[2 < ... < [ — h{[l2, and then calculate
qc {07~-~7|Dtr|} as:

‘ Dtr |
1= Z Yo=itsy - Loiy=v, - Licae > e g Loy @
i=1 i=t G 1TV

where the rightmost indicator function, 1 € {0, 1}, ensures consecutive (depth-wise) matchesﬂ By definition,
q cannot exceed the count of the most prevalent class label in Dy,, and since we assume an approximately
equal number of points for each class, ¢ < | Dy, | is typical. For the special case of calculating ¢ for & € Dy,
which only occurs during learning, we exclude the self-match.

2We use the letter g, as this value quantizes the closeness of a point to the training set with a discrete estimate.

3This seemingly simple rule differs from traditional KNN rules (Cover & Hart,, [1967; |Devroye et al.,[1996] inter alia) in two
critical respects: The neural network serves as a semi-supervised metric learner of the distances between the dense representations
that identify the instances, and there is a model prediction (in addition to the ground-truth label) for each instance in the
support set. The former enables effective partitioning despite the curse of high dimensions; the latter provides an additional
indicator of reliability for each instance.
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3.1.3 Distance

Itr
1)
values by defining the DISTANCE, d € [0, 1], in terms of the class-wise empirical CDFs of dpearest Over Dea,
as the most conservative quantile relative to the distance to the nearest matches observed in the labeled,
held-out set:

The L? distance to the nearest match in D, follows from above: dyearest = ||[B' — B/ ||2. We normalize these

d = min [1 — eCDFY! (dyearest)s - - - , 1 — €CDFYS (dpearest)] (5)

The empirical CDFs are determined by the labeled points in D., for which ¢ > 0, where, as indicated by
the superscripts, the stratification of points is by the true labels, y. For example, eCDFY! (dpcarest) is the
empirical CDF of dpearest values in D, for which y = 1, a notation convention we will use throughout. (Points
with ¢ = 0 are effectively out-of-distribution points and treated as such in downstream decision-making, so
they are excluded to avoid biasing the estimates.) At test time, we do not see y; instead, the minimum is
calculated over the quantiles of each of the class-conditional eCDFs, regardless of §j. As with ¢, for the special
case of calculating d for & € D, we replace eCDFY¢ with the analogous eCDFYy, the class-wise empirical
CDFs of dyearest over Dy, excluding self-matches.

3.1.4 Magpnitude

We take as the MAGNITUDE, or distance to the decision boundary, Zz/?’ as in the standard softmax case but
via 2z’ from the linear layer of the exemplar adaptor.

3.1.5 SDM Activation: Formulation

We use the above quantities to define the SDM activation function:

(2+q)*=
C )
Zc:l (2 + q)d ¢

The output distribution becomes sharper with higher values of ¢, d, and z’. When dycarest €xceeds the largest
distance observed in the labeled data, d = 0 and the output distribution is uniform, reflecting maximally
high uncertainty. The standard softmax with 7 = 1 is recovered by setting ¢ = e — 2,d = 1. As with the
softmax activation, arg max SDM(z’) = argmax z’.

sbM(z'); = <i<C (6)

3.1.6 SDM Activation: Loss and Training

A loss analogous to Eq. [2] then follows with the applicable change of base. We use this loss to train the
weights of the exemplar adaptor, which includes the parameters of the linear layer (W' and b'), as well as
the convolution weights and biases, which we collectively represent with G. The weights of the underlying
network remain fixed.

N d-z!
1 (24 q)* Fun
LG, W' VD)= —=> o 7

The first epoch of training is initialized with a standard softmax (i.e., setting ¢ = e — 2,d = 1). Training then
proceeds by re-calculating ¢ and d for each € Dy, after each epoch. We take as the stopping criteria for one
learning round as the epoch with the lowest balanced (across classes) average loss over D.,. We repeat this
process for J iterations of random shuffles and splits of Dy, and D, and parameter initializations, choosing
the final model as that with the globally lowest balanced (across classes) average loss over Dg,.

3.2 Evaluating Selective Classification

As a common, unambiguous baseline quantity for comparing selective classifiers over a held-out test set,
Dye, we seek an easy-to-interpret and easy-to-evaluate metric, reflecting real-world applications. Among the
selective classifications from an estimator, we seek (Quantity I) prediction-conditional accuracy at or above a
given threshold, a € (%, 1], and (Quantity II) class-conditional accuracy at or above that same threshold, «.
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To evaluate this metric, we only consider the points for which the given estimator assigns a high-probability
of at least a, which is typically near 1, such as o = 0.95 in our experiments. We refer to this set of points as
the admitted, or non-rejected, set. Then, given ground-truth values for D;., we assess whether the conditional
accuracies of the admitted set are at least @ when (Quantity I) stratifying by the predicted labels, §, and
when (Quantity II) stratifying by the true labels, y.

The estimator that rejects all points would meet these conditions. However, given two estimators that meet
these conditions, we prefer that which rejects fewer points, ceteris paribus. In other words, we seek estimators
that meet our reliability condition and are informative (i.e., maximize the number of points that are properly
admitted), but when the estimator is uncertain, we prefer rejection over unexpectedly falling under the
desired « probability threshold.

Quantity I corresponds to top-label calibration (Gupta & Ramdas| [2022), but with a single bin for evaluation,
[, 1], removing ambiguity with regard to the choice of binning the probabilities. Quantity IT does not directly
correspond to quantities typically examined in the calibration literature (Brier} (1950 |Dawid, 1982; |Guo
et al., [2017; [Vaicenavicius et al., |2019; [Kull et al., 2019} inter alia), but it approximatesEl label-conditional
conformal coverage in the special case of class-wise thresholds that only admit prediction sets of cardinality 1.
We introduce a straightforward procedure to estimate this quantity next.

3.2.1 Controlling the Class-conditional Accuracy among Selective Classifications with SDM Estimators

In general, the statistical coverage guarantee of marginal split-conformal estimators is not directly informative
for selection, since the coverage guarantee is not conditional on the set size. We may instead seek one of
various approximately conditional notions of coverage (Romano et al., [2020; |Angelopoulos et al.| {2021} inter
alia); however, there is no guarantee that when we stratify by sets of cardinality 1, coverage will be maintained.
However, there is a special case in which label-conditional conformal estimators do provide a meaningful
notion of class-conditional coverage for selection. Assuming D, and D are exchangeable, if the conformity
score for each label is from a categorical distribution and the resulting thresholding of the class-wise empirical
CDFs results in class-wise thresholds that are all greater than %, then the cardinality 1 sets will, on average,
obtain class-conditional coverage, by deﬁnitionﬂ Unfortunately, it may be rare to encounter this restricted
setting over the full data distributions of real-world tasks. Instead, we will use the SDM activation to estimate
a partitioning of the distribution into a region that approximately fulfills these assumptions.

First, we rescale the SIMILARITY estimate to take into account the DISTANCE and MAGNITUDE, given the
predicted class. The resulting valutﬂ will be the basis for partitioning the distribution:

¢ =min (g, 2+ )™=) (8)

Next, we estimate label-conditional conformal thresholds, [1)1, ... ¢], over the output from the SDM activation
among a subset of the distribution constrained by progressively larger values of ¢’ (among |¢’'| > 0) until all
thresholds are at least a. By setting our stopping criteria at « rather than %, we also restrict the region to
our empirically-motivated prediction-conditional quantity, SDM(2’)g. The procedure appears in Alg. [1} If
we find a finite ¢} ;, that obtains such thresholds, we refer to the resulting region as the HIGH-RELIABILITY
(sDMpR) region, taking membership in this region as our selection criteria:

(9)

oy o [T = i AN 2
- 1 otherwise

where L indicates a rejected (non-admitted) point and § = argmax z’.

