
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STATED CAUSAL LANGUAGE MODELING: OFF-THE-
SHELF ENHANCEMENT OF CONTEXT MEMORIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose stated causal language modeling (stated-CLM), a novel method to en-
hance the memory capacity of large language models (LLMs) without modifying
their architecture or parameters. Unlike existing context segmentation and sliding
methods that discard low-weight tokens, stated-CLM compresses adjacent tokens,
significantly reducing context information loss. We utilize the classic network
pruning techniques with second-order derivatives to optimize the compressed to-
ken in the differentiable key-value space. Experiments on LLaMA, Mistral, and
Gemma demonstrate that stated-CLM outperforms baselines on the LongBench
benchmark by an average of 6.12% (LLaMA3.1-8B) and 5.97% (Mistral-v0.3-
7B). On TopicRet, stated-CLM achieves accuracy levels comparable to full con-
text models, while the baselines’ accuracy is close to zero.

1 INTRODUCTION

Memorizing certain knowledge is a critical requirement for large-scale language models (LLMs).
For example, a company’s enterprise chatbot needs to memorize necessary facts about its products.
Existing LLMs with sequence-to-sequence and attention mechanisms have inherent memorization
limitations: they rely on context to represent memory, meaning that this relevant knowledge must be
included within the context. This approach faces two main challenges: a rigid limitation on context
length and the quadratic growth in computational complexity.

Our goal is to enable LLMs to remember more without excessively occupying context length. A
typical approach is to add a differentiable external memory module to existing models (Weston et al.,
2015)(Wu et al., 2022)(Munkhdalai et al., 2024)(He et al., 2024)(Tworkowski et al., 2024). The
additional memory module encodes contexts, enhancing the memorization ability by retrieving the
module when predicting the next token. However, this memory enhancement requires architecture
modification and adaptive fine-tuning of the original LLMs, which increases the additional training
overhead. The fine-tuning data may be biased and compromise the generalizability of the original
model.

To retain the generalization abilities of LLMs, we aim to enhance the memory capacity of orig-
inal LLMs without architecture or parameter modification. This means that the same length of
contextual tokens need to memorize more information for upcoming token predictions. Recently
emerging context segmentation and sliding methods have been exploring this route, including
StreamingLLM (Xiao et al., 2023), LazyLLM (Fu et al., 2024), and LongCache (Liu et al., 2024b).
The core strategy of these methods is to retain only the critical tokens in the context (e.g., tokens
with the highest attention scores) and discard other tokens. Although this route does not disrupt the
original LLMs, the context is compromised. A large number of low-weight tokens that may still
have an impact on the token predictions are directly discarded, resulting in context information loss.

In this paper, we compress rather than discard low-weight tokens while keeping the architecture and
parameters in the original LLMs. This reduces context information loss while inheriting the general-
ization ability of the original LLMs. Our intuition lies in the fact that language can naturally be short-
ened. A simple example is that Alice went to the library. The library was
quiet. can be shortened to Alice went to the library. It was quiet. LLMs
have the ability to make consistent subsequent predictions for both contexts. From a memory per-
spective, LLMs have the ability to memorize more information with fewer tokens (i.e., using “It” to
memorize “The library”).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This inspires us to propose the stated causal language modeling (stated-CLM), aimed at enhancing
the context-memorization capabilities of LLMs. We extend the iterative next token prediction in
the existing CLM and propose an iterative next token prediction and adjacent token compression
method. The core idea relies on a simple yet powerful operation - adjacent token compression —
to achieve atomic memorization operations. More specifically, after generating each next token, we
select a pair of adjacent tokens in the context and compress them into one token, thereby maintaining
the context at a desired length. Compared to existing context segmentation methods, the compressed
token inherits the information of two original tokens, thus reducing information loss.

We compare stated-CLM with context segmentation methods in Figure 1. StreamingLLM and Long-
Cache discard a large number of low-weight tokens, resulting in a loss of context information. In
contrast, stated-CLM preserves context information to the greatest extent possible while reducing
token volumes. Furthermore, since each atomic compression operation only involves two adjacent
tokens, stated-CLM incurs lower compression loss per iteration compared to traditional blockwise
encoding and compression methods (Xiao et al., 2024)(Munkhdalai et al., 2024). This makes it
more feasible for the iterative token-by-token generation process. The stated-CLM can be adapted
to existing CLMs without any fine-tuning.

original token

ignored token

compressed token

target token

1.Full Context 2.StreamingLLM 3.LongCache

4.Stated-CLM 5.The atomic compression

Figure 1: Comparison with context segmentation methods. Stated-CLM achieves memory of long
contexts and reduces information loss through iterative compressions. Each atomic compression
compresses two adjacent tokens into one token.

