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ABSTRACT

The pursuit of large receptive fields has shaped the evolution of computer vision
frameworks, spanning from convolutional neural networks (CNNs) to Transformers
and Mamba. Recently, large-kernel operations have revitalized CNNs, making them
competitive once again and widely applicable across diverse vision tasks. However,
scaling kernel sizes inevitably results in substantial growth in both parameters
and computational overhead. Consequently, existing approaches are often limited
to small kernels or resort to decoupled designs for large kernels. In this paper,
we propose a simple and efficient large kernel network for image restoration,
termed ArtIR, motivated by the channel redundancy observed in image restoration
models. Specifically, ArtIR applies adaptive large-kernel operations to a collapsed
single channel and employs an ultra-lightweight channel attention mechanism to
restore channel diversity. To complement local features, we further introduce a
large kernel fusion module that integrates multi-scale information. Unlike most
prior methods that focus on a narrow set of restoration tasks, we comprehensively
evaluate ArtIR across single-degradation, all-in-one, and composite degradation
scenarios. Beyond generic restoration, we also assess our model on domain-specific
applications such as ultra-high-definition restoration, medical imaging, and remote
sensing. Extensive experiments demonstrate that ArtIR achieves state-of-the-art
performance while maintaining high efficiency and fast inference.

1 INTRODUCTION

Image restoration aims to reconstruct a high-quality image from a low-quality observation. Expanding
the receptive field is essential for modeling robust long-range pixel dependencies, which has long
been regarded as one of the central challenges in this field. Early approaches sought to enlarge the
receptive fields of CNNs through techniques such as dilated convolutions and the use of deeper
network architectures. Recently, Transformer and Mamba architectures have been introduced to this
domain, owing to their strong capacity for capturing long-range dependencies (Ali et al., 2023).

More recently, large-kernel CNNs have reemerged, showing impressive performance in high-level
vision tasks (Chen et al., 2024a; Li et al., 2025b; Liu et al., 2022; 2023; Ding et al., 2022a; Yasuki &
Taki, 2024; Wang & Xi, 2025; Li et al., 2025d; Liu et al., 2025; Li et al., 2023b). These advances are
largely motivated by insights into the success of Transformers, particularly the role of self-attention
mechanisms in enabling large receptive fields. Leveraging large kernel sizes, CNN-based approaches
have matched or even surpassed state-of-the-art Transformers. As a result, efficiently expanding
receptive fields in CNNs has become one of the central themes in computer vision.

This trend has also extended to the field of image restoration. A widely adopted strategy is to
decouple large-kernel convolutions into more computationally efficient components (Wang et al.,
2024c; Luo et al., 2023; Ruan et al., 2023), such as smaller depth-wise convolutions, depth-wise
dilated convolutions, and point-wise convolutions. For example, LKD (Luo et al., 2023) demonstrates
that a 13× 13 depth-wise convolution can be decomposed into a 5× 5 depth-wise convolution and a
5× 5 depth-wise dilated convolution with a dilation rate of 3. However, such decompositions fail to
provide direct interactions among pixels within large windows, thereby reducing the representational
capacity of the model. To address this limitation, several works apply unabridged large-kernel
convolutions directly to feature maps (Hu et al., 2025b; Lee et al., 2024). For instance, OKNet (Cui
et al., 2024b) employs a 63×63 depth-wise convolution to capture large-scale contextual information.
Although placed in the bottleneck, its full-channel operation still introduces substantial computational
overhead. Processing a 4K (i.e., 3840×2160) image, for example, requires approximately 4 GFLOPs
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Figure 1: Visualization of channel-wise cosine similarity in Restormer (Zamir et al., 2022), where
brighter colors indicate higher similarity. Additional examples are provided in the Appendix.

for each additional feature channel in the bottleneck. Another popular line of research employs
frequency-domain processing to modulate global information (Zhou et al., 2023; Cui et al., 2024b;
Mao et al., 2023; Li et al., 2023a). The typical pipeline involves transforming spatial features into the
spectral domain, applying convolutions for modulation, and then converting the modulated spectra
back to the spatial domain. However, frequency-based approaches struggle to explicitly model
relationships between specific pixels. Moreover, they often introduce significant computational
complexity, particularly when applied to high-resolution feature maps (Li et al., 2023a).

To address the aforementioned limitations, we propose a novel approach that leverages large-kernel
operations to construct an efficient image restoration network. Our method is motivated by the obser-
vation of channel redundancy in image restoration models. As illustrated in Figure 1, we visualize the
cosine similarity among channels at different scales in a representative baseline, Restormer (Zamir
et al., 2022). The results reveal substantial redundancy across channels, with additional visualiza-
tions for other models provided in the Appendix. Guided by this observation, our design applies
large-kernel operations to a collapsed single channel. To restore channel diversity, we introduce a
lightweight channel attention mechanism that modulates feature channels, thereby striking a balance
between efficiency and information preservation. This strategy enables the use of extremely large
kernels while avoiding the computational burden of applying them to all channels.

Nevertheless, relying solely on large-kernel operations may lead to feature oversmoothing. To address
this, we introduce a large kernel fusion module that enables interactions between local–large and
large–large receptive fields, thereby enhancing multi-scale representation learning. The module parti-
tions channels into two groups: one progressively enlarges receptive fields, while the other focuses
on embedding local signals. Importantly, this design is also partly motivated by channel redundancy.
Rather than relying on convolutional layers, the module matches the channel counts between groups
by replicating features, which effectively reduces both parameter count and computational overhead.

On the other hand, most existing restoration models are evaluated on a narrow set of tasks, typically
focusing on a single setting. To more comprehensively demonstrate the effectiveness of ArtIR, we
conduct evaluations across multiple mainstream scenarios, including single-degradation, all-in-one,
and composite degradation settings1. In addition, since image restoration has extensive applications
in specialized domains, we further evaluate our method on domain-specific tasks, including ultra-
high-definition (UHD), medical imaging, and remote sensing. The main contributions are as follows:

• We propose a novel solution for leveraging large-kernel operations, inspired by the channel charac-
teristics observed in restoration models. Specifically, our design applies large-kernel operations
to a collapsed single channel, complemented by lightweight channel attention to recover channel
diversity, thereby achieving a better trade-off between efficiency and information preservation.

• We introduce a large kernel fusion module that enhances multi-scale representation learning by
enabling interactions between local–local and local–large receptive fields.