4For simplicity of presentation, we omit consideration of the Beta-distributed error term that is a function of the effective
sample size of split-conformal coverage (Vovkl [2012). In practice, this term is negligible in the present experiments given | Dea |
and the resolution of the comparisons. See Appendix for a further discussion of analyzing the effective sample size for both
the class-conditional and prediction-conditional estimates.

5Although the formal interpretations are not identical, the evaluation of class-conditional coverage for a single estimate of
such cardinality 1 prediction sets in this restricted setting over Die is numerically equivalent to assessing the class-conditional
accuracy, when not considering the sample size error term.

6The min ensures that ¢’ remains 0 for points with ¢ = 0, which are effectively out-of-distribution points.
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To calculate this quantity for new, unseen test points & € D;., we require Dy, to calculate ¢ and dpearest; the
cached class-wise empirical CDFs of the distances over D, of Eq. o} and ¢,;, and the thresholds, [¢1,...%¢].
Evaluation of the SDMyR selection criteria is straightforward: We simply assess the conditional accuracies for
the admitted points after stratifying by the predictions and the true labels, each in turn.

When Alg. [1| returns ¢},;,, = 0o, we obtain a useful empirical indicator that the model is too weak, or the
data insufficient, to reliably obtain class- and prediction-conditional estimates at the specified a value.

Algorithm 1 Search Algorithm to Find ¢/ ;, and [¢1,...%¢] to Estimate the HIGH-RELIABILITY Region

Input: cached (¢',sDM(2')) V & € Dea, o € (%, 1]
1: procedure ESTIMATE-HIGH-RELIABILITY-REGION(cached (¢, SDM(2)) V & € Dea, a € (&, 1])

2 Grnin +— 00 > A finite gl,;,, may not be found.
3: [1,...%c] « [00,...,00] > Class-wise output thresholds
4: sortedList < sorted [¢' € Dea s.t. |¢'| > 0] > Restricted to |¢'] > 0 to exclude OOD
5: for ¢* € sortedList do

6: Construct eCDFY:,...,eCDFYS for all ¢ > ¢* in Dea > eCDFs for spm(z') (Eq. @), stratified by y
7 Calculate 9. = inverseCDF% (1 —a) Ve € {1,...,C} > Quantile functions are inverses of L. [f]
8: if all( [¢1,...9%¢c] > o ) then > Element-wise comparison
9: Gmin < ¢

10: break

11: return gy, [¥1,. .. ¥c]
OUtPUt: qI/I‘lil’l7 [wla s ¢C}

The convention is to refer to the basic architecture of Eq. [f] as the SDM activation function, and using the
activation with the selection criteria of Eq. [0 as the SDM estimator.

4 Experiments

We provide controlled comparisons of our proposed methods over representative LMs and tasks, systematically
ablating relevant components, holding the data and underlying LM constant, ceteris paribus. We consider
in-distribution, co-variate shifted, and out-of-distribution test sets. We consider representative estimators
over the existing LM architecture (i.e., without additional parameters); with CNN adaptors; and with the
SDM activation layer.

4.1 Task: Binary Sentiment Classification

Sentiment: D;, and D.,. Our first task is predicting the sentiment of movie reviews. We use the
commonly used benchmark data of Maas et al.| (2011]). This is a binary classification task with y € {0 =
negative, 1 = positive}. D, and D, are constructed from a total of 18k instances. The held-out set for
evaluation, | Dy | = 1583, is from the same distribution as Dy, and De,. This is a well-studied task for which
the surface-level signals correlated with the target labels are expected to be effectively modeled by large
parameter LMs; as such, relatively high task accuracies are expected. We use the label SENTIMENT for the
in-distribution test set.

SentimentOOD. To evaluate the behavior of the estimators over out-of-distribution (OOD) data, we
consider an additional evaluation set, SENTIMENTOOD, | D | = 4750. We use the SemEval-2017 Task 4a
test set (Rosenthal et all |2017), which consists of short-form social media posts that differ in the distribution
of topics, language styles, and lengths relative to the movie reviews. We balance the test set, dropping the
third class (neutral), setting the semantics of the true labels to be the same as that of the movie reviews:
y € {0 = negative, 1 = positive}.

SentimentShuffled and SentimentOODShuffled. In the Appendix, we consider two additional out-
of-distribution challenge test sets, SENTIMENTSHUFFLED and SENTIMENTOODSHUFFLED, constructed by
randomly shuffling the input documents for each of SENTIMENT and SENTIMENTOOD, respectively. The
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semantics of the original labels are maintained. This requires the models and estimators to attempt a sentiment
classification over the bag-of-words input, or reject the classification. This represents the setting where an
LM is given far out-of-distribution input, and additionally provides a control on test-set contamination of the
underlying LMs, which due to the shuffling, are relatively unlikely to have seen all of the long, contiguous
n-gram sequences from these documents in training or fine-tuning.

Prompt. For this task, we prompt the LMs for a binary classification (Yes or No) as follows: Here is a
movie review. <review> DOCUMENT </review> Is the sentiment of the movie review positive?
Answer Yes if the sentiment is positive. Answer No if the sentiment is negative. Start
your response with Yes or No.

We replace DOCUMENT with the corresponding text for each instance.

4.2 Task: Factcheck

Factcheck. As a more challenging binary classification task for LMs, we consider the fact check data of
Azaria & Mitchell (2023). The training and calibration sets, a combined total of 6k instances, consist of
single sentence statements that have been semi-automatically generated via templates and a knowledge base.
The task is to determine whether the statement is true or false, y € {0 = false, 1 = true}. The held-out eval
set (FACTCHECK), | Dj, | = 245, the focus of our analysis, has been constructed by having an LM generate a
statement continued from a true statement not otherwise in the dataset. These evaluation statements are
checked manually and assigned labels by human annotators. In addition to being a relatively challenging task
that evaluates—at least in principle—the latent knowledge stored within an LM’s parameters, the test set
is representative of the types of co-variate shifts over high-dimensional inputs that can be problematic for
real applications, and challenging to characterize without model assistance and ground-truth labels. It was
observed in |Azaria & Mitchell| (2023]) that the accuracy of existing LM classifiers is lower on this generated,
held-out test set compared to the calibration set. However, these test sentences would seem to also be
simple true-false statements, reflecting that it is not necessarily straightforward for a human user to detect
distribution shifts over high-dimensional inputs. As such, we seek for our models and estimators to reflect
such shifts via the predictive uncertainty.

FactcheckShuffled. As with the sentiment task, in the Appendix we also consider an additional out-of-
distribution challenge test set, FACTCHECKSHUFFLED, constructed by randomly shuffling the input documents
of FACTCHECK. Since the task prompt (below) seeks to classify errors, we set the ground-truth labels of the
shuffled counterparts to y = 0.

Prompt. Similar to the sentiment task, we prompt the LMs for a binary classification (Yes or No) as
follows: Here is a statement that may contain errors. <statement> DOCUMENT </statement> Is
the statement true? Answer Yes if the statement is true. Answer No if the statement is
false. Start your response with Yes or No.

We replace DOCUMENT with the corresponding text for each instance.

4.3 Models

We consider two representative, publicly-available decoder-only Transformer-based language models: The
3.8 billion-parameter Phi-3.5-mini-instruct model (PHI3.5) (Abdin et all 2024), and the 47 billion-
parameter Mixtral 8x7B Instruct vO0.1 mixture-of-experts model (MIXTRAL8X7B) (Jiang et al., [2024).
The parameters of these models stay fixed in all experiments.

