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Abstract

We address the neural network robustness problem by adding Similarity (i.e., correctly
predicted depth-matches into training)-awareness and Distance-to-training-distribution-
awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the
softmax function. The resulting sdm activation function provides strong signals of the
relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further
address the complementary HCI problem of mapping the output to human-interpretable
summary statistics over relevant partitions of a held-out calibration set. Estimates of
prediction-conditional uncertainty are obtained via a parsimonious learned transform over
the class-conditional empirical CDFs of the output of a final-layer sdm activation function.
For decision-making and as an intrinsic model check, estimates of class-conditional accuracy
are obtained by further partitioning the high-probability regions of this calibrated output into
class-conditional, region-specific CDFs. The uncertainty estimates from sdm calibration are
remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate
awareness of the effective sample size; provide estimates of uncertainty from the learning
and data splitting processes; and are well-suited for selective classification and conditional
branching for additional test-time compute based on the predictive uncertainty, as for selective
LLM generation, routing, and composition over multiple models and retrieval. Finally, we
construct sdm networks, LLMs with uncertainty-aware verification and interpretability-by-
exemplar as intrinsic properties. We provide open-source software implementing these
results.

1 Introduction

Large language models (LLMs) pose a challenge for interpretable and reliable deployment given the non-
identifiability of their parameters (Hwang & Ding, 1997, inter alia)1, which can number in the billions or more.
Instead of directly interpreting parameters, instance-based, metric-learner approximations and hard-attention
mechanisms can be constructed with task-specific inductive biases for effective semi-supervised learning
(i.e., feature detection) and introspection against the training set (Schmaltz, 2021), which can be useful for
auditing predictions as a form of interpretability by example, or exemplar, over the representation space of
the model. However, for real-world deployments, robust approaches for predictive uncertainty—and relatedly,
for verifying the modeling process—are also needed, both for human decision-making and for constructing
sequentially dependent LLM pipelines.

Known theoretical results limit the statistical quantities that can be derived over LLMs. Statistical assurances
in the distribution-free setting are limited to approximately conditional quantities (Valiant, 1984; Lei &
Wasserman, 2014; Foygel Barber et al., 2020, inter alia). Further, even typical approximately conditional
quantities can be difficult to obtain in practice, since the minimal assumption of exchangeability with a known
held-out data set is itself often violated with co-variate and label shifts, which can be difficult to foresee with
existing methods. Epistemologically, the prevalence of hallucinations and highly-confident wrong answers with
widely deployed LLMs suggests a technical impasse in effectively modeling the predictive uncertainty, despite

1Informally, this means that two or more distinct sets of values for the parameters can result in identical output distributions.
As a consequence, interpreting the parameters of such models is typically much more complicated than with a simple linear
regression model, for example.
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significant work from Bayesian, Frequentist, and empirically motivated perspectives (Gal & Ghahramani,
2016; Angelopoulos et al., 2021; Guo et al., 2017; Lakshminarayanan et al., 2017; Ovadia et al., 2019, inter
alia). A foundational piece is evidently missing from the picture.

Given these intrinsic challenges, we approach the problem of uncertainty quantification over LLMs from a new
angle and ask: Can we leverage the metric learning and dense matching capabilities of neural networks over
high-dimensional inputs to at least aim to maximize, with minimal distributional assumptions, the separation
of aleatoric (irreducible) uncertainty and epistemic (reducible) uncertainty, decomposing the sources of the
latter in a manner that is interpretable and actionable?

We answer this question in the affirmative with a conceptually parsimonious, LLM-driven partitioning of the
data to decompose sources of epistemic uncertainty: Correctly predicted depth-matches into the training set
(Similarity), the Distance to the training set, and the distance to the decision-boundary (Magnitude).
We use these signals to construct a new activation function, the sdm activation, which replaces a foundational
building block of contemporary AI, the softmax operation. A series of distributional transforms over an sdm
activation then enable us to directly target a quantity of interest, index-conditional calibration, well-suited
for selective classification (Chow, 1957; Geifman & El-Yaniv, 2017, inter alia), which reflects the typical
need for uncertainty quantification with LLMs as part of multi-stage decision pipelines. Finally, with this
new foundational behavior, we construct a new LLM architecture, the sdm network, with an intrinsic—and
externally human interpretable—capability to verify its own instruction-following.

In summary, in this work:

• We introduce the Similarity-Distance-Magnitude (sdm) activation function, which encodes
strong signals of epistemic uncertainty, to replace the softmax operation.

• We provide a robust estimator of index-conditional uncertainty (Def. 4.3) via a final-layer sdm
activation over existing models, unifying selective classification, calibration, and out-of-distribution
detection for LLMs.

• We propose the sdm network, a new LLM architecture and fine-tuning approach for which uncertainty-
awareness and interpretability-by-exemplar are intrinsic properties.

• We empirically compare the uncertainty-awareness of the sdm estimator to existing classes of
approaches, which we demonstrate do not reliably achieve our desired uncertainty quantity in the
presence of—even modest—distribution shifts.

• As a natural, held-out blind evaluation, we also demonstrate efficiently uncovering undetected
annotation errors in the carefully curated MMLU-Pro benchmark dataset. This reflects the sdm
estimator’s capacity to separate aleatoric and epistemic uncertainty in high-probability regions.

• More broadly, this work provides a new perspective on the behavior of neural networks, demonstrating
that there are regions of the output distribution that are low variation and high probability that
can be reliably detected. Existing modeling approaches marginalize over these regions, which can
contribute to unexpected LLM behavior at test time.

2 Motivation

Given the ability of LLMs to recursively cross-encode data, user instructions, and outputs, if we had a reliable
means of assessing the uncertainty over an LLM’s predictions that was also human interpretable (i.e., a
quantifiable and verifiable assurance in their instruction-following abilities), such an LLM could serve as a
universal verifier over existing models, which would in effect calibrate the predictive uncertainty of other
models. For example, given an exogenous regression or multi-label model, one could simply cross-encode the
data, exogenous model, and output as input to the LLM verifier and let the neural network generate the
accuracy as to whether the exogenous model was correct or not. This process could be repeated, as needed,
using such an LLM as a basis for building complex, compound AI systems, recursively cross-encoding the
input and output, using the uncertainty over discrete predictions as the branching condition for additional
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test-time compute, tool calling, and human feedback — and ultimately, reliable AI-assisted decision-making.
In this work, we introduce the mechanisms for constructing such a verifier.

3 Preliminaries

3.1 Setting

Both LLM next-token prediction and standard classification tasks (e.g., predicting the sentiment of a movie
review) are formulated similarly as predictions over discrete classes. We are given a training dataset,
Dtr = {(xn, yn)}N

n=1 of inputs, x ∈ X , paired with their corresponding ground-truth discrete labels, y ∈ Y =
{1, . . . , C}, and a labeled calibration dataset, Dca, drawn from the same distribution as Dtr. We are then
given a new test instance, x, from an unlabeled test set, Dte, and seek to estimate the label with a prediction,
ŷ, via the un-normalized log probabilities (“logits”, informally) of a final linear layer: z = W T h + b, where
h = network(x; θ) is the final hidden state of a network parameterized by θ. The network can be recurrent
(Hochreiter & Schmidhuber, 1997), convolutional (Dauphin et al., 2017), or self-attention-based (Devlin et al.,
2019), among others. The discrete prediction is taken as ŷ = arg max z; however, for learning θ, W , and
b, and for human decision-making, we also seek an estimate of the predictive uncertainty, p(y | x), which is
typically obtained by normalizing z via the softmax operation described next. We will make a distinction
between models, M (defined by θ, W , and b, and when applicable, the exemplar adaptor, described below),
which produce the prediction, ŷ, and estimators, E , which provide an estimate of p(y | x), because different
estimators can be used over the same model.

3.2 Softmax and the Cross-Entropy loss

The softmax has as its origins the work of L. Boltzmann in the 19th century (see Sharp & Matschinsky,
2015). It remains a central function in the natural and engineering sciences. It is ubiquitous in deep learning,
playing an integral role as a router in self-attention mechanisms (Vaswani et al., 2017) and mixture-of-experts
models (Shazeer et al., 2017); forming the basis of the cross-entropy loss used for next-token training of LLMs;
and serving as the final interface between a model and the end-user, converting the un-normalized model
logits to human interpretable probability distributions, at least in principle:

softmax(z)i = eτ ·zi∑C
c=1 e

τ ·zc

, 1 ≤ i ≤ C, τ ≥ 0 (1)

The above function induces a parameterization of the event probabilities of a categorical distribution:

Categorical(C = |Y|, softmax(z)) (2)

The inverse-temperature parameter, τ , controls the sharpness of the distribution. As τ → 0, the output of
softmax(z) converges to a uniform distribution where each class has probability 1

C ; as τ → ∞, the output
converges to a distribution in which all of the mass is assigned to a single class. In deep learning, τ is treated
as a learnable, global hyper-parameter; instance-wise variation in the distance to the decision-boundary is
thus determined by the relative Magnitude of zŷ. This model is learned by minimizing the cross-entropy
loss between z and the index of the true labels over Dtr. The natural logarithm of the loss is the counterpart
to the base e of the softmax:

L(θ,W , b; Dtr) = − 1
N

N∑
n

loge

(
eτ ·zyn∑C
c=1 e

τ ·zc

)
(3)

4 Methods

In this work, we revisit Eq. 1, 2, and 3 given new observations on the statistical behavior of high-dimensional
objects, empirically derived from large parameter neural networks. We will seek to decouple the sources of
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Figure 1: sdm networks are uncertainty-aware via a robust estimator of index-conditional calibration
(Def. 4.3), p̂(y | x)lower, over output verification (i.e., binary classification of instruction-following); intrinsically
introspectable via depth-matching into a training set (Dtr) and correspondence to comparable points in a
held-out calibration set (Dca) via ⌊q̃⌋, which is a stable mapping and summary of the epistemic uncertainty
signals of Similarity, Distance, and Magnitude; and updatable via a fine-tuning process to maximize the
proportion of verifiable high-probability generations. Decoding proceeds by generating from the distribution
of sdm(zneg, zpos) up to a control token at the unit-of-analysis of the verification labels. Decoding then
continues, or other branching actions are taken, based on p̂(y | x)lower.

epistemic uncertainty via a new activation function that is conceptually:

sdm(z)i = SimilarityDistance · Magnitudei∑C
c=1 SimilarityDistance · Magnitudec

(4)

with a corresponding negative log likelihood loss that takes into account the change of base (§ 4.1). We will
additionally introduce a transformation that rescales this value for an instance with exogenous information
across Dca, effectively calibrating (Brier, 1950; Dawid, 1982) the model to produce reliable, interpretable
probabilities (§ 4.2). Finally, we integrate this behavior into the LLM architecture and training, yielding an
LLM with an intrinsic ability to verify its own instruction following (§ 4.3), as illustrated in Figure 1.

4.1 From Model Approximations via Exemplar Adaptors to SDM Activation Functions

Exemplar adaptors, 1-D CNN adaptors (with a final linear layer) over the frozen hidden states of a network,
induce distilled, compressed representations of an underlying network’s representation space conditional on its
predictions. This behavior can be used to faithfully approximate a model’s predictions as a mapping against a
training, or support, set. This can be achieved, for example, with instance-based, metric-learning estimators,
such as weighted KNNs, where the weights are learned as a transform of the exemplar adaptor’s distilled
representations.2 Critically, when the approximations diverge from the predictions of the underlying model,

2Such instance-based, metric-learner approximations of neural networks differ from traditional KNN rules (Cover & Hart,
1967; Devroye et al., 1996, inter alia) in two critical respects: The neural network serves as a semi-supervised learner of the
distances between the dense representations that identify the instances, and there is a model prediction (in addition to the
ground-truth label) for each instance in the support set. The former enables effective partitioning despite the curse of high
dimensions; the latter provides an additional indicator of reliability for each instance.
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the inputs tend to be from the subsets of the distribution over which the underlying model is itself unreliable
(Schmaltz, 2021). In other words, the approximations encode strong signals of the epistemic uncertainty.
Rather than constructing explicit KNN approximations, which require a separate training step and additional
parameters, we instead quantize the closeness of a point to the training set with a discrete estimate. Further,
we transform the distance to the closest match as a quantile estimate over the distribution of distances. These
quantities, combined with the output Magnitude, capture the key sources of epistemic uncertainty for an
input instance (cf. § 4.2).

4.1.1 Exemplar Adaptor

We take as the CNN of our exemplar adaptor g : (h, t(z)) ∈ RD 7→ h′ ∈ RM , a 1-D CNN that takes as input
h (if available) of the underlying network and optionally, the concatenation of the output of t(z), a transform
of the underlying network’s output.3 The CNN has M filters, the filter applications of which produce h′,
the distilled representation of the underlying network. A final linear layer, z′ = W ′T h′ + b′, z′ ∈ RC ,
then replaces the underlying network’s linear layer, with the discrete prediction taken as ŷ = arg max z′.
This exemplar adaptor will then enable us to derive the key signals of epistemic uncertainty, Similarity,
Distance, and Magnitude described next.

4.1.2 Similarity

We define the Similarity (q) of an instance to the training set as the count of consecutive nearest matches
in Dtr that are correctly predicted and match ŷ of the test instance. Concretely, we first sort Dtr (for
which we have both model predictions and ground-truth labels) based on the L2 distance (2-norm) from
h′,
[
(xtr

(1), ŷ
tr
(1), y

tr
(1)), . . . , (xtr

(N), ŷ
tr
(N), y

tr
(N))

]
, such that ||h′ − h′tr

(1)||2 ≤ . . . ≤ ||h′ − h′tr
(N)||2, and then calculate

q ∈ {0, . . . , | Dtr |} as:

q =
| Dtr |∑
i=1

1ŷ=ŷtr
(i)

· 1ŷtr
(i)=ytr

(i)
· 1

i−1=
∑i−1

j=1
1ŷ=ŷtr

(j)
·1ŷtr

(j)
=ytr

(j)

(5)

where the rightmost indicator function, 1 ∈ {0, 1}, ensures consecutive (depth-wise) matches. By definition,
q cannot exceed the count of the most prevalent class label in Dtr, and since we assume an approximately
equal number of points for each class, q ≪ | Dtr | is typical. For the special case of calculating q for x ∈ Dtr,
which only occurs during learning, we exclude the self-match.