• We conduct comprehensive experiments on both generic tasks (single-degradation, all-in-one, and
composite degradation) and domain-specific tasks (UHD, medical imaging, and remote sensing).
The results show that the proposed model, ArtIR, achieves state-of-the-art performance while
preserving high efficiency and fast inference speed (see Figure 2 and Table 13).

1In the single-degradation setting, the model is trained separately for specific tasks such as dehazing and
desnowing. In the all-in-one setting, the model is trained on a compound dataset that integrates multiple tasks,
where each image is degraded by only one type of distortion. After training, the model can address all these
tasks. In the composite degradation setting, each image contains multiple degradation types simultaneously.
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Figure 2: Comparison of parameter efficiency and PSNR under various image restoration scenarios:
single-degradation , all-in-one , composite degradation , and ultra-high-definition .

2 RELATED WORK

Image restoration. Recent deep learning frameworks have substantially advanced image restoration
and can be broadly categorized into CNN-based, Transformer-based, and Mamba-based approaches.
A key driving factor behind these architectures is the pursuit of large-kernel operations, which enable
robust large-scale receptive fields and thereby improve the removal of severe degradations.

To overcome the local connectivity limitation of convolution operators, CNN-based methods typically
enlarge receptive fields by stacking deeper layers, employing strip operations, applying dilated
convolutions, or adopting multi-stage paradigms (Zhang et al., 2018b; Ren et al., 2016; 2020;
Cui et al., 2023c; Son et al., 2021; Hao et al., 2024). Subsequently, Transformer-based models,
empowered by self-attention, have further improved performance across diverse restoration tasks
such as dehazing, deraining, and deblurring (Guo et al., 2022; Chen et al., 2023; Song et al., 2023;
Qiu et al., 2023; Jin et al., 2025; Tsai et al., 2022; Zamir et al., 2022; Wang et al., 2022; Kong et al.,
2023; Liang et al., 2021; Chen et al., 2021a). However, this success comes at the cost of the quadratic
complexity of self-attention with respect to input size. Although several strategies restrict the attention
region or alter the computation dimension, obtaining large-scale receptive fields with high efficiency
remains challenging. More recently, Mamba-based frameworks have been introduced to implicitly
capture long-range dependencies by propagating contextual information through advanced scanning
strategies (Li et al., 2025a; Guo et al., 2024a; Luan et al., 2025; Weng et al., 2024; Li et al., 2025c; Zou
et al., 2024). In contrast to these approaches, we propose a new solution that leverages large-kernel
operations to achieve efficient, effective, and explicit modeling of long-range pixel correlations.

Large kernel network. The success of Transformers has been attributed to several factors, including
their advanced architecture (Yu et al., 2022), frequency bias (Park & Kim, 2022), and capacity to
capture long-range dependencies (Vaswani et al., 2017). More recently, increasing attention has
been directed toward their ability to model large receptive fields. Following this trend, CNNs have
reemerged in high-level vision tasks by incorporating large kernels (Liu et al., 2022; 2023; Ding et al.,
2022a; Chen et al., 2024a; Ding et al., 2022b; Xu et al., 2023; Li et al., 2025b; Ding et al., 2024).

Inspired by this development (Xie et al., 2023; Wang et al., 2024c), several image restoration methods
adopt kernel decomposition, factorizing a large-kernel convolution into smaller components (Wang
et al., 2024c; Ruan et al., 2023; Luo et al., 2023), such as depth-wise and dilated convolutions.
However, such decomposition inevitably reduces representational capacity. Other approaches directly
apply intact large-kernel convolutions in square or stripe form (Cui et al., 2024b; Hu et al., 2025b;
Lee et al., 2024; 2025; Shi et al., 2024), but applying these operations across many channels
leads to substantial computational overhead. An alternative direction leverages frequency-domain
processing, such as the Fourier transform, to encode global information according to the convolution
theorem (Zhou et al., 2023; Mao et al., 2023; Cui et al., 2023a; Li et al., 2023a). Yet, this strategy
struggles to explicitly model pixel-wise relationships and introduces additional complexity due to
reliance on transformer-based tools (Li et al., 2023a).
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Figure 3: Architecture of ArtIR. The network follows a U-shaped learning paradigm and is primarily
composed of (a) the Transformer-style basic block and (b) the large-kernel block (LKB). The (c) large-
kernel fusion module (LKFM) enables multi-scale learning by progressively integrating large-scale
contextual information of different sizes with local details. The (d) large-kernel module (LKM) applies
large-kernel operations to a single-channel feature map, complemented by a lightweight channel
attention mechanism to enhance channel diversity, thereby balancing efficiency and information
preservation. The Expand operation doubles the channel dimension via duplication.

3 METHODOLOGY

This section presents the design of ArtIR for image restoration, including the pipeline and its two
core components, the Large Kernel Module (LKM) and the Large Kernel Fusion Module (LKFM).

Overall pipeline. The pipeline of ArtIR is illustrated in the top part of Figure 3. ArtIR adopts
a U-shaped Transformer-style architecture, consisting of an encoder, a decoder, and a refinement
stage (Zamir et al., 2022). Both the encoder and decoder comprise multiple Basic Blocks, while the
Large Kernel Block (LKB) is applied only in the bottleneck to reduce computational overhead (Cui
et al., 2024b). Given a degraded image I ∈ RH×W×3, ArtIR first employs a 3× 3 convolution to
extract shallow features H0 ∈ RH×W×C . These features are then processed by a three-scale encoder
to produce low-resolution representations Hl ∈ RH

4 ×W
4 ×4C . The decoder takes Hl as input and

progressively reconstructs high-resolution features. During this process, encoder and decoder features
are concatenated through residual connections and fused by a 1× 1 convolution. Finally, a refinement
stage (Zamir et al., 2022) further enhances the features, yielding Hh ∈ RH×W×C . The restored
residual image R ∈ RH×W×3 is then generated using a 3 × 3 convolution, and the final restored
output is obtained by Î = R+ I .

