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ABSTRACT

Large Language Models (LLMs) suffer from significant performance degradation
when processing long contexts due to proactive interference, where irrelevant infor-
mation in earlier parts of the context disrupts reasoning and memory recall. While
most research focuses on external memory systems to augment LLMs’ capabilities,
we propose a complementary approach: empowering LLMs with Active Context
Management (ACM) tools to actively sculpt their internal working memory. We
introduce Sculptor, a framework that equips LLMs with three categories of tools:
(1) context fragmentation, (2) summary, hide, and restore, and (3) precise search.
Our approach enables LLMs to proactively manage their attention and working
memory, analogous to how humans selectively focus on relevant information while
filtering out distractions. Experimental evaluation on diverse long-context bench-
marks demonstrates that Sculptor significantly improves performance even without
specific training, leveraging LLMs’ inherent tool-calling and instruction-following
capabilities. To further optimize these strategies, we introduce a novel dynamic
context-aware reinforcement learning (RL) approach, advancing the training of
an agent that actively modifies its own conversational history. By enabling Ac-
tive Context Management, Sculptor not only mitigates proactive interference but
also provides a cognitive foundation for more reliable reasoning across diverse
long-context tasks—highlighting that explicit context-control strategies, rather than
merely larger token windows, are key to robustness at scale.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks,
yet they face fundamental challenges when processing long contexts. Prior work shows that simply
enlarging the context window leaves models vulnerable to position bias, overload, and interference as
sequences grow (Liu et al.,[2023a; |[Hsieh et al., [20244a). Recent studies (Wang & Sun| [2025) have
empirically demonstrated that LLMs suffer from proactive interference, where earlier information in
the context disrupts the processing of subsequent, more relevant information. Moreover, calibrations
like Found in the Middle (Hsieh et al., | 2024b) reduce—but do not eliminate—positional bias; recent
evaluations (Tian et al.| |2025)) find that performance still degrades significantly when the distance
between relevant information pieces increases, as irrelevant information between them interferes with
effective information integration. These phenomena mirror human cognitive psychology, where new
learning can be impaired by previously acquired information that is no longer relevant to the current
task.

The challenge becomes particularly acute in complex, multi-step reasoning tasks where LLMs
must maintain focus on multiple critical information pieces while filtering out contextual noise (L1
et al.| 2025a). Traditional approaches to address long-context challenges have primarily focused on
expanding context windows or developing external memory systems (L1 et al., 2025¢} |Yang et al.,
2024; Wang & Chen, 2025; |Chhikara et al.| 2025} [Packer et al., [2024; [Wang et al., |2024; [Suzgun
et al.| 2025). While these solutions increase the amount of information an LLM can access, they do
not address the fundamental issue of proactive interference—the inability to actively manage and
curate the working memory that directly influences reasoning processes.

Consider a human expert working on a complex problem: they naturally employ active memory
management strategies, selectively attending to relevant information, summarizing key insights, and
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Figure 1: Overview of Sculptor framework: Through Active Context Management, LLMs transform
overloaded contexts into optimized contexts using fragment, summary, search, and restore operations,
enabling successful task completion where traditional approaches fail due to interference.

temporarily setting aside less important details. They can revisit previously discarded information
when needed, but crucially, they do not allow irrelevant details to continuously interfere with their
current reasoning process. Current LLMs lack this fundamental cognitive capability. We propose that
the solution lies not merely in expanding context window, but in empowering LLMs with the ability
to actively manage their internal working memory. Following established distinctions in |Li et al.
(20244a)); \Guo et al.| (2024)), we focus on optimizing the model’s working memory—the immediate
context where attention operates and reasoning occurs—rather than external memory systems that
store information outside the model’s immediate context.

To this end, we introduce Sculptor, a novel framework that treats LLMs as active sculptors of their
own context. Just as a sculptor views a block of marble and selectively removes material to reveal the
desired form, Sculptor achieves this through a process we call Active Context Management (ACM),
as illustrated in Figure [l We equip LLMs with the Sculptor tool suite that enables them to: (1)
Fragment and Organize: Segment long conversations into manageable pieces with unique IDs for
easy reference. (2)Summary, Hide, and Restore: Generate focused summaries, dynamically fold
irrelevant sections to reduce clutter, and flexibly restore or expand content as needed. (3) Search and
Retrieve: Perform both exact and semantic searches to quickly locate relevant information

This approach represents a paradigm shift from passively processing ever-growing contexts to active
context curation. Instead of being overwhelmed by increasingly long contexts, LLMs learn to proac-
tively manage their attention and working memory, focusing computational resources on the most rel-
evant information. We view Sculptor as a representative of this emerging direction—complementary
to external memory systems (Li et al.| [2025¢} | Yang et al., 2024; Wang & Chenl 2025; (Chhikara et al.|
20255 Packer et al.| 2024; Wang et al., [2024} [Yu et al., [2025)) that focus on cross-session persistence
and context extension approaches—providing a necessary step toward reliable long-horizon reasoning.
Related work on context compression (Xu et al.l 2023} Jiang et al.| |2024b} |Guo et al.| [2025) further
demonstrates that selectively foregrounding key information can simultaneously improve accuracy
and reduce cost and latency, reinforcing the need for explicit context control over passive attention
alone. Recent work also suggests that in-context learning can be viewed as implicit weight up-
dates (Dherin et al.} 2025), implying that allowing models to modify their own context enables a form
of “self-evolution” (Zhang et al.,2025a)—a step toward agents that can adapt their computational
substrate without external intervention.

Our key contributions are as follows:
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* We propose Active Context Management (ACM) for LLMs and realize it with Sculptor, a
toolkit that enables principled, systematic optimization of internal working memory through
active context manipulation.

* We propose an RL training approach for active context modification, introducing Conditional
Trajectory Collection and Incremental Loss Assignment to enable effective learning of
context manipulation strategies. Through dynamic context-aware GSPO training, we achieve
substantial performance gains across diverse long-context benchmarks.

* We provide comprehensive analysis of tool usage patterns, attention mechanisms, and cost
analysis, demonstrating that ACM effectively reduces context token consumption while
enhancing long-context capabilities.

2 METHODOLOGY

Sculptor introduces a paradigm shift in how LLMs handle their working memory. Instead of passively
accepting all information in their context window, we empower models to actively manage their
attention through a suite of context manipulation tools. Our framework operates on the principle that
intelligent information curation is as important as information capacity.

2.1 TooL DESIGN PRINCIPLES

Our tool design follows four core principles. (1) Deterministic and Self-Contained Operations:
each tool is a simple, deterministic operator without external dependencies (e.g., embedding models),
a self-contained design that guarantees deployment stability and isolates the LLM’s cognitive agency
for pure evaluation. (2) Cognitive Alignment: the tools mirror effective human strategies, such
as our search_context tool performing exact matching akin to “Ctrl+F”, a computationally
efficient approach that reserves complex semantic understanding for the LLM’s own reasoning. (3)
Structural Preservation for Scalable Training: the tools are constrained to never alter the count
or order of messages, thereby maintaining a stable state representation that is critical for tractable
credit assignment in reinforcement learning. (4) Reversibility and Graceful Degradation: All
context-modifying operations are designed to be non-destructive and fully reversible (e.g., fold is
undone by expand), ensuring no information is permanently lost. This guarantees that the framework
functions as a strict superset of the baseline model’s capabilities, allowing for graceful degradation:
if no tools are invoked, the model’s behavior is identical to its original, unmodified state.

2.2 THE SCULPTOR TOOL SUITE

Following these design principles, we equip LLMs with six fundamental tools organized into three
functional categories, allowing them to work in coordination within a single turn, where the agent
receives a user message and performs multi-step tool calls—for instance, fragmenting a context
segment yields a unique fragment ID that enables subsequent operations like compression, summa-
rization, or restoration—continuously invoking these tools until generating a final response without
further tool invocations. Complete JSON schemas for all tools are provided in Appendix

(1) Context Fragmentation is handled by fragment_ context, which segments long conversations
into manageable fragments using start and end markers, with each fragment receiving a unique 6-
character ID for easy reference.

