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Abstract
Recent empirical studies have found inductive bi-
ases in supervised learning toward simple features
that may be spuriously correlated with the label,
resulting in suboptimal performance on minor-
ity subgroups. Despite the growing popularity of
methods which learn representations from unla-
beled data, it is unclear how potential spurious
features may be manifested in the learnt represen-
tations. In this work, we explore whether recent
Self-Supervised Learning (SSL) methods would
produce representations which exhibit similar be-
haviors under spurious correlation. First, we show
that classical approaches in combating spurious
correlations, such as dataset re-sampling during
SSL, do not consistently lead to invariant represen-
tation. Second, we find that spurious information
is represented disproportionately heavily in the
later layers of the encoder. Motivated by these
findings, we propose a method to remove spurious
information from these representations during pre-
training, by pruning or re-initializing later layers
of the encoder. We find that our method produces
representations which outperform the baseline on
three datasets, without the need for group or label
information during SSL.

1. Introduction
Many real-world predictive tasks contain spurious corre-
lations – features that are correlated with the label only
for certain subsets of the data (Shah et al., 2020; McCoy
et al., 2019; Gururangan et al., 2018). In such cases, where
such correlations are easier to learn than the label itself (Na-
garajan et al., 2020; Sagawa et al., 2020b), Empirical Risk
Minimization (ERM) models have been shown to make pre-
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dictions based on spurious correlations, leading to systemat-
ically poor performance for minority subgroups (Hashimoto
et al., 2018). For instance, models trained to detect pneumo-
nia (Zech et al., 2018) or COVID-19 (DeGrave et al., 2021)
from chest X-rays across hospitals use information about
the source hospital as a shortcut for patient disease, rather
than invariant pulmonary characteristics.

There have been many methods proposed to tackle spurious
correlations for supervised learning. Some methods require
group information during training (Sagawa et al., 2020a),
while others do not (Liu et al., 2021a; Zhang et al., 2022).
However, all methods require group information for model
selection. The problem becomes more complex when we
do not have access to label information. For instance, unla-
beled data with underlying latent features that could exhibit
such correlations with downstream labels may be used for
pre-text tasks, and biases caused by these correlations may
propagate to downstream tasks.

Recently, there has been a rise in the popularity of Self-
Supervised Learning (SSL) methods, which seek to learn
data representations from large, unlabeled datasets (Chen
et al., 2020a; He et al., 2019; Grill et al., 2020; Chen & He,
2020; Caron et al., 2020; Zbontar et al., 2021). In many
real-world applications, important underlying features of
the data that are necessary to be captured in the representa-
tions for downstream tasks, may be correlated with simpler
features unrelated to these tasks. We suspect that since SSL
models can discriminate data samples in the majority groups
using the simpler features, they may rely mostly on these
features for the instance discrimination pre-text task. As
such, it is unclear how spurious correlations are reflected in
representations that SSL models learn.

In this work, we consider a simple setting where we are
interested in capturing one core feature in representations,
which is correlated with a spurious, simpler feature. In
this setting, we ask the following questions: (1) Do SSL
methods also have a bias towards learning representations
which result in spurious correlations when a linear ERM
model is trained on representations for downstream tasks?
(2) If so, can we suppress such features from learnt repre-
sentations during SSL, without access to any group or label
information?
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We make the following contributions:

• We show that simple techniques for avoiding spurious
correlations during supervised learning, such as re-
weighting (Idrissi et al., 2021) or re-sampling (Sagawa
et al., 2020b) of the training set with group information,
does not necessarily improve representations learnt
with SSL.

• We show that group information is correlated with
features learned in the final layers of the network, and
hypothesize that removing such information from the
final layers can be beneficial.

• We propose a method to eliminate spurious feature
information from representations learnt during SSL
while maintaining discriminative ability for down-
stream predictive tasks, without access to group or
label information.