To implement adjacent token compression without fine-tuning model parameters, our goal is to
find an optimal replacement token for a pair of tokens (for example, using “It” to replace “The
library”). First, to make the optimization differentiable, we perform compression in the key-value
space instead of the token space. We refer to network pruning techniques (LeCun et al., 1989), using
second derivatives to optimize and compute the optimal compressed token encoding, and employ the
Fisher Information Matrix to enhance computational efficiency. We also ensure that in the attention
mechanism, once the key-values are replaced with multiple identical tokens, any new query can
produce consistent outputs. To this end, we extend the original attention mechanism to accurately
restore the outputs before compression.

We conducted extensive experiments over LLaMA (Dubey et al., 2024), Mistral, and Gemma (Team
et al., 2024). The results demonstrate that stated-CLM significantly enhances the memory capacity
of the original LLMs. On the LongBench benchmark, the stated-CLM based on LLaMA3.1-8B
outperformed the competitors by an average of 6.12%, while the Mistral-v0.3-7B-based version
showed an average improvement of 5.97%. In the historical information retrieval task TopicRet,
where competitors’ accuracy was nearly zero, stated-CLM achieved accuracy levels comparable to
those obtained using full context.

2 RELATED WORK

Enhancing the memorization capabilities of language models has emerged as a critical problem.
Various methods have been proposed for long-context LLMs. We discuss three techniques that are
more related to our study below.

Sparse Attention Mechanisms The original Transformer has O(n2) complexity for a sequence
with n tokens, due to the dense attention access. Therefore, a simple way is to reduce the density
of attention to O(n). Typical approaches include Sparse Transformer (Child et al., 2019), Long-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

former (Beltagy et al., 2020), and Big Bird (Zaheer et al., 2020). These methods leverage some prior
dependency assumptions to optimize the attention patterns, significantly reducing computational
complexity and enabling the model to handle longer sequences. However, such prior assumptions
may not always hold in practice, and the resulting sparsity may not be effective in capturing all
relevant dependencies. Besides, adapting existing LLMs with dense attention to sparse attention is
nontrivial and leads to generalization capability loss.

External Memory Modules To expand the memory capacity of models, researchers have incor-
porated external knowledge storage modules (Weston et al., 2015)(Wu et al., 2022)(Munkhdalai
et al., 2024)(He et al., 2024)(Tworkowski et al., 2024). Memorizing Transformers shows that related
key-value pairs can be retrieved through a kNN lookup. Focused Transformer (Tworkowski et al.,
2024) uses contrastive learning to help identify relevant and irrelevant tokens. LongMem (Wang
et al., 2024) and CAMELoT (He et al., 2024) uses decoupled LLMs and memory modules. During
training the memory modules, the parameters of the original LLMs are frozen. Although additional
memory modules can compress context, adjustments to the model architecture require retraining and
biases in the training data will be introduced into the model.

Context Segmentation and Sliding Researchers have developed various context strategies that op-
timize the contexts for memorization, instead of optimizing the models (Ge et al., 2024) (Mu et al.,
2024). Typical methods include StreamingLLM (Xiao et al., 2023), LazyLLM (Fu et al., 2024), and
LongCache (Liu et al., 2024b). These strategies dynamically select and retain key tokens, thereby
reducing the computational and storage burden when processing long sequences. StreamingLLM
ensures that the model focuses on the initial (sink) tokens and the recent tokens. LazyLLM employs
a dynamic pruning strategy that selects different subsets of tokens in different generation steps,
although they might be pruned in previous steps. LongCache intelligently manages the cache by
expanding StreamingLLM to keep critical middle tokens. However, these compression strategies
essentially involve directly discarding tokens with lower weights, which results in significant infor-
mation loss during the process.