Hidden states. For both models, we take as h the concatenation of the final-layer hidden state of the
final sequence position (i.e., the hidden state that is the input to the linear-layer over the output vocabulary
for the Yes or No generation) with the mean over all final-layer hidden states. For PHI3.5, this results in
h € RS and for MIXTRALSX7B, h € R8192,



Under review as submission to TMLR

4.4 Estimators

Holding each underlying LM constant, we examine representative classes of estimators used with neural
networks, setting o = 0.95 for all experiments. At the most basic, but also perhaps the most commonly
used in practice, representing the absence of a post-hoc calibration method, we simply threshold the output,
softmax(z) > a, where the temperature 7 = 1. As an established empirical approach for calibrating neural
networks, we provide a comparison to temperature scaling (Guo et al., [2017)), a single parameter version
of post-hoc Platt-scaling (Platt, [1999)), with the label TEMPSCALING. In this case, the estimator is the
thresholding of the output softmax(z;7) > « after learning a value for 7 over D.,. We also provide a
comparison to two representative conformal predictors, the APS method of [Romano et al.| (2020) and the
adaptiveness-optimized RAPS algorithm of |[Angelopoulos et al| (2021). The admission criteria for the
APS and RAPS estimators is prediction sets of size 1, at the 0.05 level (i.e., 1 — «, as defined here). We
consider these estimators over the logits corresponding to the Yes and No indexes of the output linear-layer
of the underlying LM (PHI3.5 and MIXTRAL8X7B), which provides a reference point without introducing
additional adaptor layers. We also consider these baselines over 1-D CNN adaptors over h of each LM
(PHI3.54+ADAPTOR and MIXTRAL8X7B+ADAPTOR). These baseline adaptors are identical to those used in
the corresponding SDM activation layers, with M = 1000, and are similarly trained for J = 10 iterations
of 200 epochs, but unlike the SDM activation layers, the stopping criteria is the minimum balanced (across
classes) average cross-entropy loss.

We then compare to the final-layer sDM activations over h of each LM (PHI3.54+SDM and
MIXTRAL8X7B+sbM). For reference, we provide the result of thresholding a softmax over these adap-
tors at «, as above, as well as a thresholded softmax that simply treats d as the inverse-temperature,
SOFTMAX(d -2"), which is equivalent to setting ¢ = e — 2 in the SDM activation. We also consider an analogous
threshold over the activation output, SDM(z') > «, for which we use SDM as the estimator label. Finally, we
use the label sDMpg for the selection criteria proposed in Eq. [0}

As a common point of reference, the label NO-REJECT refers to predictions without any selective filtering
(i.e., the raw output accuracies, derived from the arg max over the final linear-layer).

5 Results

In-distribution data. The results for the in-distribution SENTIMENT dataset appear in Table [I} Even
on this in-distribution dataset, the estimators over the underlying LMs without adaptor layers exhibit
modest over-confidence, which is reflected in conditional accuracies that fall below the expected . The
estimators over the adaptor layers and the SDM activation all obtain the desired conditional accuracies,
with the class-wise accuracies of the models themselves > «, with differences arising in the proportion of
admitted points. Here and elsewhere, SOFTMAX(d -2’) tends to be overly conservative in rejecting points. To
be expected, the SDMyR estimator tends to be more conservative than simply thresholding the SDM activation
on the in-distribution data, but the latter lacks the assurances on the class-conditional accuracy obtained
by the constraints on the HIGH-RELIABILITY region. In practice, this behavior can be used as a basis to
triage selective classifications: For example, documents in the HIGH-RELIABILITY region might be treated
as automated, or semi-automated, predictions in the decision pipeline, whereas other documents might be
triaged by SDM(z’)y for calling more resource-intensive LM tools, or human adjudication. Importantly, as we
discuss below with the co-variate-shifted and out-of-distribution datasets, just using the softmax or the other
estimators does not provide a reliable substrate for basing such conditional branching decisions.

Co-variate-shifted and Out-of-distribution data. The bottom half of Table [1| provides the results
for SENTIMENTOOD. Here, the distinctions between the estimators become clear, with the non-sbM-based
estimators performing poorly, even in terms of the marginal accuracy. That would come as a surprise to
end-users, whereas with the SDM and SDMyR estimators, the out-of-distribution documents are more reliably
rejected, with the few admitted predictions generally obtaining high conditional accuracies, despite the
relatively low accuracies of the test set without selection (see NO-REJECT). A similar pattern is observed over
the FACTCHECK dataset in Table 2
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Table 1: Comparison of estimators for the sentiment datasets, with « = 0.95. R indicates all predictions

were rejected, which is preferred over falling under the expected accuracy. n = |Admitted|, the count of
non-rejected documents.