(2) Context Compression and Restoration involves three complementary tools for dynamic con-
tent management. summarize_fragment generates focused Al-powered summaries of specific
fragments based on user-specified focus areas (e.g., technical details, key decisions, action items),
compressing content while preserving critical information. fold_fragment temporarily hides
fragment content while preserving its existence, displaying only a folded marker to dramatically
reduce visual clutter. restore_fragment provides universal restoration capability, reverting
both summarized and folded fragments back to their original content, ensuring no information is
permanently lost during context management operations.

(3) Precise Search and Retrieval is accomplished through two complementary tools.
search_context performs exact keyword matching across user messages, assistant responses, or
all content—mirroring the human approach of using Ctrl+F for information retrieval. It returns up to
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50 matches with configurable result context windows. get_search_detail retrieves extended
context around specific search results, with the model specifying the desired surrounding character
count. By appending search results to the end of conversation history, this approach mitigates the
“lost in the middle” problem (Liu et al.||2023a)) where models struggle to locate information buried
within long contexts.

3 TEACHING LLMS TO USE SCULPTOR TOOLS

Building on the strong tool-use capabilities inherent in modern LLMs, we explore two distinct
approaches for teaching models to effectively wield the Sculptor tool suite. Throughout this paper,
we use “ACM tools” to specifically refer to our Sculptor implementation—a concrete instantiation of
the broader Active Context Management paradigm.

3.1 INHERENT TOOL-USE PERFORMANCE

We first evaluate the inherent tool-calling capabilities of state-of-the-art models like Claude-4-Sonnet
and GPT-4.1, which demonstrate strong zero-shot generalization abilities for function calling. These
models can understand and execute our Sculptor tools without any specific training, relying on
their pre-trained understanding of tool usage patterns and natural language descriptions of tool
schema. This zero-shot approach requires no additional training—models directly interpret and
use the tools based solely on their schemas. To encourage consistent tool engagement, we set
tool_choice="“required” for the first step of multi-step conversations.

3.2 MULTI-STEP AGENT RL TRAINING WITH DYNAMIC CONTEXT-AWARE GSPO

To optimize tool usage strategies beyond zero-shot generalization, we develop a reinforcement
learning approach specifically designed for multi-step tool calling in long-context scenarios. Our
approach addresses the unique challenges of training models to actively manage dynamic contexts
where tool calls can fundamentally alter the information landscape.

Group Sequence Policy Optimization (GSPO). We adapt GSPO (Zheng et al.| |2025)) for multi-
step 1l training, leveraging its sequence-level optimization for stable training in long-context scenarios.

Given a query x and G' sampled trajectories {7; }$, from policy 74, GSPO optimizes:

G
1 . Sy A
jgspo(e) = ExND 5 Zzzl min (82(9)141, chp(sz(9), 1-— g, 1+ E)AZ‘) (1)
where the sequence-level importance ratio is:
1
mo(Ti|T) )Ti
si(0) = (ZOAmr) b)
l( ) <7r901d(7—i|x)
and the group-normalized advantage is:
L _ ) —mean({r(a, 7)) 5

T std({r(z,7,)}%,)

Dynamic Context-Aware Credit Assignment with Incremental Loss Design. The key innova-
tion in our approach addresses the non-monotonic nature of context evolution during tool calling.
Traditional multi-step RL assumes each trajectory 7y is a prefix of 7441, allowing training only
on the final trajectory. However, with context management tools, ¢; ¢ c;41 in general—tools like
fold_fragment or summarize_fragment actively remove or transform information, creating
divergent context states.

To handle this, we introduce a two-part strategy combining conditional trajectory collection and
incremental loss assignment, illustrated in Figure [2and detailed in Appendix [E| The final reward
is propagated to all sub-trajectories within the same rollout, ensuring each context state receives
appropriate learning signal. This incremental design prevents the model from learning spurious
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Figure 2: Conditional trajectory collection and incremental loss assignment for RL training. Q
represents the initial user context, C denotes assistant completions, and T indicates tool results. Top:
Complete interaction trajectory with context-modifying tool at step C2. Bottom: Training samples
extracted via conditional trajectory collection, where each context change creates a new training
instance. Incremental loss is assigned only to new completions (red boxes) while masking prior
completions (loss=0), preventing redundant learning and training collapse.

patterns where context-modifying tools repeatedly trigger themselves, which would cause training
collapse. Each tool call receives gradient signal exactly once across all completions, ensuring stable
and efficient learning. Notably, this method applies equally to both supervised fine-tuning (SFT) and
reinforcement learning stages, providing a unified framework for training with dynamic contexts.

4 EXPERIMENTS

We evaluate Sculptor in two settings: zero-shot tool calling leveraging models’ inherent capabilities,
and after reinforcement learning with dynamic context-aware GSPO to optimize tool usage strategies.

4.1 EVALUATING PROMPT-GUIDED TOOL CALLING PERFORMANCE

Evaluated Models: We evaluate the effectiveness of Sculptor by comparing LLMs with and
without the Sculptor tool suite across challenging benchmarks. Our experiments focus on Claude-4-
Sonnet (Anthropic, 2025)), GPT-4.1 (OpenAll |[2025)), and DeepSeek-V3 (DeepSeek-Al et al.| 2024)
as representative state-of-the-art models, testing both baseline configurations and Sculptor-enhanced
versions.

Evaluated Benchmarks: We evaluate on five benchmarks testing diverse long-context challenges:
(1) PI-LLM (Wang & Sun, 2025)) tests proactive interference through continuous key-value updates
(2-256 updates, 46 keys). (2) NeedleBench (L1 et al.| [2025a) Multi-Needle Reasoning requires
connecting 2-5 needles simultaneously across varying context lengths. For cost efficiency and rapid
validation, we initially evaluate only on PI-LLM and NeedleBench in zero-shot settings. After
RL training, we expand to: (3) MRCR (Vodrahalli et al., [2024a)) for multi-round co-reference
resolution, requiring models to distinguish between multiple identical requests (2-8 needles) and
return the i-th occurrence from synthetic conversations. (4) LongBenchV2 (Bai et al., 2025)) for
comprehensive long-context understanding. (5) FRAMES (Krishna et al., [2025) for factuality,
retrieval, and reasoning measurement, containing 824 multi-hop questions requiring integration of
information from 2-15 Wikipedia articles.

Inherent Challenges of Unguided Tool Use: To understand how models naturally interact with
ACM tools, we conducted initial experiments using Claude-4-Sonnet on PI-LLM and NeedleBench
benchmarks, collecting 50 samples from each benchmark for tool usage analysis. We provided
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Figure 3: Tool usage count comparison for Claude-4-Sonnet before and after prompt optimization.
Without task-specific prompts (unified prompt), both benchmarks show suboptimal patterns. With
benchmark-specific prompt engineering, distinct improvements emerge: PI-LLM shifts from in-
efficient search-heavy patterns (625 calls) to strategic fold_fragment usage (1206 calls) for
managing obsolete information, while NeedleBench increases search operations from 77 to 206
calls—addressing insufficient execution depth through more thorough verification and multi-hop
reasoning. These contrasting patterns highlight how prompt engineering resolves different challenges:
tool selection efficiency for PI-LLM versus execution completeness for NeedleBench.

the model with a unified system prompt—minimal, generic instructions applicable across all
tasks—without any benchmark-specific guidance (see Appendix [D.2]for the complete prompt).