2. Related Work
Spurious Correlations Spurious correlations arise in su-
pervised learning models in a variety of domains, from
medical imaging (Zech et al., 2018; DeGrave et al., 2021)
to natural language processing (Tu et al., 2020; Wang & Cu-
lotta, 2020). A variety of approaches have been proposed to
learn classifiers which do not make use of spurious informa-
tion. Methods like GroupDRO (Sagawa et al., 2020a) and
DFR (Kirichenko et al., 2022) require group information
during training, while methods like JTT (Liu et al., 2021a),
LfF (Nam et al., 2020), CVaR DRO (Duchi et al., 2019),
CnC (Zhang et al., 2022) do not. However, all methods
require group information for model selection.

Self-supervised Representation Learning Self-
supervised learning methods learn representations from
large-scale unlabeled datasets where annotations are scarce.
In vision applications, the pretext task is typically to
maximize similarity between two augmented views of the
same image (Jing & Tian, 2020). This can be done in a
contrastive fashion using the InfoNCE loss (Oord et al.,
2018), as in SimCLR (Chen et al., 2020a) and MoCo (Chen
et al., 2020b), or without the need for negative samples
at all, as in BYOL (Grill et al., 2020), SwAV (Caron
et al., 2020), SimSiam (Chen & He, 2021), and Barlow
Twins (Zbontar et al., 2021).

Learning under Dataset Imbalance and Shortcuts Self-
supervised models have been found to be more robust to
dataset imbalance (Liu et al., 2021b), and Jiang et al.
(2021b;a); Liu et al. (2021b) further address the subgroup
gaps. Robinson et al. (2021) addressed shortcut learning
in contrastive learning by adversarially modifying encoded
features. Other works in addressing group robustness or
fairness in SSL, however, require group information or la-
bels (Tsai et al., 2020; Song et al., 2019; Wang et al., 2021).

In the supervised setting, how subnetworks of a trained
model can affect minority examples (Hooker et al., 2019)
or out-of-distribution generalization (Zhang et al., 2021),
and forgetting features via final-layer re-initialization (Zhou
et al., 2022), have also been studied.

For a more comprehensive summary of the background and
related work, see Appendix A.

3. Methods
3.1. Problem Setup

We suppose that data is generated from underlying feature
space Z = {zcore, zspur, . . . }, where zcore and zspur are cor-
related for unlabeled data available for pre-text task, and
zcore determines labels y for our downstream task of interest,
while zspur determines the spurious attribute, which is easier
to learn, and is not of interest of downstream tasks. Our goal,
is to be able to predict y from the learned representations in
the downstream task where such correlations do not hold.

3.2. Investigating the Extent of Spurious Learning in
SSL

First, we design three experiments to establish the extent
of spurious learning in SSL, and how easily it could be
removed by simple solutions.

Baseline Spurious SSL: We first empirically evaluate learn-
ing of the core and spurious features on self-supervised
representations. We train SimSiam (Chen & He, 2020)
models with ResNet-18 backbones on 4 datasets containing
spurious correlations (See Appendix B for dataset descrip-
tions). Then, we evaluate the learned representations using
a balanced dataset which we create by subsampling major-
ity groups (Sagawa et al., 2020b; Idrissi et al., 2021), to
avoid the statistical and geometrical skews (Nagarajan et al.,
2020) when training the linear classifier on representations.
We use the balanced dataset to separately train two linear
classifiers to predict labels and spurious attribute.

Spurious Feature Removal Effectiveness using Group
Information: In the next step, we examine whether clas-
sical approaches for combating spurious correlations, such
as re-sampling training examples, are effective in remov-
ing spurious information during SSL. Assuming that group
information is available, we train SimSiam on datasets re-
sampled using the following strategies: (i) downsampling
examples in majority groups to have the same number of
examples in all groups, (ii) upsampling minority examples
to have the same number of examples in all groups.

Investigating Spurious Signals in Layer-Wise Feature
Representations: We also investigate methods that identify
the sources of spurious correlation, tailored to the SSL set-
ting. One crucial observation from prior work is that during
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Figure 1: We use model transformation modules to create new views of training examples in the feature space. The
introduced set of transformations removes the features learned in the final few layers, and final representations are invariant
to such transformations.

supervised learning, overparameterized models have an in-
ductive bias towards learning the spurious feature and “mem-
orizing” the minority examples, even after re-sampling or re-
weighting (Sagawa et al., 2020b). It has been also observed
in the supervised setting that memorization predominately
occurs in the deeper layers (Zhang et al., 2019; Stephenson
et al., 2021) and that the representations in earlier layers of
the network correctly classify the easier examples while the
final layers memorize the difficult examples (Baldock et al.,
2021).