Class-conditional Prediction-conditional Marginal
y=0 y=1 9=0 g=1 y€1{0,1}
Dataset Model Estimator Acc. ‘ D’:e 0 Acc. ﬁ Acc. \;T\ Acc. |D"ﬁ Acc. |D"ﬁ
SENTIMENT PHI3.5 NO-REJECT 0.98 0.50 0.85 0.50 0.86 0.57 0.98 0.43 091 1.
SENTIMENT PHI3.5 SOFTMAX 0.98 0.50 0.86 0.48 0.88 0.56 0.98 0.42 0.93 098
SENTIMENT PHI3.5 TEMPSCALING 0.99 0.49 0.91 0.41 0.93 0.52 0.99 0.38 0.95 0.90
SENTIMENT PHI3.5 APS 0.99 0.49 0.92 0.40 0.94 0.51 0.99 0.37 0.96 0.89
SENTIMENT PHI3.5 RAPS 0.99 0.48 0.91 0.41 0.93 0.51 0.99 0.38 0.95 0.90
SENTIMENT PHI3.5+ADAPTOR NO-REJECT 0.97 0.50 0.95 0.50 0.96 0.51 0.97 0.49 0.96 1.
SENTIMENT PHI3.5+ADAPTOR SOFTMAX 0.99 0.42 1.00 0.42 1.00 0.42 0.99 0.42 0.99 0.84
SENTIMENT PHI3.5+ADAPTOR TEMPSCALING 0.99 0.42 1.00 0.41 1.00 0.42 0.99 0.41 099 0.83
SENTIMENT PHI3.5+ADAPTOR APS 0.98 0.45 0.98 0.45 0.98 0.45 0.98 0.45 0.98  0.90
SENTIMENT PHI3.5+ADAPTOR RAPS 0.98 0.45 0.98 0.44 0.98 0.45 0.98 0.44 0.98 0.89
SENTIMENT PHI3.5+SDM NO-REJECT 0.96 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.96 1.
SENTIMENT PHI3.5+SDM SOFTMAX 0.97 0.48 0.97 0.48 0.97 0.48 0.97 0.48 0.97 0.96
SENTIMENT PHI3.5+SDM SOFTMAX(d -2") 0.99 030 0.99 024 1.00 030 099 024 099 0.54
SENTIMENT PHI3.5+SDM SDM 0.99 0.43 0.99 0.38 0.99 0.43 0.99 0.38 0.99 081
SENTIMENT PHI3.5+SDM SDMpR 1.00 0.37 0.99 0.30 0.99 0.38 1.00 0.30 0.99 0.68
SENTIMENT MIXTRALSX7B NO-REJECT 0.98 0.50 0.88 0.50 0.89 0.55 0.98 0.45 093 1.
SENTIMENT MIXTRALSX7B SOFTMAX 0.98 0.50 0.88 0.50 0.89 0.55 0.98 0.45 0.93 1.00
SENTIMENT MIXTRALSX7B TEMPSCALING 0.99 0.50 0.90 0.48 0.91 0.54 0.98 0.44 094 098
SENTIMENT MIXTRAL8X7B APS 0.98 0.49 0.91 0.47 0.92 0.52 0.98 0.44 0.95 0.96
SENTIMENT MIXTRALSX7B RAPS 0.99 0.49 0.92 0.47 0.93 0.52 0.98 0.44 0.95 0.96
SENTIMENT MIXTRAL8X7B+ADAPTOR NO-REJECT 0.97 0.50 0.96 0.50 0.96 0.51 0.97 0.49 0.97 1.
SENTIMENT MIXTRALS8X7B+ADAPTOR SOFTMAX 0.99 0.45 0.99 0.43 0.99 0.45 0.99 0.43 0.99 0.87
SENTIMENT MIXTRAL8X7B+ADAPTOR TEMPSCALING 0.99 0.43 0.99 0.41 0.99 0.43 0.99 0.41 0.99 0.84
SENTIMENT MIXTRAL8X7B4+ADAPTOR APS 0.99 0.46 0.98 0.45 0.98 0.46 0.99 0.44 0.99 091
SENTIMENT MIXTRAL8X7B+ADAPTOR RAPS 0.99 0.46 0.98 0.45 0.98 0.47 0.98 0.45 0.98 0.92
SENTIMENT MIXTRALSX7B+SDM NO-REJECT 0.96 0.50 0.95 0.50 0.95 0.51 0.96 0.49 096 1.
SENTIMENT MIXTRAL8X7B+SDM SOFTMAX 0.97 0.49 0.96 0.49 0.96 0.50 0.97 0.49 0.97 0.98
SENTIMENT MIXTRALSX7B+SDM SOFTMAX(d -2") 0.99 0.43 099 033 0.99 043 099 033 099 0.77
SENTIMENT MIXTRAL8X7B+SDM SDM 0.98 0.48 0.98 0.43 0.98 0.47 0.98 0.43 0.98  0.90
SENTIMENT MIXTRALSX7B-+SDM SDMHR 0.99 0.41 0.98 0.33 0.99 0.41 0.98 0.33 0.99 0.74
SENTIMENTOOD  PHI3.5 NO-REJECT 1.00 0.50 0.53 0.50 0.68 0.73 0.99 0.27 0.76 1.
SENTIMENTOOD  PHI3.5 SOFTMAX 1.00 0.50 0.54 0.46 0.70 0.71 0.99 0.25 0.78 0.96
SENTIMENTOOD  PHI3.5 TEMPSCALING 1.00 0.49 0.58 0.30 0.80 0.62 0.99 0.17 0.84 0.79
SENTIMENTOOD  PHI3.5 APS 1.00 0.49 0.59 0.28 0.81 0.60 0.99 0.17 0.85 0.77
SENTIMENTOOD  PHI3.5 RAPS 1.00 0.49 0.59 0.28 0.81 0.60 0.99 0.17 0.85 0.77
SENTIMENTOOD  PHI3.54+ADAPTOR NO-REJECT 0.47 0.50 0.70 0.50 0.61 0.38 0.57 0.62 0.59 1.
SENTIMENTOOD  PHI3.54+ADAPTOR SOFTMAX 0.57 0.03 0.96 0.07 0.84 0.02 0.85 0.07 0.85  0.09
SENTIMENTOOD  PHI3.54+ADAPTOR TEMPSCALING 0.60 0.02 0.97 0.05 0.86 0.01 0.87 0.06 0.87 0.07
SENTIMENTOOD  PHI3.54+ADAPTOR APS 0.46 0.14 0.83 0.18 0.67 0.09 0.68 0.22 0.68 0.32
SENTIMENTOOD  PHI3.54+ADAPTOR RAPS 0.48 0.13 0.82 0.18 0.66 0.10 0.68 0.22 0.68 0.32
SENTIMENTOOD  PHI3.54-SDM NO-REJECT 0.92 0.50 0.84 0.50 0.85 0.54 0.91 0.46 0.88 1.
SENTIMENTOOD  PHI3.54SDM SOFTMAX 0.96 0.42 0.87 0.45 0.87 0.46 0.96 0.41 091 0.87
SENTIMENTOOD  PHI3.54+SDM SOFTMAX(d -2') 1% <0.01 il <0.01 1, <0.01 i <0.01 il <0.01
SENTIMENTOOD  PHI3.54SDM SDM 1. 0.01 0.98 0.01 0.98 0.01 1. 0.01 0.99 0.02
SENTIMENTOOD  PHI3.5+SDM SDMHR 1. <0.01 1. <0.01 1. <0.01 1. <0.01 1. 0.01
SENTIMENTOOD  MIXTRAL8SX7B NO-REJECT 1.00 0.50 0.35 0.50 0.61 0.82 1.00 0.18 0.67 1.
SENTIMENTOOD  MIXTRALSX7B SOFTMAX 1.00 0.50 0.35 0.49 0.61 0.82 1.00 0.17 0.68 0.99
SENTIMENTOOD  MIXTRAL8SX7B TEMPSCALING 1.00 0.49 0.37 0.41 0.66 0.75 0.99 0.15 0.71  0.90
SENTIMENTOOD  MIXTRAL8S8X7B APS 1.00 0.45 0.44 0.32 0.71 0.63 0.99 0.14 0.77  0.77
SENTIMENTOOD  MIXTRAL8SX7B RAPS 1.00 0.45 0.44 0.32 0.72 0.63 0.99 0.14 0.77  0.77
SENTIMENTOOD  MIXTRAL8X7B+ADAPTOR NO-REJECT 0.88 0.50 0.51 0.50 0.64 0.69 0.82 0.31 0.70 1.
SENTIMENTOOD  MIXTRAL8X7B+ADAPTOR  SOFTMAX 0.98 0.02 0.83 0.07 0.66 0.04 0.99 0.06 0.87 0.10
SENTIMENTOOD  MIXTRAL8X7B+ADAPTOR TEMPSCALING 0.98 0.01 0.90 0.05 0.67 0.02 1.00 0.05 091 0.06
SENTIMENTOOD  MIXTRAL8X7B+ADAPTOR APS 0.94 0.14 0.63 0.18 0.67 0.20 0.93 0.12 0.77  0.32
SENTIMENTOOD  MIXTRAL8X7B+ADAPTOR RAPS 0.94 0.14 0.63 0.18 0.67 0.20 0.93 0.12 0.76 0.32
SENTIMENTOOD  MIXTRAL8X7B+sbMm NO-REJECT 0.71 0.50 0.83 0.50 0.81 0.44 0.74 0.56 0.77 1.
SENTIMENTOOD  MIXTRAL8X7B+sbm SOFTMAX 0.74 0.43 0.86 0.47 0.83 0.39 0.78 0.52 0.80 0.91
SENTIMENTOOD  MIXTRALSX7B+SDM SOFTMAX(d -2") 1. <0.01 098  0.02 0.78 <0.01 1. 0.02  0.98 0.02
SENTIMENTOOD  MIXTRAL8X7B+sbm SDM 0.98 0.05 0.96 0.04 0.97 0.05 0.98 0.04 0.97 0.08
SENTIMENTOOD  MIXTRAL8X7B+sbMm SDMpR 0.9487 0.01 0.96 0.01 0.9487 0.01 0.96 0.01 0.95 0.02
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a = 0.95.

R indicates all predictions were rejected, which is preferred over falling under the expected accuracy.
n = |Admitted|, the count of non-rejected documents.