3 METHODS

3.1 MEMORIZING ON NATIVE CASUAL LANGUAGE MODELING

Traditional causal language modeling (CLM) adopts the next-word prediction: iteratively predicting
the next token based on historical tokens. This paradigm demonstrates strong inference capabilities,
but has limitations in memory. It is formulated below:

PCLM (wn+1 | w1, . . . , wn) (1)

where wn+1 denotes the current token, and w1, . . . , wn represent the historical tokens. As we stated
in the introduction, the memorization capacity of CLMs is limited by the number of tokens n.

To enhance the memorization, we introduce the stated causal language modeling (stated-CLM) on
the native CLM. In stated-CLM, each token can be either an original input token or represent the
memory of a span of continuous tokens. To keep a desired number of tokens in the context, the next
token prediction is expanded to token generation and memorization.

Generation-stage: Predicts the next token using existing tokens:

PCLM (wn+1 | w̃1, w̃2, . . . , w̃n) (2)

where w̃i represents a mixed token, which can be either an original token or reprsenting the memory
of a context span. Note that we do not manuplate the probabilistic model PCLM , the existing CLM
architecture and its pre-trained parameters are retained to pursue model generalization ability.

Memorization-stage: Compresses the long context into a shorter one while maintaining the consis-
tency of the subsequent predictions. This is achieved by an atomic operation: compress an adjacent
token pair from the context into a single token, so that the context length is reduced from n+1 to n:

compress(em, em+1) : R2×d → Rd (3)

Here, em and em+1 are the embeddings of adjacent tokens wm and wm+1, respectively.
compress(em, em+1) encodes these two adjacent tokens into a single token, thus achieving basic
context compression functionality.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For example: We compare the original paradigm and the new paradigm as follows. In the original
paradigm, inference needs to store and encode all seven input tokens. In the new paradigm, inference
only needs to store and encode four tokens after three compressions (each compression is marked
by a red frame).

• CLM uses all seven tokens to predict the next token:

P (wt | The, quick, brown, fox, jumps, over, the) (4)

• Stated-CLM uses four original/compressed tokens to predict the next token:

P

(
wt | compress(The, quick) , brown, fox, compress(compress(jumps, over) , the)

)
(5)

In the new paradigm, input tokens can be original tokens, compressed tokens (e.g.
compress(jumps, over)), or nested compressed tokens (e.g., compress(compress(jumps, over), the)).
Thus, the compression can be carried out multiple times to always keep a desired number of tokens
to store and encode.

We highlight that atomic operation compress(wm, wm+1) offers advanced features for context mem-
orization by inheriting the original CLM architecture. The compressed tokens remain compatible
with the CLM’s mechanism. As a result, it significantly enhances the LLM’s memorization ability
without additional fine-tuning and architecture modification, thereby preserving its generalization
ability.

A key aspect of an effective context compression storage method lies in designing compression
strategies to maintain prediction consistency before and after compression. We will elaborate on
this in § 3.2.

3.2 OPTIMAL TOKEN COMPRESSION

Given the embedding vectors of the original tokens e1, e2, . . . , en, and one pair of adjacent positions
m,m+1 to be compressed, the CLM loss function before compression is LossCLM(e1, e2, . . . , en).
After compression, the loss function becomes:

LossCLM (e1, . . . , em−1, compress(em, em+1), em+2, . . . , en) (6)

Our objective is to find the optimal compressed embedding that minimizes the disturbance.

In particular, compression changes the input dimensionality, reducing the input vector dimensions
from n × d to (n − 1) × d. This makes directly computing the optimal compression challenging.
Therefore, we the optimal compressed token embedding via the following two steps:

1. Convert Adjacent Tokens into Identical Embeddings. Replace (em, em+1) with two
identical vectors (e∗, e∗), thus maintaining the dimensionality of the input.

2. Expand the Attention Mechanism to Support Identical Embeddings. Expand the at-
tention mechanism to efficiently handle tokens with multiple identical embeddings. The
outputs need to be consistent with the uncompressed tokens for any query embeddings.