Our findings revealed suboptimal tool selection patterns, as shown in Figure 3| (left bars). For PI-LLM,
which contains numerous obsolete key-value pairs requiring the model to focus on the latest mappings,
we expected the model to leverage fragment_context and fold_fragment to compress
outdated information. However, Claude-4-Sonnet overwhelmingly relied on search_context
(90.7% of tool calls), attempting exhaustive searches for each of the 46 keys despite hundreds
of historical updates per key. This search-heavy approach proved highly inefficient—the model
exhausted its 20-tool-call budget merely aggregating occurrences without effectively filtering obsolete
information. Similarly, for NeedleBench, while search tools are appropriate for retrieval tasks, the
model showed limited strategic diversity in tool selection.

These observations reveal three fundamental challenges in unguided tool calling: (1) Suboptimal tool
selection efficiency: The model failed to recognize when certain tools become inefficient for specific
scenarios. In PI-LLM, attempting exhaustive searching for 46 keys with hundreds of historical updates
each consumed the entire tool budget, when structural reorganization through fragment-and-fold
would have been far more efficient. (2) Tool dependency misunderstanding: The model lacked
comprehension of tool prerequisites and operational dependencies—for instance, attempting to use
summary_by_1id before generating fragment IDs with fragment_context, demonstrating
incomplete understanding of the tool suite’s workflow. (3) Insufficient execution depth: Even when
correctly initiating tool usage, the model often failed to complete tasks thoroughly, with incomplete
fragmentation where only partial sections were processed, leaving critical information unaddressed.
These challenges underscore that effective ACM tool usage requires not just access to tools but deep
understanding of efficiency trade-offs, operational dependencies, and thorough execution strategies.

From Baseline Struggles to Systematic Guidance: To address these inefficiencies, we
crafted benchmark-specific prompts to steer tool strategies: for PI-LLM, first fragment then
fold before any search or answering; for NeedleBench, coordinate search_context and
get_search_detail for multi-hop retrieval. As shown in Figure[3] this guidance shifts patterns
accordingly (PI-LLM: from search-heavy to fragment+fold; NeedleBench: deeper search), improving
tool selection efficiency and execution completeness.

This systematic prompt engineering approach also enabled us to generate high-quality training data,
collecting numerous successful tool usage examples across benchmarks. These guided patterns
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Table 1: Performance improvements of frontier models with ACM Tools on NeedleBench-M-RS and
PI-LLM benchmarks. Both benchmarks demonstrate substantial performance gains.

NeedleBench-M-RS PI-LLM (Update Count / Context Length)

Method
\ 2-N 3-N 4-N 5-N Avg \ 4/1K 82K 16/4K 32/8K 64/16K 128/32K 256/64K  Avg
Claude-4-Sonnet
Baseline 96.0 8.0 540 360 670 | 99.13 95.65 92.17 84.78 81.74 65.22 69.57 84.04
w/ ACM Tools | 100.0 98.0 88.0 90.0 940 | 9043 91.74 98.26 92.17 91.74 87.39 77.83 89.94
A +4.0 +16.0 +340 +54.0 +27.0| -8.70 -391 +6.09 +7.39 +10.00 +22.17 +8.26 +5.90
GPT-4.1
Baseline 90.0 64.0 30.0 8.0 48.0 | 96.96 9130 79.57 67.83 63.04 63.91 50.43 73.29
w/ ACM Tools | 96.0 84.0 600 440 710 | 92.17 89.13 93.04 8391 76.09 64.35 60.43 79.87
A +6.0 +20.0 +30.0 +36.0 +23.0 | 479 -2.17 +1347 +16.08 +13.05 +0.44 +10.00 +6.58
DeepSeek-V3
Baseline 88.0  68.0 28.0 16.0  50.0 | 9522 8565 70.00 6391 33.04 32.17 21.74 57.39
w/ ACM Tools | 92.0 58.0 500 320 580 | 7391 90.00 79.13 37.39 53.04 55.65 11.74 57.27
A +4.0 -10.0 +22.0 +16.0 +8.0 | -21.31 +435 +9.13 -26.52 +20.00 +23.48 -10.00 -0.12
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Figure 4: NeedleBench Multi-Needle Reasoning performance across different context lengths. Left:
Performance by needle count showing both with tool and vanilla results. Right: Average performance
across all needle counts demonstrating significant improvements.

demonstrate that proper instruction can unlock more effective tool utilization, transforming subopti-
mal default behaviors into strategic, task-appropriate tool selection. The complete system prompt
templates used in our experiments are provided in Appendix [D.1]

Performance Results: Table[T|presents the evaluation results comparing models with and without
ACM tools, using optimized benchmark-specific prompts. The improvements demonstrate the power
of combining ACM tools with proper guidance: On NeedleBench-M-RS, Claude-4-Sonnet, GPT-4.1,
and DeepSeek-V3 achieve gains of 27.0, 23.0, and 8.0 points respectively when using ACM tools
with task-specific prompts, with Claude-4-Sonnet reaching 90% accuracy on 5-needle tasks. For
PI-LLM, Claude-4-Sonnet and GPT-4.1 gain 5.90 and 6.58 points, while DeepSeek-V3 shows a
slight decrease (-0.12), revealing persistent challenges even with prompt optimization. These results
demonstrate that while prompt engineering significantly improves tool utilization, the degree of
improvement varies based on each model’s inherent tool-use capabilities, suggesting the need for
more systematic training approaches.

4.2 OPTIMIZING TOOL USE WITH REINFORCEMENT LEARNING

While prompt engineering enables effective tool usage, it requires manual effort to design task-specific
prompts and still exhibits the inherent limitations discussed above. To address these challenges
systematically, we employ reinforcement learning to train models that can autonomously determine
optimal tool usage strategies without explicit guidance.
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Table 2: Main experimental results across benchmarks. M3 indicates our 13B baseline model without
ACM tools. Sculptor-M3 is equipped with Sculptor tools and fine-tuned on ACM-specific data.
Sculptor-M3-RL is further trained with dynamic context-aware GSPO. Similar notation applies to
GLM-4.5-air models. Bold indicates best performance, underline indicates second best.

Method PI-LLM NeedleBench-M-RS MRCR LongBenchV2 Frames Avg
(Acc %) (Acc %) (Acc %) (Acc %) (Acc %)  (Norm)
M3 (Baseline) 22.5 30.0 46.3 33.0 65.2 39.4
M3 + RAG (BM25) 17.9 12.5 6.6 25.8 33.6 19.3
M3 + RAG (Qwen3-Emb) 10.9 13.0 20.6 29.6 46.0 24.0
M3 + MemO 39.2 19.0 9.2 29.0 52.8 29.8
M3 + MemAgent 415 24.0 22.1 29.6 61.5 35.7
Sculptor-M3 71.8 67.6 79.1 29.2 51.2 59.8
Sculptor-M3-RL 99.4 84.8 85.7 34.5 64.6 73.8
GLM-4.5-air(Baseline) 29.4 24.5 43.1 46.9 76.0 44.0
GLM-4.5-air + RAG (BM25) 30.6 15.0 4.8 19.5 30.9 20.2
GLM-4.5-air + RAG (Qwen3-Emb) 10.9 12.0 24.1 27.2 46.6 242
GLM-4.5-air + MemO 18.5 14.5 6.2 28.8 62.3 26.1
GLM-4.5-air + MemAgent 222 17.0 8.6 332 68.6 29.9
Sculptor-GLM-4.5-air 65.2 58.0 88.5 31.7 56.7 60.0
Sculptor-GLM-4.5-air-RL 86.0 84.0 99.0 50.7 79.2 79.8

Model and baselines. We base our experiments on both an internal model and an open-source
model to demonstrate the effectiveness and generalizability of our approach. Our primary model
is M3, a 13B-parameter dense model that we pre-train from scratch, chosen for its strong tool-use
capabilities (see Appendix [C)), tight compatibility with our training infrastructure, and competitive
baseline performance. To validate the generalizability of our approach beyond proprietary models, we
additionally evaluate GLM-4.5-air (Team et al., |2025a), an open-source MoE model with 106B total
parameters and 12B active parameters. In Table[2] we additionally compare three baseline approaches
(all implemented on the same M3 base model for controlled comparison): retrieval-augmented
generation (RAG), MemO (Chhikara et al.| 2025)) representing cross-session external memory, and
MemAgent (Yu et al.| |2025)) as an inner working memory method. We evaluate RAG with both BM25
(keyword matching) and Qwen3-Emb (dense retrieval), representing both traditional and modern
RAG approaches. Further evaluation details are provided in Appendix[D.4]