Table 2: Comparison of estimators for the factcheck datasets. Unless specified otherwise,

Class-conditional Prediction-conditional Marginal
y=0 y=1 §=0 g=1 y €{0,1}

Dataset Model Estimator Acc. ‘D—’L‘ Acc. ﬁ Acc. % Acc. % Acc. ‘D—’tc‘
FACTCHECK PHI3.5 NO-REJECT 0.94 0.51 0.71 0.49 0.78 0.62 0.92 0.38 0.83 1.
FACTCHECK PHI3.5 SOFTMAX 0.94 0.51 0.73 0.46 0.79 0.60 0.92 0.36 0.84 097
FACTCHECK  PHI3.5 TEMPSCALING 0.97 0.38 0.79 0.37 0.83 0.45 0.96 0.31 0.88 0.76
FACTCHECK PHI3.5 APS 0.98 022 0.82 0.27 082 0.27 0.98 0.23  0.89 0.50
FACTCHECK PHI3.5 RAPS 0.98 0.20 0.84 0.28 0.81 0.24 0.98 0.24 0.90 047
FACTCHECK PHI3.5+ADAPTOR NO-REJECT 0.33 0.51 0.94 0.49 0.85 0.20 0.57 0.80 0.62 1.
FACTCHECK PHI3.5+ADAPTOR SOFTMAX 0.40 0.08 0.99 0.33 0.89 0.04 0.87 0.37 087 041
FACTCHECK  PHI3.5+ADAPTOR TEMPSCALING 0.38 0.07 0.99 0.29 0.86 0.03 0.88 0.33 0.88  0.36
FACTCHECK PHI3.5+ADAPTOR APS 0.26 0.14  0.99 0.38 0.90 0.04 0.78 0.48 0.79  0.52
FACTCHECK  PHI3.5+ADAPTOR RAPS 0.36 0.18 0.98 0.35 0.89 0.07 0.74 0.46 0.76  0.53
FACTCHECK PHI3.5+SDM NO-REJECT 0.70 0.51 0.88 0.49 0.86 0.42 0.73 0.58 0.79 1.
FACTCHECK PHI3.5+SDM SOFTMAX 0.75 0.27 0.94 0.39 0.89 0.22 0. 85 0.43 0.86 0.65
FACTCHECK  PHI3.5+SDM SOFTMAX(d -2’) R 0. 1. 0.03 R 0. 1. 0.03 1. 0.03
FACTCHECK PHI3.5+SDM SDM 1. 0.01 0.97 0.14 0.75 0.02 1. 0.14 0.97 0.16
FACTCHECK PHI3.5+SDM SDMyR R 0. 1. 0.12 R 0. 1. 0.12 1. 0.12
FACTCHECK MIXTRALSX7B NO-REJECT 0.98 0.51 0.48 0.49 0.66 0.76 0.95 0.24 0.73 1.
FACTCHECK MIXTRAL8X7B SOFTMAX 0.98 0.51 0.48 0.49 0.66 0.76 0.95 0.24 0.73 1.
FACTCHECK MIXTRAL8XTB TEMPSCALING 0.99 0.50 0.46 0.43 0.68 0.73 0.98 0.20 0.75 0.93
FACTCHECK MIXTRAL8X7B APS 1. 0.18 0.80 0.16 0.84 0.21 1. 0.13 0.90 0.34
FAcTCHECK MIXTRALSXTB RAPS 1. 0.14 0.66 0.20 0.67 0.21 1. 0.13 0.80 0.35
FACTCHECK MIXTRAL8X7B+ADAPTOR NO-REJECT 0.56 0.51 0.87 0.49 0.82 0.36 0.65 0.64 0.71 1.
FACTCHECK MIXTRAL8X7B+ADAPTOR SOFTMAX 0.68 0.11 0.97 0.31 0.90 0.09 0.89 0.34 0.89 0.42
FACTCHECK ~ MIXTRALSX7B+ADAPTOR TEMPSCALING 0.70 0.09 0.97 0.29 0.89 0.07 0.91 0.31 091 0.39
FACTCHECK ~MIXTRALSX7B+ADAPTOR APS 0.62 0.22 0.96 0.37 0.89 0.16 0.80 0.44 0.83  0.59
FACTCHECK MIXTRALSX7B+ADAPTOR RAPS 0.65 0.22 0.96 0.35 0.92 0.16 0.81 0.41 0.84 0.57
FACTCHECK MIXTRAL8X7B+SDM NO-REJECT 0.63 0.51 0.90 0.49 0.87 0.38 0.70 0.62 0.76 1.
FACTCHECK  MIXTRAL8X7B+SDM SOFTMAX 0.67 0.34 0.96 0.40 0.93 0.24 0.78 0.50 0.83 0.74
FACTCHECK ~ MIXTRAL8X7B4-SDM SOFTMAX(d -2") R 0. 0.80  0.04 0. 0.01 I 0.03  0.80 0.04
FACTCHECK MIXTRAL8X7B+SDM SDM 0.88 0.10 0.95 0.18 0.91 0.09 0.93 0.18 0.93 0.27
FACTCHECK MIXTRAL8X7B+SDM SDMyR R 0. R 0. R 0. R 0. R 0.
FAcTCHECK  MIXTRAL8X7B+SDM SDM, o = 0.94 0.85 0.11 0.95 0.18 0.92 0.10 0.91 0.19 091 0.29
FACTCHECK MIXTRAL88X7B+sDM SDMpR, @ = 0.94 1. 0.03 0.95 0.16 0.80 0.04 1. 0.15 0.96 0.19
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Table 3: Reference results over D, to illustrate the behavior of ¢/ ;,. The value of ¢ ;, tends to increase as
the accuracy over D, decreases, reflecting a more conservative HIGH-RELIABILITY region. Alg. [I] failed to
find a finite ¢};, for MIXTRAL8X7B-+SDM over the FACTCHECK calibration set at v = 0.95, so for reference,
we also show the HIGH-RELIABILITY region at o = 0.94.

Class-conditional Prediction-conditional Marginal
y=0 y=1 =0 g=1 ye{0,1}

Dataset Model Estimator Acc. ﬁ Acc. ﬁ Acc. ﬁ Acc. \T':e\ Acc. ﬁ
SENTIMENT D,  PHI3.5+SDM NO-REJECT 0.95 0.50 0.96 0.50 0.96 0.50 0.95 0.50 0.96 1.
SENTIMENT D,  PHI3.5+SDM SOFTMAX 0.96 0.48 0.97 0.48 0.97 0.47  0.96 0.49 0.97  0.96
SENTIMENT D,  PHI3.5+SDM SOFTMAX(d -2") 0.99 0.31 0.99 0.24 1.00 0.31 0.99 0.24 0.99 0.55
SENTIMENT D,  PHI3.5+SDM SDM 0.99 0.42 0.99 0.39 0.99 0.42 0.99 0.39 0.99 0.81
SENTIMENT D,  PHI3.5+4SDM SDMyR, & = 0.95, ¢, = 52.2 099 038 099 032 099 038 099 031 099 0.69
SENTIMENT D.,  MIXTRAL8X7B+SDM  NO-REJECT 0.96 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.96 1.
SENTIMENT D.,  MIXTRAL8X7B+SDM SOFTMAX 0.96 0.49 0.97 0.49 0.97 0.49 0.96 0.49 0.97 0.98
SENTIMENT D, MIXTRAL8X7B+SDM  SOFTMAX(d-2') 1.00 043 099 035 099 043 1.00 034 099 0.78
SENTIMENT D;,  MIXTRAL8X7B+SDM  SDM 0.99 0.47  0.98 0.43 0.98 0.47  0.98 0.43 0.98  0.90
SENTIMENT D¢, MIXTRAL8X7B+SDM  SDMpg, o = 0.95, ¢/,;;,, = 63.0 099 041 099 034 099 041 099 034 099 0.74
FACTCHECK D, PHI3.5+SDM NO-REJECT 0.90 0.50 0.91 0.50 0.91 0.49 0.90 0.51 0.90 1.
FACTCHECK D, PHI3.54SDM SOFTMAX 0.94 0.32 0.96 0.41 0.95 0.31 0.96 0.41 0.96 0.72
FACTCHECK D¢,  PHI3.54SDM SOFTMAX(d -2") 098 008 1.00 0.07 1.00 008 098 0.07 099 0.15
FACTCHECK D, PHI3.5+SDM SDM 0.98 0.33 0.99 0.27 0.99 0.33 0.98 0.27 0.98  0.60
FACTCHECK D,  PHI3.54SDM SDMyR, a = 0.95, ¢/, = 95.0 1.00 019 099 012 1.00 019 099 012 1.00 0.31
FACTCHECK D.;, MIXTRAL8S8X7B+SDM NO-REJECT 0.90 0.50 0.92 0.50 0.92 0.49 0.90 0.51 091 1.
FACTCHECK D, MIXTRALS8X7B+SDM  SOFTMAX 0.94 0.44 0.96 0.45 0.96 0.43 0.94 0.46 0.95 0.89
FACTCHECK D, MIXTRAL8X7B+SDM  SOFTMAX(d-2') 0.98 0.28 0.98 0.17 0.99 0.27 0.96 0.17 0.98 0.44
FACTCHECK D, MIXTRAL8X7B+SDM SDM 0.97 0.41 0.95 0.32 0.96 0.41 0.95 0.32 0.96 0.73
FACTCHECK D, MIXTRAL8X7B+SDM  SDMpg,a = 0.95, ¢/, = o R 0. R 0. R 0. R 0. R 0.
FACTCHECK D, MIXTRAL8X7B+SDM  sDM,a = 0.94 0.96 0.42 0.95 0.33 0.96 0.42 0.95 0.32 0.96 0.74