We suspect that a similar phenomenon happens during SSL,
as the spurious feature is easier to infer, and almost suf-
ficient for the instance discrimination task. To verify this
hypothesis, we evaluate the mutual information between fea-
ture representations across the layers of the trained encoder
with (1) the labels I(Z;Y ), and (2) the spurious attribute
I(Z;G).

3.3. Late-layer Transformation-based View Generation

Motivated by these experiments, we define Late-layer
transformation-based view generation modules – Late-TVG.

Assuming that zspur is easier to learn, and majority examples
can be discriminated by this feature as well as zcore, the
core feature may not be fully captured in SSL representa-
tions. However, if the positive pairs have the same zcore
but different or removed zspur, the encoder must learn the
core features (Robinson et al., 2021). Motivated by how
SSL models are invariant to the set of image augmentations
imposed by the augmentation module, we propose a model
transformation module, that specifically targets modifying
the spurious feature in encoded examples, in order to im-
prove core feature representation.

More formally, we consider a model transformation module
U , that transforms any given function fθ parameterized
by θ = {W1, . . . ,Wn} to fθ̃. At each step, we draw a
transformation ϕM,θ′ form U to obtain transformed encoder
fθ̃ from fθ. Each model transformation can be defined with
a mask M ∈ {0, 1}|θ| = {M1, . . . ,Mn}, where we re-
parameterize the unmasked weights (1 −M) ⊙ θ′ (either
reinitialize or set them to 0), and keep the rest of the weights
M⊙θ the same, thus θ̃ = ϕM,θ′(θ) = M⊙θ+(1−M)⊙θ′.

Transformations: In our experiments, we consider two
types of transformation modules as below:

• Re-initialization of the final-layers (SSLReinit, L): Re-
initializing the weights in layers deeper than L.
U Reinit, L = {ϕML,θReinit | θReinit ∼ Dθ} where ML is
masking all weights before layer L or ML = {M l

L |
M l

L = 1(l < L)|Wl|, l ∈ [n]}, and Dθ is the parameter
initialization distribution.

• Threshold Pruning (SSLPrune, L, a): Magnitude pruning
a% of the weights in all layers deeper than L.
U Prune, L, a = {ϕML,a,θ0 ; θ0 = (0)|θ|} where ML,a =
{M l

L ⊙ Topa(Wl) | l ∈ [n]} and Topa(Wl)i,j =
I(Wl(i,j) in top a% of θ)

Note that these transformation modules are designed to
avoid memorization and forget representations of the mi-
nority examples, by removing the undesired information in
the final layers, and we want the output of the transformed
module to be close to the original encoded examples in
the representation space. In other words, the model should
be invariant to model transformations in the feature space,
and thus these transformations can be considered as curated
view generating operations for the minority groups. This
encourages the encoder to be invariant to final layer transfor-
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kNN (Target) LR (Target) LR (Group)

Dataset SSL Training Average Worst Group Average Worst Group Average

waterbirds
Normal 53.4% 49.7% 56.2% 48.0% 87.4%

Downsample 51.7% 47.0% 55.5% 50.5% 85.3%
Upsample 66.3% 9.5% 62.3% 46.7% 81.5%

metashift
Normal 54.2% 28.8% 66.6% 27.6% 64.9%

Downsample 45.1% 0.0% 59.8% 0.0% 57.4%
Upsample 56.5% 32.9% 65.8% 24.2% 65.1%

spurcifar10
Normal 57.1% 22.1% 60.3% 36.2% 52.0%

Downsample 36.0% 19.6% 48.8% 28.8% 48.3%
Upsample 43.8% 20.7% 53.6% 9.3% 70.7%

cmnist
Normal 86.7% 42.0% 83.7% 37.6% 85.9%

Downsample 86.2% 23.7% 80.0% 35.2% 83.2%
Upsample 86.9% 39.4% 80.0% 43.7% 79.6%

Table 1: Accuracy of ResNet-18 encoders trained using SSL on four datasets, evaluated on a balanced test set. We vary the
SSL training set used (Normal: original dataset, Downsample: downsampling majority groups, Upsample: upsampling
minority groups). Re-sampling does not necessarily improve worst-group accuracy in the downstream task.

mations, and thus helps discriminating minority examples
based on the core feature.

To learn these representations, given two random augmen-
tations t, t′ ∼ T from the augmentation module T , two
views x1 = t(x) and x2 = t′(x) are generated from an
input image x. At each step, given a feature encoder f ,
and an augmentation module U , we obtain a transformed
model f̃ = ϕ(f), ϕ ∼ U . During training, one example
x1 is passed through the normal encoder v1 = f(x1), and
the other example x2 is passed through the transformed en-
coder ṽ2 = f̃(x2). Encoded feature ṽ2 is now a positive
example that should be close to v1 in the representation
space. In our experiments, we use SimSiam in which the
encoder f aims to maximize the cosine similarity of the two
views via predictor network h, and a stop-gradient operator
as in Figure 1. Given previously defined features v1 and
ṽ2, the cosine similarity D(h(v1),stopgrad(ṽ2)) will be
maximized at each step.

Experimental Setup: We train SimSiam models with pro-
posed transformed modules. For simplicity, we use one
module with a fixed pruning percentage and layer threshold
throughout training. At each epoch t, given a transformation
from the fixed module is applied to encoder ft to generate
the transformed model f̃t. The model transformations are
applied to the branch of SimSiam that a gradient-stop op-
eration is applied to later. We use group information in the
validation set and measure worst-group accuracy in order to
choose layer threshold and pruning percentage hyperparam-
eters (In Appendix D we show that even an uncurated set of
model transformations enhance worst-group performance),
and evaluate them similar to previous experiments.
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Figure 2: Comparison of Mutual Information between fea-
tures and labels (top) vs. spurious attribute and labels (bot-
tom) across layers of a ResNet-18 model trained with Sim-
Siam on coloured MNIST. We observe that I(Z;G) de-
creases in the intermediate layers, and grows back in the
final layers, indicating that the final representations rely on
the spurious feature for the instance discrimination task in
SSL.

4. Results
4.1. SSL Suffers From Spurious Correlations

From Table 1, we find that across all datasets, SSL models
exhibit gaps between worst-group and average accuracy
when predicting the core feature, indicating that even when
spurious correlation does not hold for downstream tasks, the
learnt features are more predictive of the spurious feature
in comparison to the core one. This is in contrast with
supervised learning (Rosenfeld et al., 2022), where such
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kNN (Target) LR (Target) LR (Group) Other Metrics

Dataset Method Worst Group Average Worst Group Average Average I(Z; Y) I(Z; G) Lalign

cmnist

SSLBase 41.91% 86.72% 37.61% 83.67% 85.92% 8.56E-01 5.40E-05 1.148
SSLReinit, 15 33.90% 86.19% 42.37% 78.89% 79.72% 8.42E-01 8.89E-01 0.511

SSLPrune, 0.7, 19 37.04% 88.49% 50.00% 81.62% 82.07% 8.60E-01 9.03E-01 1.21
SSLPrune, 0.9, 18 32.20% 89.04% 44.07% 84.32% 81.55% 8.54E-01 9.02E-01 1.12
SSLPrune, 0.99, 19 35.19% 88.31% 44.07% 79.64% 82.00% 8.51E-01 8.73E-01 0.947

metashift

SSLBase 28.82% 54.17% 27.68% 66.57% 65.00% 1.07E-01 6.17E-02 0.848
SSLReinit, 18 21.38% 61.23% 18.64% 62.95% 66.52% 1.54E-03 1.86E-01 0.940

SSLPrune, 0.7, 17 27.59% 60.09% 18.64% 63.09% 67.24% 1.31E-01 1.89E-01 0.958
SSLPrune, 0.8, 17 24.83% 58.66% 20.34% 64.95% 64.66% 7.37E-02 1.58E-01 0.955
SSLPrune, 0.9, 18 25.52% 59.23% 18.64% 64.66% 65.52% 3.85E-02 1.46E-01 0.947

spurcifar10

SSLBase 22.12% 57.05% 36.24% 60.36% 52.02% 1.96E+00 3.43E-03 1.072
SSLPrune, 0.3, 18 31.25% 61.60% 45.83% 66.86% 48.91% 1.98E+00 1.10E-05 1.08
SSLPrune, 0.5, 18 30.77% 58.44% 43.75% 66.23% 49.37% 2.06E+00 1.98E-09 1.05
SSLPrune, 0.7, 19 35.42% 58.06% 41.67% 65.80% 49.79% 2.03E+00 2.30E-02 1.04
SSLPrune, 0.9, 17 25.00% 50.98% 39.58% 58.59% 48.66% 1.65E+00 5.56E-05 0.630

waterbirds

SSLBase 49.72% 53.40% 48.04% 56.18% 87.45% 8.63E-02 5.84E-01 0.867
SSLPrune, 0.3, 17 48.29% 50.59% 52.34% 55.59% 86.54% 5.03E-02 5.92E-01 0.858
SSLPrune, 0.7, 17 43.77% 54.99% 51.56% 62.10% 81.76% 7.86E-02 5.72E-01 0.873
SSLPrune, 0.8, 18 35.83% 60.23% 50.78% 60.10% 84.10% 1.01E-01 4.60E-01 0.802
SSLPrune, 0.9, 17 47.54% 50.88% 52.18% 57.82% 89.80% 9.63E-02 0.595E-01 0.702

Table 2: Top model transformations for each dataset; The learned representations in each case, we freeze the representations
to evaluate the representations with: (i) average and worst-group of a 5-NN classifier (ii) Average and worst-group of a
linear classifier (iii) Average accuracy of a linear classifier trained to infer the spurious feature (iv) Mutual information
between representations and classes (v) Mutual information between representations and spurious feature (vi) Alignment
loss (Zhang et al., 2022) which is indicator of how close examples within the same class are in the representation space. In
many cases, the worst-group accuracy of linear classifier is improved; in other cases kNN accuracy has improvements;

models contain enough core information to perform well
on all subgroups, and only needing a re-training of the final
layer on a balanced validation set. (Menon et al., 2021).

4.2. Re-sampling During SSL is Not Useful

From Table 1, we observe that re-sampling during self-
supervised training does not improve downstream worst-
group accuracy. Given that the downstream linear model
is trained on a down-sampled dataset where such corre-
lations do not exist, this means that re-sampling during
self-supervised training does not necessarily improve lin-
ear separability of representations with respect to the core
feature, even in balanced datasets.

4.3. Layer-Wise Feature Representations

In Figure 2, we see that spurious features are dispropor-
tionately represented in later layers of the network, while
invariant features are represented throughout the network.
This confirms our hypothesis that later layers contain more
spurious information during SSL, and motivates our pro-
posed method.

4.4. Transformation-based Disentanglement in Final
Layers Improves Worst-group Performance

As shown in Table 2, Late-TVG improves the worst-group
accuracy of the linear classifier is improved by up to more
than 10% on spurcifar10. However, it does not seem
to improve the worst-group accuracy in metashift. We
suspect that this is due to the spurious feature (outdoor
vs. indoor) being more difficult to infer than the invariant
feature, which violates the assumptions of our method.

5. Conclusion
We studied the performance of SSL models when trained on
spuriously correlated data, and showed that the core feature
is not very well distinguished in many cases. We further
examined spurious learning in SSL models. Finally, we pro-
posed a method - Late-TVG - that improves the worst-group
downstream performance of SSL models without having
access to group or label information, and empirically vali-
dated its performance on four datasets. Future work include
benchmarking other SSL methods such as SimCLR (Chen
et al., 2020a), and adapting the method to other modalities
such as natural language (Tu et al., 2020), and considering
multiple core features in the underlying feature space.
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Ré, C. Correct-n-contrast: A contrastive approach for
improving robustness to spurious correlations. arXiv
preprint arXiv:2203.01517, 2022.

Zhao, H. and Gordon, G. J. Inherent tradeoffs in learning
fair representations. arXiv preprint arXiv:1906.08386,
2019.

Zhou, H., Vani, A., Larochelle, H., and Courville, A. Fortu-
itous forgetting in connectionist networks. arXiv preprint
arXiv:2202.00155, 2022.

Zhu, Y., Min, M. R., Kadav, A., and Graf, H. P. S3vae:
Self-supervised sequential vae for representation disen-
tanglement and data generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6538–6547, 2020.



Evaluating and Improving Robustness of Self-Supervised Representations to Spurious Correlations

A. Related Work and Background
A.1. Group Robustness

Empirical risk minimization (ERM) minimizes the average training loss across training points. Given a loss function
ℓ(x, y; θ), ERM minimizes the following objective:

JERM(θ) =
1

n

n∑
i=1

ℓ(xi, yi; θ). (1)

Group distributionally robust optimization (Group DRO) uses training group information to minimize the worst-group
error on the training set, assuming we have access to group annotations on the training data {(x1, y1, g1), . . . (xn, yn, gn)}.
Given a loss function ℓ(x, y; θ), the objective can then be written as:

JgroupDRO(θ) = max
g∈G

1

ng

∑
i|gi=g

ℓ(xi, yi; θ) (2)

where ng is the number of training points with group gi = g.

Just Train Twice (JTT) is a simple two-stage approach that does not require group annotations at training time. First,
it trains an identification model f̂id via ERM and then identifies an error set E = {(xi, yi) s.t. f̂id(xi) ̸= yi} of training
examples that f̂id misclassifies. Then, it trains a final model f̂final by upweighting the points in the identified error set.

Jup-ERM(θ,E) =

(
λup

∑
(x,y)∈E

ℓ(x, y; θ) +
∑

(x,y) ̸∈E

ℓ(x, y; θ)

)
, (3)

Correct-n-Contrast (CnC) learns an idendification model similar to JTT to identify samples with the same class but
dissimilar spurious features, and then trains a model with contrastive learning to learn similar representations for same-class
samples. More percisely, it jointly trains the model’s encoder layers fenc with a contrastive loss and the full model fθ with a
cross-entropy loss with the following objective:

L̂ (fθ;x, y) = λL̂sup
con (fenc ;x, y) + (1− λ)L̂cross (fθ;x, y) .

Where L̂sup
con (fenc ;x, y) is the supervised contrastive loss of x and its positive and negative samples, based on whether the

identifier model has made a mistake on samples or no, and L̂cross (fθ;x, y) is average cross-entropy loss over x, the M
positives, and N negatives, and λ is a balancing hyperparameter.

A.2. Self-supervised Representation Learning

Self-supervised representation learning methods learn visual representations from large-scale unlabeled images where data
annotations are scarce and time-consuming. Contrastive learning is a discriminative approach to learn representations that
aims to attract similar or positive samples and push apart different or negative samples, which has become increasingly
successful in recent years (Chen et al., 2020a; He et al., 2019; Grill et al., 2020; Caron et al., 2020; Zbontar et al., 2021).
The standard approach for generating positive pairs without additional annotations is to create multiple views of each data
point using random augmentations. The contrastive learning loss or InfoNCE (Oord et al., 2018) then maximizes a lower
bound on the mutual information between the two views.

For instance, SimCLR (Chen et al., 2020a) generates two randomly augmented views of each image x̃i = t(x), x̃j =
t′(x), t, t′ ∼ T given a batch of images, and uses all other augmentated samples from the batch as negative examples.
Then it uses an encoder f to extract representations from these augmented examples, and a small projection head g which
maps these representations to the contrastive loss space. Given a minibatch of N samples, the InfoNCE loss is optimized for
the sum of all examples in the minibatch.

Some proposed methods discard the need for negative samples in contrastive learning. BYOL (Grill et al., 2020) uses a
siamese architecture with momentum encoders to prevent different representations from collapsing into one vector. SwAV
(Caron et al., 2020) exploits online clustering for each batch to enforce consistency between cluster assignments from
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different views, and SimSiam (Chen & He, 2020) uses a simple stop-gradient operation in a siamese architecture to avoid
collapsing.