4.1.3 Distance

The L2 distance to the nearest match in Dtr follows from above: dnearest = ||h′ − h′tr
(1)||2. However, it is

difficult to work with dnearest directly since its scale can vary widely depending on the input to g and the size
of M . Instead, we define Distance, d ∈ [0, 1], in terms of the class-wise empirical CDFs of dnearest over Dca,
as the most conservative quantile relative to the distance to the nearest matches observed in the labeled,
held-out set:

d = min [1 − eCDFy1
ca(dnearest), . . . , 1 − eCDFyC

ca (dnearest)] (6)

The empirical CDFs are determined by the labeled points in Dca for which q > 0, where, as indicated by
the superscripts, the stratification of points is by the true labels, y. For example, eCDFy1

ca(dnearest) is the
empirical CDF of dnearest values in Dca for which y = 1, a notation convention we will use throughout. (Points
with q = 0 are effectively out-of-distribution points and treated as such in downstream decision-making, so
they are excluded to avoid biasing the estimates.) At test time, we do not see y; instead, the minimum is
calculated over the quantiles of each of the class-conditional eCDFs, regardless of ŷ. As with q, for the special
case of calculating d for x ∈ Dtr, we replace eCDFyc

ca with the analogous eCDFyc

tr , the class-wise empirical
CDFs of dnearest over Dtr excluding self-matches.

3For black-box LLM API’s in particular, we will not have direct access to h and will instead construct a proxy of h via a
transform t of the available output, which may (and typically will with current models) itself be the result of a softmax operation.
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4.1.4 Magnitude

We take as the Magnitude, or distance to the decision boundary, z′
ŷ, as in the standard softmax case but

via z′ from the linear layer of the exemplar adaptor.

4.1.5 SDM Activation: Formulation

We use the above quantities to define the sdm activation function:

sdm(z′)i = (2 + q)d ·z′
i∑C

c=1 (2 + q)d ·z′
c

, 1 ≤ i ≤ C (7)

The output distribution becomes sharper with higher values of q, d, and z′. Also note that when dnearest exceeds
the largest distance observed in the labeled data, d = 0 and the output distribution is uniform, reflecting a
maximally high (i.e., out-of-distribution) epistemic uncertainty estimate. The standard softmax with τ = 1 is
recovered by setting q = e− 2, d = 1. As with the softmax operation, arg max sdm(z′) = arg max z′.

4.1.6 SDM Activation: Loss and Training

A loss analogous to Eq. 3 then follows with the applicable change of base. We use this loss to train the
weights of the exemplar adaptor, which includes the parameters of the linear layer (W ′ and b′), as well as
the convolution weights and biases, which we collectively represent with G. The weights of the underlying
network remain fixed. (We return to training θ, W , and b of an underlying LLM in § 4.3.)

L(G,W ′, b′; Dtr) = − 1
N

N∑
n

log(2+q)

(
(2 + q)d ·z′

yn∑C
c=1 (2 + q)d ·z′

c

)
(8)

Pseudo-code for training the sdm activation layer and sdm estimator (described in § 4.2, next) appears in
Alg. 1. The first epoch is initialized with a standard softmax (i.e., setting q = e− 2, d = 1). Training then
proceeds by re-estimating q and d for each x ∈ Dtr after each epoch. We take as the stopping criteria for one
learning round as the epoch with the highest average balanced (across classes) median q values over Dca. We
choose the final model M∗ ∈ M over J iterations of random shuffles and splits of Dtr and Dca and parameter
initializations as that with the globally highest average balanced (across classes) median q values over Dca.
For learning, we assume Dtr and Dca are balanced across all class labels, c ∈ Y.

4.2 From SDM Activation Functions to SDM Calibration

Given a fixed underlying network, the sdm activation function in Eq. 7 encodes strong signals of the epistemic
uncertainty of a single instance for a single model M∗ ∈ M, but a priori, it is not sufficient alone for
calibration without additional exogenous information, since it does not explicitly take into account the
epistemic uncertainty from the splitting of Dtr and Dca; the stochasticity of parameter initialization; and
the stochasticity of the learning process, more generally. Relatedly, to enable the interpretability of the
calibration process (e.g., to perform model checks), we need a stable mapping of test points to the relevant
partitions of Dca.

In service of achieving these additional properties, we first need to specify a definition of calibration, of which
there are conflicting quantities, definitions, and evaluation metrics (Vaicenavicius et al., 2019; Kull et al., 2019;
Gupta & Ramdas, 2022). Fortunately, in real-world settings with LLMs, we are primarily concerned with
reliably detecting high-probability regions, which significantly simplifies the evaluations and removes much of
the ambiguity in the definitions. To motivate our definition, we first consider two under-specified definitions of
calibration, in which the true long-run frequencies of the ground-truth labels match the probability estimates
from the estimator, E , stratified by the predicted class, ŷ, and the true class, y, respectively, given some
un-specified binning of the real-valued probabilities:
Definition 4.1. An estimator, E , of p(y | x) is prediction-conditional calibrated, if ∀ α′ ∈ [0, 1]: p(y =
ŷ | ŷ, E(x) = α′) = α′.
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Definition 4.2. An estimator, E , of p(y | x) is class-conditional calibrated, if ∀ α′ ∈ [0, 1]: p(y = ŷ | y, E(x) =
α′) = α′.

Assuming no distribution shifts, and setting aside conditioning on additional attributes and the method
of binning, the source of the under-specification, Def. 4.2 is a generally more informative quantity, but
cannot be meaningfully estimated across all points since the true label, y, is not available at test time. Thus,
calibration becomes a tension between the quantities desired and the regions—and the size (sharpness) of
those regions—that can be partitioned. Most works are premised on a variation of Def. 4.1; an alternative
compromise is taken by frequentist conformal estimators by changing the quantity to coverage over a discrete
prediction set. We will instead seek the following quantity, which aligns with the quantity needed for selective
classification for conditional branching of LLM compute and final human decision-making dependent on the
presence of high-probability predictions:
Definition 4.3. An estimator, E , of p(y | x) is index-conditional calibrated at α′ ∈ ( 1

C , 1] if: p(y = ŷ | ŷ, E(x) ≥
α′) ≥ α′ ∧ p(y = ŷ | y, E(x) ≥ α′) ≥ α′.

To evaluate this quantity, we only consider the points for which the estimator assigns a high-probability of
at least α′, which is typically near 1, such as 1 − α = α′ = 0.95 in our experiments. We refer to this set of
points as the admitted, or non-rejected, set. Then, given ground-truth values for Dte, we assess whether the
conditional accuracies of the admitted set are at least α′ when stratifying by the predicted labels, ŷ, and the
true labels, y. Unlike evaluating Def. 4.1, there is thus no ambiguity with regard to the choice of binning the
probabilities.

Algorithm 1 sdm Activation Layer and sdm Estimator Training
Input: Dtr, Dca, α′, network, max epochs, rescaler max epochs, rescaler stopping condition
1: Assumption: Dtr, Dca are balanced across all class labels, c ∈ Y
2: procedure sdm-iterative-train(Dtr, Dca, α′, network, max epochs)
3: M∗ ← ∅ ▷ Globally best model
4: Dtr∗ ← ∅, Dca∗ ← ∅ ▷ Data splits of best model
5: E ← ∅ ▷ sdm estimator (i.e., p̂(y |x)lower)
6: metric∗ ← 0 ▷ Determines final best model
7: stats← { } ▷ Summary statistics to calculate q̃ γ

min,m
ŷ
⌊q̃⌋ (§ 4.2.4)

8: for j ∈ 1, . . . , J do ▷ The learning process is repeated J times
9: Mj∗ = ∅ ▷ Best model for a single learning round

10: metricj ← 0
11: Dtr, Dca ← Random shuffle and even split of Dtr and Dca
12: Mj ← Random initialization of Gj ,W

′
j , b

′
j

13: q ← e− 2, d← 1 ▷ Standard softmax for first epoch
14: for e ∈ 1, . . . ,max epochs do
15: Minimize L(G,W ′, b′;Dtr) ▷ Eq. 8
16: Update q, d for each x ∈ Dtr
17: metric← mean balanced (across c ∈ Y) median q over Dca
18: if metric ≥ metricj then
19: metricj ← metric
20: Mj∗ ←Mj

21: if metricj ≥ metric∗ then
22: metric∗ ← metricj
23: M∗ ←Mj∗
24: Dtr∗,Dca∗ ← Dtr,Dca ▷ Data splits for calculating q and d at test time
25: Mj∗ ← update with W

′′
from train-rescaler(·) ▷ Alg. 2

26: stats← update with find-min-rescaled-q(·) ▷ Alg. 3
27: E ← Constructed from globally best model M∗ (and associated values, e.g., q̃min∗) and stats
28: return M∗,Dtr∗,Dca∗, E
Output: M∗,Dtr∗,Dca∗, E

The estimator that rejects all points is index-conditional calibrated. Given two estimators that are index-
conditional calibrated, we prefer that which rejects fewer points, ceteris paribus. In other words, we seek
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estimators that meet our reliability condition and are informative (i.e., maximize the number of points that
are properly admitted), but when the estimator is uncertain, we prefer rejection over unexpectedly falling
under the desired α′ probability threshold.

The key compromise is that we will not be able to reliably calculate a probability for all points; however, for
LLM tasks, there is typically not an actionable notion of partial acceptability for final decision-making, so it
is a reasonable compromise. Either the complex LLM output is verified as correct, or some separate, remedial
action must be taken, such as dividing the task into simpler tasks, reformatting and re-cross-encoding,
and/or retrieving information exogenous to the model, where again for each of these sub-tasks, we seek
index-conditional calibrated estimators at the level of the available labels, where the stopping condition is
eventually deferment to human adjudication.

Despite the aforementioned compromise, and although evaluation is unambiguous, it may still seem mysterious
that the second condition of Def. 4.3 can be meaningfully estimated. To do so, we will need to perform a
series of transforms over the already strong uncertainty signals from the sdm activation function and re-visit
the behavior of partitioning empirical CDFs, to which we turn next.

4.2.1 Rescaling SDM Activation Output to Account for Effective Sample Sizes

A disadvantage of using sdm(z′) directly as an estimator is that it only has an indirect, relative notion of
the effective sample size of Dca. Intuitively, the confidence in a prediction should be commensurate with the
number of comparable points in Dtr and Dca, which the sdm activation captures via Similarity, Distance,
and Magnitude. For example, an out-of-distribution point will tend to have d = 0 and low values of q,
reflecting a small effective sample size in the observed data. However, to further improve the robustness
of the estimate, we can explicitly incorporate an additional, direct notion of the effective sample size via
distributional statistics over Dca.

First, we calculate class-conditional empirical CDFs over Dca of the output of sdm(z′). For a given point,
this will create a vector, v ∈ RC , of the quantiles:

v = [eCDFy1
ca(sdm(z′)1), . . . , eCDFyC

ca (sdm(z′)C)] (9)

Next, we rescale q to take into account these distributional statistics. The resulting value will be the basis for
our stable mapping between new, unseen test points and Dca:

q̃ = loge ((2 + q)vŷ ) (10)

We seek a normalized distribution both to present to users and to enable the subsequent transform described
in § 4.2.3. Toward this end, we rescale with a linear layer, without a bias, the training of which we detail in
§ 4.2.2: v′ = W

′′T v,v′ ∈ RC . This is normalized using 2 + q̃ as the base, o ∈ RC :

oi = (2 + q̃) v′
i∑C

c=1 (2 + q̃) v′
c

, 1 ≤ i ≤ C (11)

Unlike the output of an sdm activation, arg max o is not necessarily (but typically will be) equivalent to
ŷ = arg max z′. When they are not equivalent, our convention is to set q̃ = 0 for the point, which will in
effect treat the point as out-of-distribution in downstream analyses.

Effective Sample Sizes via the DKW Inequality. Eq. 11 is premised on the assumption that the
empirical CDFs in Eq. 9 reflect the true, underlying conditional distributions, which are unspecified.4 That
would seem to be a relatively strong assumption as the final estimate, particularly for small sample sizes,
even if empirically effective over existing datasets, and is the entry point for incorporating an explicit notion
of the effective sample size in our estimates.

4That is also true for the eCDFs in Eq 6, but we make the reasonable assumption that the higher-level transforms starting
with Eq. 9 effectively account for the uncertainty in the distance eCDFs.
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We make the following conservative assumption, parameterizing the prior belief that data points with a
looser connection to Dtr reflect smaller effective sample sizes, while also explicitly accounting for the count of
observed points in Dca:
Assumption 4.4. We assume the effective sample size is increasing in q̃, class-wise over Dca.

For each x ∈ Dte, using q̃, we calculate the vector of effective sample sizes across classes, n̂, relative to Dca as:

n̂ = [| Dca |y1 · eCDFy1
ca(q̃), . . . , | Dca |yC · eCDFyC

ca (q̃)] (12)

where | Dca |yc is the count of calibration set points with true label y = c.