3.2.1 FIRST STEP: CONVERT ADJACENT TOKENS INTO IDENTICAL EMBEDDINGS

We consider a simplified setting where two identical embeddings e, e replace the original embed-
dings em, em+1 without reducing the number of tokens. Since tokens other than em, em+1 remain
unchanged, we can focus on minimizing the loss function with respect to these two tokens. To
simplify notation, we represent the loss function as follows:

L(em, em+1) = LossCLM (e1, . . . , em−1, em, em+1, em+2, . . . , en) (7)

We will demonstrate that leveraging the properties of the attention mechanism allows for lossless
adaptation in the second step (3.2.2). Therefore, minimizing the loss after compression is equivalent
to finding the optimal e∗ in the first step.

e∗ = argmin
e
L(e, e) (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Performing a second-order Taylor expansion of L(x, y) around (em, em+1):

L(x, y) ≈ L(em, em+1)+∇L(em, em+1)
⊤
(

x− em
y − em+1

)
+
1

2

(
x− em
y − em+1

)⊤

H

(
x− em
y − em+1

)
+O(∆3)

(9)

where H is the Hessian matrix at (em, em+1), represented as:

H =

(
H11 H12

H21 H22

)
(10)

Each submatrix Hab is a d× d matrix. To minimize L(e, e), we set x = e, y = e:

L(e, e) ≈ L(em, em+1) +∇L(em, em+1)
⊤
(

e− em
e− em+1

)
+

1

2

(
e− em

e− em+1

)⊤

H

(
e− em

e− em+1

)
(11)

Defining the gradient vector as follows:

∇L(em, em+1) =

(
gm

gm+1

)
(12)

where gm = ∇emL and gm+1 = ∇em+1
L.

Setting the derivative to zero in equation 11 yields the optimal solution below. More details are
shown in Appendix A.

e∗ =
(
H11 + 2H12 +H22

)−1 (
H11em +H12(em + em+1) +H22em+1 − (gm + gm+1)

)
(13)

To compute the Hessian matrix H , we utilize the Fisher information matrix. We follow the network
pruning technique (LeCun et al., 1989; Kim et al.; Cui & Wang, 2024) to assume that the cross-
parameter interactions are neglibible and approximate the Fisher information matrix as a diagonal
matrix. The diagonal elements can be efficiently computed using their gradients:

Hii = Fii = ∇L(em, em+1)
2
i (14)

One issue with the above diagonal matrix approximation is that it leads to a reduction in the scale
of quadratic terms relative to gradient terms in equation 13. To address this, considering that
CLMs have seen samples similar to the current input during large-scale pre-training, their gradi-
ents gm, gm+1 tend to be zero. Therefore, we ignore the gradient terms in equation 13.

In practical computations, each ei contains both a key and a value. For em, em+1, let the key vectors
be denoted as Km and Km+1, and the value vectors as Vm and Vm+1. We replace (Km,Km+1)
with (K∗

m,K∗
m), and (Vm, Vm+1) with (V ∗

m, V ∗
m).

3.2.2 SECOND STEP: LOSSLESS REPRESENTING IDENTICAL EMBEDDINGS IN ATTENTION

In § 3.2.1, we have already replaced the embeddings of the two tokens with identical embeddings.
We now show how to efficiently compute the attention with the identical embeddings, so that the
output remains consistent for any query.

In the original attention mechanism, the output for the query q is:

output(q) = Attention(q,K, V) =

n∑
i=1

exp(q ·Ki)∑n
j=1 exp(q ·Kj)

Vi (15)

After compression, since Km = Km+1 = K∗
m and Vm = Vm+1 = V ∗

m, we optimize embedding
storage by reorganizing the key and value vectors as:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

K ′
1,K

′
2, . . . ,K

′
n−1 = K1, . . . ,Km,Km+2, . . . ,Kn

V ′
1 , V

′
2 , . . . , V

′
n−1 = V1, . . . , Vm, Vm+2, . . . , Vn

(16)

Thus, the computation of output(q) can be simplified to:

output(q) =
n−1∑
i=1

cnti
exp(q ·K ′

i)∑n−1
j=1 exp(q ·K ′

j)
V ′
i (17)

where cnti =
{
1 if i ̸= m

2 if i = m
, indicating how many original tokens correspond to the i-th token. This

allows us to process only n− 1 tokens, achieving both storage and computational efficiency.

The above method can be extended to arbitrary iterations of compressions. Specifically, we maintain
cnti to represent the number of original tokens correspond to the current i-th token. Initially, cnti = 1
for all original tokens. Each time token m and m+1 are compressed, we set cntm ← cntm+cntm+1.
Compared to the original attention mechanism, we only need to maintain O(n) additional integers.

3.3 COMPRESSION POSITION SELECTION

We explain how to select the compression position m. To minimize information loss and maintain
the model’s predictive capability, we adopt the position with least affect in the attention.