We use SimSiam (Chen & He, 2020) in particular in our experiments. Similar to SimCLR it creates two randomly augmented
views x1 and x2 from an image x. Then it uses encoder f consisting of a backbone such as ResNet and a projection MLP
head to create representations of the two views. A prediction MLP head h, transforms the output of one view and matches
it to the other view. Given two output vectors are p1≜h(f(x1)) and z2≜f(x2); SimSiam minimizes the negative cosine
similarity D(p1, z2):

D(p1, z2) = − p1
∥p1∥2

· z2
∥z2∥2

,

where ∥·∥2 is ℓ2-norm. Then they define a symmetrized loss for each image with a stop-gradient operator to avoid collapse
as below:

L=1

2
D(p1,stopgrad(z2))+

1

2
D(p2,stopgrad(z1)).

Note that we use the word encoder to address the backbone in f , since projection layers are thrown away when evaluating
the representations.

A.3. Disentangled Representations

A similar line of research is creating representations where each dimension is independent and corresponds to a particular
attribute (Eastwood & Williams, 2018; Ridgeway & Mozer, 2018), some works study learning such representations in a
supervised manner (Hsieh et al., 2018; Cai et al., 2019) while unsupervised approaches rely on VAEs (Higgins et al., 2016;
Chen et al., 2018; Zhu et al., 2020) and GANs (Chen et al., 2016; Lin et al., 2020).

The works in fair representation learning usually address removing sensitive attributes from the representations by: obfuscat-
ing any information about sensitive attributes in order to approximately satisfy demographic parity (Zemel et al., 2013),
using adversarial methods (Edwards & Storkey, 2015; Xie et al., 2017; Beutel et al., 2017; Zhang et al., 2018; Madras et al.,
2018; Adel et al., 2019; Zhao & Gordon, 2019), or feature disentanglement based using variational approaches. (Kingma &
Welling, 2013; Gretton et al., 2006; Louizos et al., 2015; Amini et al., 2019; Alemi et al., 2018; Burgess et al., 2018; Chen
et al., 2018; Kim & Mnih, 2018; Esmaeili et al., 2019).

Perhaps the closest to our work is (Wang et al., 2021) where samples are partitioned into two subsets that correspond to an
entangled group element followed by minimizing a subset-invariant contrastive loss, where the invariance guarantees to
disentangle the group element.

B. Datasets
We make use of the following four image datasets:

• waterbirds (Sagawa et al., 2020a): Background (land, water) is spuriously correlated with bird type (labdbird,
waterbird)

• cmnist (Colored MNIST) (Arjovsky et al., 2019): Color of digit on the images spuriously correlated with the binary
class based on the number

• spurcifar10 (Spurious CIFAR10) (Nagarajan et al., 2020): Color of lines on the images spuriously correlated with
the class

• metashift (Liang & Zou, 2022): Cats vs Dogs task: Background (indoor, outdoor) spuriously correlated with pet
type (cat, dog)
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C. Comparing SSL to CLIP representations
We train linear classifiers with different re-sampled sets of training examples on frozen CLIP (Radford et al., 2021)
representations. These representations have found to be more robust to distribution shifts, and we aim to answer if balanced
downstream training set can improve worst-group accuracy. As shown in table 3, even CLIP representations do not help
mitigate the geometrical and statistical skews when learning the linear classifier on frozen representations.

k-NN Linear probe Spurious Attribute (Linear)
dataset Linear Train set Average Worst-group Average Worst-group Average Worst-group

CelebA

Normal 83.51% 20.39% 89.67% 16.98% 77.09% 61.26%
Downsample 78.57% 75.56% 88.83% 81.11% 97.04% 91.11%

Upsample 90.89% 28.33% 91.76% 86.11% 98.57% 90.56%

Waterbirds

Normal 56.77% 30.53% 61.30% 45.08% 68.06% 45.09%
Downsample 69.23% 63.81% 79.01% 74.01% 89.59% 86.30%

Upsample 74.06% 43.93% 75.35% 55.61% 83.26% 68.85%

Metashift

Normal 74.44% 50.85% 76.06% 7.91% 63.19% 22.60%
Downsample 84.69% 68.97% 80.69% 30.51% 73.68% 22.03%