With these sample size estimates, we can then construct a band around the empirical CDFs using the sharp
constant (Massart, 1990) of the distribution-free DKW inequality (Dvoretzky et al., 1956), calculating the
error for each class c ∈ {1, . . . , C} from the corresponding index in n̂ if n̂c > 0:

ϵc =

√
1

2 · n̂c
loge

(
2

1 − α′

)
(13)

If n̂c = 0, our convention is to set ϵc = 1. We can then construct the lower and upper counterparts to the
quantile vector of Eq. 9:

vlower = [ min (max (eCDFy1
ca(sdm(z′)1) − 1ŷ=1 · ϵ1 + 1ŷ ̸=1 · ϵ1, 0) , 1) , . . . ,

min (max (eCDFyC
ca (sdm(z′)C) − 1ŷ=C · ϵC + 1ŷ ̸=C · ϵC , 0) , 1)] (14)

vupper = [ min (max (eCDFy1
ca(sdm(z′)1) + 1ŷ=1 · ϵ1 − 1ŷ ̸=1 · ϵ1, 0) , 1) , . . . ,

min (max (eCDFyC
ca (sdm(z′)C) + 1ŷ=C · ϵC − 1ŷ ̸=C · ϵC , 0) , 1)] (15)

from which q̃lower and q̃upper follow:

q̃lower = loge ((2 + q)vlowerŷ ) (16)
q̃upper = loge ((2 + q)vupperŷ ) (17)

Analogous to Eq. 11, we then construct our estimators after rescaling v′
lower = W

′′T vlower, v′
lower ∈ RC and

v′
upper = W

′′T vupper, v′
upper ∈ RC :

p(ŷ)lower = (2 + q̃lower)
v′

lowerŷ∑C
c=1 (2 + q̃lower) v′

lowerc

(18)

p(ŷ)centroid = oŷ ▷ from Eq. 11 (19)

p(ŷ)upper = (2 + q̃upper)
v′

upperŷ∑C
c=1 (2 + q̃upper) v′

upperc

(20)

As with Eq. 11, the convention is to set q̃lower = 0 and/or q̃upper = 0 for the rare cases for which the transforms
in Eq. 18 and/or Eq. 20, respectively, result in the arg max value of the normalized output vector not being
equivalent to ŷ = arg max z′. (In such cases, e.g., Eq. 18 is not re-calculated with q̃lower = 0, but rather such
values are treated separately in downstream analyses as out-of-distribution points.)

Base Estimators. p(ŷ)lower ∈ R1 will be used as the basis of our primary test-time estimator of prediction-
conditional uncertainty (see § 4.2.5 for the complete, index-conditional estimator). p(ŷ)centroid ∈ R1 (via
Eq. 11) is a consequence of intermediate results needed in service of constructing p(ŷ)lower (e.g., for training
the re-scaler and setting a threshold on q̃, described below), whereas p(ŷ)upper ∈ R1 is primarily only of
research interest, included here to analyze the behavior of the approach.5

5In practice, rather than using p(ŷ)upper, if a less stringent admission criteria is desired, the operative action is to reduce α′

and re-estimate p(ŷ)lower.
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4.2.2 Training the Rescaling Transform

We train the C2 parameters of W
′′ of the re-scaling linear layer over Dca (not Dtr) by minimizing the

following loss (Alg. 2), which is the counterpart to Eq. 11, while all other parameters remain fixed:

L(W
′′
; Dca) = − 1

| Dca |

| Dca |∑
n

log(2+q̃)

(
(2 + q̃)v′

yn∑C
c=1 (2 + q̃)v′

c

)
(21)

Our convention is to train with a batch size of 1 and conclude the learning process if L(W ′′ ; Dca) increases
for a pre-specified (as a hyper-parameter) number of consecutive epochs.

Algorithm 2 Training the Weights of the Rescaling Transform
Input: cached v for Dca, rescaler max epochs, rescaler stopping condition
1: procedure train-rescaler(cached v for Dca, rescaler max epochs, rescaler stopping condition)
2: W

′′
∗ ← ∅ ▷ Final weights

3: W
′′
← random initialization

4: metric←∞
5: counter← 0
6: for e ∈ 1, . . . , rescaler max epochs do
7: Minimize loss← L(W

′′
;Dca) ▷ Eq. 21

8: if loss < metric then
9: metric← loss

10: W
′′
∗ ←W

′′

11: if loss > metric then
12: counter← counter + 1
13: if counter > rescaler stopping condition then
14: break
15: else
16: counter← 0
17: return W

′′
∗

Output: W
′′
∗

4.2.3 Region-specific eCDFs

The estimator p(ŷ)lower incorporates an explicit notion of the effective sample size. Smaller effective sample
sizes will be associated with lower probability estimates (and vice-versa). It also has a strong relative notion
of the highest probability regions of the output distribution by virtue of the original Similarity, Distance,
and Magnitude signals, and the aggregated distributional statistics over these signals. However, it lacks
a human interpretable, principled cutoff, or threshold, by which we can have some assurance that the new
points we see are reasonably comparable to the data we observed in deriving our estimator. This is a more
subtle and foundational problem than it may initially seem; we must account for distribution shifts if we
seek to realistically achieve our desired notion of index-conditional calibration (Def. 4.3). It will require
an additional set of transforms to resolve, even with the already strong signals of prediction-conditional
uncertainty from our estimator, to which we turn next.

It follows from Eq. 1 that the output of softmax(z) can be viewed as softmax(z) = △C−1, which is the
(C − 1)-dimension simplex, where the dimension reduction is a consequence of the output summing to 1. The
same is true of the normalized value o. If we instead consider the over-parameterized version in which each
event probability of the categorical distribution (e.g., Eq. 2) is explicitly specified as an element of a vector of
length C, the following indicator result directly follows:
Remark 4.5. Given the C class-conditional CDFs over categorical distributions where the 1 − α′ (α′ ∈ ( 1

C , 1])
quantile threshold ψc (ψc ∈ [0, 1]) of each class c ∈ {1, . . . , C} is > 1

C (i.e., ψc = inverseCDFyc(1 − α′) >
1
C ∀ c ∈ {1, . . . , C}), a set of i.i.d. points sampled from the same distribution as the CDFs, each of whose
event probability vector e = [e1, . . . eC ] has one (1) element at least the corresponding class threshold (i.e.,
|[e1, . . . eC ] ≥ [ψ1, . . . ψC ]| = 1, with the comparison taken element-wise), will have class-conditional accuracies
≥ α′, in expectation.

10
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Proof. Partition the class-conditional CDFs of the categorical distributions, for which ψc = inverseCDFyc(1 −
α′) > 1

C ∀ c ∈ {1, . . . , C}, at [ψ1, . . . ψC ]. The resulting high-probability partitions—those ≥ ψc—are
C Bernoulli distributions each with success probability pc ≥ α′. Take as [n1, . . . nC ] the class-wise count
of i.i.d. points whose event probability vector, e, satisfies |[e1, . . . eC ] ≥ [ψ1, . . . ψC ]| = 1. Then by the
definition of the expected value of a Binomial distributed random variable, it follows from these trials that
[ n1·pc

n1
, . . . , nC ·pC

nC
] = [≥ α′, . . . ,≥ α′], which is the desired class-conditional accuracy for this restricted set of

points. Now, instead assume that one or more of the Bernoulli distributions has a success probability pc < α′.
This implies that the class-conditional CDFs were constructed from a distribution whose event probabilities are
not those of the (C− 1)-dimension simplex since we require ψc = inverseCDFyc(1 −α′) > 1

C ∀ c ∈ {1, . . . , C}
with the CDFs constructed class-wise relative to the true labels, which is a contradiction of the definition of a
categorical distribution since the sum of all event probabilities, each of which is a real value in [0, 1], must
equal 1.

Note that when ψc <
1
C no such assurance across all classes necessarily results, since the resulting thresholding

of the probability vectors may induce a complex dependence across the class-conditional CDFs.6 In such
cases, the thresholding of a new point may result in multiple classes above the threshold, and the subsequent
stratification of this set of points to those for which |[e1, . . . eC ] ≥ [ψ1, . . . ψC ]| = 1 will not necessarily have
class-conditional accuracies ≥ α′, in expectation.

Remark 4.5 thus differs from set-valued estimators such as conformal estimators (Vovk et al., 2005), which
as previously mentioned (see § 4.2, introduction) are premised on a different calibration compromise. For
example, with conformal estimators, there is a statistical assurance for coverage of the true class in a
discrete prediction set (itself a distinct quantity from that considered here) across all points regardless of the
distribution of the conformity score (e.g., instead of a categorical distribution, a conformity score can be an
unnormalized scoring function), but no assurance conditional on the subset of high-probability points. We
explore the implications of these tradeoffs in our empirical experiments.

Remark 4.5 can be viewed as a useful indicator function, but it is not particularly informative as an estimator
alone. We will use it in service of dividing the output distribution into high probability regions via q̃, described
next.

Corralling the high-probability region via exclusion of the observed high-epistemic-uncertainty
points. Intuitively, higher values of q̃ correspond to points with a closer connection to the observed data
and thus lower epistemic uncertainty, as this single value takes into account the Similarity, Distance, and
Magnitude signals, and distributional statistics over those signals. The result in Remark 4.5 provides a
principled basis for setting a threshold on q̃ over Dca that we can then apply at test time, without access to
the true label, to constrain our estimates to the high-probability region of the distribution.

The value of q̃ is real-valued, but only ≤ | Dca | values are observed, so a simple iterative search algorithm
is sufficient to find the value of q̃ that satisfies Remark 4.5 such that all thresholds, ψc, over the estimates
of o (Eq. 11), are at least α′. By definition, α′ > 1

C , so this more stringent requirement satisfies the
condition in Remark 4.5, while also requiring q̃ to be restricted to the prediction-conditional estimates of
p(ŷ)centroid ≥ α′. The full algorithm appears in Alg. 3, iteratively constructing class-wise eCDFs over Dca
restricted to progressively larger values of q̃. (These eCDFs over the o values of Dca are only needed for
Alg. 3 and are not needed at test time, unlike those of Eq. 6, Eq. 9, and Eq. 12.) Note that we only consider
values of ⌊q̃⌋ > 0, as points with ⌊q̃⌋ = 0 are considered out-of-distribution.7 The search algorithm may
fail to find a suitable final value, q̃min, at which point the operative conclusion is that reliable estimates of

6We leave to future work whether a similar result holds for a subset of the class-conditional accuracies if only some, rather
than all, class-wise thresholds are at least 1

C
. In our primary verification setting over LLMs, the typical setting is C = 2, or

some similarly small C ∈ Z2+, where to ensure deployment reliability, the LLM would not be deployed until the verification task
yields class-conditional accuracies for all classes at or above α′ on the available labeled sets, so we do not consider this case here.

7The reason for the floor operation becomes evident in the next section. ⌊q̃⌋ will serve as our hard-partitioned mapping
between the observed data and new test points to enable estimates of uncertainty over iterations of the entire process described
thus far.
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index-conditional calibration (Def. 4.3) are not possible without reducing α′, or acquiring additional data
and/or a stronger model.8

When a value of q̃min can be found, the convention is to restrict our estimates of index-conditional calibration
to the new, unseen test points that satisfy q̃lower ≥ q̃min after considering the final additional sources of
uncertainty from the data splitting and learning processes, which we consider next.

Algorithm 3 Search Algorithm to Find q̃min to Detect High-Probability Regions
Input: cached (q̃,o) for Dca, α′ ∈ ( 1

C
, 1]

1: procedure find-min-rescaled-q(cached (q̃,o) for Dca, α′ ∈ ( 1
C
, 1])

2: q̃min ← ∅ ▷ A suitable q̃min may not exist.
3: [ψ1, . . . ψC ]← [∅, . . . , ∅] ▷ Needed at test-time, if applicable
4: q̃s← sorted [q̃ ∈ Dca s.t. ⌊q̃⌋ > 0] ▷ Restricted to ⌊q̃⌋ > 0 to exclude OOD
5: for q̃′ ∈ q̃s do
6: Construct eCDFy1

ca , . . . , eCDFyC
ca for all q̃ ≥ q̃′ in Dca ▷ eCDFs for o (Eq. 11), stratified by y

7: Calculate ψc = inverseCDFyc
ca (1− α′) ∀ c ∈ {1, . . . , C} ▷ Quantile functions are inverses of L. 6

8: if all( [ψ1, . . . ψC ] ≥ α′ ) then ▷ Element-wise comparison
9: q̃min ← q̃′ ▷ Satisfies Remark 4.5 at the prediction-conditional estimate (see text) of ≥ α′

10: break
11: return q̃min, [ψ1, . . . ψC ]
Output: q̃min, [ψ1, . . . ψC ]

4.2.4 Accounting for Uncertainty in the Data Splitting and Learning Processes

As a final step, we take into account uncertainty over the data splitting and learning processes. This will
incur non-trivial additional computational costs, but these are one-time development costs for an estimator.
At test time, our estimates will be constant offsets on q̃min and p(ŷ)lower, the latter conditional on ⌊q̃⌋ ∈ Z0+,
which will serve as a stable mapping between Dca and new, unseen test points. In summary, in this section,
we seek:

q̃ γ
min ▷ A robust estimate of q̃min (22)

mŷ
⌊q̃⌋ ▷ A class-wise, robust correction for p(ŷ)lower, conditional on ⌊q̃⌋ (23)

Conceptually, the estimation process is straightforward. We repeat the training and estimation processes
described above J times and derive our constant offsets via summary statistics over those estimates. The one
complication that arises is that we will have to depart from the distribution-assumption-light approaches
above, since J will typically not be large due to the computational expense. (The full process across J
iterations to construct a single estimator needs to remain reasonably computationally lightweight relative to
an LLM training epoch, as it itself will be embedded into the training loop of an LLM, described below.)
Instead, we will estimate each of these processes as a Cauchy distribution, given its relatively wide tails and
relatively robust scale parameter.

A Cauchy distribution is defined by a location parameter, ν, and a scale parameter, γ:

Cauchy(ν, γ) (24)

The inverse CDF (i.e., quantile function) of a Cauchy distribution for a particular quantile, α ∈ [0, 1], can be
calculated analytically as:

inverseCDFCauchy(ν,γ)(α) = ν+ γ tan
(
π

(
α− 1

2

))
(25)

We take as our estimate of γ the median absolute deviation around the median of our sample (MAD).
8Alg. 3 could be readily modified to find an adaptive value of α′, iteratively reducing α′ if a suitable q̃min value is not found.

However, in practice, determining α′ for LLM settings is a decision made exogenous to the model development process. We
seek to develop our models (and data) to meet a given α′ value, rather than the other way around, so we do not consider that
variation here.
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Robust detection of high-probability regions. To calculate γ for q̃ γ
min ∈ R1, we take the MAD of the J

estimates of q̃min. The location parameter is taken as q̃min∗, the estimate of q̃min over the model with the final
chosen weights (see Alg. 1). We can then analytically calculate our desired value via Eq. 25 at α′ ∈ ( 1

C , 1]:

q̃ γ
min = inverseCDFCauchy(q̃min∗,γ)(α′) (26)

Note that since α′ corresponds to the right-tail of the distribution, q̃ γ
min ≥ q̃min∗, i.e., a more restrictive

threshold on the high-probability region. In scenarios (not considered in the experiments here) where the
computational budget necessitates J = 1, the convention would be to take q̃ γ

min := q̃min∗, with a tacit
assumption that these additional sources of uncertainty have not been explicitly accounted for.

Robust output adjustment. To calculate γ for mŷ
⌊q̃⌋ conditional on ŷ and ⌊q̃⌋ (i.e., γ | ŷ, ⌊q̃⌋), we take

the MAD of the J medians (as written) of p(ŷ)centroid over Dca, conditional on ŷ and ⌊q̃⌋.9 Similar to above,
we can then calculate:

mŷ
⌊q̃⌋ = inverseCDFCauchy(0,(γ | ŷ,⌊q̃⌋))(α′) (27)

In this case, ν is 0, as mŷ
⌊q̃⌋ will be subtracted from p(ŷ)lower as an offset, an assumption that each distribution

is centered on the given point. To simplify the presentation (and since the upper offset is not needed in
practice), we only consider this as a lower offset on our base estimators.

As ⌊q̃⌋ increases, the number of points in the sample will tend to decrease, but so will the MAD, so the
estimates remain reasonable in practice. As we will see in our experiments, high values of ⌊q̃⌋ (that are
otherwise attested in Dca) are not uncommonly associated with MAD values that are within 0 of numerical
precision.

As with q̃ γ
min, although it is generally recommend to take these additional sources of uncertainty into

consideration, when J = 1, the convention would be to take mŷ
⌊q̃⌋ := 0.

4.2.5 Index-Conditional Calibration

With the above models and estimators, we can now robustly calculate the index-conditional uncertainty of a
new, unseen test point x ∈ Dte.

We first take as the prediction ŷ = arg max z′. Then, with Dtr to calculate q and dnearest; the cached class-wise
empirical CDFs over Dca of Eq. 6, Eq. 9, and Eq. 12; q̃ γ

min and the thresholds ([ψ1, . . . ψC ]); and mŷ
⌊q̃⌋, the

index-conditional uncertainty estimate of p(y | x) at α′ (Def. 4.3) is:

p̂(y | x)lower =
{

max(0, p(ŷ)lower − mŷ
⌊q̃⌋) if [q̃lower ≥ q̃ γ

min] ∧
[(
p(ŷ)lower − mŷ

⌊q̃⌋

)
≥ ψŷ

]
⊥ otherwise

(28)

where ⊥ indicates a rejected (non-admitted) point.10

As noted in the previous sections, in the rare cases when the transforms after the sdm activation result in the
arg max index not matching ŷ, we set q̃lower = 0, which effectively treats the point as out-of-distribution. In
such cases, p̂(y | x)lower = ⊥, since q̃ γ

min > 0 as a consequence of Line 4 in Alg. 3.

Our convention in subsequent sections will be to refer to summary statistics and comparisons of p̂(y | x)lower
(Eq. 28), excluding the points assigned ⊥, as estimates from the “estimator p̂(y | x)lower”. We do the same
for the “estimator p̂(y | x)centroid” and the “estimator p̂(y | x)upper”, but where the latter two quantities are
calculated from the corresponding centroid and upper intermediate quantities, respectively.

9Implementation note: Unlike the eCDFs, which are constructed by stratifying on the true label, y, in Dca, this quantity is
calculated by stratifying on the predicted label, ŷ, in Dca.

10At test time, the mapping to the ⌊q̃⌋-conditioned statistics (i.e., mŷ
⌊q̃⌋) is via ⌊q̃lower⌋ for the test instance.
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Complexity. The added computational overhead over an underlying network with a softmax activation is
dominated by calculating q (and by extension, dnearest). The transforms after the sdm activation function
add negligible additional overhead. For perspective, this is on the order of the additional computation needed
for commonly used dense retrieval augmentations of LLMs, so it is readily achievable at interactive speeds in
practice.

Sharpness. As noted in § 4.2, we seek estimators that are both informative (i.e., not unnecessarily rejecting
correct predictions) and robust (i.e., we prefer rejection over falling under the expected α′ accuracy). The
above transforms seek to achieve this by taking the uncertainty signals from an sdm activation and further
separating the high and low probability regions of the distribution, as well as providing a hard cut via q̃ γ

min to
altogether exclude predictions over high epistemic uncertainty regions. We explore these behaviors empirically
in our experiments.

Next, we incorporate our estimators directly into LLM next-token training.

4.3 From SDM Calibration to SDM Networks

The above approach is already a very powerful and easily implemented mechanism for building complex LLM
pipelines. We can treat an underlying network as fixed, add an sdm activation layer, and then use the sdm
estimator for conditional branching for test-time compute, retrieval, tool-calling, and related.

However, earlier in the model development pipeline (e.g., as done by LLM model providers), we need a
mechanism for fine-tuning a network after the initial unsupervised training stage.11 In this section, we show
how to incorporate the sdm mechanism directly into the LLM next-token training process. We will refer to
this process and the resulting model as an sdm network.

Conceptually, an sdm activation and estimator over an averaged history of frozen hidden states and the
token-level hidden state will be trained for binary classification at the unit of analysis of the available labels
(e.g., the document-level). This estimator then provides the Similarity and Distance values for an sdm
activation for next-token loss of the LLM during training. Because an sdm activation does not alter the
arg max prediction, greedy token-level generation can proceed without the computational cost of the sdm
activation at every token at test time, with the global sdm estimator providing verification over the final
generation. This process shares the same goal of existing fine-tuning approaches to increase
overall accuracy, add information to a model, etc., as well as the new goal of increasing the
proportion of verifiable high-probability generations from a model. During training, we seek to
penalize the model for verification mistakes, and reward the model for increasing the cardinality of the set of
admitted points.

We first introduce our data encoding scheme in § 4.3.1 for verification. Next, orthogonal to the sdm mechanism
itself, we introduce a parsimonious regularization method (§ 4.3.2) to enable fine-tuning on a small amount
of data while discouraging catastrophic forgetting. Finally, we introduce the process for training the sdm
network (§ 4.3.3).

4.3.1 Universal Verification Encoding

In the abstract, our data is similar to that in the previous sections: Input documents accompanied with
discrete labels. However, while we previously treated each document, x, as a single atomic unit, we
will now also be concerned with the individual tokens of the document, for which we use the notation
Dtr = {(xn = [x1, . . . , xT ], yn, [ytask

n ])}N
n=1 for our labeled training set, and similarly for our labeled calibration

set, Dca. Each token, xt ∈ {1, . . . , |V| · 2}, is represented as an index into a vocabulary, where V is the
vocabulary of the LLM trained during the initial unsupervised training stage. The reason for the factor of 2
is described in the next section. Implicit in our representation is that each instance will have a marker at
some xt indicating a “completion” (i.e., a sequence after an instruction prompt or prefix, more generally).
Our document-level labels, y ∈ Y = {0, 1}, are as in previous sections, but specifically restricted to binary

11In principle, the methods in this section can also be used for bootstrapping a randomly initialized LLM against an existing
(possibly larger) model, which we leave to future work.
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classification, where the convention is to treat y = 0 as representing the unverified class and y = 1 as the
verified class (i.e., an acceptable generation, conditional on the instruction or context).

For some documents, we have classification labels, ytask ∈ Z2+, for the underlying tasks encoded in the data.
For example, for a sentiment classification task of negative and positive reviews, y = 0 for verification when
the classification decision is wrong, whereas y = 1 for verification when the classification decision is correct.
Among those for y = 1, ytask = 0 could indicate a negative review and ytask = 1 could indicate a positive
review. These task-specific labels are predicted via the generated text of the LLM, and if available, we can
use them during training (e.g., as part of our stopping criteria to choose the best weights, by parsing the
generated text and comparing to ytask). Unlike typical classification settings, these labels may—and typically
will—cover multiple disparate tasks; hence, the designation of universal verification. When the distinction is
potentially ambiguous, we will add a superscript to y for the binary verification labels: yverification.

Unlike typical preference fine-tuning encodings, we do not require prefixes (or prompts) of x to be paired
with different completions and opposing document-level labels. However, as in the above sections, we will
assume that Dtr and Dca are balanced across y (i.e., an approximately equal number of documents with y = 0
and y = 1).

The sdm activation layer for verification will be trained with Dtr, seeing all documents with y = 0 and y = 1
labels. However, the LLM’s sdm activation for next-token training will only directly see documents with y = 1,
with the signal of the unverified class coming indirectly via matching into Dtr to calculate Similarity and
Distance. (There is an additional nuance with train-time generation vs. train-time force-decoding that will
be clarified below.) As such, the additional sdm mechanisms enable a unification of preference fine-tuning,
instruction fine-tuning, and supervised fine-tuning encodings since in all of the above, we always have at
least the y = 1 documents, and it is typically straightforward to collect, or otherwise synthetically generate,
unpaired examples to serve as y = 0 (i.e., generations we seek to avoid showing users).

4.3.2 Negative+Positive Vocabulary Normalization and Regularization

Before we can make progress on incorporating the sdm mechanisms, we need to address the matter of
fine-tuning pre-trained LLMs without inducing catastrophic forgetting. This is critical, since each round of
LLM training and fine-tuning is computationally expensive. We seek to make incremental changes to the
model without having to run subsequent learning processes over all previously seen data. To address this,
we first briefly recall the training of auto-regressive neural language models prior to the era of large-scale
pre-training.

[L]LM Training Redux. Prior to the era of large-scale pre-training of LMs that emerged at the end of
the 2010’s, auto-regressive language models for transduction tasks (e.g., grammatical error correction) were
successfully trained from random initialization using specialized input control tokens and output diff sequences
(and associated output control tokens) that separated non-preferred (pre-transduction) and preferred (post-
transduction) generated sequences (Schmaltz et al., 2017). Importantly, the bias on the diff control sequences
could be modulated to control precision and recall over the absence and presence of the transduction operation
(Schmaltz et al., 2016). In-effect, the sequence transduction model could be effectively used as a classifier
without additional classification layers, while also having the expressivity to generate token sequences, unlike
standard discrete classifiers.

Input and output control tokens are now prominent features of LLM vocabularies to structure prompts,
instructions, and reasoning sequences. However, while the bias of individual tokens can be modified with
an additive offset, current LLMs lack a mechanism to explicitly bifurcate the output distribution into
non-preferred and preferred regions in the manner of the earlier models. This capability can be (re)-added to
LLMs without direct training on diff transduction sequences, as follows.

Negative+Positive Vocabulary Normalization. Consider a pre-trained LLM model, Mref . Our
reference model generates acceptable sequences over part of the data distribution, but it also produces
non-preferred (negative) generations; hence, our desire for further training. However, we only want to alter
the behavior of Mref over the space that produces negative generations, otherwise we may unexpectedly
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cause the previously acceptable space of generations to also become negative. In effect, we have two
regions—a bifurcation—of the output distribution: The space of existing acceptable generations and the
space of negative generations. We seek to replace the negative region with a new positive region of
acceptable generations without (or at least minimally) impacting the existing acceptable region.

From Mref create two clones, Mneg and Mpos. Each model has a final linear layer that maps to the output
vocabulary, V, via a weight matrix12: zref = W T

refhref , zneg = W T
neghneg, and zpos = W T

poshpos, respectively.
During fine-tuning for the next-token loss, we then calculate the sdm activation (in-place of a standard
softmax) as the concatenation of the un-normalized output of Mneg and Mpos, sdm(zneg, zpos), keeping the
weights of Mneg, Wneg and θneg, fixed and updating the weights of Mpos, Wpos and θpos. For the y = 1
documents that participate in fine-tuning, we simply take the original token indexes and add an offset, xt + |V|,
for the output tokens when calculating the loss over the joint, concatenated distribution. (Input tokens retain
their original indexes.) At test time, the arg max output index mod |V| maps back to the original token
symbol in the vocabulary. In this way, an additional set of token symbols is never explicitly instantiated.

In the most direct sense, this then requires a copy of the full weights to be present at test time. However, in
practice, Mpos need not be a copy of all the weights; Mpos can be represented by adaptor layers, or similar
mechanisms (e.g., only updating a subset of the model’s weights).

Regularization. To further prevent drift from the original reference distribution, we also add an L2

regularization term in the log(2+q) space of the normalized joint, concatenated distribution when calculating
the next-token loss:

r = ||i ⊙ log(2+q) (sdm(zref , zref)) − i ⊙ log(2+q) (sdm(zneg, zpos)) ||2 (29)

where the Hadamard (element-wise) product (⊙) is with a mask vector i ∈ R|V|·2 that lessens the regularization
on the peak of the distribution by not considering the arg max indexes of the reference, negative, and positive
distributions, as well as that of the ground-truth next-token label (here, represented as t), in the L2

constraint:13

i = 1 ∈ R|V|·2 (30)
iarg max (zref) = 0

iarg max (zref)+|V| = 0
iarg max (zneg) = 0

iarg max (zpos)+|V| = 0
it = 0

We seek for our regularization term to be scaled relative to the loss, so we perform a simple re-scaling:

r′ =
√

max(r, 1)min(max(s,0),1), (31)

s = loge L(Wpos, θpos; Dtr)
loge r

After rescaling, r′ is an additive term in the next-token training loss, described below. Next, we describe the
sdm activations, and the structure of the network, more generally.