The architecture of the basic block is illustrated in Figure 3(a). The basic block follows a Transformer-
style design and incorporates a gated mechanism, termed self-modulated attention (SMA), to control
information flow, inspired by its success in computer vision (Zamir et al., 2022; Ma et al., 2024a;b).
Formally, given input features Y ∈ RH×W×C , the computation in a basic block is expressed as

Ŷ = FFN(Norm(Y ′)) + Y ′, where Y ′ = SMA(Norm(Y )) + Y, (1)

where Norm, FFN, and SMA denote layer normalization, the feed-forward network, and self-
modulated attention, respectively. For simplicity, we adopt the FFN design from Restormer (Zamir
et al., 2022). Given input features P ∈ RH×W×C , the SMA is further defined as

P̂ = Conv1×1(P
′
1 ⊗ P ′

2), where P ′
1, P

′
2 = Split(ConvDW

3×3(Conv1×1(P ))) ∈ RH×W×C , (2)

where Conv1×1 and ConvDW
3×3 denote a 1× 1 convolution and a 3× 3 depthwise convolution, respec-

tively; Split indicates channel-wise feature partitioning, and ⊗ represents element-wise multiplication.
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Figure 3(b) illustrates the LKB, which largely follows the structure of the basic block, except that the
SMA is replaced with the LKFM. We next describe the LKFM and its core component, the LKM.

3.1 LARGE KERNEL MODULE (LKM)

Motivation. Existing large-kernel operations are mainly implemented through kernel decoupling,
direct application, or frequency-domain processing. However, as the number of channels increases,
particularly in the bottleneck, the computational overhead of such operations grows substantially.
Figure 1 shows that channels exhibit strong similarity, indicating that only a subset may need to be
modulated without compromising performance. Motivated by this, we apply large-kernel operations
to a collapsed single channel and design a lightweight channel attention mechanism to restore channel
diversity. This design provides a new perspective on balancing efficiency and representation power.

Architecture. As shown in Figure 3(d), given input features X ∈ RH×W×C , we first apply average
pooling to obtain a collapsed single channel X ′ ∈ RH×W×1, which is then processed by large-kernel
operations. To enhance adaptability across different datasets and tasks, the large-kernel operation is
implemented as a learnable convolution with pixel-wise adaptive parameters, formally defined as
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Figure 4: Experimental results with ker-
nel sizes ranging from 3 to 63.

Xs = Ws ∗ X ′, where (3)

Ws = Conv1×1(X
′) ∈ RH×W×K2

, (4)

where Ws denotes the learnable parameters of the K ×K
large-kernel convolution, and Xs is the spatially modu-
lated single-channel feature map. The symbol ∗ denotes
convolution. To determine K, we conduct preliminary
experiments with kernel sizes ranging from 3 to 63, with
implementation details provided in the Appendix. Fig-
ure 4 shows that performance consistently improves with
larger kernels. Remarkably, this increase in kernel size
introduces only 0.02M additional parameters and 0.06G
FLOPs. Based on these results, we set K = 63.

As large-kernel learning is performed only on a single channel, we introduce a lightweight channel
attention to restore channel diversity. Specifically, average pooling is used to X ′ to obtain single-
channel global information, which is then passed through a 1×1 convolution to generate channel-wise
attention weights Wc ∈ R1×1×C . These weights are applied to the input X for channel modulation.
Compared with regular full-size attention (Chen et al., 2022), which learns channel weights directly
from the input of size H×W ×C, our lightweight design significantly reduces parameter count while
preserving performance. Finally, the output of the LKM is given by X̂ = LKM(X) = Xs⊗X⊗Wc.

3.2 LARGE KERNEL FUSION MODULE (LKFM)

Our LKM effectively captures explicit long-range dependencies through large-kernel operations;
however, it may overlook local and multi-scale information, which is critical for handling degradations
of varying sizes in image restoration. To address this limitation, we propose the LKFM, which
facilitates interactions between local–large and large–large receptive fields. Specifically, the input
features are divided into two groups along the channel dimension: one group progressively enlarges
the receptive field up to 63× 63, while the other continually embeds local information into the first
group. We employ an octave-like channel partition and kernel-scaling strategy to allocate larger
kernels to more channels. Moreover, inspired by channel redundancy, we match the channel counts
between groups through simple feature replication, thereby further improving efficiency.

Formally, given input features F ∈ RH×W×C , LKFM first expands the channel dimension using
a 1× 1 convolution, producing F ′ ∈ RH×W×2C for subsequent operations. F ′ is then partitioned
into N channel segments, {F1, . . . , FN}, which are further grouped into F1 ∈ RH×W× C

2N−2 and
{F2, . . . , Fn, . . . , FN} with Fn ∈ RH×W× C

2N−n . The segment F1 is recursively processed by a
sequence of operators (see Figure 3(c)), primarily involving LKM with a specific kernel size K. For
the ith operator (i ∈ [1, N − 2]), the computation is formally defined as

F̂i = ConvDW
7×7(Expand(F̃i)), where F̃i = LKMi(Z)⊗ ConvDW

3×3(Fi+1), (5)
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Table 1: Desnowing results on Snow100K and CSD.
Snow100K CSD Params FLOPs

Method PSNR SSIM PSNR SSIM (M) (G)

IRNeXt (Cui et al., 2023c) 33.61 0.95 37.29 0.99 5.46 42.1
MTF-L V1 (Qiu et al., 2023) 33.79 0.95 - - 7.43 88.1
ConvIR-B (Cui et al., 2024a) 33.92 0.96 39.10 0.99 8.63 71.2
MTF-L V2 (Jin et al., 2025) 34.01 0.96 - - 7.29 86.0

Ours-B 34.39 0.96 39.43 0.99 7.27 63.14

Table 2: Dehazing results on Haze4k.
Method PSNR SSIM Params FLOPs

PMNet (Ye et al., 2022) 33.49 0.98 18.90 81.1
FSNet (Cui et al., 2023b) 34.12 0.99 13.29 110.5
MTF-L V1 (Qiu et al., 2023) 34.47 0.99 7.43 88.1
ConvIR-L (Cui et al., 2024a) 34.50 0.99 14.83 129.9
MTF-L V2 (Jin et al., 2025) 34.92 0.99 7.29 86.0

Ours-B 36.33 0.99 7.27 63.14

Table 3: Dehazing results on SOTS-Indoor.
Method PSNR SSIM Params FLOPs

DeHamer (Guo et al., 2022) 36.63 0.988 132.45 48.93
Fourmer (Zhou et al., 2023) 37.32 0.990 1.29 20.6
DehazeFormer (Song et al., 2023) 38.46 0.994 4.63 48.64
OKNet-S (Cui et al., 2024b) 37.59 0.994 2.40 17.86
DEA-Net (Chen et al., 2024c) 39.16 0.992 2.84 24.88
MaIR (Li et al., 2025a) 39.45 0.997 3.40 24.03