Upsample 88.41% 73.79% 82.55% 32.20% 75.54% 35.59%

Colored MNIST

Normal 73.59% 54.65% 72.64% 55.57% 74.14% 70.40%
Downsample 91.84% 89.39% 89.04% 85.98% 98.08% 96.21%

Upsample 97.18% 62.88% 93.76% 88.26% 97.95% 97.16%

Spurious CIFAR10

Normal 25.11% 14.58% 35.79% 22.87% 93.62% 0.00%
Downsample 33.20% 10.42% 52.56% 33.33% 51.29% 30.00%

Upsample 39.28% 20.83% 58.17% 41.67% 58.14% 35.42%
Table 3: Average and worst-group test accuracy of CLIP representations trained on Normal, Downsample, Upsampletrain
sets. Balancing the training set used for linear evaluation helps us identify the learned representations by avoiding the
statistical and geometrical skews
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D. Additional Representation Augmentation Results
Even without having access to group information in the validation set, untuned hyperparameters (layer threshold and pruning
percentage), we improve worst-group accuracy in most cases.

kNN (Target) LR (Target) LR (Group) Other Metrics

Dataset Method Worst Group Average Worst Group Average Average I(Z; Y) I(Z; G) Lalign

cmnist

SSLBase 41.9% 86.7% 37.6% 83.6% 85.9% 8.56E-01 5.40E-05 1.148
SSLReinit, 17 39.0% 81.2% 35.6% 87.8% 81.3% 8.48E-01 8.76E-01 0.620
SSLReinit, 19 35.6% 80.3% 37.3% 89.0% 82.0% 8.57E-01 9.05E-01 0.875
SSLThres, 0.7 37.3% 84.3% 39.0% 88.8% 83.2% 8.58E-01 9.06E-01 1.235
SSLThres, 0.95 33.3% 84.6% 31.5% 90.9% 84.3% 8.53E-01 7.19E-01 1.141

metashift

SSLBase 28.8% 54.1% 27.6% 66.5% 65.0% 1.07E-01 6.17E-02 0.848
SSLReinit, 17 16.9% 62.8% 26.2% 57.2% 64.5% 7.37E-06 9.31E-02 0.906
SSLReinit, 19 15.3% 67.0% 23.4% 60.8% 65.2% 1.19E-02 1.42E-01 0.942
SSLThres, 0.7 15.3% 64.7% 22.8% 61.4% 65.2% 1.05E-02 1.69E-01 0.971
SSLThres, 0.95 11.9% 62.8% 27.6% 58.5% 64.9% 5.21E-09 3.05E-02 0.924

spurcifar10

SSLBase 22.1% 57.0% 26.2% 60.4% 52.0% 1.96E+00 3.43E-03 1.072
SSLReinit, 17 31.7% 51.5% 25.8% 48.8% 50.2% 1.28E+00 4.63E-03 0.333
SSLReinit, 19 31.3% 59.3% 22.8% 54.8% 49.5% 1.83E+00 6.86E-10 0.644
SSLThres, 0.7 31.3% 57.7% 29.2% 51.5% 47.9% 1.88E+00 8.12E-11 0.946
SSLThres, 0.95 38.5% 59.0% 30.6% 54.0% 48.6% 1.89E+00 1.47E-10 0.894

waterbirds

SSLBase 49.7% 53.4% 48.0% 56.2% 87.4% 8.63E-02 5.84E-01 0.867
SSLReinit, 17 45.5% 50.0% 46.8% 51.6% 84.5% 5.78E-02 4.31E-01 0.282
SSLReinit, 19 46.7% 55.2% 22.7% 55.6% 88.3% 5.12E-02 5.82E-01 0.392
SSLThres, 0.7 51.6% 62.1% 43.8% 55.0% 81.8% 7.86E-02 5.72E-01 0.873
SSLThres, 0.95 42.2% 58.0% 38.5% 53.6% 87.1% 9.69E-02 5.39E-01 0.684

Table 4: The same set of augmentations for each dataset; without using group annotations of validation data, worst-group
accuracy can be improved.