Training Data Collection. While M3 possesses strong inherent tool-use capabilities, it requires
specific training to effectively utilize the Sculptor tools. We generate high-quality training data
through the systematic prompt engineering approach described in Section [4.1] Using Claude-4-
Sonnet with carefully designed task-specific prompts, we collect successful tool usage trajectories
on the BABILong (Kuratov et al.| [2024) and GSM-Infinite (Zhou et al.| 2025) datasets—public
benchmarks featuring complex long-context reasoning challenges. This process yields diverse
examples of effective ACM tool usage patterns across different task types. Combined with our
conditional trajectory collection and incremental loss assignment methodology (Section [3.2)), we first
perform supervised fine-tuning on this data to obtain Sculptor-M3, which has learned basic ACM tool
capabilities. Subsequently, we conduct RL training with dynamic context-aware GSPO on the same
datasets to obtain Sculptor-M3-RL, enabling the model to autonomously discover optimal tool usage
strategies. During training, we cap tool steps at 20 per turn, matching Claude-4-Sonnet’s effective
zero-shot usage while keeping rollouts efficient.

Experimental Results: Table 2] presents our experimental results. Sculptor-M3 shows improve-
ments over baseline M3, particularly on PI-LLM (+49.3 points), NeedleBench-M-RS (+37.6 points),
and MRCR (+32.8 points). After GSPO training on BABILong and GSM-Infinite datasets, Sculptor-
M3-RL reaches 99.4% on PI-LLM with gains across most benchmarks. Additionally, we evaluate
GLM-4.5-air, an open-source model, demonstrating that our approach generalizes beyond our propri-
etary base model. GLM-4.5-air with Sculptor achieves substantial improvements over its baseline
(+35.8 on PI-LLM, +33.5 on NeedleBench-M-RS, +45.4 on MRCR), reaching 60.0% average per-
formance and confirming the effectiveness of our ACM tools across different model architectures.
Detailed analysis of RL training dynamics and tool usage evolution is provided in Appendix |G|

A critical observation from Table [2|is that only our Sculptor approach with RL training surpasses
or achieves comparable performance to the full-attention baseline for both M3 and GLM-4.5-air.
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ments, showing a clear positive shift and confirming the

systematic benefit of our approach.

Traditional methods all fall short of their respective baselines: RAG methods introduce information
loss through irreversible retrieval, achieving only 19.3% (BM25) and 24.0% (Qwen3-Emb) average for
M3, and 20.2% (BM25) and 24.2% (Qwen3-Emb) for GLM-4.5-air. MemAgent’s query-dependent
memory accumulation discards information that appears initially irrelevant but proves critical for
multi-hop reasoning—achieving 35.7% average for M3 and 29.9% for GLM-4.5-air, both below their
respective baselines (39.4% and 44.0%). Mem0O underperforms MemAgent across most benchmarks,
likely because it is designed for cross-session personalized memory rather than single-session long-
context scenarios. The fundamental limitation is that these methods make irreversible filtering
decisions based solely on the final query, without the ability to recover information that becomes
relevant only after seeing subsequent context. In contrast, our ACM tools enable reversible context
management—folding currently irrelevant information while preserving restoration capability. This
flexibility allows Sculptor-M3-RL to reach 73.8% average (vs. 39.4% baseline) and Sculptor-
GLM-4.5-air-RL to reach 79.8% average (vs. 44.0% baseline), demonstrating that our approach
fundamentally addresses the limitations of prior methods by maintaining information accessibility
rather than discarding it.

4.3  VALUE-SPECIFIC ATTENTION ANALYSIS

To precisely quantify how content folding impacts attention allocation to critical information, we
conduct a token-level value-specific attention analysis. While traditional approaches assume that
attention mechanisms naturally learn to ignore irrelevant information during pretraining, our analysis
reveals that explicitly removing distracting content significantly enhances attention focus. The core
idea is to measure the attention from the tokens of a specific critical value in the model’s response
back to the corresponding tokens of the same value in the input context. Our experiment uses 46
predefined key-value pairs from the PI-LLM benchmark as the critical information. For each pair, we
calculate the attention score by first identifying the exact token positions of the value in both the input
and the response. We then aggregate the attention weights across all layers and heads, averaging them
to produce a single score that represents the model’s focus on that specific piece of information. This
allows for a direct comparison between the “folded” context and the “complete” context scenarios.
The results presented in Figure [5]demonstrate a significant and systematic improvement in attention
allocation. Out of 46 key-value pairs, 43 (93.5%) exhibited enhanced attention in the folded version,
achieving a mean improvement of 9.87% (ranging from -6.86% to +37.56%). The scatter plot reveals
a strong positive correlation (R? = 0.97) with the vast majority of data points positioned above the
equality line, confirming that the improvements are consistent and not random.

Notable performance gains were observed for pairs such as “law: contract” (+37.56%), “climate: heat
dome” (+30.44%), and “emotion: indifferent” (+25.83%). A one-sample t-test on the distribution of
improvements confirms that they are statistically significant (p < 0.001), with a median improvement
of 9.9%. These findings provide strong empirical evidence that folding redundant content enhances
attention allocation to critical information by reducing attention dilution—even in well-pretrained
models, irrelevant information interferes with attention mechanisms rather than being naturally filtered
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out. The consistent improvements across diverse semantic categories suggest that explicit context
management through folding is more effective than relying solely on learned attention patterns.

4.4 CoOST ANALYSIS

To evaluate the computational efficiency of our approach, we analyze the context reduction achieved
by Sculptor-M3-RL on benchmarks containing substantial irrelevant information. As shown in
Figure[6] Sculptor-M3-RL achieves dramatic context reductions across these challenging benchmarks:
76.2% reduction on NeedleBench-M-RS (from 85.2K to 20.3K tokens), 89.0% on PI-LLM (from
72.4K to 8.0K tokens), and 79.1% on MRCR (from 95.6K to 20.0K tokens). These substantial
reductions directly translate to computational savings, as the quadratic complexity of attention
mechanisms makes processing cost heavily dependent on context length.

Importantly, our tool design minimizes additional computational overhead. Read-only tools like
search_context preserve the prefix relationship between completions and fully reuse KV
cache—they only add a few search operations while most of the context remains cached. This
is similar to traditional tool use where KV cache can be efficiently reused. For context-modifying
tools that do break the prefix relationship, the dramatic context reduction itself compensates for the
cache invalidation cost. Processing 20K tokens even without caching is significantly faster than
processing 85K tokens with full caching. This design—separating context-preserving search tools
from context-modifying compression tools—ensures that our system achieves substantial context
reduction with minimal computational overhead.

S5 LIMITATIONS AND FUTURE WORK

Our study primarily targets long-context scenarios, but ACM is also promising beyond long contexts.
In mathematical reasoning, early mistakes can cascade due to autoregressive “prefix lock-in” that
degrades subsequent correctness; folding or suppressing erroneous early steps may reset the trajectory
and improve robustness (Wang & Sun, 2025} [Feng et al.,|2025; Wen et al.| 2025)). Future work will
extend ACM to non-long-context domains (e.g., math, coding) and pursue richer training strategies
and reward design to learn finer-grained tool-use policies, with the goal of improving performance on
complex long-context benchmarks where our current results remain modest, such as LongBenchV2
and FRAMES (Bai et al., 2025} |Krishna et al., [2025)).

