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ABSTRACT

We develop an approach to estimate the probability that a program sampled from
a large language model is correct. Given a natural language description of a pro-
gramming problem, our method samples both candidate programs as well as can-
didate predicates specifying how the program should behave. This allows learning
a model that forms a well-calibrated probabilistic prediction of program correct-
ness. Our system also infers which predicates are useful to explain the behavior
of the generated code, and humans preferred these in a human study over raw lan-
guage model outputs. Our method is simple, easy to implement, and maintains
state-of-the-art generation accuracy results.

1 INTRODUCTION

Many AI systems attempt to resolve bugs and other software engineering problems by automatically
generating patches purportedly solving GitHub issues, such as Devin Cognition (2024) and Open-
Hands Wang et al. (2024), among many others (Jimenez et al., 2024; Xia et al., 2024; Liu et al.,
2024; Anthropic, 2025). These LLM systems are good, but not perfect. Suppose 75% of the time,
such systems propose a correct fix to the GitHub issue. The other 25% of the time, they produce
plausible looking code containing subtle bugs. Would you use this system?

Many engineers would be reluctant to use such a system, because it fails to build trust with the
user. When it fails, it cannot detect its own failure. When it succeeds, it doesn’t present a human-
understandable explanation of why its program behaves as intended. In this paper we seek steps
towards rectifying this lack of trust by building natural-language conditioned program synthesizers
that are more trustworthy in several complimentary ways:

• Calibration: We want systems that, when they cannot solve a programming problem, simply
return no answer, rather than return a (possibly subtly) incorrect program. We conjecture that
it is better to fall back on the human programmer, rather than risk introducing bugs. Contrast
with natural language translation: Unlike natural language, programs are brittle, and more time-
consuming to look into and understand. And debugging bad code, unlike proofreading language,
can be harder than just writing it yourself. We do this by having a classifier predict whether the
program is correct, and making the classifier well-calibrated (Platt et al., 1999; Kuhn et al., 2023).

• Explainability: To help humans understand the output of a neural network that is writing code,
we want a system that can explain its outputs by generating informative and interpretable checks
on program behavior. We propose a characterization of what makes an explanation of program
behavior ‘good’, and validate in a human user study that this characterization produces better
explanations than a raw large language model by itself.

• Accuracy: Ideally, trustworthy systems should be more accurate, solving more programming
problems. This goal might seem to be in tension with the previous two. Surprisingly, we find our
methods also boost overall accuracy on natural language to code generation problems.

Our high-level approach has a neural network propose candidate program solutions and indepen-
dently propose predicates that correct solutions should satisfy, such as Input/Output tests, known as
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Figure 1: Our speculyzer system inputs a natural language description of a programming prob-
lem. It uses large language models to independently sample candidate programs, and candidate
specifications of what the program should do. Because natural language is informal, we cannot
mechanically check programs against it, but logical relations and input-outputs can be mechanically
checked against. The result of this validation step is fed to a learned model which predicts whether
the problem can be solved; if so, which program is correct; and which specs best explain the behav-
ior of the program, and would be useful for judging whether that program is correct or incorrect.

specifications (‘specs’, Fig. 1). Although specs can refer to a broad range of ways to specify the
behavior of programs, here we only consider two kinds: (1) input-output test cases, and (2) parame-
terized logical relation tests which execute the program and check some relation between input and
output. In general, a spec can be any mechanically checkable property. We check the programs
against the specs, and learn to use this checking to predict if the system knows how to solve the
problem at all, and if so, which program(s) are probably the right solution. Intuitively, we ask the
language model to ