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Abstract

In this work, we propose a label noise-robust segmentation framework for left ventricle blood pool
segmentation in echocardiography. Based on the stochastic co-teaching approach, our method
extends pixel-level filtering of label noise with additional image-level filtering to more effectively
prevent noisy labels from backpropagating. We evaluate our framework on the EchoNet-Dynamic
dataset, and simulate diverse noisy label scenarios, including over- and undersegmented (i.e., biased)
labels. Our results demonstrate that the incorporation of image-based rejection enhances the Dice
coefficient by 1.5% points and ejection fraction estimation by 2.3% points with respect to the pixel-
based co-teaching framework under heavily biased label noise conditions, and thereby maintains
the same performance as on clean data.
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1. Introduction

Transthoracic echocardiography (TTE) serves as the primary imaging modality for assessing cardiac
function. A key quantitative parameter derived from TTE is the left ventricular ejection fraction
(LVEF), which quantifies the ratio of blood ejected from the left ventricle relative to its total volume
at end-diastole (Lang et al., 2015). Accurate automatic LVEF estimation depends on precisely
delineated examples of the left-ventricle blood pool in TTE images, which may be compromised
by less experienced annotators, who contribute noisy delineations (Karimi et al., 2020; Shi et al.,
2024).

Various strategies have been developed to mitigate the adverse effects of label noise in deep
learning. For example, Han et al. (2018) introduced the co-teaching framework, wherein two net-
works are trained simultaneously on the same mini-batches but cross-select different subsets of
instances based on their loss values for optimization. In this approach, each network discards a
predetermined fraction of samples with the highest losses to update its peer. Building on this idea,
de Vos et al. (2023) proposed stochastic co-teaching (StoCoT), which employs randomly selected
rejection thresholds, thereby improving performance in scenarios with unknown noise levels. The
authors showed that co-teaching can easily be extended to segmentation tasks, as segmentation
is usually framed as a pixel-wise classification problem, and single pixels can be masked out from
backpropagation.

In this work, we employ the stochastic co-teaching framework for echocardiography left ventricle
segmentation in echocardiography. To prevent a data imbalance between center and border pixels,
we perform noisy-label rejection both on the pixel-level and on the image level, and show that this
improves performance compared with stochastic co-teaching on the pixel-level only.
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2. Method

We propose to adapt the stochastic co-teaching framework, which consists of two parallel networks
that identify and filter out noisy labels for each other’s optimization (cross-updates), thereby miti-
gating confirmation bias. In addition to the pixel-based rejection scheme proposed by de Vos et al.
(2023), we add a frame-based rejection rule where entire images are excluded from training if they
are deemed to contain excessive label noise.

The stochastic co-teaching algorithm operates as follows: During training, for each pixel, the
posterior probability of the reference class is computed. For a pixel with binary label ytrue ∈ {0, 1},
the network outputs a logit which is transformed via a sigmoid function to yield ypred. The posterior
probability is then defined as P = ytrue · ypred + (1 − ytrue) · (1 − ypred) for a binary classification
task. A rejection threshold τ is sampled from a Beta distribution (α = 1, β = 8); a pixel’s loss is
rejected from backpropagation through the network (i.e., masked out), if P < τ for the same pixel
in the peer network. Additionally, an entire image is rejected, if more than 5% of its pixels are
discarded through this process.

3. Experiments & Results

We evaluate our method on the EchoNet-Dynamic dataset (Ouyang et al., 2020), which consists
of echocardiogram videos from 10,030 patients with expert delineations of the left-ventricle blood
pool in end-systolic and end-diastolic frames. In addition to using the original annotations, we
simulate label noise with three settings: (a) Positive bias 45%: 5 consecutive morphological dilation
operations to 45% of the training images to mimic a consistently over-segmented blood pool by
a contributing annotator. (b) Negative bias 45%: 5 consecutive erosions to 45% of the training
images to simulate consistent under-segmentation. (c) Symmetric 80%: 1 to 5 erosions or dilations
(uniformly random choice) to 80% of the training images to mimic inconsistent segmentation.

We compare our approach with four training strategies: (i) Baseline: A single model trained
with binary cross-entropy loss from (Ouyang et al., 2020); (ii) co-teaching: Two networks that
each mask out the 5% of pixels with the highest losses per image; (iii) stochastic co-teaching
(pixel-based); and (iv) stochastic co-teaching (pixel- + image-based).

For all experiments, we adopt the settings from (Ouyang et al., 2020), including a DeepLab-v3
architecture with a ResNet-50 backbone, initialized with random weights, and weight optimization
using SGD (learning rate 1e-5, momentum 0.9). Input images are resized to 112×112 and normal-
ized to zero mean and unit variance. Training runs for 50 epochs, and we report results from the
epoch with the best validation loss. Each experiment is repeated 5 times with different random
seeds. The co-teaching experiments are performed with an initial warm-up phase of 10 epochs with
regular training, and a subsequent 10 epochs of linear stepwise increase of the rejection threshold.
Segmentation performance is assessed via the Dice coefficient on annotated frames and clinical
importance is assessed using the absolute error of ejection fraction (EF). EF is computed using
the end-systolic volume (ESV) and end-diastolic volume (EDV) according to: EF = EDV−ESV

EDV ,

with both volumes estimated as Volume = 0.85× A2

L , where A is the segmentation area, and L the
left-ventricle length (St John Sutton et al., 1998).

Table 1 summarizes the experimental results. The proposed image-based stochastic co-teaching
framework outperforms all other methods in the positive bias 45% setting, achieving an average
Dice score of 91.7%—comparable to performance on the clean dataset—and a mean absolute EF
error of 9.0 percentage points. Under the Symmetric 80% noise condition, the framework yields
a modest Dice improvement, though with a slight decline in EF accuracy, while no significant
gains are observed for the Negative bias scenario. The experiments on the clean dataset show that
the application of stochastic co-teaching preserves baseline performance. Figure 1(b) illustrates
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Table 1: Results on the test set, reported as mean ± standard deviation (computed across 5
random seeds). Dice scores are in % and MAE of EF in percentage points. Best means are in bold;
* indicates a significant improvement (p < 0.05, Bonferroni-corrected, paired t-tests).

Clean Pos. bias 45% Neg. bias 45% Sym. 80%

Method Dice MAE Dice MAE Dice MAE Dice MAE

Baseline 91.7 ± 0.3 8.6 ± 0.3 89.7 ± 0.6 12.8 ± 2.0 90.0 ± 0.6 10.7 ± 1.5 90.2 ± 0.4 9.7 ± 0.3
Co-teaching 91.3 ± 0.3 9.5 ± 0.5 89.4 ± 0.9 12.5 ± 1.6 88.8 ± 1.0 10.7 ± 2.1 88.4 ± 4.4 13.1 ± 5.8
StoCoT (pixel) 91.8 ± 0.1 8.7 ± 0.3 90.2 ± 0.4 11.3 ± 1.6 89.4 ± 0.6 11.1 ± 1.2 90.6 ± 0.5 10.1 ± 1.1
StoCoT (pixel+image) 91.8 ± 0.2 8.6 ± 0.4 91.7 ± 0.2* 9.0 ± 0.4 88.5 ± 0.3 9.9 ± 1.1 90.9 ± 0.3 10.9 ± 0.8

(a) (b) (c)

Figure 1: (a) Synthetic label noise examples. (b) Selection masks from stochastic co-teaching (black
pixels: rejected; top two are clean, bottom two noisy). (c) Loss curves (solid: validation, dashed:
training).

example pixel rejection masks generated during training, where noisier segmentation labels lead to
broader rejected regions around the borders. Furthermore, as shown in Figure 1(c), all methods
except the proposed image-based approach exhibit signs of overfitting.

4. Discussion and conclusion

We applied and evaluated stochastic co-teaching for training models to segment the left ventricle
blood pool in echocardiography. Our method extends the stochastic co-teaching framework by
incorporating image-level rejection in addition to pixel-level rejection. This dual rejection strategy
effectively filters out mislabeled data, as evidenced by improved performance compared to using
pixel-based rejection alone.

We hypothesize that relying solely on pixel-based rejection may lead to an imbalance in train-
ing: excessive rejection of border pixels could result in a predominance of central pixels during
backpropagation, thereby impairing the learning of boundary details. The image-based rejection
helps mitigate this imbalance, ensuring that both border and central regions contribute adequately
to the training process. In the negative bias experiment, the proposed method failed because it
treated the clean labels as the noisy ones, and vice versa, indicating that a 45% noise rate was too
high for this setting. However, in a more realistic noise scenario, the noisy annotator may also be
less consistent. Future work should evaluate this method on label noise from expert annotators,
and investigate if and why the method underperforms in scenarios with negatively biased noise.
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