FACTCHECK D¢, MIXTRAL8X7B+SDM  SDMpg,a = 0.94,¢/,;, = 134.0 1.00 033 096 0.14 099 033 099 013 099 0.46

Understanding ¢/ ;,. For reference, Table [3 provides the results over D, for the sbM-based estimators.
The value of ¢/;, tends to increase as the accuracy over D., decreases, reflecting a more conservative
HIGH-RELIABILITY region that admits fewer points. Alg. [1]failed to find a finite ¢,;, for MIXTRAL8X7B+sDM
over the FACTCHECK calibration set at a = 0.95, so for reference, we also show the HIGH-RELIABILITY region
at a = 0.94, as well as in Table In this way, ¢, provides a principled, data-driven indicator of the
reliability of the estimates, which is interpretable as a simple indicator as to whether the conditional accuracies
are, or are not, obtainable over D., at the specified a.

Far out-of-distribution data. The Appendix provides Table [ and Table [5] with analogous results for
the SENTIMENTSHUFFLED, SENTIMENTOODSHUFFLED, and FACTCHECKSHUFFLED datasets. The selection
criteria of Eq. [9] reliably rejects the challenging predictions, whereas the non-sbM-based estimators fare
poorly, in general. In this way, the SDM activation serves as an effective out-of-distribution detection method.
With existing methods, defining an out-of-distribution point has been task- and problem-specific, and
generally challenging over high-dimensional inputs, typically requiring additional modeling beyond that of
the calibration or selection method. In contrast, Eq. [0] provides a principled approach for determining such
cut-offs in a data- and model-driven manner, with minimal hyper-parameters, resulting in a separation of
points over which the estimator tends to be reliable (namely, the admitted points) and those over which the
estimates themselves tend to be unreliable.

6 Conclusion

We introduced SDM activation functions and SDM estimators, which are more robust estimators of the predictive
uncertainty than those based on the commonly used softmax function. In this way, SDM activations provide
a principled, data-driven substrate for approaching selective classification, calibration, and out-of-distribution
detection with language models.
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A Appendix

We provide the results for the far out-of-distribution (OOD) shuffled datasets in Appendix Additional
implementation details are included in Appendix [A72} Appendix [A73] provides an approach for analyzing the
effective sample size for both the class-conditional and prediction-conditional estimates.

A.1 Far OOD Shuffled Datasets

Table [4] shows results for the SENTIMENTSHUFFLED and SENTIMENTOODSHUFFLED datasets, and Table
shows results for the FACTCHECKSHUFFLED datasets, as discussed in Section

A.2 Additional Implementation Details

Replication code is available at the following URL: ANONYMIZED.

We mean center the input to g, the 1-D CNN of the SDM activation layer and the otherwise identical CNN
adaptors of the baseline comparison estimators, via the mean and standard deviation over Di,.. In all
experiments with adaptor layers, M = 1000 and we use a mini-batch size of 50. We use the Adam optimizer
(Kingma & Bal, 2017) (without weight decay) with a learning rate of 1 x 107> for training.

A.2.1 Implementation of the SDM Activation Function

As is typical with implementations of the softmax function, for numerical stability, rather than directly
calculating sDM(z’), we instead use the equivalent SDM(z’ — max(z’)), shifting the input vector by its
maximum value.

A.2.2 Implementation of the Empirical CDF Function

The empirical CDF functions are assumed to be implemented such that the distance quantiles are exclusionary
at the boundaries. When dyearest = 0, the 1 — eCDF, (dnearest) quantile should be 1, and when dpearest 8
greater than the maximum observed distance (across D, for @ € Dy, and « € D.,, and across Dy, for & € Dy,
the latter case only occurring during training), the 1 — eCDF_, (dpearest) quantile should be 0.

A.3 Analyzing the Effective Sample Size

In the context of the SDM estimator, to parameterize the prior belief that data points with a looser connection
to Dy, reflect smaller effective sample sizes, while also explicitly accounting for the count of observed points
in D.,, the effective sample size for each test instance can be estimated with the following conservative
assumption:

Assumption A.1. The effective sample size is increasing in ¢’, class-wise over De,.

For each & € Dy, using ¢’, we calculate fi, the vector of effective sample sizes across classes, relative to De,,
as:

A =[|De, |¥* - eCDFY(q'), ..., | Dea |Y¢ - €CDFYS (¢')) (10)

where | D, |Y° is the count of calibration set points with true label y = c.

The estimate of the effective sample size for each label can then be used to estimate the Beta-distributed
error term of split-conformal coverage (Vovkl 2012)), providing a sample-size-based error estimate for the
class-conditional estimate, assuming exchangeability.

For the prediction-conditional estimates, assuming independent and identically distributed (i.i.d.) data, these
sample size estimates can be used to construct a band around the empirical CDFs over dyearess (Eq- 5]) using
the sharp constant (Massart, |1990) of the distribution-free DKW inequality (Dvoretzky et all [1956)), with
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fimin taken as the minimum among the estimated sample sizes across classes for the test instance:

1 2
=4/—1 11
¢ \/2"flmin OBe (1—@)7 ( )

ﬁmin = min [ﬁlv CIEI) ﬁC] (12)

If Aimin = 0, our convention is to set € = 1. We then construct the conservative lower and upper counterparts
to the distance quantile of Eq.

diower = max (d —¢,0) (13)
dupper = min (d+e¢, 1) (14)

Eq. |§| can then be calculated by substituting diower and dupper, in turn, for d, resulting in a band around the
prediction-conditional estimate.
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Table 4: Comparison of estimators for the shuffled sentiment datasets, with « = 0.95. R indicates all

predictions were rejected, which is preferred over falling under the expected accuracy. n = |Admitted|, the
count of non-rejected documents.