Specifically, we use the attention mechanism to calculate the importance score for each token. For
each token wi, we compute the sum of attention weights from different queries and then sum the
scores across different attention heads to obtain the complete score of the token. We choose the
adjacent pair of tokens m,m+ 1 with the lowest attention scores.

scorei =
H∑

h=1

n−1∑
j=1

Attention(h)
j,i + Attention(h)

j,i+1 (18)

where H denotes the number of attention heads, and Attention(h)
j,i represents the attention weight

from query Qj to key Ki in the h-th attention head.

In the Transformer model, we compute the token scores at each layer and select the token with the
lowest score separately. Different positions m are chosen in different layers, thereby improving
the flexibity to minimize the information loss for compression, maximizing the preservation of the
model’s performance.

Positional Normalization In practice, we observed that the aforementioned score tends to assign
lower scores to earlier tokens. To address this, we further normalize score to better align with our
expectations. Specifically, we employ:

score′i = exp(−i/σ)scorei (19)

Furthermore, based on the characteristic of sink tokens identified in previous work (Xiao et al.,
2023), we define score′i = inf for the first sink length tokens, ensuring that these tokens are
always retained in the context. In this paper, we set σ to 4096 and sink length to 32.

Combining with § 3.2.1 and § 3.3, we can obtain an efficient compression algorithm. This algorithm
keeps a desired number of tokens by continuously adding new tokens into it while minimizing the
model loss.

3.4 EFFICIENT CHUNKING-WISE COMPRESSION

To enhance the efficiency of stated-CLM, we adopt a chunking-wise compression instead of com-
pression after each new token. We generate tokens one by one as in the original CLM decoding
until the context length reaches max context length. Then after every k tokens, we compress
k tokens at once. To achieve this, we calculate the k pairs of adjacent tokens with the lowest scores
according to equation 19, and compute the optimal compression for these tokens according to equa-
tion 13.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This approach allows compressing k tokens through a single forward and backward. As a result, the
model maintains almost the same efficiency as in the original CLM decoding.

4 EXPERIMENTS

4.1 SETUP

We aim to verify the effect of stated-CLM in memorizing long contexts. To achieve this, we compare
with the following baselines:

• Full Contexts Inference in Standard CLM: Serves as the upper bound for performance
but requires substantial computational resources.

• Previous Context Segmentation Methods: These are previous methods which also lever-
age the native LLMs and shortten the contexts. In the experiments, we compare with two
typical baselines: StreamingLLM Xiao et al. (2023) and LongCache Liu et al. (2024b).

We selected several advanced CLMs as the base models for our experiments, including LLaMA2-
7B-chat (Touvron et al., 2023), LLaMA3-8B-instruct (Dubey et al., 2024), LLaMA3.1-8B-instruct,
Mistral-7B-Instruct-v0.3, Gemma-1.1-7B-it (Team et al., 2024), and Gemma-1.1-2b-it. When adapt-
ing to stated-CLM, we do not make any architectural adjustments or fine-tuning. We use different
context length limits (i.e. cache size for StreamingLLM and LongCache) for different models. More
details are shown in Appendix B.

All experiemnts run on a single NVIDIA A100 80 GiB GPU.

4.2 LONG CONTEXT PERFORMANCE EVALUATION

We evaluate the performance of stated-CLM in long-context QA tasks to validate its ability to mem-
ory contexts. The experiments are conducted using LongBench (Bai et al., 2023), a benchmark
specifically designed for long-context scenarios. Given that stated-CLM supports unlimited context
lengths, we do not truncate the input data in our experiments except for the full context baseline.

Results We present the experimental results in Table 1. It can be seen that stated-CLM outperforms
StreamingLLM and LongCache across all models. On LLaMA3-8B, LLaMA3.1-8B, and Mistral-
v0.3-7B, stated-CLM significantly improves over LongCache by more than 6.10, 6.12, and 5.97,
respectively. This demonstrates that the token compression used by stated-CLM has a significant
advantage over its competitors.

Ability to Extend Model Context Limits We noticed that for the two models with originally lim-
ited context lengths, LLaMA2-7B and LLaMA3-8B, the performance of stated-CLM is close to or
exceeds that of using the full context. This shows that stated-CLM can remember long contexts
without being limited by the original maximum context length of the models.