Ours-T 39.64 0.997 0.85 12.76

Table 4: Deraining results on DID and SPA.
DID-Data SPA-Data

Method PSNR SSIM PSNR SSIM Params

Restormer (Zamir et al., 2022) 35.29 0.9641 47.98 0.9921 26.13
DRSformer (Chen et al., 2023) 35.35 0.9646 48.54 0.9924 33.65
NeRD-Rain-S (Chen et al., 2024b) 35.36 0.9647 48.90 0.9936 10.53
FADformer (Gao et al., 2024) 35.48 0.9657 49.21 0.9934 6.96
FourierMamba (Li et al., 2025c) 35.49 0.9659 49.18 0.9931 17.62

Ours-B 35.58 0.9664 49.54 0.9939 7.27

where F̂i represents the output and Z the input feature, which can be either F1 (i = 1) or F̂i−1. The
Expand operation adjusts channel dimensions across scales by duplicating features twice along the
channel dimension, motivated by observations of channel redundancy. A 7×7 depthwise convolution
is then applied to refine the coarsely expanded features. Compared with convolution-based expansion,
this strategy substantially reduces parameters while achieving comparable performance. The final
operator employs a 1× 1 convolution to generate the output of the LKFM. In our implementation, the
last operator uses a kernel size of 63, while preceding operators adopt progressively smaller kernels in
an octave-like manner, i.e.,

⌊
63

2N−1−i

⌋
. Notably, the LKFM introduces only negligible computational

overhead compared to its single-scale counterpart, yet yields significant performance gains.

4 EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed ArtIR, we conduct extensive experiments on three
representative image restoration tasks: (a) single-degradation, (b) all-in-one, and (c) composite degra-
dation. We further extend the evaluation to domain-specific tasks, including (d) UHD (3840×2160),
(e) medical imaging, and (f) remote sensing. In the result tables, the best and second-best perfor-
mances are highlighted in magenta and blue, respectively. To balance performance and efficiency, we
scale our model by adjusting the number of blocks and channels across stages, yielding three variants.
Additional details on the datasets and training configurations are provided in the Appendix.

4.1 SINGLE-DEGRADATION IMAGE RESTORATION RESULTS

In this setting, ArtIR is evaluated on six synthetic and real-world datasets spanning three image
restoration tasks: desnowing, dehazing, and deraining. Separate models are trained for each dataset.

Image desnowing. We evaluate ArtIR on two widely used desnowing datasets: Snow100K (Liu et al.,
2018) and CSD (Chen et al., 2021b). Table 1 shows that our approach significantly outperforms recent
competitive methods. Notably, it achieves a 0.38 dB PSNR improvement over the Transformer-based
MTF-L V2 (Jin et al., 2025), while using similar parameters and incurring lower computational cost.

Image dehazing. We evaluate dehazing performance on Haze4K (Liu et al., 2021), with results
reported in Table 2. Our model achieves a substantial improvement over MTF-L V2 (Jin et al., 2025).
We further compare against lightweight dehazing models on SOTS-Indoor (Li et al., 2018). Table 3
shows that our tiny variant surpasses the Mamba-based MaIR (Li et al., 2025a) by 0.19 dB in PSNR,
while reducing parameters by 75% and FLOPs by 47%, highlighting the efficiency of our design.

Image deraining. We compare our model with state-of-the-art deraining algorithms on the synthetic
DID-Data (Zhang & Patel, 2018) and real-world SPA-Data (Wang et al., 2019) datasets. As shown in
Table 4, our model performs strongly in both synthetic and real-world scenarios. On the real-world
dataset in particular, it achieves substantial gains over the frequency-based FourierMamba (Li et al.,
2025c) in both PSNR and SSIM, while requiring only 41% of the parameters.
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Table 5: Quantitative comparisons under the all-in-one image restoration setting.
Dehazing Deraining Denoising Deblurring Low-Light

SOTS Rain100L BSD68 GoPro LOLv1 Average
Method Params PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer (Zamir et al., 2022) 26M 24.09 0.927 34.81 0.962 31.49 0.884 27.22 0.829 20.41 0.806 27.60 0.881
TransWeather (Valanarasu et al., 2022) 38M 21.32 0.885 29.43 0.905 29.00 0.841 25.12 0.757 21.21 0.792 25.22 0.836
IDR (Zhang et al., 2023) 15M 25.24 0.943 35.63 0.965 31.60 0.887 27.87 0.846 21.34 0.826 28.34 0.893
PromptIR (Potlapalli et al., 2023) 36M 26.54 0.949 36.37 0.970 31.47 0.886 28.71 0.881 22.68 0.832 29.15 0.904
InstructIR-5D (Conde et al., 2024) 17M 27.10 0.956 36.84 0.973 31.40 0.873 29.40 0.886 23.00 0.836 29.55 0.908
Perceive-IR (Zhang et al., 2025a) 42M 28.19 0.964 37.25 0.977 31.44 0.887 29.46 0.886 22.88 0.833 29.84 0.909
AdaIR (Cui et al., 2025) 29M 30.53 0.978 38.02 0.981 31.35 0.889 28.12 0.858 23.00 0.845 30.20 0.910

Ours-B 7M 30.62 0.978 38.08 0.983 31.47 0.893 29.38 0.884 22.12 0.855 30.33 0.919

Table 6: PSNR scores of directly applying the pre-trained all-in-one model to three denoising datasets:
BSD68 (Martin et al., 2001), Urban100 (Huang et al., 2015) and Kodak24 (Rich, 1999).