ETHICS STATEMENT

This work focuses on improving the efficiency and effectiveness of large language models in handling
long contexts through active context management. Our research does not involve human subjects,
and all experiments were conducted on publicly available benchmarks. We acknowledge that context
manipulation tools could potentially be misused to selectively remove or hide information in harmful
ways. However, our work is designed to enhance model performance on legitimate tasks by helping
models focus on relevant information while maintaining the ability to restore folded content when
needed. We are committed to responsible Al development and encourage the community to consider
both the benefits and potential risks of active context management techniques when deploying such
systems.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive details throughout the paper and
supplementary materials. Our ACM tool implementations are described in detail in Appendix [H}
with complete schemas. The GSPO training methodology is fully specified in Section [2| with
hyperparameters and hardware configurations detailed in Table 4] The dynamic context-aware
training data collection algorithm is provided in Algorithm[I] All experiments were conducted on
publicly available benchmarks (PI-LLM, NeedleBench, MRCR, LongBenchV2, and Frames) with
configurations detailed in Appendix [D] We will release our code for Algorithm [ Sculptor tools
implementations and trained model checkpoints upon acceptance to facilitate reproduction and further
research.
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A USE OF LARGE LANGUAGE MODELS

Large language models were used as a general-purpose assist tool during the writing process of this
paper, primarily for grammar checking and improving clarity of technical descriptions. All scientific
ideas, experimental design, and analysis were conducted by the authors. The LLMs did not contribute
to research ideation or core scientific content. The authors take full responsibility for all content in
this paper, including its accuracy and originality.

B RELATED WORK

Long-Context Processing, Memory, and Evaluation Effectively processing long contexts remains
a critical challenge for LLMs. Early efforts focused on expanding context windows through archi-
tectural improvements (Su et al., 2023 |Chen et al.} 2023} Beltagy et al., 2020) and sparse attention
mechanisms (Yuan et al.| 2025} |Gao et al.,[2025; [Lu et al., [2025). Subsequently, a substantial body of
work sought to further optimize performance by augmenting LLMs with external memory systems,
employing comprehensive memory architectures and multi-agent frameworks to overcome context
limitations (?Yang et al., 2024; Li et al., 2025bj; |Wang & Chen, [2025; |Chhikara et al., [ 2025; [Packer
et al., 2024} 'Wang et al., |2024; [Yu et al., 2025)). The push for longer and more complex context
processing led to the development of specialized evaluation benchmarks, such as NIAH (Kamradt,
2023)),NeedleBench (Li et al., [2025a), RULER (Hsieh et al.,[2024a),LongBench-v2 (Bai et al.| [2025),
MRCR (Vodrahalli et al.l |2024b)), and PI-LLM (Wang & Sun, 2025)). These benchmarks were
instrumental in revealing that despite architectural and memory enhancements, modern LLMs still
perform poorly on information-sparse tasks. Among these, work such as PI-LLM further identified a
deeper reason for this phenomenon: proactive interference, where earlier information in the context
disrupts the processing of later, more relevant content (Wang & Sunl 2025). These documented
failures on information-sparse tasks, coupled with the diagnosis of proactive interference, provide a
strong motivation for our approach of active context management. Unlike external memory solutions
that focus on storage and retrieval, or sparse attention that modifies token processing patterns, our
complementary method provides the model with explicit tools to selectively retain, compress, or ig-
nore information directly within its working memory, thereby mitigating interference while operating
alongside existing architectural enhancements.

Tool-Augmented Language Models The integration of external tools to augment LLM capabilities
is a burgeoning field of research, designed to overcome inherent model limitations such as knowledge
cutoffs, hallucination, and weak mathematical reasoning. Pioneering work in this area has largely
followed two paradigms. On one hand, models like Toolformer (Schick et al.l 2023)) demonstrate
that LLMs can be fine-tuned to learn when and how to call external APIs, seamlessly incorporating
their outputs into the generation process. On the other hand, prompting-based frameworks like
ReAct (Yao et al., |2023b) show that LLMs can synergize chain-of-thought reasoning with tool
use in a zero-shot manner, interleaving thought, action, and observation steps to solve complex
tasks. Subsequent research has focused on improving the reliability and scope of tool use, with
work like Gorilla (Patil et al.;[2023)) developing models specialized for accurate API invocation, and
frameworks like ART (Paranjape et al., 2023) creating programmatic pipelines for tool-augmented
multi-step reasoning. However, a common thread in this existing literature is the focus on using
tools to interact with the external world—accessing calculators, search engines, or code interpreters.
Sculptor diverges from this trend by proposing a novel class of tools for internal context management.
Instead of augmenting the LLM with external knowledge, we empower it with cognitive tools to
actively curate its own working memory. This positions our work as complementary to existing
tool-use research. Our approach directly targets cognitive bottlenecks like proactive interference,
rather than solely addressing knowledge or computational limitations.

From External Compression to Internal Context Curation A complementary line of research
focuses on reducing the computational and memory burden of long contexts through intelligent
compression and selection mechanisms. The LLMLingua series (Jiang et al., 2023} |2024a; |Pan
et al., [2024) pioneered the use of smaller models as compressors, performing extractive compression
to remove task-irrelevant sentences and phrases while preserving information density. Longl.LM-
Lingua (Jiang et al.l [2024a) further advanced this approach with question-aware coarse-to-fine
compression and dynamic compression ratios, achieving significant improvements on long-context
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benchmarks. Similarly, Selective Context (Li et al., 2023) formalizes context selection as a relevance-
based filtering problem for reading comprehension tasks.At the inference level, several methods
optimize KV cache management to handle longer sequences more efficiently. Streamingl.LM (Xiao
et al., |2024)) introduces attention sink mechanisms for online processing of extremely long inputs,
while Scissorhands (Liu et al.| 2023b) selectively retains only the KV pairs that will be referenced
in future computations. More recent work like SnapKV (L1 et al.| 2024b) and KVQuant (Hooper
et al.| 2025)) focus on pre-computation importance estimation and low-bit quantization respectively
to achieve memory-efficient inference.While these compression and selection methods effectively
reduce computational overhead, they share a fundamental limitation: the compression decisions are
made externally to the reasoning process, either by separate models or fixed heuristics. This can lead
to information loss that the primary LLM might deem crucial for its reasoning chain. In contrast,
Sculptor enables the LLM itself to make context management decisions dynamically based on its
internal reasoning state, ensuring that compression and selection align with the model’s cognitive
needs rather than external approximations.

Revisable Generation and Editable Thought Processes Autoregressive decoding makes early
errors “‘sticky” causing later tokens to amplify rather than fix them. Proactive interference tests
show that retrieval accuracy degrades as semantically related but obsolete updates accumulate,
underscoring the cost of an immutable context (Wang & Sun, [2025). Causally, pruning failed
reasoning branches—or removing their surface forms from the visible history—immediately improves
subsequent correctness, indicating the harmful persistence of erroneous traces (Feng et al., |[2025)).
To mitigate this prefix lock-in, one line of work explores parallel or branched reasoning, such as
the search-based Tree of Thoughts and the native parallelism in ParaThinker, which reduces “tunnel
vision” at a small latency overhead (Yao et al.l 2023a; |Wen et al., [2025). A more fundamental
approach alters the generation process itself, making outputs inherently revisable. This includes
models that perform discrete edits, like iterative refinement via masking (Ghazvininejad et al.|[2019)
or sequence modification through insertion and deletion operations (Stern et al.,[2019;|Gu et al.| [2019).
Another family of non-autoregressive paradigms, such as diffusion LMs, enables global backtracking
by denoising entire sequences in parallel (Li et al., |2022; |Austin et al.| [2021). Complementing these
architectural shifts, test-time self-revision loops like Self-Refine and Reflexion demonstrate that
lightweight edits to intermediate outputs reliably improve final solutions (Madaan et al.,|2023; |Shinn
et al.,[2023)). Collectively, these findings build a strong case for equipping models with mechanisms to
remove, rewrite, or compress their working context during reasoning—rather than merely appending
tokens—so they can correct course instead of being trapped by early errors.