Class-conditional Prediction-conditional Marginal
y=0 y=1 =0 g=1 y € {0,1}
Dataset Model Estimator Acc.  pp ACC. g ACC. g ACC. (pg ACC (po
SENTIMENTSHUFFLED PHI3.5 NO-REJECT 1.00 0.50 0.18 0.50 0.55 0.91 0.98 0.09 059 1.
SENTIMENTSHUFFLED PHI3.5 SOFTMAX 1.00 0.50 0.16 0.45 0.57 0.88 0.99 0.07 0.60 0.95
SENTIMENTSHUFFLED PHI3.5 TEMPSCALING 1. 0.44 0.12 0.18 0.74 0.60 1. 0.02 0.75  0.62
SENTIMENTSHUFFLED PHI3.5 APS 1.00 0.42 0.14 0.15 0.76 0.55 0.97 0.02 0.77  0.57
SENTIMENTSHUFFLED PHI3.5 RAPS 1. 0.41 0.13 0.16 0.75 0.55 1. 0.02 0.76  0.57
SENTIMENTSHUFFLED PHI3.5+ADAPTOR NO-REJECT 0.83 0.50 0.81 0.50 0.81 0.51 0.82 0.49 0.82 1.
SENTIMENTSHUFFLED PHI3.5+ADAPTOR SOFTMAX 0.98 0.13 0.97 0.12 0.98 0.13 0.97 0.12 0.97 0.25
SENTIMENTSHUFFLED PHI3.5+ADAPTOR TEMPSCALING 0.98 0.11 0.97 0.10 0.97 0.11 0.97 0.10 097 0.21
SENTIMENTSHUFFLED PHI3.5+ADAPTOR APS 0.93 0.23 0.90 0.24 0.90 0.24 0.93 0.23 091 048
SENTIMENTSHUFFLED PHI3.5+ADAPTOR RAPS 0.92 0.24 0.91 0.24 0.91 0.24 0.92 0.24 0.92 048
SENTIMENTSHUFFLED PHI3.54SDM NO-REJECT 0.99 0.50 0.32 0.50 0.59 0.83 0.97 0.17 0.66 1.
SENTIMENTSHUFFLED PHI3.5+SDM SOFTMAX 0.99 0.49 0.29 0.36 0.65 0.74 0.98 0.11 0.69 0.85
SENTIMENTSHUFFLED PHI3.54SDM SOFTMAX(d -2") R 0. R 0. R 0. R 0. R 0.
SENTIMENTSHUFFLED PHI3.5+SDM SDM 1% 0.01 1 <0.01 1. 0.01 1. <0.01 1. 0.01
SENTIMENTSHUFFLED PHI3.5+SDM SDMyR 1. <0.01 1. <0.01 1. <0.01 1. <0.01 1. <0.01
SENTIMENTSHUFFLED MIXTRALSXTB NO-REJECT 0.99 0.50 0.35 0.50 0.60 0.82 0.97 0.18 0.67 1.
SENTIMENTSHUFFLED MIXTRALSXTB SOFTMAX 0.99 0.50 0.34 0.48 0.61 0.81 0.97 0.17 0.67 0.98
SENTIMENTSHUFFLED MIXTRALSXTB TEMPSCALING 0.99 0.48 0.37 0.38 0.67 0.72 0.98 0.14 0.72  0.86
SENTIMENTSHUFFLED MIXTRALSXTB APS 0.99 0.45 0.44 0.27 0.75 0.60 0.97 0.12 0.79 0.72
SENTIMENTSHUFFLED MIXTRALSX7B RAPS 0.99 0.44 0.43 0.29 0.73 0.60 0.98 0.13 0.77  0.73
SENTIMENTSHUFFLED MIXTRAL8X7TB4ADAPTOR  NO-REJECT 0.91 0.50 0.72 0.50 0.76 0.60 0.89 0.40 0.81 1.
SENTIMENTSHUFFLED MIXTRAL8X7B+ADAPTOR  SOFTMAX 0.99 0.28 0.83 0.14 0.92 0.31 0.98 0.12 094 043
SENTIMENTSHUFFLED MIXTRAL8X7B+ADAPTOR TEMPSCALING 0.99 0.26 0.82 0.11 0.93 0.28 0.98 0.09 0.94 0.37
SENTIMENTSHUFFLED MIXTRAL8X7B+ADAPTOR APS 0.97 0.34 0.78 0.24 0.86 0.38 0.95 0.19 0.89 0.58
SENTIMENTSHUFFLED MIXTRAL8X7B+4+ADAPTOR RAPS 0.96 0.35 0.79 0.23 0.87 0.38 0.93 0.20 0.89 0.58
SENTIMENTSHUFFLED MIXTRAL8X7B+sbm NO-REJECT 0.79 0.50 0.82 0.50 0.82 0.48 0.79 0.52 0.80 1.
SENTIMENTSHUFFLED MIXTRAL8X7B4-SDM SOFTMAX 0.80 0.48 0.83 0.49 0.82 0.47 0.80 0.50 0.81 097
SENTIMENTSHUFFLED MIXTRALSX7B+SDM SOFTMAX(d -2') R 0. R 0. R 0. R 0. R 0.
SENTIMENTSHUFFLED MIXTRAL8X7B+SDM SDM 1. <0.01 R 0. 1. <0.01 R 0. 1. <0.01
SENTIMENTSHUFFLED MIXTRAL8X7B+sDM SDMuR R 0. R 0. R 0. R 0. R 0.
SENTIMENTOODSHUFFLED  PHI3.5 NO-REJECT 1.00 0.50 0.35 0.50 0.60 0.82 0.99 0.18 0.67 1.
SENTIMENTOODSHUFFLED  PHI3.5 SOFTMAX 1.00 0.50 0.34 0.47 0.62 0.81 0.99 0.16 0.68 0.97
SENTIMENTOODSHUFFLED  PHI3.5 TEMPSCALING 1.00 0.49 0.34 0.29 0.72 0.68 0.99 0.10 0.75  0.78
SENTIMENTOODSHUFFLED  PHI3.5 APS 1.00 0.48 0.36 0.27 0.74 0.65 0.99 0.10 0.77  0.75
SENTIMENTOODSHUFFLED  PHI3.5 RAPS 1.00 0.49 0.36 0.27 0.74 0.66 0.99 0.10 0.77  0.76
SENTIMENTOODSHUFFLED  PHI3.54+ADAPTOR NO-REJECT 0.64 0.50 0.64 0.50 0.64 0.50 0.64 0.50 0.64 1.
SENTIMENTOODSHUFFLED ~ PHI3.54+ADAPTOR SOFTMAX 0.78 0.01 0.93 0.03 0.81 0.01 0.92 0.03 0.89  0.04
SENTIMENTOODSHUFFLED  PHI3.5+ADAPTOR TEMPSCALING 0.79 0.01 0.94 0.03 0.83 0.01 0.93 0.03 0.90 0.03
SENTIMENTOODSHUFFLED  PHI3.5+ADAPTOR APS 0.68 0.11 0.73 0.14 0.67 0.12 0.74 0.14 0.71  0.26
SENTIMENTOODSHUFFLED  PHI3.54+ADAPTOR RAPS 0.70 0.12 0.72 0.14 0.68 0.12 0.74 0.13 0.71  0.25
SENTIMENTOODSHUFFLED  PHI3.54SDM NO-REJECT 0.97 0.50 0.63 0.50 0.72 0.67 0.95 0.33 0.80 1.
SENTIMENTOODSHUFFLED ~ PHI3.54-SDM SOFTMAX 0.98 0.47 0.64 0.43 0.75 0.62 0.97 0.28 0.82  0.89
SENTIMENTOODSHUFFLED ~ PHI3.5+SDM SOFTMAX(d -2') R 0. R 0. R 0. R 0. R 0.
SENTIMENTOODSHUFFLED ~ PHI3.54-SDM SDM 1. <0.01 1. <0.01 1. <0.01 1. <0.01 1. 0.01
SENTIMENTOODSHUFFLED  PHI3.5+SDM SDMpR 1. <0.01 1. <0.01 1. <0.01 1. <0.01 1. <0.01
SENTIMENTOODSHUFFLED ~ MIXTRALSX7B NO-REJECT 1.00 0.50 0.12 0.50 0.53 0.94 1.00 0.06 0.56 1.
SENTIMENTOODSHUFFLED ~ MIXTRALSX7B SOFTMAX 1.00 0.50 0.12 0.49 0.54 0.93 1.00 0.06 0.56  0.99
SENTIMENTOODSHUFFLED MIXTRALSX7B TEMPSCALING 1. 0.49 0.14 0.34 0.63 0.78 1. 0.05 0.65 0.83
SENTIMENTOODSHUFFLED MIXTRALSX7B APS 1. 0.36 0.24 0.18 0.72 0.51 1. 0.04 0.74  0.55
SENTIMENTOODSHUFFLED MIXTRALSX7B RAPS 1. 0.36 0.23 0.19 0.72 0.51 1. 0.04 0.74  0.55
SENTIMENTOODSHUFFLED  MIXTRAL8X7B-+ADAPTOR  NO-REJECT 0.97 0.50 0.25 0.50 0.56 0.86 0.89 0.14 0.61 1.
SENTIMENTOODSHUFFLED ~ MIXTRALS8X7B+ADAPTOR  SOFTMAX 1. 0.04 0.23 0.03 0.62 0.07 1. 0.01 0.66  0.07
SENTIMENTOODSHUFFLED ~ MIXTRAL8X7B+ADAPTOR TEMPSCALING 1. 0.02 0.27 0.02 0.58 0.03 1. 0.01 0.64 0.04
SENTIMENTOODSHUFFLED ~ MIXTRAL8X7B-+ADAPTOR APS 0.99 0.18 0.21 0.15 0.60 0.29 0.94 0.03 0.64 0.32
SENTIMENTOODSHUFFLED  MIXTRAL8X7B-+ADAPTOR RAPS 0.99 0.18 0.21 0.14 0.61 0.29 0.93 0.03 0.64 0.32
SENTIMENTOODSHUFFLED  MIXTRAL8X7B-SDM NO-REJECT 0.75 0.50 0.71 0.50 0.72 0.52 0.74 0.48 0.73 1.
SENTIMENTOODSHUFFLED  MIXTRAL8X7B-+SDM SOFTMAX 0.79 0.43 0.73 0.45 0.73 0.46 0.78 0.42 0.76  0.89
SENTIMENTOODSHUFFLED ~ MIXTRAL8X7B+SDM SOFTMAX(d -2') i, <0.01 i, <0.01 i, <0.01 i <0.01 i, <0.01
SENTIMENTOODSHUFFLED ~ MIXTRAL8X7B-+SDM SDM 1. <0.01 0.83 <0.01 0.88 0.01 1. <0.01 093 0.01
SENTIMENTOODSHUFFLED  MIXTRAL8X7B-SDM SDMHR 1. <0.01 1. <0.01 1. <0.01 1. <0.01 1. <0.01
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Table 5: Comparison of estimators for the shuffled factcheck datasets. Unless specified otherwise, a = 0.95.
R indicates all predictions were rejected, which is preferred over falling under the expected accuracy.