BSD68 Urban100 Kodak24
Method σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 Average

TransWeather (Valanarasu et al., 2022) 31.16 29.00 26.08 29.64 27.97 26.08 31.67 29.64 26.74 28.66
IDR (Zhang et al., 2023) 34.11 31.60 28.14 33.82 31.29 28.07 34.78 32.42 29.13 31.48
InstructIR-5D (Conde et al., 2024) 34.00 31.40 28.15 33.77 31.40 28.13 34.70 32.26 29.16 31.44
AdaIR (Cui et al., 2025) 34.01 31.35 28.06 34.10 31.68 28.29 34.89 32.38 29.21 31.55

Ours-B 34.14 31.47 28.19 34.38 32.01 28.71 35.08 32.59 29.43 31.78

Table 7: Quantitative results on CDD-11 (Guo et al., 2024b) for composite degradation image
restoration, which comprises 11 degradation categories. Results are reported in PSNR and SSIM .
Method Params Low (L) Haze (H) Rain (R) Snow (S) L+H L+R L+S H+R H+S L+H+R L+H+S Average

AirNet 8.93M 24.83 .778 24.21 .951 26.55 .891 26.79 .919 23.23 .779 22.82 .710 23.29 .723 22.21 .868 23.29 .901 21.80 .708 22.24 .725 23.75 .814
PromptIR 35.6M 26.32 .805 26.10 .969 31.56 .946 31.53 .960 24.49 .789 25.05 .771 24.51 .761 24.54 .924 23.70 .925 23.74 .752 23.33 .747 25.90 .850
WGWSNet 25.76M 24.39 .774 27.90 .982 33.15 .964 34.43 .973 24.27 .800 25.06 .772 24.60 .765 27.23 .955 27.65 .960 23.90 .772 23.97 .771 26.96 .863
WeatherDiff 82.96M 23.58 .763 21.99 .904 24.85 .885 24.80 .888 21.83 .756 22.69 .730 22.12 .707 21.25 .868 21.99 .868 21.23 .716 21.04 .698 22.49 .799
OneRestore 5.98M 26.48 .826 32.52 .990 33.40 .964 34.31 .973 25.79 .822 25.58 .799 25.19 .789 29.99 .957 30.21 .964 24.78 .788 24.90 .791 28.47 .878
MoCE-IR-S 11.47M 27.26 .824 32.66 .990 34.31 .970 35.91 .980 26.24 .817 26.25 .800 26.04 .793 29.93 .964 30.19 .970 25.41 .789 25.39 .790 29.05 .881

Ours-S 2.46M 27.45 .837 35.93 .994 34.97 .974 36.99 .981 26.79 .836 26.78 .817 26.54 .809 32.10 .973 32.93 .976 26.00 .810 26.13 .809 30.24 .892

4.2 ALL-IN-ONE IMAGE RESTORATION RESULTS

Following prior works (Cui et al., 2025; Zhang et al., 2025a; Conde et al., 2024), the model is trained
on a mixed dataset comprising five tasks and subsequently evaluated on each task. As shown in
Table 5, our approach outperforms competing methods on most metrics, achieving average gains of
0.13 dB PSNR and 0.009 SSIM over the frequency-based AdaIR (Cui et al., 2025) across all datasets.
Notably, this advantage is obtained with 76% fewer parameters and without reliance on explicit
degradation priors, underscoring the strong representational capacity of our large-kernel design.

To further assess generalization, we apply the pre-trained all-in-one model to two additional denoising
benchmarks, Urban100 (Huang et al., 2015) and Kodak24 (Rich, 1999). Table 6 demonstrates that
the proposed model exhibits stronger robustness, surpassing the second-best method, AdaIR (Cui
et al., 2025), on both datasets under different noise levels.

4.3 COMPOSITE DEGRADATION IMAGE RESTORATION RESULTS

We further evaluate our model on CDD-11 (Guo et al., 2024b), a composite degradation benchmark
where each image is affected by up to three degradation types. Results across all 11 categories are
reported in Table 7. Our model achieves the best performance in every category and, on average,
surpasses the recent dynamic MoCE-IR-S (Zamfir et al., 2025) by 1.19 dB in PSNR and 0.011 in
SSIM. Notably, on the haze subset, the improvement reaches 3.27 dB in PSNR. Moreover, our model
contains only 2.46M parameters, substantially fewer than prior methods. Figure 5 provides visual
comparisons with leading approaches, illustrating the superior capability of our model in removing
composite degradations from challenging examples.

4.4 DOMAIN-SPECIFIC IMAGE RESTORATION RESULTS

To verify the generality of our design, we evaluate ArtIR on domain-specific tasks, including ultra-
high-definition (UHD), medical imaging, and remote sensing.
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19.88 dB 23.75 dB 28.24 dB 27.23 dB 32.63 dB PSNR

15.29 dB 20.01 dB 26.99 dB 25.71 dB 32.42 dB PSNR
Haze+Snow PromptIR OneRestore MoCE-IR-S Ours Reference

Figure 5: Visual results on CDD-11 (Guo et al., 2024b) for composite degradation image restoration.

Table 8: Dehazing results on UHD-Haze.
Method PSNR SSIM Params

Zheng et al. (Zheng et al., 2021) 18.04 0.811 34.5M
Restormer (Zamir et al., 2022) 12.72 0.693 26.1M
Uformer (Wang et al., 2022) 19.83 0.737 20.6M
DehazeFormer-B (Song et al., 2023) 15.37 0.725 2.5M
UHDFormer (Wang et al., 2024a) 22.59 0.943 0.339M
UHDDIP (Wang et al., 2024b) 24.69 0.952 0.81M
ERR (Zhao et al., 2025) 25.12 0.950 1.131M

Ours-T 26.75 0.963 0.85M

Table 9: Deblurring results on UHD-Blur.
Method PSNR SSIM Params

Restormer (Zamir et al., 2022) 25.21 0.693 26.1M
Uformer (Wang et al., 2022) 25.27 0.737 20.6M
Stripformer (Tsai et al., 2022) 25.05 0.725 19.7M
FFTformer (Kong et al., 2023) 25.41 0.725 16.6M
UHDFormer (Wang et al., 2024a) 28.82 0.844 0.339M
UHDDIP (Wang et al., 2024b) 29.51 0.858 0.81M
ERR (Zhao et al., 2025) 29.72 0.861 1.131M

Ours-T 30.55 0.877 0.85M

Table 10: CT image denoising results on the
AAPM (McCollough et al., 2017) dataset.
Method PSNR↑ SSIM↑ RMSE↓ Params

TransCT (Zhang et al., 2021) 32.62 0.908 9.533 13.23
Eformer (Luthra et al., 2021) 33.35 0.918 8.803 0.34
CTformer (Wang et al., 2023) 33.25 0.913 8.897 1.45
DenoMamba (Öztürk et al., 2024) 33.53 0.915 8.612 112.62
Restore-light (Yang et al., 2025) 33.64 0.918 8.514 1.16