4.3.3 SDM network

The network makes use of two separate sdm activations. The first (verificationLayer) is over the binary
verification task, trained at the document level. This is built as described in § 4.1, but specifically with an
exemplar adaptor g :

(
mean(hneg),mean(hpos),h−1

neg,h
−1
pos
)

∈ R4D 7→ h′ ∈ RM , trained over the concatenation
12We ignore the bias terms here to simplify the presentation. In practice, it is not uncommon for b = 0.
13This also accounts for the setting, not considered in our experiments, where Mneg is not identical to Mref , such as via

multiple iterations of fine-tuning where Mneg is trained away and is replaced with Mpos for a subsequent fine-tuning round.
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of the mean of the final hidden states across tokens of both Mneg and Mpos, as well as the hidden state (i.e.,
h−1

neg ∈ RD and h−1
pos ∈ RD) that predicts the end of sequence delimiter14, for which we use the superscript -1,

all of which remain fixed when training the adaptor.15 This has an associated sdm estimator, p̂(y | x)lower,
over the binary verification task.

The second sdm activation is for normalizing the linear layer over the output vocabulary for next-token
training, as described in § 4.3.2. In this case, the output Magnitude is determined by the concatenation
of (zneg, zpos), but the values of q and d are from the verificationLayer. In other words, for this second
sdm activation, there is no exemplar adaptor inserted between the final hidden state of the LLM and the
linear-layer over the vocabulary. This enables easily adapting this mechanism to existing architectures and
pre-trained weights.

SDM Network Next-token Loss. Holding the weights of the verificationLayer fixed, the next token
loss to update the weights of Mpos, Wpos and θpos, is then:

L(Wpos, θpos; Dtr, β,Mref) = − 1
N

N∑
n

log(2+q)

(
(2 + q)d ·zneg,postn∑|V|·2

v=1 (2 + q)d ·zneg,posv

)
+ β r′ (32)

where tn is the index of the correct next token, and β ∈ [0,∞) linearly increases every mini-batch in an epoch
from βmin (e.g., 0, in our experiments) to βmax (e.g., 0.1, in our experiments).

Train-time Generation vs. Train-time Force-decoding. The loss in Eq. 32 requires q and d, which
are predicated on labels at the document level, for each token prior to the model seeing the end of the
document. In practice, for each (x, y = 1) ∈ Dtr, prior to calculating the loss, we decode a completion for x
starting at the completion marker xt (e.g., starting at the instruction prompt, or given prefix, as noted in
§ 4.3.1) with q = e − 2, d = 1. Then we derive q and d from the verificationLayer over this generated
output. We otherwise discard the generated completion and calculate the loss using these updated values
of q and d over the correct next token. (In the present work, q and d are the same for each token in a
single document.) Note that the stored support set of the verificationLayer (which determines q and
d) is constructed by force-decoding over (x, y = {0, 1}) ∈ Dtr. Thus, the loss has the desired semantics of
rewarding the model to resemble the y = 1 data at the token-level (as in standard next-token fine-tuning),
while penalizing generations that are challenging to verify.

SDM Network Training: verificationLayer + Next-token Loop. The next-token loss and the
verificationLayer interact via q and d and the stopping criteria. However, the weight updates of each
occur separately.

We seek the weights that maximize the admitted points over Dca via p̂(y | x)lower for ŷ = 1, and (if available),
further restricting this set to those with correct ytask predictions (parsed from the generated text) for the
underlying tasks encoded in the data.

The combined training loop is conceptually straightforward (Alg. 4). First, we construct the sdm estimator
for binary verification (verificationLayer) via Alg. 1 by force-decoding over Dtr and Dca. (The convention
is to shuffle Dtr and Dca in the first training of the verificationLayer, itself a process over J iterations,
and then use that final data split for all subsequent processes.) Next, we train one epoch of Mpos. The
next-token loss (Eq. 32) uses q and d from the verificationLayer over completions generated via greedy
decoding (with q = e− 2, d = 1) using sdm(zneg, zpos) starting at the completion marker.16 Once the epoch
concludes, we retrain the verificationLayer and update q and d for Dtr. We then generate completions
using sdm(zneg, zpos) over Dca and calculate the number of points for which p̂(y | x)lower provides an index-
conditional estimate for ŷ = 1, further restricted (if applicable) to the underlying task labels, ytask, and

14This is the symbol that indicates the end of the sequence at the unit of analysis of the verification labels (e.g., at the sentence
or document level).

15In our small-scale experiments, we only train the final hidden layer of the LLM (i.e., θpos stays fixed, and we only update
Wpos), so we exclude the weights of Mneg as input to the exemplar adaptor, since they are identical to those of Mpos.

16In our experiments, we cache q and d before each epoch, but in principle, they can be calculated dynamically during an
epoch as the weights change. Caching simplifies the implementation at the expense of potentially biasing the estimates as an
epoch proceeds, which is the motivation for increasing β through the course of an epoch.
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the predictions parsed for those tasks from the generated output. Next, we continue to the next epoch of
updating Mpos. This process continues until the max number of epochs has been reached.

Algorithm 4 sdm Network Training
Input: Dtr, Dca, α′, max epochs, Mref , Mneg, Mpos

1: procedure sdm-network-train(Dtr, Dca, α′, max epochs, Mref , Mneg, Mpos)
2: verificationLayer,Dtr∗,Dca∗, E ← sdm-iterative-train(·) ▷ Alg. 1
3: M∗ ← Initialized with Mneg, Mpos ▷ Final trained model
4: metric∗ ← 0 ▷ Determines final model
5: verificationLayer∗ ← verificationLayer ▷ Final sdm activation layer for verification
6: E∗ ← E ▷ Final sdm estimator (i.e., p̂(y |x)lower) for verification
7: βstep ← βmax−βmin

total mini batches ▷ Used to calculate β as a function of epoch progress
8: Calculate q, d for each (x, y = 1) ∈ Dtr∗ using verificationLayer over generated output from sdm(zneg, zpos)

with q = e− 2, d = 1
9: for e ∈ 1, . . . ,max epochs do

10: Minimize L(Wpos, θpos;Dtr, β,Mref) ▷ Eq. 32
11: verificationLayer,_,_, E ← sdm-iterative-train(·) ▷ Without shuffling Dtr∗,Dca∗
12: Update q, d for each (x, y = 1) ∈ Dtr∗ ▷ As in Line 8
13: metric← cardinality of the admitted set from p̂(y |x)lower for ŷ = 1 over Dca∗ ▷ Restricted to

ytask = ŷtask, if available
14: if metric > metric∗ then
15: metric∗ ← metric
16: M∗ ← Update with Wpos, θpos
17: verificationLayer∗ ← verificationLayer
18: E∗ ← E
19: return M∗,Dtr∗,Dca∗,verificationLayer∗, E∗

Output: M∗,Dtr∗,Dca∗,verificationLayer∗, E∗

SDM Network Test-time Generation. At test time, we generate from sdm(zneg, zpos) up to the output
control token, or end-of-sequence token, at the unit-of-analysis of the verification labels, via greedy (i.e.,
arg max) decoding with q = e − 2, d = 1 (i.e., equivalent to softmax).17 We then continue generation, or
take other branching actions, based on p̂(y | x)lower from the verificationLayer, which by extension, also
provides interpretability-by-exemplar into Dtr via matching (from q) and against similarly calibrated points in
Dca via ⌊q̃⌋. Each classification via the verificationLayer requires on the order of the computation needed
for commonly used dense retrieval augmentations of LLMs, so such test-time generation and verification is
achievable even using edge devices.

5 Experiments

We comprehensively evaluate the uncertainty-awareness of our estimators across a representative set of
the existing classes of estimators over LLMs. First, we compare sdm calibration to existing approaches in
a standard classification setting, using open-source models at a scale that can be readily replicated with
consumer-level compute (§ 5.1). Next, we show how an sdm estimator can be applied to a fully black-box
LLM API, only with access to the top output logits and without a proxy model running in parallel, using the
standard MMLU benchmark (§ 5.2). In this context, we also consider a data quality experiment in which we
seek to detect errors in the carefully curated MMLU-Pro dataset. This serves as a natural, held-out blind
evaluation of the estimator’s capacity to separate aleatoric and epistemic uncertainty. Finally, we examine
the universal verification behavior of an sdm network by training over a composition of the classification
tasks examined in the first set of targeted experiments (§ 5.3).

17As previously noted, at test time, (arg max(sdm(zneg, zpos)) mod |V|) maps back to the original token symbol in the
vocabulary when decoding over the joint distribution.
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5.1 Experiments: Classification

Before introducing the additional complications of LLM generation, we first isolate the core calibration
behavior against existing classes of approaches in standard multi-class classification settings.

5.1.1 Task: Sentiment

Task. Our first task (Sentiment) is predicting the sentiment of movie reviews using the commonly used
benchmark data of Maas et al. (2011). This is a binary classification task with y ∈ {0 = negative, 1 = positive}.
Dtr and Dca are constructed from a total of 18k instances. The held-out set for evaluation, | Dte | = 1583, is
from the same distribution as Dtr and Dca. This is a well-studied task for which the surface-level signals
correlated with the target labels are expected to be effectively modeled by large parameter LLMs; as such,
relatively high task accuracies are expected.

Models. Our base network, the parameters of which stay fixed and are used for all estimators, is the
open-source, publicly available Faster I model from the on-device data analysis program Reexpress one
from Reexpress AI. This 1.2 billion-parameter model is a late fusion of the encoder and decoder of Flan-T5
large (Chung et al., 2022) and mT0-base (Muennighoff et al., 2023). We discard the existing adaptor layers
that are part of the on-device program and only use the parameter fusion of the encoder and decoder, adding
the adaptors and estimators introduced in this work. We take the mean of the hidden states across input
tokens, resulting in a hidden state of h ∈ R3774 as input to either an exemplar adaptor, or an sdm activation
layer, each with M = 1000. We use the label FasterI+adaptor for a standard exemplar adaptor over
h ∈ R3774 trained with a cross-entropy loss, and the label FasterI+sdm for the sdm activation layer over
h ∈ R3774.

Estimators. Holding the underlying network constant, we examine representative classes of estimators
used with neural networks, seeking index-conditional calibration at α′ = 0.95. At the most basic, but also,
perhaps the most commonly used in practice, representing the absence of a post-hoc calibration method, we
simply threshold the output, softmax(z) ≥ α′, where the temperature τ = 1. As an established empirical
approach for calibrating neural networks, we provide a comparison to temperature scaling (Guo et al., 2017),
a single parameter version of post-hoc Platt-scaling (Platt, 1999), with the label tempScaling. In this case,
the estimator is the thresholding of the output softmax(z; τ) ≥ α′ after learning a value for τ over Dca. We
also provide a comparison to two representative conformal predictors, the APS method of Romano et al.
(2020) and the adaptiveness-optimized RAPS algorithm of Angelopoulos et al. (2021). The admission criteria
for the APS and RAPS estimators is prediction sets of size 1, using an α = 0.05.

We then compare to the primary sdm estimator p̂(y | x)lower, as well as the reference comparisons p̂(y | x)centroid
and p̂(y | x)upper, as defined in § 4.2.5. We train the sdm activation layer and estimator (Alg. 1) with J = 10,
here and for the remaining experiments. Additional training hyper-parameters and details shared across all
experiments are provided in Appendix A.3.

As a common point of reference, here and for all other experiments as well, we will use the label no-reject
to refer to the model predictions without any selective filtering (i.e., the raw output accuracies, either from a
softmax or an sdm activation).

5.1.2 Task: SentimentOOD

To evaluate the behavior of the estimators over out-of-distribution data, we consider an additional task
(SentimentOOD) that uses the same models and estimators as Sentiment, but an out-of-distribution
evaluation set, | Dte | = 4750. We use the SemEval-2017 Task 4a test set (Rosenthal et al., 2017), which
consists of short-form social media posts that differ in the distribution of topics, language styles, and lengths
relative to the movie reviews. We balance the test set, dropping the third class (neutral), setting the semantics
of the true labels to be the same as that of the movie reviews: y ∈ {0 = negative, 1 = positive}.

19



Under review as submission to TMLR

5.1.3 Task: Factcheck

Task. As a more challenging binary classification task for LLMs, we consider the fact check data of Azaria
& Mitchell (2023). The training and calibration sets, a combined total of 6k instances, consist of single
sentence statements that have been semi-automatically generated via templates and a knowledge base. The
task is to determine whether the statement is true or false, y ∈ {0 = false, 1 = true}. The held-out eval
set, | Dte | = 245, the focus of our analysis, has been constructed by having an LLM generate a statement
continued from a true statement not otherwise in the dataset. These evaluation statements are checked
manually and assigned labels by human annotators. In addition to being a relatively challenging task that
evaluates—at least in principle—the latent knowledge stored within an LLM’s parameters, the test set is
representative of the types of distribution shifts over high-dimensional inputs that can be problematic for
real applications, and challenging to characterize without model assistance and ground-truth labels. It was
observed in Azaria & Mitchell (2023) that the accuracy of existing LLM classifiers is dramatically lower on
this generated, held-out test set compared to the calibration set. However, these test sentences would seem
to also be simple true-false statements, reflecting that it is not always immediately obvious for a human user
to detect distribution shifts over high-dimensional inputs. As such, we seek for our models and estimators to
reflect such shifts via the predictive uncertainty, as we will not, in general, have true labels at test time.

Models and Estimators. Reflecting the more challenging task, our base network is the larger 3.2 billion
parameter Fast I model from Reexpress one, which is a late fusion of the encoder and decoder of Flan-T5
xl and mT0-base. We additionally compose the Fast I model with Mixtral 8x7B Instruct v0.1 (Jiang
et al., 2024). This is achieved by constructing a simple re-ask verification prompt, and then a transform of
the final layer of the Mixtral model and the output logits is concatenated to the mean of the hidden states
across the input tokens of Fast I. We use the label FastI+Mixtral+adaptor for a standard exemplar
adaptor over the resulting h ∈ R5854 trained with a cross-entropy loss, and the label FastI+Mixtral+sdm
for the sdm activation layer over h ∈ R5854. The estimators are otherwise the same as those used for the
Sentiment task.