4.3 CAN THE MODEL STILL REMEMBER EARLY HISTORICAL CONTEXT?

We examine whether the model can retrieve information over lengthy contexts. Previous research
has shown that models tend to forget earlier (but not necessarily the earliest) parts of the context
in long sequences (Li et al., 2023)(Liu et al., 2024a). Notably, when querying about the second
or third topic in a long text, previous literature has shown that many open-source models’ accuracy
approaches zero (An et al., 2023). Consequently, TopicRet (Li et al., 2023) was proposed to evaluate
models’ ability to remember information from earlier parts of the context. We utilize the version
from L-Eval (An et al., 2023), as its questions are more challenging and demand higher performance.

The results are presented in Table 2. It is evident that previous context segmentation methods per-
form poorly on this task, with effectiveness close to zero. This is because the baselines have already
discarded tokens from earlier positions, resulting in the context no longer containing information
about the original second or third topic. In contrast, stated-CLM demonstrates significant per-
formance improvements, achieving results comparable to or even surpassing those of full context
models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance on LongBench. Stated-CLM outperforms its baselines on all models.

Single-Doc
QA

Multi-Doc
QA Sum Few-shot

Learning Synthetic Code Avg.

LLaMA2-7B
Full Context 20.46 17.46 18.46 47.97 5.32 54.31 27.33
- StreamingLLM 16.10 16.34 17.49 49.61 2.73 45.71 24.66
- LongCache 16.27 16.29 17.58 49.51 2.62 46.21 24.74
- Stated-CLM 19.98 18.52 18.47 50.12 4.60 45.76 26.24

LLaMA3-8B
Full Context 35.15 30.39 20.98 56.75 33.61 52.99 38.31
- StreamingLLM 35.56 25.01 19.25 56.27 35.94 49.89 36.98
- LongCache 36.04 25.27 19.23 56.06 38.29 50.00 37.48
- Stated-CLM 40.05 29.91 19.53 57.39 60.17 54.46 43.58

LLaMA3.1-8B
Full Context 41.52 28.79 25.23 60.64 58.05 58.92 45.52
- StreamingLLM 37.66 29.36 24.01 58.20 40.93 53.92 40.68
- LongCache 38.26 29.90 24.07 58.76 44.88 54.11 41.66
- Stated-CLM 46.05 39.18 25.45 58.77 64.29 52.94 47.78

Mistral-v0.3-7B
Full Context 38.49 35.33 25.07 60.44 51.90 59.19 45.07
- StreamingLLM 32.57 25.86 23.74 56.72 31.78 54.55 37.54
- LongCache 32.90 26.09 23.80 57.50 34.86 54.28 38.24
- Stated-CLM 38.32 33.17 24.98 57.35 57.17 54.29 44.21

Gemma-1.1-7B
Full Context 36.48 23.37 22.10 51.30 45.05 46.04 37.39
- StreamingLLM 32.67 18.11 21.39 51.13 34.44 41.96 33.28
- LongCache 33.35 17.97 21.50 51.80 34.29 41.99 33.48
- Stated-CLM 40.85 27.29 22.59 53.18 40.59 41.52 37.67

Gemma-1.1-2B
Full Context 28.50 16.84 20.85 45.19 3.76 46.11 26.87
- StreamingLLM 24.16 16.60 18.69 40.22 3.89 35.36 23.15
- LongCache 26.11 16.57 19.38 44.99 4.04 36.44 24.59
- Stated-CLM 27.91 18.41 19.82 42.96 4.25 36.26 24.93

Table 2: Model Performance on early topic retrieval. L. denotes LLaMA, M. denotes Mistral, G.
denotes Gemma. Stated-CLM has comparable performance with full context models, while previous
context segmentation methods perform poorly.

Model L.2-7B L.3-8B L.3.1-8B M.7B G.7B G.2B
Full Context 73.33 76.67 80 42.67 24.67 20.67
- StreamingLLM 0.00 0.00 0.00 0.00 0.00 0.00
- LongCache 0.00 0.00 0.00 8.67 0.67 0.00
- Stated-CLM 28.00 64.00 76.00 35.33 46.67 32.00

4.4 COMPRESSION RATE ANALYSIS

We directly evaluate the information loss caused by stated-CLM’s context compression. To this end,
we measure the performance of stated-CLM at different compression rates. The compression rate
is defined as the ratio of the number of tokens after compression to the number of tokens before
compression. We use the HotpotQA (Yang et al., 2018) task from LongBench for this evaluation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2% 10% 20% 30% 40% 100%
Compression Ratio