Ours-T 33.76 0.919 8.400 0.85

Table 11: PET image synthesis results on the
PolarStar M660 (Yang et al., 2025) dataset.
Method PSNR↑ SSIM↑ RMSE↓ Params

CycleWGAN (Zhou et al., 2020) 36.62 0.929 0.091 1.00
DCITN (Zhou et al., 2022b) 36.09 0.929 0.097 0.08
DRMC (Yang et al., 2023) 36.00 0.935 0.100 0.62
ARGAN (Luo et al., 2022) 36.73 0.941 0.090 31.14
Restore-light (Yang et al., 2025) 36.96 0.943 0.089 1.16

Ours-T 37.25 0.947 0.086 0.85

Table 12: Remote sensing image dehazing results on SateHaze1k.
Thin Moderate Thick

Method PSNR SSIM PSNR SSIM PSNR SSIM

AIDTransformer (Kulkarni & Murala, 2023) 21.09 0.884 23.56 0.929 19.18 0.804
DehazeFormer (Song et al., 2023) 24.26 0.909 25.69 0.938 22.26 0.835
EMPF (Wen et al., 2023) 22.69 0.896 25.17 0.932 20.23 0.822
Trinity (Chi et al., 2023) 22.65 0.896 24.73 0.934 20.57 0.824
FocalNet (Cui et al., 2023a) 24.16 0.916 25.99 0.947 21.69 0.847
FMambaIR (Luan et al., 2025) 24.58 0.912 25.83 0.939 22.65 0.850

Ours-S 25.18 0.927 27.12 0.938 22.93 0.860

Table 13: Runtime efficiency.
Task/Data Method Time/s Speedup

Desnowing MTF-L V2 1.01
Snow100K Ours-B 0.12 ×8.4
Dehazing MTF-L V2 0.83
Haze4k Ours-B 0.11 ×7.5
Mixed MoCE-IR-S 0.49
CDD-11 Ours-S 0.20 ×2.5
All-in-one AdaIR 0.16
Rain100L Ours-B 0.06 ×2.7

UHD image restoration. We evaluate ArtIR on UHD-Haze (Wang et al., 2024a) and UHD-
Blur (Wang et al., 2024a) for UHD dehazing and deblurring, respectively. The results are reported in
Table 8 and Table 9. Although not specifically designed for UHD tasks, our model outperforms the
recent ERR (Zhao et al., 2025) algorithm on both benchmarks. In particular, ArtIR achieves PSNR
gains of 1.63 dB on UHD-Haze and 0.83 dB on UHD-Blur, while requiring fewer parameters.

Medical image restoration. We evaluate our model on two medical imaging tasks, namely CT
image denoising and PET image synthesis, using the AAPM (McCollough et al., 2017) and PolarStar
M660 (Yang et al., 2025) datasets, respectively. Following (Yang et al., 2025), we compare against
previous methods using PSNR, SSIM, and RMSE. As shown in Tables 10 and 11, our model
consistently outperforms the specialized Restore-light (Yang et al., 2025) algorithm on both datasets
while requiring fewer parameters, highlighting its potential for medical image restoration.

Remote sensing image restoration. For this task, we train separate models on three subsets of the
SateHaze1k dataset (Huang et al., 2020). Results for thin, moderate, and thick haze levels are reported
in Table 12. Our method outperforms both task-specific and general image restoration algorithms. In
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Table 14: Ablation results. Further ablation studies can be found in the Appendix.
(a) Ablation study for the proposed module.

Method PSNR FLOPs Params

Conv Block (Base) 31.38 13.32 0.86
SMA 31.80 12.65 0.81
LKFM w/o channel 36.18 12.81 0.85
Full 36.92 12.81 0.85

(b) Number of segments in LKFM.

N PSNR FLOPs Params

2 34.86 12.71 0.83
3 35.75 12.78 0.84
4 36.18 12.81 0.85
5 36.12 12.83 0.86

(c) Alternative large-kernel operations.

Method PSNR FLOPs Params

Depth-wise Conv 36.14 16.81 1.83
Decomposition 35.70 13.04 0.91
Frequency-based 35.51 12.92 0.94
Ours 36.92 12.81 0.85

particular, it surpasses the recent Mamba-based FMambaIR (Luan et al., 2025) across all three subsets
in terms of PSNR. These findings indicate the robustness of our model under diverse conditions.

4.5 RUNTIME COMPARISON

We evaluate the runtime efficiency of our model against recent representative algorithms across
multiple scenarios. As shown in Table 13, our model is approximately 8× faster than the Transformer-
based MTF-L V2 (Jin et al., 2025) on single-degradation tasks. For the composite degradation task, it
achieves a 2.5× speedup over MoCE-IR-S (Zamfir et al., 2025), which is specifically designed to
accelerate inference using Mixtures of Experts. In addition, our model outperforms the all-in-one
algorithm, AdaIR (Cui et al., 2025), in runtime efficiency.

4.6 ABLATION STUDIES

For the ablation studies, we train the tiny model on the RESIDE-Indoor dataset (Li et al., 2018) for
100k iterations and evaluate its performance on the SOTS-Indoor dataset (Li et al., 2018). Additional
ablation studies on the large-kernel design are included in the Appendix.

Effects of LKFM. In our model, we adopt LKFM in the bottleneck and employ SMA at other
scales. As a baseline, we construct a model using convolution blocks in all stages, where the split-
and-multiplication operations in SMA are replaced with a 1× 1 convolution for channel reduction.
This baseline, denoted as Conv Block in Table 14(a), achieves 31.38 dB in PSNR. Our SMA, which
incorporates a gated mechanism to regulate information flow, improves performance by 0.42 dB
while maintaining higher computational efficiency. Replacing SMA in the bottleneck with our spatial
LKFM (without channel attention) yields a 4.38 dB gain with negligible computational overhead.
With the addition of lightweight channel attention, the complete model achieves the best performance,
surpassing the convolutional baseline by 5.54 dB and further enhancing efficiency.

Multi-scale learning in LKFM. We implement multi-scale representation learning in LKFM by
splitting features into segments. To evaluate this design, we conduct ablation experiments with
different numbers of segments, as reported in Table 14(b). Overall, performance improves with more
segments, confirming the effectiveness of the multi-scale strategy. In the final model, the number of
segments is set to 4, providing a better trade-off between accuracy and efficiency.