5.2 Experiments: Black-box LLM APIs

Next, we examine the behavior of the estimators when we only have access to a black-box API for an LLM
that provides the generated text and the top-1 output log probabilities. In this context with a state-of-
the-art model, we examine an additional class of estimators: Those that make use of uncertainty estimates
explicitly encoded in the surface-level output vocabulary symbols. As a fully held-out test—and real-world
use example—we also consider a data quality experiment in which we seek to uncover annotation errors in an
existing carefully curated benchmark dataset.

5.2.1 Task: Question Answering

Task. Our evaluation is over the 4-choice question answering benchmark dataset MMLU (Hendrycks et al.,
2021) and a 4-choice subset of the more challenging MMLU-Pro dataset (Wang et al., 2024)18, for which we
use the label MMLU-Pro-4qa. Dtr and Dca are constructed from 102k instances from the auxiliary_train,
dev, and val splits of MMLU and the MMLU-Pro validation set, the 4-choice subset of which only consists
of 29 instances. For MMLU, | Dte | = 14042. For MMLU-Pro-4qa, | Dte | = 5413.

Models and Estimators. We use gpt-4o-2024-08-06 (gpt-4o) (OpenAI et al., 2024) via the Microsoft
Azure service19 as the black-box LLM. Given the zero-shot question, the LLM is tasked with providing a
structured response against the JSON Schema in Listing 1, and the top-1 log probability for each output token.
The JSON is parsed for the answer letter, the surface-level symbol of which is the prediction for the no-reject
estimator of gpt-4o. We consider the output probability for the answer letter, restricted to those estimates

18Both datasets are available via https://huggingface.co/datasets
19https://azure.microsoft.com/en-us/
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≥ α′, as answerStringProb. The output JSON is also parsed for the model’s real-valued verbalized
uncertainty estimate, which when restricted to estimates ≥ α′, is the estimator verbalizedProb.20

As a final field, the output JSON also contains a short explanation for the response. We take the mean of the
output probabilities corresponding to each value of the output JSON and concatenate those three values
with a soft feature vector of length 4, where the activated index is that of the surface-level answer choice, for
which we use verbalizedProb as the value, and all other indexes are 0. This length 7 vector than serves
as h ∈ R7 as input to an sdm activation layer with M = 1000. For the resulting gpt-4o+sdm model, we
consider the no-reject, p̂(y | x)lower, p̂(y | x)centroid, and p̂(y | x)upper estimators. Additional details appear
in Appendix A.1.

5.2.2 Task: Data Quality Analysis

The MMLU-Pro dataset (MMLU-Pro-4qa) is a follow-up to the original MMLU benchmark designed to
have more challenging questions and more reliable answer annotations. In the previously described experiment,
we examine whether calibration can be maintained over this implied distribution shift. Separately, we consider
here whether our method can uncover additional annotation errors, despite the relatively large amount of
resources already spent to refine the dataset by the dataset constructors. MMLU-Pro reportedly underwent
multiple rounds of review with experts and annotators, including LLM assistance for targeted error detection.
We focus on the Computer Science category given that the questions should have unambiguous, objectively
verifiable answers. This data quality test is a natural, fully held-out assessment of our approach compared
to existing approaches used in practice, with direct, real-world applications. To do so we will examine the
annotations among the set of admitted points sorted by p̂(y | x)lower for which y ̸= ŷ, where the desired
behavior is for these points to reflect the aleatoric uncertainty (exogenous to the model and estimator) of
label annotation errors.

5.3 Experiments: Verified Generation

Next, given the context of the above experiments, we examine the behavior of the sdm network.

Task. We construct the verification task from the Sentiment, SentimentOOD, and Factcheck data
described above (§ 5.1), taking the y labels of those earlier tasks as the ytask labels. The yverification (or simply
y) labels (and associated instances) are constructed by synthetically inverting the text of the associated
completions, as illustrated in Table 8. By design, under the assumption that it is a more challenging learning
setting, we do not pair the completions. For example, given a single movie review, it will appear once as part
of a user prompt and either the label yverification = 0 or yverification = 1, but not both.21

For analysis, we then have a standard binary classification task over the force-decoded output, (x, yverification ∈
{0, 1}) ∈ Dte. We use the following labels for the corresponding datasets: SentimentVerification, with
| Dte | = 1583; SentimentOODVerification, with | Dte | = 4750; and FactcheckVerification, with
| Dte | = 245. These test sets are useful for analyzing the behavior of the verificationLayer, but they do
not reflect a real test-time scenario.

For final evaluation, we take the original test sets from Sentiment, SentimentOOD, and Factcheck
(§ 5.1) and evaluate the output of the generated JSON for the underlying task labels, ytask, as in a standard
evaluation of LLM output.

The corresponding system and user prompts appear in Listing 2. These design decisions enable examining the
instruction-following setting across multiple underlying tasks while enabling reliable evaluation of verification,
since there is no ambiguity (up to annotation errors in the original tasks) in ytask and yverification, and we can
readily parse the JSON output for the task predictions.22

20An additional class of estimators for black-box LLMs are those that require multiple test-time forward passes through the
model, which are related to the Bayesian approaches of Gal & Ghahramani (2016, inter alia). We do not consider this class of
approaches given the computational costs required of the estimators.

21As noted in § 4.3, y = 0 instances (here, the constructed negatives) do not directly participate in next-token fine-tuning, but
they are used for training the verificationLayer and the support set to determine q and d.

22Ill-formatted JSON output is treated as a wrong prediction.

21



Under review as submission to TMLR

Models and Estimators. For Mref we use Phi-3.5-mini-instruct model (phi3.5) (Abdin et al., 2024),
a 3.8 billion-parameter decoder-only Transformer model, via MLX (Hannun et al., 2023), version 0.21.1. To
keep the experiments manageable at a level of compute that can be readily replicated on consumer hardware,
while still being instructive for future larger-scale experiments, we only update the final linear-layer of Mpos,
Wpos, in the next-token loss (Eq. 32); however, we update the full weight matrix of Wpos and not a lower-rank
adaptor over these weights. This is instructive in this context, since our data is relatively small, but with
|V| = 32064 and the phi3.5 hidden dimension of 3072, the 100 million parameters of Wpos would be assumed
to quickly overfit, leading to degenerate output. Because we only update Wpos, while θpos stays fixed, we
only need to train the verificationLayer once before the next-token training loop begins (i.e., Line 11
in Alg. 4 is not needed), and we exclude the weights of Mneg as input to the sdm activation layer, since
they are identical to those of Mpos. As such, the input to the sdm activation of the verificationLayer is(
mean(hpos),h−1

pos
)

∈ R2·3072, the concatenation of the average of the final hidden states (across tokens) with
the final hidden state that predicts the end of sequence delimiter (here, the final closing bracket in the JSON
output).

In this setting, our primary comparison is against the full model before fine-tuning, for which we use the
label phi3.5+sdm. In this case, only the verificationLayer layer is trained, here for J = 10 iterations
of 50 epochs, but the evaluation is still over completions generated via greedy decoding (i.e., arg max)
over sdm(zneg, zpos) with q = e− 2, d = 1. The fine-tuned model (phi3.5+sdmNetwork) uses this same
verificationLayer, but it is also trained for 5 epochs with βmin = 0 and βmax = 0.1 using the next-token
loss of Alg. 4. We choose the model weights (as in Line 13 of Alg. 4) as those that maximize the count of
admitted points over Dca via p̂(y | x)lower for ŷ = 1, further restricted to ytask = ŷtask, which is determined by
parsing the generated JSON output. For both models, phi3.5+sdm and phi3.5+sdmNetwork, we consider
the no-reject and p̂(y | x)lower estimators.23

6 Results

Across tasks and models, the sdm calibration process yields an estimator that achieves index-conditional
calibration (Def. 4.3), in contrast to the existing classes of estimators over LLMs, which become unreliable in
the presence of even modest distribution shifts. The p̂(y | x)lower estimator remains calibrated in the presence
of distribution shifts due to the q̃ γ

min lower constraint on q̃lower, which screens points that are unlike those
seen during the calibration process. With existing methods, defining an out-of-distribution point has been
task- and problem-specific, and generally challenging over high-dimensional inputs. In contrast, the sdm
calibration process provides a principled approach for determining such cut-offs in a data- and model-driven
manner, with minimal hyper-parameters, resulting in a clear separation of points over which the estimator
is reliable (namely, the admitted points) and those over which the estimates themselves are unreliable (i.e.,
the rejected points). The sdm network incorporates this behavior into the LLM architecture and fine-tuning
process to serve as a universal verifier, suggesting a principled basis for building large, complex LLM systems
and pipelines that are reliable and interpretable with respect to the observed labeled data.

6.1 Results: Classification

Table 1 displays the results for the binary classification tasks. The results for Sentiment vs. those of the other
datasets are indicative of the under-appreciated point in the existing calibration literature of the importance
of comparisons over—at least modest—distribution-shifts. On in-distribution benchmark data with high
accuracy models, the differences can be difficult to discern; after all, the class-wise accuracy of the model
is itself ≥ α′. However, even in these otherwise straightforward binary classification settings, the existing
classes of estimators all but fall apart in the presence of distribution shifts, which are common in practice
with high-dimensional data, such as text. In this light, the existing classes of estimators are not demonstrably
more effective than simply using an un-calibrated threshold on the output (softmax). In contrast, the
p̂(y | x)lower estimator achieves index-conditional calibration in all cases, correctly rejecting documents over

23In this context, p̂(y | x)centroid and p̂(y | x)upper are less meaningful as a comparison since p̂(y | x)lower is used as part of the
aforementioned stopping criteria for phi3.5+sdmNetwork, and are thus excluded.
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Table 1: Comparison of relevant estimators for the standard document classification setting, α′ = 0.95 .
N/A indicates all predictions were rejected, which is preferred over falling under the expected accuracy.
n = |Admitted|, the count of non-rejected documents.

Class-conditional Prediction-conditional Marginal
y = 0 y = 1 ŷ = 0 ŷ = 1 y ∈ {0, 1}

Dataset Model Estimator Acc. n
| Dte | Acc. n

| Dte | Acc. n
| Dte | Acc. n

| Dte | Acc. n
| Dte |

Sentiment FasterI+adaptor no-reject 0.982 0.50 0.953 0.50 0.955 0.51 0.982 0.49 0.968 1.
Sentiment FasterI+adaptor softmax 0.995 0.46 0.983 0.41 0.985 0.46 0.994 0.41 0.989 0.87
Sentiment FasterI+adaptor tempScaling 0.994 0.45 0.986 0.39 0.987 0.45 0.994 0.39 0.990 0.84
Sentiment FasterI+adaptor APS 0.993 0.47 0.973 0.45 0.975 0.48 0.993 0.44 0.983 0.92
Sentiment FasterI+adaptor RAPS 0.989 0.47 0.972 0.44 0.974 0.48 0.988 0.44 0.981 0.92
Sentiment FasterI+sdm no-reject 0.971 0.50 0.966 0.50 0.966 0.50 0.971 0.50 0.968 1.
Sentiment FasterI+sdm p̂(y | x)lower 0.996 0.32 0.996 0.32 0.996 0.32 0.996 0.32 0.996 0.65
Sentiment FasterI+sdm p̂(y | x)centroid 0.996 0.36 0.993 0.35 0.993 0.36 0.996 0.35 0.995 0.71
Sentiment FasterI+sdm p̂(y | x)upper 0.997 0.38 0.993 0.37 0.993 0.38 0.997 0.37 0.995 0.75

SentimentOOD FasterI+adaptor no-reject 0.992 0.5 0.394 0.5 0.621 0.80 0.979 0.20 0.693 1.
SentimentOOD FasterI+adaptor softmax 1. 0.37 0.251 0.08 0.854 0.44 1. 0.02 0.861 0.46
SentimentOOD FasterI+adaptor tempScaling 1. 0.34 0.223 0.07 0.869 0.39 1. 0.01 0.874 0.41
SentimentOOD FasterI+adaptor APS 1.000 0.43 0.346 0.19 0.770 0.55 0.997 0.07 0.795 0.62
SentimentOOD FasterI+adaptor RAPS 0.999 0.43 0.336 0.20 0.761 0.56 0.991 0.07 0.786 0.63
SentimentOOD FasterI+sdm no-reject 0.570 0.5 0.966 0.5 0.944 0.30 0.692 0.70 0.768 1.
SentimentOOD FasterI+sdm p̂(y | x)lower N/A 0. N/A 0. N/A 0. N/A 0. N/A 0.
SentimentOOD FasterI+sdm p̂(y | x)centroid N/A 0. N/A 0. N/A 0. N/A 0. N/A 0.
SentimentOOD FasterI+sdm p̂(y | x)upper 0. 0.06 1. 0.28 N/A 0. 0.819 0.35 0.819 0.35

Factcheck FastI+Mixtral+adaptor no-reject 0.365 0.51 0.908 0.49 0.807 0.23 0.574 0.77 0.629 1.
Factcheck FastI+Mixtral+adaptor softmax 0.211 0.08 0.975 0.33 0.667 0.02 0.839 0.38 0.828 0.40
Factcheck FastI+Mixtral+adaptor tempScaling 0.286 0.06 0.987 0.31 0.8 0.02 0.884 0.35 0.879 0.37
Factcheck FastI+Mixtral+adaptor APS 0.283 0.19 0.979 0.38 0.867 0.06 0.736 0.51 0.75 0.57
Factcheck FastI+Mixtral+adaptor RAPS 0.341 0.18 0.967 0.37 0.833 0.07 0.75 0.47 0.761 0.55
Factcheck FastI+Mixtral+sdm no-reject 0.397 0.51 0.899 0.49 0.806 0.25 0.585 0.75 0.641 1.
Factcheck FastI+Mixtral+sdm p̂(y | x)lower N/A 0. 1. 0.13 N/A 0. 1. 0.13 1. 0.13
Factcheck FastI+Mixtral+sdm p̂(y | x)centroid N/A 0. 1. 0.17 N/A 0. 1. 0.17 1. 0.17
Factcheck FastI+Mixtral+sdm p̂(y | x)upper 1. 0.02 0.980 0.21 0.8 0.02 1. 0.20 0.982 0.22

Table 2: MAD and mŷ
⌊q̃⌋ by ⌊q̃⌋ on Dca for the standard classification tasks, trained with J = 10 iterations,

each of 50 epochs. As ⌊q̃⌋ increases, the variation across instances decreases.