20

25

30

35

40

45

50

Sc
or

e

StreamingLLM
LongCache
Stated-CLM

(a) Llama-3.1-8B-Instruct

2% 10% 20% 30% 40% 100%
Compression Ratio

20

25

30

35

40

45

Sc
or

e

StreamingLLM
LongCache
Stated-CLM

(b) Mistral-7B-Instruct-v0.3

2% 10% 20% 30% 40% 100%
Compression Ratio

10

15

20

25

30

Sc
or

e

StreamingLLM
LongCache
Stated-CLM

(c) G emma-1.1-7b-it

2% 10% 20% 30% 40% 100%
Compression Ratio

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Sc
or

e

StreamingLLM
LongCache
Stated-CLM

(d) Gemma-1.1-2b-it

2% 10% 20% 30% 40% 100%
Compression Ratio

24

26

28

30

Sc
or

e

StreamingLLM
LongCache
Stated-CLM

(e) Llama-2-7b-chat-4k

2% 10% 20% 30% 40% 100%
Compression Ratio

20

25

30

35

40

45

50

Sc
or

e

StreamingLLM
LongCache
Stated-CLM

(f) Llama-3-8B-Instruct

Figure 2: Effect of different compression ratios. Even when compressed to only 10% of the original
context length, the model can still maintain performance close to that of the full context.

The results are shown in Figure 2. Stated-CLM exhibits the best information compression capabili-
ties. In most cases, even when compressed to only 10% of the original context length, the model can
still maintain performance close to that of the full context. Compared to the baselines, it shows a sig-
nificant advantage in minimizing information loss. At a compression ratio of 40%, the performance
of stated-CLM even surpasses that of using full contexts (100%). This indicates that stated-CLM
can effectively filter tokens, thereby reducing the difficulty of model inference.

4.5 INFERENCE EFFICIENCY ANALYSIS

We analyzed the inference efficiency of different models. To do this, we had the models generate
text using greedy sampling and measured the time required to generate different numbers of tokens.
During the generation process, we ignored the context length limitations of the base models.

10 20 30 40 50 60
Length (K)

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
C

os
t(s

)

StreamingLLM
LongCache
Stated-CLM
Orgin

(a) Llama-3-8B-Instruct

10 20 30 40 50 60
Length (K)

0

1000

2000

3000

4000

5000

Ti
m

e
C

os
t(s

)

StreamingLLM
LongCache
Stated-CLM
Orgin

(b) Llama-3.1-8B-Instruct

10 20 30 40 50 60
Length (K)

0

1000

2000

3000

4000

5000

Ti
m

e
C

os
t(s

)

StreamingLLM
LongCache
Stated-CLM
Orgin

(c) Mistral-7B-Instruct-v0.3

Figure 3: Inference efficiency of different models.

The results can be seen in Figure 3. The inference time for compression methods shows a linear
relationship with length, while the original full context inference time exhibits a quadratic relation-
ship.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this paper, we introduced stated causal language modeling, a novel approach to enhance the
context memorization capabilities of large language models without modifying their architecture or
parameters. By leveraging the natural compressibility of language, our method compresses adjacent
tokens in the context rather than discarding them, significantly reducing information loss compared
to existing context segmentation methods.

Our experiments across multiple LLM architectures, including LLaMA, Mistral, and Gemma,
demonstrate the effectiveness of stated-CLM in improving memory capacity. On the LongBench
benchmark, stated-CLM outperformed baselines by an average of 6.12% with LLaMA3.1-8B and
5.97% with Mistral-v0.3-7B. In the challenging historical information retrieval task TopicRet,
stated-CLM achieved accuracy levels comparable to full context use, where competitors’ perfor-
mance was near zero.

REFERENCES

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models.
arXiv preprint arXiv:2307.11088, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Wanyun Cui and Qianle Wang. Cherry on top: Parameter heterogeneity and quantization in large
language models. arXiv preprint arXiv:2404.02837, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Na-
jibi. Lazyllm: Dynamic token pruning for efficient long context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Conference on
Learning Representations, 2024.

Zexue He, Leonid Karlinsky, Donghyun Kim, Julian McAuley, Dmitry Krotov, and Rogerio Feris.
Camelot: Towards large language models with training-free consolidated associative memory.
arXiv preprint arXiv:2402.13449, 2024.