Alternatives to large-kernel operations. We compare our method with alternative designs by
replacing the LKFM in our framework. As shown in Table 14(c), a 63× 63 depth-wise convolution
achieves 36.14 dB in PSNR. Decomposing this convolution into smaller components following (Wang
et al., 2024c), namely, a 13 × 13 depth-wise convolution, a dilated 9 × 9 depth-wise convolution
with dilation rate 7, and a point-wise convolution, improves efficiency but reduces accuracy. The
frequency-based variant (Mao et al., 2023), which applies a 1× 1 convolution to the concatenated
Fourier real and imaginary components, attains only 35.51 dB in PSNR. In contrast, our method
delivers higher accuracy with lower computational cost and fewer parameters.

5 CONCLUSION

This paper presents an efficient and effective network for image restoration by leveraging large-kernel
operations. Motivated by the observed channel redundancy in restoration models, we apply adaptive
large-kernel operators directly to single-channel feature maps. To recover channel diversity, we
introduce a lightweight channel attention mechanism. In addition, to enhance multi-scale learning, we
design a fusion module that progressively integrates large-scale contextual information of different
sizes with local details. The resulting network attains state-of-the-art performance across three generic
image restoration scenarios, namely single-degradation, all-in-one, and composite degradation, while
preserving high computational efficiency and fast inference. Furthermore, ArtIR demonstrates strong
robustness on domain-specific tasks, including UHD, medical imaging, and remote sensing.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section outlines the implementation details for various image restoration settings. To ensure fair
comparison, we scale our model by adjusting the number of blocks and channels at each scale of the
encoder and decoder. The specifications of the three model variants are summarized in Table 15. In
practice, the expand operation in LKFM is implemented by interleaving features along the channel
dimension, duplicating each channel to achieve expansion. FLOPs are measured on 256× 256× 3
patches, and all experiments are conducted on NVIDIA Tesla A100 GPUs. The model used in the
experiments of Figure 4 corresponds to Table 14(b) with N = 2. Following (Cui et al., 2024b), the
kernel size is increased to 63.

For fairness, no additional training tricks are applied. The code and pre-trained models will be
released publicly. The ChatGPT 5 model is used to polish writing.

Table 15: Architectural specifications of the three variants of the proposed network.
Variant [L1, L2, L3, L4] Num. of Channels Params FLOPs

Ours-T (Tiny) [1, 1, 1, 4] [32, 64, 128, 128, 64, 32, 32] 0.85M 12.76G
Ours-S (Small) [2, 3, 4, 4] [32, 64, 128, 128, 64, 32, 32] 2.46M 23.73G
Ours-B (Base) [3, 3, 6, 4] [48, 96, 192, 192, 96, 48, 48] 7.27M 63.14G

The runtime evaluation is performed on an NVIDIA RTX 4090 GPU. Scores are reported as the
average runtime over all images in the corresponding datasets. For the mixed-degradation task, we
use the low-light image enhancement dataset, while for the all-in-one task, we adopt Rain100L (Yang
et al., 2017).

Single-degradation image restoration. The model is trained separately on each dataset using the
Adam optimizer (Kingma, 2014) with an initial learning rate of 1× 10−3, which is gradually reduced
to 1× 10−7 via cosine annealing. Training follows prior arts (Cui et al., 2023a; Cho et al., 2021),
using the dual-domain L1 loss and typically running for 300k iterations (Zamir et al., 2022). For
deraining datasets, consistent with previous methods (Zamir et al., 2022; Chen et al., 2023), evaluation
is performed on the Y channel of the YCbCr color space.

All-in-one image restoration. Our dataset preparation follows previous works (Potlapalli et al., 2023;
Cui et al., 2025), as summarized in Table 16. The model is trained on a compound dataset collected
from five tasks: dehazing, deraining, denoising, deblurring, and low-light image enhancement. For
denoising, noisy images are generated by adding Gaussian noise with levels σ ∈ {15, 25, 50} to
clean images. Training configurations largely follow prior methods (Potlapalli et al., 2023; Cui et al.,
2025). Specifically, the model is trained on 128× 128× 3 patches for 130 epochs with a batch size
of 32 and an initial learning rate of 2× 10−4.

Table 16: Summary of datasets used in all-in-one experiments.
Setting Dehazing Deraining Denoising Deblurring Enhancement

Train RESIDE Rain100L WED, BSD400 GOPRO LOL
Test SOTS Rain100L BSD68, Urban100, Kodak24 GOPRO LOL

Composite degradation image restoration. The basic setup for this task follows that of the
single-degradation setting.

Domain-specific image restoration tasks. The training and dataset configurations for UHD, medical
imaging, and remote sensing follow representative methods in each domain (Yang et al., 2025; Zhao
et al., 2025; Luan et al., 2025), without introducing additional strategies to enhance performance.
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A.2 MORE RELATED WORK: MULTI-TASK IMAGE RESTORATION

Recently, multi-task image restoration has attracted considerable attention for its ability to address
multiple degradations within a single model (Fan et al., 2019; Zhu et al., 2023; Jiang et al., 2025;
2024; Zhang et al., 2025b; Ai et al., 2024; Tian et al., 2025; Rajagopalan et al., 2025; Hu et al., 2025a).
In this study, we evaluate ArtIR under two multi-task settings: all-in-one and composite degradation.
Existing all-in-one methods commonly follow a two-step paradigm: first extracting degradation
information from inputs, and then using this information for degradation-aware restoration. For
example, AirNet (Li et al., 2022) contrastively extracts degradation cues from degraded images,
while PromptIR (Potlapalli et al., 2023) embeds informative features into learnable parameters. More
recently, large models and additional modalities have been introduced to derive more discriminative
features from inputs (Zhang et al., 2025a; Conde et al., 2024; Luo et al., 2024). Another line of work
explores dynamic learning mechanisms (e.g., Mixtures of Experts) to coordinate different sub-tasks
and improve efficiency (Wu et al., 2024; Zamfir et al., 2025; Dudhane et al., 2024). For composite
degradations, OneRestore (Guo et al., 2024b) develops a scene descriptor-guided Transformer that
incorporates both visual and textual inputs (Zhou et al., 2022a; Feijoo et al., 2025).