Sentiment Factcheck

y = 0 y = 1 y = 0 y = 1

⌊q̃⌋ MAD m0
⌊q̃⌋ MAD m1

⌊q̃⌋ MAD m0
⌊q̃⌋ MAD m1

⌊q̃⌋

0 0.007 0.044 0.007 0.044 0.024 0.148 0.018 0.116
1 < 0.001 0.006 < 0.001 0.003 0.009 0.056 0.004 0.024
2 < 0.001 < 0.001 < 0.001 < 0.001 0.003 0.021 0.001 0.004
3 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.004 < 0.001 0.002
4 0. 0. 0. 0. < 0.001 0.001 < 0.001 < 0.001
5 0. 0. 0. 0. < 0.001 < 0.001 < 0.001 < 0.001
6 0. 0. 0. 0. < 0.001 < 0.001 0. 0.
7 0. 0. 0. 0. - - - -

Table 3: q̃ γ
min on Dca for the standard multi-class classification experiments. The more challenging Factcheck

task has a commensurately higher q̃ γ
min.

Sentiment Factcheck

MAD q̃ γ
min MAD q̃ γ

min

7.9e-05 1.004 0.100 2.447
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Table 4: Comparison of relevant estimators combined with gpt-4o, α′ = 0.95 . The sdm estimator,
p̂(y | x)lower, remains well-calibrated even over the much more challenging MMLU-Pro-4qa dataset. Im-
portantly, p̂(y | x)lower is not vacuously conservative; the yield of admitted points is higher on MMLU even
when the verbalized uncertainty of gpt-4o is well-calibrated (see underline).

Dataset Model Estimator Acc. |Admitted|
|Dte|

MMLU gpt-4o no-reject 0.832 1.
MMLU gpt-4o answerStringProb 0.921 0.74
MMLU gpt-4o verbalizedProb 0.953 0.35
MMLU gpt-4o+sdm no-reject 0.835 1.
MMLU gpt-4o+sdm p̂(y | x)lower 0.957 0.38
MMLU gpt-4o+sdm p̂(y | x)centroid 0.956 0.39
MMLU gpt-4o+sdm p̂(y | x)upper 0.954 0.41

MMLU-Pro-4qa gpt-4o no-reject 0.648 1.
MMLU-Pro-4qa gpt-4o answerStringProb 0.870 0.51
MMLU-Pro-4qa gpt-4o verbalizedProb 0.857 0.16
MMLU-Pro-4qa gpt-4o+sdm no-reject 0.683 1.
MMLU-Pro-4qa gpt-4o+sdm p̂(y | x)lower 0.958 0.22
MMLU-Pro-4qa gpt-4o+sdm p̂(y | x)centroid 0.957 0.23
MMLU-Pro-4qa gpt-4o+sdm p̂(y | x)upper 0.942 0.24

which the estimates are unreliable, and admitting points for which the class- and prediction-conditional
accuracies are ≥ α′.

Central to the unique behavior of the sdm estimator is that the epistemic uncertainty decreases as q̃ increases.
Furthermore, ⌊q̃⌋ can be used as a mapping between Dca and a new, unseen test point, because the variation
among comparable points also decreases as q̃ increases. Table 2 shows this for the standard multi-class
classification tasks with summary statistics over the J = 10 iterations. The corresponding q̃ γ

min used by the
p̂(y | x)lower estimator (Eq. 28) appears in Table 3. Comparing these q̃ γ

min values with Table 2 makes it clear
that the q̃ γ

min values are effectively change points w.r.t. the uncertainty: Points below have high variation
and points above have increasingly low variation to the point that mŷ

⌊q̃⌋ reaches 0, within numerical error.

This behavior is remarkable for an estimator over high-dimensional inputs, because it demonstrates there are
regions of the distribution that are low variation and high-probability that can be reliably detected. Existing
estimators marginalize over the distinctions in these regions, which can cause unexpected behavior at test
time, as demonstrated in our empirical results.

6.2 Results: Black-box LLM APIs

Table 4 contains the results of the estimators over gpt-4o, the baseline accuracy (see no-reject) of which is in-
line with existing reported results for the zero-shot setting, and gpt-4o+sdm. Neither answerStringProb
nor verbalizedProb are reliable estimators across these datasets, even though the multiple-choice QA task
is a common setting for LLM development and evaluation. Conceptually, both can be viewed as encoding the
output Magnitude, without explicitly controlling for the Similarity and Distance, as with a softmax
estimator in a standard classification setting. Their over-confidence on MMLU-Pro-4qa reflect this.

The results of p̂(y | x)lower on MMLU-Pro-4qa are indicative of the real-world use of the sdm estimator.
gpt-4o has a dramatically lower overall accuracy on the MMLU-Pro-4qa questions, which would come as a
surprise to an end-user who was expecting behavior similar to that over MMLU. In contrast, the p̂(y | x)lower
estimator remains calibrated. For the rejected documents, the user would then know to take additional action.
Alternatively, if part of an automated pipeline, additional test-time compute-based branching decisions (such
as re-asking the model, or seeking outside information via retrieval) could be taken in the background before
presenting a final result.
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Table 5: Verified generation results, α′ = 0.95 . Task datasets are identical to those in Table 1. Predictions
are parsed from the JSON generated by the model, with parsing errors counted as wrong predictions.
N/A indicates all predictions were rejected, which is preferred over falling under the expected accuracy.

Verification via an sdm estimator is reliable regardless of fine-tuning the model, but fine-tuning with sdm
(phi3.5+sdmNetwork) can increase the task accuracy (see bold) and the yield of admitted points (see
underline).

Dataset Model Estimator Acc. |Admitted|
| Dte |

Sentiment phi3.5+sdm no-reject 0.751 1.
Sentiment phi3.5+sdm p̂(y | x)lower 0.997 0.39
Sentiment phi3.5+sdmNetwork no-reject 0.876 1.
Sentiment phi3.5+sdmNetwork p̂(y | x)lower 0.996 0.42

SentimentOOD phi3.5+sdm no-reject 0.815 1.
SentimentOOD phi3.5+sdm p̂(y | x)lower 1. <0.01
SentimentOOD phi3.5+sdmNetwork no-reject 0.896 1.
SentimentOOD phi3.5+sdmNetwork p̂(y | x)lower 1. <0.01

Factcheck phi3.5+sdm no-reject 0.706 1.
Factcheck phi3.5+sdm p̂(y | x)lower 0.973 0.15
Factcheck phi3.5+sdmNetwork no-reject 0.743 1.
Factcheck phi3.5+sdmNetwork p̂(y | x)lower 0.973 0.15

Data Quality Analysis. For MMLU-Pro-4qa, we examine the 5 questions in the Computer Science
category that were in the p̂(y | x)lower index-conditional admitted set, but for which the predicted answers
do not match the ground-truth annotations, y ̸= ŷ. The top 4 questions sorted by p̂(y | x)lower, all of which
have p̂(y | x)lower ≥ 0.99, all clearly have annotation errors where the model predictions are correct and
the ground-truth annotations are incorrect. We include the question id’s in Table 6. This provides an
exogenous evaluation of the method: The sdm estimator has successfully separated the aleatoric and epistemic
uncertainty among the high-probability predictions.

6.3 Results: Verified Generation

The results for the sdm network indicate effective verification of instruction following (Table 5). Our small-
scale experiment confirms that the verificationLayer reliably yields a calibrated estimator regardless of
fine-tuning, but the fine-tuning process improves overall task accuracy. That is, the results confirm that
Alg. 4, which chose epoch 3 of 5 as the final model, is a viable fine-tuning loss and process. Importantly in this
context, the cardinality of the set of admitted points is non-decreasing relative to before fine-tuning, despite
updating 100 million parameters on a small training set. Leveraging the behavior of the sdm estimator, the
sdm network is, in this way, the first statistically principled and robust approach to construct an LLM with
an intrinsic ability to verify its own instruction-following and generated output.

7 Conclusion

There has been renewed interest in deep learning as a focus of research for language modeling over the last
decade, and a growing number of efforts to scale data and model compute for various applications. However,
brittleness to distribution shifts, lack of reliable uncertainty quantification, and opaque predictions with
respect to the training data have precluded—or otherwise diminished the potential of—the use of neural
network language models in most real-world settings. In this work, we have addressed these foundational
limitations by introducing sdm activation functions, sdm calibration, and sdm networks.
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A Appendix

We provide additional experimental details and results for the black-box LLM API experiments in § A.1 and
the verified generation experiments in § A.2. Additional training details are included in § A.3.

Code to replicate our results is available at the URL provided in the main text. For the reader, we provide a
few key highlights here. We include an implementation of the sdm activation function in § A.4. We provide
our conventions for calculating empirical CDFs in § A.5, and we provide code scaffolding for an example
implementation of an sdm network training loop in § A.6.

A.1 Black-box LLM APIs

The results of the data quality analysis are included in Table 6. Following best practices, to avoid contaminating
the test set since research articles are commonly used for LLM training, we only include the question id’s and
not the question and answer text, which can readily be retrieved from the Huggingface datasets database.

We include the prompts used for the experiments in the code repo. The prompt is a variation on the theme
of that used in OpenAI’s Simple Evals repo24, with the addition of using structured outputs against the
JSON Schema in Listing 1. The particular prompt and structuring of the JSON (and parsing of the JSON,
described below) are not defining aspects of the approach and are not necessarily the optimal templates.
We use a direct, zero-shot approach to examine the more challenging setting—arguably closer to real-world
usage—than providing examples or systematically hill-climbing on prompts.

The embedding for input to the sdm activation layer is constructed by parsing the JSON schema
mapped back to the top-1 probabilities of the output tokens. For each key, we average the log-
probabilities in probability space of the tokens of the corresponding value. For example, for the key
"short_explanation_for_answer_confidence", we parse the output to isolate the tokens correspond-
ing to the value, and take the average of the exponentiated log probabilities of the tokens. Given
the 3 keys in the JSON schema, this results in 3 floating-point values. The verbalized uncertainty key
"confidence_in_answer_letter" has a value of type number, but the output itself corresponds to a se-
quence of discrete tokens (e.g., “0”, “.”, “9”), so this parsing process is the same as that for the values
of type string. Finally, we construct a soft one-hot vector of length 4 where the non-zero index (if any)
of the predicted letter is set to the floating-point value of the verbalized uncertainty (i.e., the value for
the key "confidence_in_answer_letter"). The input embedding is then the concatenation of these 7
values. Full refusals from the LLM’s API, which are rare but can occur on some of the social science and
humanities questions, are assigned vectors of 0’s as embeddings for Dtr and Dca instances, and treated as
wrong predictions in the test evaluations.

The estimator answerStringProb corresponds to the index of this embedding derived from the value
of the key "answer_letter". Often this is the probability of the single token (i.e., “A”, “B”, “C”, “D”),
but occasionally will be the average over additional tokens (e.g., “$”). The estimator verbalizedProb
corresponds to the floating-point value of the verbalized uncertainty.

In our experiments, we aim for a controlled comparison with answerStringProb and verbalizedProb;
as such, the sdm activation layer is only given access to the 7 values above. In particular, we do not
provide access to additional signal derived from composition with another model. In applications where the
uncertainty is over multiple tasks (i.e., not just question answering of this particular format), to avoid a
marginalization over tasks, we recommend either encoding the distinction across tasks in the JSON schema,
or simply concatenating the LLM output with the hidden states of another large model. The latter is typically
readily achievable by running another model alongside the black-box LLM’s API.

We train the sdm activation layer as a 4-class classification task, which is an effective but potentially
sample-inefficient encoding, at least when assuming the absence of artifacts correlated with answer letters.
An alternative would be to re-encode the task as binary classification, either as a leave-one-out classification
or as binary verification (as in § 5.3). Since the choice of encoding, as with the structure of the prompt
and JSON Schema, is orthogonal to the evaluation of the uncertainty estimates—other than with respect to

24https://github.com/openai/simple-evals/blob/main/common.py
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Table 6: MMLU-Pro-4qa, Computer Science category. Predictions that met the index-conditional threshold
but were marked incorrect according to the ground-truth labels. Examination of the data reveals the model is
correct and the ground-truth annotations are incorrect . The digit significance of p̂(y | x) is not necessarily

significant (and when shown to users, would typically be rounded, with a top ceiling to avoid 1.0), but
provided for reference. n̂ŷ is the effective sample size for the predicted class. The final question is arguably
ambiguous.

Question ID y ŷ p̂(y | x)lower p̂(y | x)centroid p̂(y | x)upper n̂ŷ

10750 A D 0.9999999029119694 0.999999946869715 0.999999963752475 11563
10682 D C 0.9999995410050875 0.9999997504521737 0.9999998413548795 11774
10458 D A 0.9997548501324156 0.9998610348657851 0.9999170919091862 9129
10533 B C 0.9897059289074643 0.9936086673736274 0.9957749405311342 6891
10479 D B 0.967751071803557 0.9791966686070331 0.9862756083406558 7684

effective sample sizes—we keep these aspects straightforward in this set of experiments to avoid complicating
the presentation.

Given the results in the main text, a next step would be to use this behavior to build a re-ask pipeline. That
is, predictions with low probability can be automatically routed to re-prompt the LLM conditional on the
previous response, a potentially effective means of building test-time compute systems over otherwise black-
box models. Such pipelines are not feasible without robust estimates of predictive uncertainty, but become
conceptually straightforward—and straightforward to implement—given the behavior of sdm estimators. We
leave such additional applied examples for future work to systematically analyze.