C BASELINE MODEL PERFORMANCE

We evaluate M3 across standard benchmarks and compare it with both smaller-scale models (Qwen3-
8B, Qwen3-14B) and frontier models to establish baseline capabilities before ACM training. The
results are presented in Table[3] Despite being a 13B model, M3 demonstrates exceptional tool-use
performance, achieving 61.0% on Tau2-retail (Barres et al.|[2025) (vs. 27.9% for Qwen3-8B), 61.8%
on AceBench (Chen et al., 2025) (vs. 24.3% for Qwen3-8B), and 32.0% on SWE-bench Verified
(vs. 3.3% for Qwen3-8B). This strong tool-calling foundation makes it particularly suitable for
demonstrating ACM effectiveness. Additionally, we include GLM-4.5-Air benchmark scores in
Table [3] to provide comprehensive baseline comparisons for the open-source model used in our
main experiments (Table[2). Benchmark results for GLM-4.5-Air are reported from their technical
report (Team et al.| 2025a). Benchmark results for DeepSeek-V3, GPT-4.1, and Claude-4-Sonnet
(excluding NeedleBench-MRS and PI-LLLM) are taken from the Kimi-K2 technical report (Team
et al.l 2025b)).

For Qwen3-8B and Qwen3-14B models, we followed the official documentatio to enable 128K
context length support through RoPE scaling (Su et al.| 2023) with the YaRN method (Peng et al.,
2023)), using a scaling factor of 4.0 to extend from their original 32K context window to 128K tokens.
This configuration was necessary for fair comparison on long-context benchmarks.

'https://qwen.readthedocs.io/en/latest/deployment/vllm.html
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Table 3: Performance of M3 (13B parameters) compared to other models on standard benchmarks.
Left: smaller-scale models (§8B-14B). Right: frontier models. M3 demonstrates particularly strong
tool-use capabilities (Tau2, AceBench) and coding performance (SWE-bench Verified).

Benchmark Qwen3-8B  Qwen3-14B M3 \ GLM-4.5-Air Kimi-K2 DeepSeek-V3 GPT-4.1 Claude-4-Sonnet
Coding Tasks

LiveCodeBench v6 (Pass@1) 50.2 51.8 25.1 70.7 53.7 46.9 44.7 48.5
MultiPL-E (Pass@1) 70.4 77.0 72.4 - 85.7 83.1 86.7 88.6
SWE-bench Verified (Pass@1) 33 5.8 32.0 57.6 51.8 36.6 40.8 50.2
Tool Use Tasks

Tau? retail (Avg@4) 279 36.2 61.0 7179 70.6 69.1 74.8 75.0
Tau? airline (Avg@4) 18.0 39.0 54.0 60.8 56.5 39.0 54.5 55.5
AceBench (Acc.) 243 23.7 61.8 76.4 76.5 727 80.1 76.2
Math & STEM Tasks

MATH-500 (Acc.) 92.2 95.4 80.2 98.1 97.4 94.0 92.4 94.0
AIME 2024 (Avg@64) 60.9 60.8 17.7 89.4 69.6 59.4 46.5 434
GPQA-Diamond (Avg@8) 53.0 58.1 45.2 75.0 75.1 68.4 66.3 70.0
General Tasks

MMLU (EM) 80.1 85.0 78.6 874 89.5 89.4 90.4 91.5
MMLU-Pro (EM) 74.5 77.5 65.2 81.4 81.1 81.2 81.8 83.7
IFEval (Prompt Strict) 349 35.5 77.1 86.3 89.8 81.1 88.0 87.6
SimpleQA (Correct) 6.7 8.8 74 14.5 31.0 277 42.3 15.9

D EVALUATION DETAILS

D.1 BENCHMARK-SPECIFIC SYSTEM PROMPTS

As described in Section [d.1] we employed prompt engineering to enhance tool utilization capabilities
across frontier models. The system prompts presented here are the final optimized versions used
in our zero-shot evaluation for PI-LLM and NeedleBench benchmarks. These benchmark-specific
prompts significantly improved Claude-4-Sonnet’s performance, demonstrating how targeted prompt
optimization can unlock more effective Sculptor tool usage patterns.

System Prompt for PI-LLM Benchmark

System Prompt:

You are an intelligent assistant specialized for PI-LLM (Proactive Interference) testing. Your
task is to track continuous updates to multiple key-value pairs and accurately remember the
latest value for each key amidst substantial interference information.

Remember: First use the fragment_context tool to split the long text into multiple fragments,
then use fold_fragment to fold unimportant, earlier key-value updates, allowing you to
concentrate on the final updates. The recommended approach is to divide the entire update
stream into multiple fragments (e.g., ten fragments), then keep only the last two or three
fragments while folding the rest. This strategy enables focus on the current, most recent
content without being distracted by earlier information.

Figure 7: System prompt for PI-LLM benchmark, designed to handle proactive interference through
strategic tool usage.

D.2 UNIFIED SYSTEM PROMPT

The unified system prompt is used in our initial zero-shot evaluations and RL training experiments.
This minimal, general-purpose prompt provides only basic guidance about available capabilities
without prescriptive task-specific strategies. As described in Section .1 experiments with this
unified prompt revealed inherent challenges of unguided tool use, including suboptimal tool selection
patterns and insufficient execution depth. During RL training, the same prompt enables the model to
autonomously discover optimal tool usage patterns across diverse contexts, as shown in Figure[J]

This approach ensures that the model learns generalizable context management strategies rather than
memorizing task-specific patterns, leading to more robust performance across diverse long-context.
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System Prompt for NeedleBench Multi-Needle Reasoning

System Prompt:

You are an agent skilled at analyzing family relationships between different people. You
have "search_context" and "get_search_detail" tools. You excel at conducting chained
searches for key information in long texts until you find complete information to reach your
desired final answer.

When searching for the oldest ancestor, ensure that every person name found has been
verified through the search tools to confirm they truly have no higher-level ancestors before
concluding your reasoning.

Figure 8: System prompt for NeedleBench Multi-Needle Reasoning, optimized for multi-hop retrieval
tasks.

Unified System Prompt

System Prompt:

You are a helpful assistant. You can autonomously manage your own context: fold irrelevant
information, focus on useful details, summarize long texts to keep your context concise,
and use search tools to find key information in large documents.

Figure 9: The unified general-purpose prompt used both in initial zero-shot evaluations (to understand
natural tool interaction patterns) and in RL training (to enable autonomous learning of tool usage
strategies without prescriptive guidance).

D.3 BENCHMARK DETAILS

We provide detailed configurations for the benchmarks used in our experiments:

NeedleBench Multi-Needle Reasoning: For efficiency while maintaining representativeness, we
test with a fixed depth of 40%, as our tool-based approach shows minimal sensitivity to needle
position within the context. We examine context lengths of 1k, 2k, 16k, 64k, and 128k tokens,
with each configuration evaluated across 10 runs per dataset to ensure statistical significance. The
multi-needle variant requires connecting 2, 3, 4, and 5 needles simultaneously, making it substantially
more challenging than single-needle retrieval tasks.

Data Processing for Context Length Constraints: To ensure evaluation within our model’s 128k
context window, we apply minimal preprocessing. For MRCR, we filter out test samples exceeding
128k tokens. For LongBench v2, we truncate samples exceeding 128k tokens using our tokenizer.

D.4 BASELINE METHOD EVALUATION DETAILS: RAG, MEMO, AND MEMAGENT

We include three baseline approaches for long-context processing in our main results (see Table [2):
retrieval-augmented generation (RAG) as a traditional long-context method, Mem0 as a cross-session
external memory system, and MemAgent as an inner working memory approach. All baselines are
evaluated under a unified, lightweight interface that accepts plain strings or standard message arrays,
without dataset-specific restructuring.