In contrast to these approaches, we investigate the use of large-kernel operations for multi-task image
restoration. Despite not relying on explicit degradation priors, our model achieves performance
competitive with state-of-the-art algorithms while maintaining high efficiency. This advantage
primarily arises from its strong representational capacity and adaptive learning mechanism. We hope
that our model can serve as a solid baseline for future research in this area.

A.3 EVALUATION USING PERCEPTUAL METRICS

In addition to distortion-based metrics, we evaluate our pre-trained all-in-one model using the
perceptual metric LPIPS (Zhang et al., 2018a) and compare it with the state-of-the-art all-in-one
algorithm (Cui et al., 2025). As shown in Table 17, our model achieves lower LPIPS scores than the
competing method across most noise levels.

Table 17: LPIPS (↓, lower is better) comparison with the state-of-the-art all-in-one method (Cui et al.,
2025) on three denoising datasets.

BSD68 Urban100 Kodak24
Method σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

AdaIR 0.0634 0.1114 0.2105 0.0419 0.0660 0.1221 0.0835 0.1299 0.2259

Ours-B 0.0599 0.1099 0.2157 0.0388 0.0645 0.1213 0.0790 0.1273 0.2259

A.4 MORE ABLATION STUDIES

Channel attention. We propose an extremely lightweight channel attention mechanism within our
LKM. For comparison, we evaluate a full-size channel attention variant that generates attention
weights directly from the original input features (e.g., X in Figure 3(d)). This variant attains 36.9 dB
in PSNR, which is slightly lower (-0.2 dB) than our design, while introducing an additional 0.05M
parameters. These results demonstrate the effectiveness and efficiency of our approach.

Convolution or copy? In our LKFM, we align the channel dimensions of different segments by
simply duplicating features, motivated by the channel redundancy observed in image restoration
models. To assess this choice, we replace the duplication with convolutional layers for channel
adjustment, which yields 36.19 dB in PSNR, 0.1 dB higher than our design, but at the cost of
increased FLOPs (+0.09G) and parameters (+0.02M). Considering the trade-off, we adopt channel
replication for its simplicity and efficiency.

Alternatives to obtaining the single-channel feature. We explore different lightweight strategies
for generating the single-channel feature in LKM. As shown in Table 18, max pooling yields 35.81
dB in PSNR. Concatenating max-pooled and average-pooled features (Woo et al., 2018) followed
by a 7× 7 convolution for channel reduction slightly improves performance to 35.88 dB. Directly
selecting a single input channel (the last channel) achieves the same performance as max pooling. In
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contrast, average pooling produces the best results, and we therefore adopt this strategy in our final
model.

Table 18: Alternative strategies for obtaining the single-channel feature map.
Method Max pooling Max+Avg pooling Last channel Ours

PSNR 35.81 35.88 35.81 36.18

Adaptive strategy. We adopt a learnable convolutional layer in our LKM to enable adaptive
processing of different inputs. To assess its effectiveness, we replace this dynamic operator with
a simplified variant that applies a 63× 63 depth-wise convolution to the single-channel feature to
generate attention weights, which are then applied via multiplication. This alternative attains only
32.3 dB in PSNR, 3.88 dB lower than our design, despite slightly reduced computational overhead
and parameters (-0.13 GLOPs, -0.03M parameters).

A.5 DISCUSSION

The design of our large-kernel operation is inspired by the channel redundancy observed in image
restoration models. To further illustrate this phenomenon, we visualize channel similarity results for
additional models, including both Transformer- and convolution-based architectures. As shown in
Figure 6, different channels often exhibit strong similarities and may learn overlapping representations,
albeit to varying degrees. In our model, we adopt an extreme strategy by applying the large-kernel
operation to a single-channel feature. A promising direction for future work is to explore which
channels, and how many, should share large-kernel operations. However, under the current design,
such an extension would inevitably increase computational overhead.
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Figure 6: Visualizations of channel similarity for additional models: the Transformer-based MTF-L
V2 (Jin et al., 2025) (top) and the convolutional NAFNet baseline (Chen et al., 2022) (bottom).

A.6 MORE VISUAL RESULTS

We first present the t-SNE results of representations learned by our all-in-one model. As shown in
Figure 7, the model learns discriminative features for different inputs without relying on explicit
priors, highlighting the strong representational capacity of our design.

Furthermore, we visualize the feature maps learned by the local segment and the first large-kernel
operator in our LKFM. As shown in Figure 8, the local channel segment captures detailed features,
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while the large-kernel operation provides broader contextual perception, demonstrating the effective-
ness of our design. The two groups of visualized features are extracted from different LKB in the
bottleneck of the all-in-one model.

Finally, we provide additional visual comparisons across various image restoration settings, including
single-degradation (Figure 9), all-in-one (Figures 10, 11, 12), and composite degradation (Figure 13).

Denoise
Derain
Dehaze
Deblur
Enhancement

Figure 7: t-SNE visualization of the learned feature representations in our all-in-one model.

Blurry Reference

Local Large-scale

Local Large-scale

Figure 8: Visualizations of feature maps learned in our LKFM.
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13.66 dB 24.57 dB 30.54 dB PSNR
Hazy Image MTF-L V2 Ours Reference

Figure 9: Dehazing results on Haze4K (Liu et al., 2021) under the single-degradation setting.

14.92 dB 26.53 dB 26.86 dB PSNR

14.72 dB 31.08 dB 31.20 dB PSNR
Noisy Image AdaIR Ours Reference

Figure 10: Denoising comparisons on BSD68 (Martin et al., 2001) under the all-in-one setting.
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26.29 dB 40.37 dB 41.88 dB PSNR

27.13 dB 38.03 dB 39.02 dB PSNR

26.85 dB 43.68 dB 45.45 dB PSNR

19.98 dB 19.02 dB 27.37 dB PSNR
Rainy Image AdaIR Ours Reference

Figure 11: Deraining comparisons on Rain100L (Yang et al., 2017) under the all-in-one setting.

11.93 dB 31.45 dB 32.95 dB PSNR
Hazy Image AdaIR Ours Reference

Figure 12: Dehazing comparisons on SOTS-Outdoor (Li et al., 2018) under the all-in-one setting.
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19.09 dB 27.56 dB 24.89 dB 24.85 dB
Input AirNet PromptIR WeatherDiff
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OneRestore MoCE-IR-S Ours Reference

Figure 13: Visual results on CDD-11 (Guo et al., 2024b) for composite degradation image restoration.
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