Listing 1: JSON Schema for gpt-4o Structured Outputs.
{

"properties": {
"answer_letter": {

"title": "Answer Letter",
"type": "string"

},
"confidence_in_answer_letter": {

"title": "Confidence In Answer Letter",
"type": "number"

},
"short_explanation_for_answer_confidence": {

"title": "Short Explanation For Answer Confidence",
"type": "string"

}
},
"required": [

"answer_letter",
"confidence_in_answer_letter",
"short_explanation_for_answer_confidence"

],
"title": "MultipleChoiceQuestionResponse",
"type": "object"

}

A.2 Verified Generation

For reference, Table 7 provides the effectiveness over the force-decoded datasets. The support set of the
verificationLayer is constructed from the force-decoded training and calibration data, so this table
reflects the held-out classification ability over the verification data, which includes constructed negatives
for yverification = 0, as described in the main text and illustrated in Table 8. Listing 2 includes the system
message and prompts used for the experiments.
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Table 7: Verification results on the force-decoded test sets for reference, α′ = 0.95 . See Table 5 for generation
results for the underlying tasks, which reflect real test-time usage. N/A indicates all predictions were
rejected, which is preferred over falling under the expected accuracy. n = |Admitted|, the count of non-rejected
documents. Additional resolution added to n

| Dte | columns for SentimentOODVerification for reference,
but the number of admitted points is effectively 0.

Class-conditional Prediction-conditional Marginal
y = 0 y = 1 ŷ = 0 ŷ = 1 y ∈ {0, 1}

Dataset Model Estimator Acc. n
| Dte | Acc. n

| Dte | Acc. n
| Dte | Acc. n

| Dte | Acc. n
| Dte |

SentimentVerification phi3.5+sdm no-reject 0.959 0.51 0.891 0.49 0.901 0.54 0.954 0.46 0.925 1.
SentimentVerification phi3.5+sdm p̂(y | x)lower 0.996 0.17 0.997 0.21 0.996 0.17 0.997 0.21 0.997 0.38
SentimentVerification phi3.5+sdm p̂(y | x)centroid 0.996 0.18 0.997 0.22 0.996 0.18 0.997 0.22 0.997 0.40
SentimentVerification phi3.5+sdm p̂(y | x)upper 0.997 0.19 0.997 0.23 0.997 0.19 0.997 0.23 0.997 0.42

SentimentOODVerification phi3.5+sdm no-reject 0.978 0.51 0.639 0.49 0.738 0.68 0.966 0.32 0.812 1.
SentimentOODVerification phi3.5+sdm p̂(y | x)lower 1. 0.002 1. 0.0002 1. 0.002 1. 0.0002 1. 0.002
SentimentOODVerification phi3.5+sdm p̂(y | x)centroid 1. 0.003 1. 0.0002 1. 0.003 1. 0.0002 1. 0.003
SentimentOODVerification phi3.5+sdm p̂(y | x)upper 1. 0.003 1. 0.0004 1. 0.003 1. 0.0004 1. 0.004

FactcheckVerification phi3.5+sdm no-reject 0.656 0.50 0.732 0.50 0.708 0.46 0.682 0.54 0.694 1.
FactcheckVerification phi3.5+sdm p̂(y | x)lower N/A 0. 1. 0.07 N/A 0. 1. 0.07 1. 0.07
FactcheckVerification phi3.5+sdm p̂(y | x)centroid N/A 0. 1. 0.08 N/A 0. 1. 0.08 1. 0.08
FactcheckVerification phi3.5+sdm p̂(y | x)upper N/A 0. 1. 0.08 N/A 0. 1. 0.08 1. 0.08

Table 8: JSON structure for the verified generation experiments, with Mref = phi3.5. yverification = 1
corresponds to the standard classification tasks, where, e.g., ytask = 0 corresponds to a negative review
for the sentiment task, and ytask = 1 corresponds to a factually correct statement for the factcheck task.
yverification = 0 flips the parity, and is used for constructing negatives for training, and the contrastive basis for
rejection at test-time. Recall that the LLM takes as input a system prompt, user prompt, and the document
(see Listing 2). At test time, we seek to generate the correct JSON output (i.e., that corresponding to the
correct ytask label), for instances with ŷverification = 1 predicted by the verificationLayer layer.

Datasets Labels JSON output
Sentiment, SentimentVerification
SentimentOOD, SentimentOODVerification

ytask = 0, yverification = 1 {"sentiment": "negative"}
ytask = 1, yverification = 1 {"sentiment": "positive"}
ytask = 0, yverification = 0 {"sentiment": "positive"}
ytask = 1, yverification = 0 {"sentiment": "negative"}

Factcheck, FactcheckVerification
ytask = 0, yverification = 1 {"correctness": false}
ytask = 1, yverification = 1 {"correctness": true}
ytask = 0, yverification = 0 {"correctness": true}
ytask = 1, yverification = 0 {"correctness": false}
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Listing 2: System and user messages for the sentiment and factcheck datasets of the verified generation
experiments, with Mref = phi3.5. The document text replaces TEXT for each instance.
<|system|>
You are a helpful AI assistant.<|end|>
<|user|>
Classify the sentiment of the following movie review. Respond using the following JSON: {"sentiment": str}. REVIEW: TEXT<|end|>
<|assistant|>

<|system|>
You are a helpful AI assistant.<|end|>
<|user|>
Check the following document for hallucinations and/or factual inaccuracies. Respond using the following JSON: {"correctness": bool}. DOCUMENT: TEXT<|end|>
<|assistant|>

A.3 Additional Training Details

Compute. The black-box LLM experiments require API calls, as detailed in the main text, but all other
results can be reproduced locally on a single 2023 Mac Studio with an M2 Ultra chip with 128 GB of unified
memory. These experiments are designed to fully assess the methods while still being replicable with consumer
hardware.

Hyper-parameters. In the code repo, we include scripts for replicating our results. For all cases, we
train the rescaling transform (Alg. 2) for up to 1000 epochs, with early stopping if the loss exceeds the min
observed loss for 10 consecutive epochs. In all experiments, M = 1000 and we use a mini-batch size of 50. We
mean center the input to g, the 1-D CNN of the sdm activation layer, via the mean and standard deviation
over Dtr. We train gpt-4o+sdm for J = 10 iterations of 5 epochs, and the sdm models of Sentiment and
Factcheck, as well as the verificationLayer of the sdm network, for J = 10 iterations of 50 epochs.
The standard exemplar adaptors of the Sentiment and Factcheck classification experiments are trained
with cross-entropy losses for 50 epochs. We use the Adam optimizer (Kingma & Ba, 2017) with a learning
rate of 1 × 10−4 for training the rescaling transform (Alg. 2) and 1 × 10−5 for all other cases.
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A.4 Example Implementation of the SDM Activation Function

We include an implementation of the sdm activation function using PyTorch (Paszke et al., 2019), version
2.3.0, in Listing 3.

Listing 3: Implementation of the sdm activation function in PyTorch, version 2.3.0.
def sdm_activation_function(batch_input, q, distance_quantile_per_class=None, log=False):

"""
sdm activation function
Parameters
----------
batch_input

torch.tensor
shape == [batch size, number of classes]

q
torch.tensor

shape == [batch size, 1], with each value in [0, max q]
distance_quantile_per_class

torch.tensor, or None
If not None, shape == [batch size, number of classes], with each quantile in [0,1]. As a final layer
activation function, with batch_input $\in \reals$, it is assumed that the quantiles are the same
across classes, for a given instance. This ensures the argmax does not change relative to
torch.argmax(batch_input, dim=1).

log
log with change of base, for training

Notes:
For context, with e.g. batch size = 1, the standard softmax is obtained by using q=torch.tensor([[torch.e-2]])
and (distance_quantile_per_class=None or distance_quantile_per_class=torch.ones(1, number of classes) ).

Returns
-------
[batch size, number of classes]
"""
assert len(batch_input.shape) == 2
assert batch_input.shape[0] == q.shape[0]
assert q.shape[1] == 1
if distance_quantile_per_class is not None:

assert batch_input.shape == distance_quantile_per_class.shape
q_rescale_offset = 2
q_factor = q_rescale_offset + q
batch_input = batch_input - torch.amax(batch_input, dim=1, keepdim=True) # for numerical stability
if distance_quantile_per_class is not None:

rescaled_distribution = q_factor ** (batch_input * distance_quantile_per_class)
else:

rescaled_distribution = q_factor ** batch_input
if log: # log_base{q}

kEPS = torch.finfo(torch.float32).eps # adjust as applicable for platform
rescaled_distribution = torch.log(rescaled_distribution + kEPS) - torch.log(

torch.sum(rescaled_distribution, dim=1) + kEPS).unsqueeze(1)
return rescaled_distribution / torch.log(q_factor)

else:
return rescaled_distribution / torch.sum(rescaled_distribution, dim=1).unsqueeze(1)

A.5 Empirical CDF Function

Listing 4: An implementation of the empirical CDF conventions used in this work, using NumPy, version
1.26.4. See the text for a further discussion.

def getCDFIndex(trueClass_To_CDF, val, prediction, reverse=False, val_in_0to1=False):
# trueClass_To_CDF is a dictionary with a key for each class, the values of which are sorted ascending lists of numbers, since np.searchsorted assumes an ascending sort

of its initial argument.
if prediction not in trueClass_To_CDF or len(trueClass_To_CDF[prediction]) == 0:

return 0.0
if val_in_0to1 and len(trueClass_To_CDF[prediction]) > 0 and val >= trueClass_To_CDF[prediction][-1]: # saturation guard

assert not reverse
return 1.0

index = np.searchsorted(trueClass_To_CDF[prediction], val, side="left") # will be 0 for len() == 0
if reverse: # use for distances

return 1 - index / len(trueClass_To_CDF[prediction])
else:

return index / len(trueClass_To_CDF[prediction])

The conventions for implementing the empirical CDF functions follow in the expected ways, but we briefly
highlight the key considerations below, as they can impact the behavior of the estimators. An implementation
in NumPy (Harris et al., 2020), version 1.26.4, appears in Listing 4.

1. The distance quantiles should be exclusionary at the boundaries. When dnearest = 0, the 1 −
eCDF·

ca(dnearest) quantile should be 1, and when dnearest is greater than the maximum observed
distance (across Dca for x ∈ Dte and x ∈ Dca, and across Dtr for x ∈ Dtr, the latter case only
occurring during training), the 1 − eCDF·

ca(dnearest) quantile should be 0.

2. For the quantiles over an sdm activation, as needed for calibration, saturated values at the high-end
should be assigned a quantile of 1. In the example code, this is achieved by setting the argument
val_in_0to1=True.
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A.6 Example Implementation of the Negative+Positive Vocabulary Normalization and L2

Regularization Term

The positive+negative vocabulary normalization and regularization loss (Eq. 32) are conceptually parsimonious
and straightforward to implement. Code scaffolding for an example implementation of an sdm network
training loop appears in Listing 5. For computational expediency, here (as in the experiments in the main
text), the q values and distance quantiles are calculated after each epoch, although in principle, they can be
calculated with updated network values as an epoch progresses.

Listing 5: Code scaffolding in PyTorch, version 2.3.0, for a basic training loop of an sdm network with the
Negative+Positive Vocabulary Normalization and L2 regularization term, where the q values and distance
quantiles are updated after each epoch.
pdist = nn.PairwiseDistance(p=2)
criterion = nn.NLLLoss()
for e in range(total_epochs):

total_mini_batches = len(range(0, train_size, batch_size))
beta = min_beta
beta_step = (max_beta-min_beta) / total_mini_batches
for i in range(0, train_size, batch_size):

optimizer.zero_grad()
model.train()
batch_genai_y = # the next-token labels with applicable index+|V| offsets
# the sdm activations for the negative+positive joint distribution and the concatenation of the reference
# distribution with itself use the same q and distance quantiles for the corresponding instances:
batch_f_genai = # log_base{q} sdm activation(negative+positive linear layers output), where + is pseudo-code for concatenation
batch_f_original = # log_base{q} sdm activation(reference distribution+reference distribution linear layers output)
with torch.no_grad():

top_events_k = 1
top_k_sort_by_largest = True
# "negative" refers to indexes in the first half of the concatenated distributions, [0, |V|); "positive" to the second half [|V|, |V|*2):
neg_original_max_half_distribution_i = torch.topk(batch_f_original[:, 0:model.gen_ai_vocab],

top_events_k, dim=1, largest=top_k_sort_by_largest)[1]
pos_original_max_half_distribution_i = torch.topk(batch_f_original[:, -model.gen_ai_vocab:],

top_events_k, dim=1, largest=top_k_sort_by_largest)[1] + model.gen_ai_vocab # note the offset
negative_max_half_distribution_i = torch.topk(batch_f_genai[:, 0:model.gen_ai_vocab],

top_events_k, dim=1, largest=top_k_sort_by_largest)[1]
positive_max_half_distribution_i = torch.topk(batch_f_genai[:, -model.gen_ai_vocab:],

top_events_k, dim=1, largest=top_k_sort_by_largest)[1] + model.gen_ai_vocab # note the offset
distribution_mass_mask = (

torch.ones_like(batch_f_genai).scatter_(1, neg_original_max_half_distribution_i, 0.0) *
torch.ones_like(batch_f_genai).scatter_(1, pos_original_max_half_distribution_i, 0.0) *
torch.ones_like(batch_f_genai).scatter_(1, negative_max_half_distribution_i, 0.0) *
torch.ones_like(batch_f_genai).scatter_(1, positive_max_half_distribution_i, 0.0) *
torch.ones_like(batch_f_genai).scatter_(1, batch_genai_y.unsqueeze(1), 0.0)

).to(batch_f_genai.device)
regularization_term = pdist(

distribution_mass_mask * batch_f_original,
distribution_mass_mask * batch_f_genai).mean()

llm_loss = criterion(batch_f_genai, batch_genai_y)
with torch.no_grad(): # rescaling factor for the regularization term

regularization_scale_term = (torch.log(llm_loss + model.kEPS) /
(torch.log(regularization_term + model.kEPS) + model.kEPS)
).item()

loss = llm_loss + beta * torch.sqrt(
torch.clamp(regularization_term, min=1.0) ** min(max(regularization_scale_term, 0.0), 1.0))

loss.backward()
optimizer.step()
beta += beta_step

# Before the next epoch, for each training instance, update q and distance quantiles using the sdm activation layer trained for verification.
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