For RAG, we evaluate two retrieval approaches to represent both traditional and modern methods:

BM25-based RA We adopt a BM25-only pipeline aligned with LongBench-style retrieval. The
input is sentence-split with the same punctuation and length heuristics as common LongBench
implementations, then chunked at 200 tokens. A pseudo query is formed by concatenating the first
and last 500 tokens of the full context when an explicit query is not provided. Chunks are ranked

https://github.com/THUDM/LongBench/tree/main/LongBench/retrieval /BM25
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by BM25 and concatenated from high to low until the accumulated length reaches ~ 1500 tokens.
The system prompt constrains the model to answer strictly based on the retrieved context. This
BM25-only design avoids external dense embeddings and evaluates the model’s intrinsic ability to
reason over the retrieved snippets.

Embedding-based RAG: We additionally evaluate dense retrieval using the Qwen3 embedding
model (Zhang et al.|[2025b), a state-of-the-art text embedding model. The input is chunked similarly
at 200 tokens. For each chunk, we compute dense embeddings using the Qwen3 embedding model
and rank chunks by cosine similarity to the query embedding. The top-ranked chunks are concatenated
until reaching ~ 1500 tokens, and the model generates answers based on the retrieved context. This
approach represents modern embedding-based RAG systems widely adopted in production settings.

For MemAgent(Yu et al., 2025ﬂ we follow their implementation with iterative memory updates.
Extremely long inputs are first symmetrically trimmed to a maximum visible length of about 120 k
tokens to avoid one-sided truncation. The remaining text is processed in fixed 5 k-token chunks. At
each step the model updates an explicit "memory" that preserves previously useful information and
integrates newly relevant details from the current chunk; the final answer is generated using the last
memory along with the query. When no explicit query is given, we construct a short pseudo query
from the first and last 500 tokens of the source. Unless otherwise noted, defaults are: max context
length ~ 120 k tokens, chunk size 5 k tokens, and maximum generation length 1024 tokens.

For Mem0(Chhikara et al., 2025), we adapt the official implementation for long-context evalua-
tion. Since Mem0 is designed for cross-session user preference memory rather than single-session
document processing, we modify: (1) the fact extraction prompt to focus on document-relevant
information instead of user preferences, and (2) the chunking mechanism to include the query in each
5 k-token chunk, ensuring the memory LLM can extract question-relevant facts. Each question uses a
unique user ID to prevent memory interference across samples.

These choices emphasize reproducibility and represent diverse approaches to long-context processing:
traditional and modern retrieval methods for RAG, cross-session external memory for Mem0, and
inner working memory for MemAgent. Detailed hyperparameters are reflected in the text above
rather than bespoke configuration tables to keep the protocol concise and focused.

E DyYNAMIC CONTEXT-AWARE TRAINING DATA COLLECTION

Algorithm|T|presents our conditional trajectory collection algorithm with incremental loss assignment
for dynamic context-aware RL training. The algorithm identifies context-modifying tool calls and
creates separate training instances at each modification point, with incremental loss assignment to
prevent redundant learning across multiple trajectory snapshots.

F TRAINING CONFIGURATION

To ensure reproducibility and facilitate future research building upon our work, we provide the
detailed training hyperparameters and hardware configuration used for GSPO training in Table [4]
These settings represent the optimal configuration determined through extensive experimentation for
training Sculptor-M3-RL with dynamic context-aware capabilities.

Table 4: GSPO training configuration.

Training Hyperparameters Hardware & Parallelism
Learning rate 1x107% GPU type NVIDIA H800 (80GB)
Training iterations 200 Total GPUs 128 (64 train, 64 rollout)

Clip ratio (lower) 0.0003 Tensor parallel (TP) 1
Clip ratio (upper)  0.0004 Pipeline parallel (PP) 4

KL penalty () 0.0 Context parallel (CP) 16
LM regularization 0.1 Data parallel (DP) 4
Optimizer AdamW Max sequence length 128k tokens

Shttps://github.com/BytedTsinghua-SIA/MemAgent /blob/main/quickstart.py
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Algorithm 1 Conditional Trajectory Collection with Incremental Loss Assignment

Require: Initial query (), complete interaction trajectory with assistant completions {C; }7—, and

tool results {7} }7—,"

Require: Set of context-modifying tools 7., (fragment, fold, summarize, restore operations).
Ensure: Training dataset Dy, containing (trajectory, loss_mask) pairs.
1: Initialize Dypgin — 0
2: Initialize trained_indices < () > Track completion indices that have been assigned loss=1
3: for i = 0ton do

4: Extract tool call a; from completion C;
5: if a; € 7o or @ = n then > Context modification or final completion
6: > Create trajectory snapshot up to current point
7: trajectory + [Q, Co, Ty, C1,T1, . .., C}]
8: if i < n then
9: trajectory « trajectory + [T;] > Include tool result if not final
10: end if
11: > Create incremental loss mask
12: Initialize loss_mask with zeros for all elements in trajectory
13: for j =0toido
14: if j ¢ trained_indices then > Only assign loss to new completions
15: loss_mask[C;] + 1 > Enable loss for completion C}
16: trained_indices < trained_indices U {j}
17: end if
18: end for
19: Dirain < Dirain U {(trajectory,loss_mask)}
20: if a; € T, then > Update query for next iteration if context modified
21: Q@ + ApplyToolEffect(Q, a;, T;) > Apply context modification
22: end if
23: end if
24: end for

25: return Dyyuin
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Reward Design. Our reward function for GSPO training is defined as:

1 if correct answer
r(z,7) = < =1 if format error or n,s > 20 or |7| > 128k tokens 4
0 otherwise

This design encourages correct task completion while penalizing excessive tool usage, overly long
trajectories, and malformed outputs.

G RL TRAINING DYNAMICS AND TOOL USAGE ANALYSIS

This section provides detailed analysis of the reinforcement learning training process, including
training dynamics across iterations and the evolution of tool usage patterns.

G.1 TRAINING ACCURACY COMPARISON: GSPO vs GRPO

We compare two RL training approaches: GSPO (Group Sequence Policy Optimization) (Zheng
et al.| [2025) adapted with our dynamic context-aware extensions, and GRPO (Group Relative Policy
Optimization) (Shao et al.,[2024)) as a baseline. Figure [10[shows the training accuracy curves across
RL iterations. Both methods demonstrate consistent learning progress, achieving comparable final
performance ( 66-67%). GSPO shows slightly more stable convergence during later training iterations,
validating our choice for the main experiments. The similar performance of both algorithms suggests
that our dynamic context-aware training framework is not tightly coupled to a specific RL algorithm
choice, demonstrating compatibility with different policy optimization methods. This indicates that
when given the same training data, the choice of specific RL algorithm has limited impact on final
results, with data quality and task design being more critical factors.

Train Accuracy Comparison: GSPO vs GRPO

—e— GRPO
—a— GSPO

0.60 1

Train Accuracy
o
n
o

=
@
o

0 50 100 150 200
RL Iteration

Figure 10: Training accuracy comparison between GSPO and GRPO across RL iterations. Both
methods show steady improvement and achieve similar final performance.

G.2 TooL USAGE EVOLUTION DURING RL TRAINING

To understand how the RL policy learns to use different tools, we analyze tool usage patterns across
training iterations. We examine both the overall diversity of tool usage (measured by entropy) and
specific tool call patterns on PI-LLM tasks, which require extensive context management through
folding and selective restoration of information.
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G.2.1 TooL USAGE DIVERSITY AND INTENSITY

As RL training progresses, we observe two complementary trends in tool usage behavior. First, tool
usage entropy increases substantially (training set: 1.17 to 2.09, +77.6%; evaluation set: 1.69 to
1.98, +17.0%), indicating the policy learns to leverage a more diverse repertoire of tools based on
task requirements. Second, the average number of tool calls per task increases from 7.26 to 8.47
(+16.6%) on evaluation benchmarks, demonstrating more intensive and sophisticated use of available
tools. Together, these patterns show that the policy evolves from relying on a few dominant tools to
strategically employing the full range of capabilities (fold, restore, search, etc.) when needed, which
is critical for robust performance across diverse long-context scenarios.