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-
first International Conference on Machine Learning.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source llms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a.

Xiaoran Liu, Qipeng Guo, Yuerong Song, Zhigeng Liu, Kai Lv, Hang Yan, Linlin Li, Qun Liu, and
Xipeng Qiu. Farewell to length extrapolation, a training-free infinite context with finite attention
scope. arXiv preprint arXiv:2407.15176, 2024b.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36, 2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Miłoś. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Aug-
menting language models with long-term memory. Advances in Neural Information Processing
Systems, 36, 2024.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In 3rd International Confer-
ence on Learning Representations, ICLR 2015, 2015.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.
arXiv preprint arXiv:2203.08913, 2022.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617,
2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

A SOLVING FOR THE OPTIMAL EMBEDDING VECTOR

Continue from equation 11:

Gradient Term Expansion:

∇L(em, em+1)
⊤
(

e− em
e− em+1

)
= g⊤m(e− em) + g⊤m+1(e− em+1) (20)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Quadratic Term Expansion:

1

2

(
e− em

e− em+1

)⊤

H

(
e− em

e− em+1

)
=
1

2
(e− em)⊤H11(e− em) + (e− em)⊤H12(e− em+1)

+
1

2
(e− em+1)

⊤H22(e− em+1)

(21)

Constructing the Total Objective Function

Adding the above terms, the objective function with respect to e is:

L(e) ≈ L(em, em+1) + g⊤m(e− em) + g⊤m+1(e− em+1)

+
1

2
(e− em)⊤H11(e− em) + (e− em)⊤H12(e− em+1) +

1

2
(e− em+1)

⊤H22(e− em+1)

(22)

Taking the Derivative of L(e) with Respect to e and Setting to Zero

Taking the derivative:

∂L
∂e

= gm + gm+1 +H11(e− em) +H12(e− em+1) +H12⊤(e− em) +H22(e− em+1) (23)

Since the Hessian matrix is symmetric, i.e., H12 = H21⊤, we have:

∂L
∂e

= gm + gm+1 +
(
H11 + 2H12 +H22

)
e−

(
H11em +H12(em + em+1) +H22em+1

)
(24)

Setting the derivative to zero yields the optimal condition:

(
H11 + 2H12 +H22

)
e∗ = H11em +H12(em + em+1) +H22em+1 − (gm + gm+1) (25)

Solving for the Optimal Embedding Vector e∗

The optimal embedding vector e∗ is obtained as:

e∗ =
(
H11 + 2H12 +H22

)−1 (
H11em +H12(em + em+1) +H22em+1 − (gm + gm+1)

)
(26)

B MODEL DETAILS

The specific configurations of sink length, max context length and chunk size as in
Table 3. StreamingLLM and LongCache use the same hyper-parameters.

Furthermore, StreamingLLM and LongCache require additional top-k and top-k’ parameters. We
adopt the recommended settings from LongCache, where top-k is uniformly set to 4, and top-k’
varies depending on the model: for LLaMA2-7b-Chat, the top-k’ value is set to 48, while for
LLaMA3-8b-Instruct , and LLaMA3.1-8b-Instruct and Gemma1.1-2B-Instruct, it is set to 96. For
other models, the top-k’ value is set to 256. These parameter settings aim to maximize model per-
formance while maintaining consistency and comparability across experiments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: Core Parameter Settings for StreamingLLM and LongCache

Model Sink Length Max Content Length Chunk Length
LLaMA2-7B-Chat 32 2048 512
LLaMA3-8B-Instruct 32 4096 512
LLaMA3.1-8B-Instruct 32 4096 512
Gemma1.1-7B-Instruct 32 8192 512
Gemma1.1-2B-Instruct 32 4096 512
Mistral-7B-Instruct-v0.3 32 8192 512

13

	Introduction
	Related Work
	Methods
	Memorizing on Native Casual Language Modeling
	Optimal Token Compression
	First Step: Convert Adjacent Tokens into Identical Embeddings
	Second Step: Lossless Representing Identical Embeddings in Attention

	Compression Position Selection
	Efficient Chunking-Wise Compression

	Experiments
	Setup
	Long Context Performance Evaluation
	Can the Model Still Remember Early Historical Context?
	Compression Rate Analysis
	Inference Efficiency Analysis

	Conclusion
	Solving for the Optimal Embedding Vector
	Model Details