n = |Admitted|, the count of non-rejected documents.

Class-conditional Prediction-conditional Marginal
y=0 y=1 g=0 g=1 y€{0,1}

Dataset Model Estimator Acc. ﬁ Acc. ‘ D’i I Acc. # Acc. ﬁ Acc. ﬁ
FACTCHECKSHUFFLED  PHI3.5 NO-REJECT 0.91 1. - 0. 1. 0.91 0. 0.09 091 1.
FACTCHECKSHUFFLED  PHI3.5 SOFTMAX 0.92 0.99 - 0. 1. 0.91 0. 0.08 0.92  0.99
FACTCHECKSHUFFLED  PHI3.5 TEMPSCALING 0.93 0.87 - 0. 1. 0.81 0. 0.06 0.93  0.87
FACTCHECKSHUFFLED  PHI3.5 APS 0.93 0.45 - 0. 1. 0.42 0. 0.03 0.93 045
FACTCHECKSHUFFLED  PHI3.5 RAPS 0.95 0.52 - 0. 1. 0.50 0. 0.02 0.95 0.52
FACTCHECKSHUFFLED  PHI3.5-+ADAPTOR NO-REJECT 0.34 1. - 0. 1. 0.34 0. 0.66 0.34 1.
FACTCHECKSHUFFLED  PHI3.5+ADAPTOR SOFTMAX 0.20 0.24 - 0. 1. 0.05 0. 0.19 020 0.24
FACTCHECKSHUFFLED  PHI3.5+ADAPTOR TEMPSCALING 0.13 0.19 - 0. 1. 0.02 0. 0.17 0.13 0.19
FACTCHECKSHUFFLED  PHI3.5+ADAPTOR APS 0.24 0.38 - 0. 1. 0.09 0. 0.29 0.24 0.38
FACTCHECKSHUFFLED  PHI3.5+ADAPTOR RAPS 0.27 0.39 - 0. 1. 0.11 0. 0.29 0.27  0.39
FACTCHECKSHUFFLED  PHI3.5+SDM NO-REJECT 0.66 1. - 0. 1. 0.66 0. 0.34 0.66 1.
FACTCHECKSHUFFLED  PHI3.5-+SDM SOFTMAX 0.69 0.64 - 0. 1. 0.44 0. 0.20 0.69 0.64
FACTCHECKSHUFFLED  PHI3.5+SDM SOFTMAX(d -2") R 0. - 0. R 0. R 0. R 0.
FACTCHECKSHUFFLED  PHI3.5+SDM SDM R 0. - 0. R 0. R 0. R 0.
FACTCHECKSHUFFLED  PHI3.5-+SDM SDMpyR R 0. - 0. R 0. R 0. R 0.
FACTCHECKSHUFFLED MIXTRALSX7B NO-REJECT 0.98 1. - 0. 1. 0.98 0. 0.02 098 1.
FACTCHECKSHUFFLED MIXTRAL8X7B SOFTMAX 0.98 1. - 0. 1. 0.98 0. 0.02 098 1.
FACTCHECKSHUFFLED MIXTRAL8X7B TEMPSCALING 0.98 0.9 - 0. 1. 0.96 0. 0.02 0.98 0.98
FACTCHECKSHUFFLED MIXTRALSX7B APS 0.98 0.18 - 0. 1. 0.18 0. <0.01 0.98 0.18
FACTCHECKSHUFFLED MIXTRALSX7B RAPS 0.98 0.23 - 0. 1. 0.23 0. <0.01 098 0.23
FACTCHECKSHUFFLED MIXTRAL8X7B4ADAPTOR NO-REJECT 0.79 1. - 0. 1. 0.79 0. 0.21 0.79 1.
FACTCHECKSHUFFLED MIXTRAL8X7B4+ADAPTOR SOFTMAX 0.69 0.13 - 0. 1. 0.09 0. 0.04 0.69 0.13
FACTCHECKSHUFFLED MIXTRAL8X7B+ADAPTOR TEMPSCALING 0.55 0.09 - 0. 1. 0.05 0. 0.04 0.55  0.09
FACTCHECKSHUFFLED MIXTRAL8X7B+ADAPTOR APS 0.77 0.40 - 0. 1. 0.31 0. 0.09 0.77  0.40
FACTCHECKSHUFFLED MIXTRAL8X7B+ADAPTOR RAPS 0.79 0.39 - 0. 1. 0.31 0. 0.08 0.79  0.39
FACTCHECKSHUFFLED MIXTRAL8X7B+sbMm NO-REJECT 0.76 1. - 0. 1. 0.76 0. 0.24 0.76 1.
FACTCHECKSHUFFLED MIXTRAL8X7B+sbMm SOFTMAX 0.79 0.65 - 0. 1. 0.51 0. 0.13 0.79  0.65
FACTCHECKSHUFFLED ~ MIXTRAL8X7B+SDM SOFTMAX(d -2") R 0. - 0. R 0. R 0. R 0.
FACTCHECKSHUFFLED ~ MIXTRAL8X7B+SDM SDM 1. 0.01 - 0. 1. 0.01 R 0. 1. 0.01
FACTCHECKSHUFFLED MIXTRAL8X7B+sbMm SDMyR R 0. - 0. R 0. R 0. R 0.
FACTCHECKSHUFFLED MIXTRAL8X7B+SDM SDM, v = 0.94 1. 0.01 - 0. 1. 0.01 R 0. 1. 0.01
FACTCHECKSHUFFLED MIXTRAL8X7B+sDM SDMpg, @ = 0.94 1. 0.01 - 0. 1. 0.01 R 0. 1. 0.01
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