Tool Usage Entropy

Average Tool Calls per Task

—e— Training Set
| —®— Evaluation Set

—e— Training Set
8.5 ] —®— Evaluation Set

[
o

7.5

7.0

Tool Usage Entropy

Average Tool Calls per Task

0 50 100 150 200
RL Iteration 0 50 100 150 200
RL Iteration

Figure 11: Tool usage entropy across RL train-
ing iterations. The substantial increase indicates
more diverse tool selection.

Figure 12: Average tool calls per task across RL
training iterations.

G.2.2 TooL CALL PATTERNS ON PI-LLM TASKS

Figure [I3] presents how the RL policy learns to balance compression and information preservation
on PI-LLM tasks. Initially, the policy relies heavily on fold_fragment for context compression
with minimal use of restore_fragment (0.052 calls per task). However, excessive folding can
discard critical information, leading to accuracy degradation. Through RL training with accuracy-
based rewards, the policy gradually learns to recover over-compressed useful information. The
usage of fold_fragment increases from 4.85 to 7.08 calls per task (+45.8%), while critically,
restore_fragment usage grows from 0.052 to 0.267 calls per task (+416.6%). More signifi-
cantly, comparing early iterations (0-40) to late iterations (160-208), the average restore usage in-
creases from 0.0746 to 0.2068, representing a 177.2% growth. Notably, summarize_fragment
remains near zero throughout training, indicating the policy intelligently recognizes that PI-LLM
tasks involve truly irrelevant context that should be directly folded rather than summarized—a more
efficient strategy when the discarded information is genuinely unnecessary. This learned restore
behavior enables the model to achieve near-perfect performance on PI-LLM tasks, demonstrating that
the RL policy successfully learns to proactively recover information when aggressive compression
risks losing critical details.

The substantial increase in restore usage during later training iterations directly addresses concerns
about robustness to over-compression. Early in training, the policy predominantly uses folding
without restoration, which can lead to information loss and accuracy drops. The accuracy-based
reward signal drives the policy to discover that restoring over-compressed fragments can recover lost
information and improve task performance. The simultaneous increase in both fold and restore usage
indicates the policy learns to compress aggressively while developing safeguards through selective
restoration. These patterns validate that our reversible tool design successfully enables the RL policy
to learn robust context management strategies, ultimately achieving near-perfect accuracy on PI-LLM
by balancing compression efficiency with the ability to recover critical information when needed.
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Tool Usage Distribution Restore Fragment Usage Trend

—e— restore_fragment
0.30 Trend: 0.000010x2 + -0.0013x + 0.0853

80

Early avg: 0.075
Late avg: 0.207

60 | |change: 177.2%

40

Tool Usage Percentage (%)
Average Restore Calls per Task

20

= fold_fragment 5 search_context W restore_fragment
m== fragment_context W get search_detail == summarize_fragment

0 2‘5 Sb 7‘5 160 liS 15‘0 17‘5 200 6 5‘0 160 1‘50 260

RL Iteration RL Iteration
Figure 13: Tool usage evolution on PI-LLM tasks across RL training iterations. (Left) Percentage
distribution showing restore_fragment’s relative proportion increasing over training, demonstrating
more diverse tool usage. (Right) Absolute restore usage trend showing the average restore calls per
task steadily increases, indicating the policy learns to proactively recover information when needed.

H ScULPTOR TOOL SUITE SCHEMAS

We provide the complete JSON schemas for all six core Sculptor tools, detailing their parameters
and usage specifications. When tools like fold_fragment or summarize_fragment modify
context content, the original text is temporarily stored in memory to enable complete restoration via
restore_fragment. This ensures no information is permanently lost during context management
operations.
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"type": "function",
"function": {
"name": "fragment_context",
"description": "Fragment conversation content between specified

markers into manageable pieces. Useful for breaking down long
text sections for detailed analysis.",

"parameters": {
"type": "object",
"properties": {
"start_marker": {
thpeﬂ: "String",
"description": "Start marker text to identify the beginning of

content to fragment"

by

"end_marker": {
"type": "string",
"description": "End marker text to identify the end of content

to fragment"
br

"num_fragments": {
"type": "integer",
"default": 5,
"minimum": 1,
"maximum": 20,
"description": "Number of fragments to create (default: 5)"
br
"role": {
"type": "string",
"enum": ["user", "assistant", "all"],
"default": "user",
"description": "Which role’s messages to search in (default:
user)"
}
bo
"required": ["start_marker", "end_marker"],

"additionalProperties": false

Figure 14: JSON schema for fragment_context tool: Fragments conversation content between
markers.
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"type": "function",
"function": {
"name": "fold_fragment",
"description": "Fold (hide) a conversation fragment to reduce visible
context length. The content is preserved and can be expanded
later.",
"parameters": {
"type" : "object",
"properties": {
"fragment_id": {
thpeH . "String" ,
"description": "ID of the fragment to fold (e.g., 'flaz2b3’)"
}
s
"required": ["fragment_id"],

"additionalProperties": false

Figure 15: JSON schema for fold_fragment tool: Hides fragments to reduce context.

"type": "function",
"function": {
"name": "restore_fragment",
"description": "Restore a fragment to its original content from ACM
storage. Works for both summarized and folded fragments.",
"parameters": {
lltype": "Object",
"properties": {
"fragment_id": {
"type" . "St]fil’lg" ,
"description": "ID of the fragment to restore (e.g., "fla2b3’)"
}
}y
"required": ["fragment_id"],

"additionalProperties": false

Figure 16: JSON schema for restore_fragment tool: Restores modified fragments.
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"type": "function",
"function": {
"name": "summarize_fragment",
"description": "Summarize a conversation fragment using LLM to
compress content while preserving key information. Supports focus
-oriented summarization.",

"parameters": {
"type": "ObjeCt",
"properties": {
"fragment_id": {
"type": "string",
"description": "ID of the fragment to summarize (e.g., ’"fla2b3
’ ) n
by
"focus": {
l'type": n Stril"lg",
"description": "Focus area for the summary (e.g., ’'technical

details’, ’"key decisions’, ’action items’, ’‘main points’, '
problems’, ’solutions’)"
}
}o
"required": ["fragment_id", "focus"],
"additionalProperties": false

Figure 17: JSON schema for summarize_fragment tool: Compresses fragments with LLM.
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"type": "function",
"function": {
"name": "search_context",
"description": "Search tool for finding exact text matches in
conversation history.",
"parameters": {
"type": "object",
"properties": {
"query": {
lltypell: n St]’_‘il’lg",
"description": "Exact text to search for in conversation
history"
br
"role": {
"type": "St]fil’lg",
"enum": ["user", "assistant", "all"],
"default": "user",
"description": "Filter by message role (default: user)"
br
"max_results": {
"type": "integer",
"default": 10,
"minimum": 1,
"maximum": 50,
"description”: "Maximum number of results to return"
by
"context_size": ({
"type": "integer",
"default": 200,
"minimum": 50,
"maximum": 1000,
"description": "Context characters before/after match"
}
}y
"required": ["query"],
"additionalProperties": false

Figure 18: JSON schema for search_context tool: Exact text search in conversation.
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"type": "function",
"function": {
"name": "get_search_detail",
"description": "Get detailed context for a search result by its ID.
Retrieves extended context around the search match position.",
"parameters": {
"type": "object",
"properties": {
"search_id": {
"type" : "St]’_‘il’lg" ,
"description": "Search result ID from search_context (e.g., '
slaz2b3’)"
br
"extended_context": {
"type": "integer",
"default": 500,
"minimum": 100,
"maximum": 2000,
"description": "Number of characters to show before and after
the match (default: 500)"
}
}y
"required": ["search_id"],
"additionalProperties": false

Figure 19: JSON schema for get_search_detail tool: Retrieves extended context.
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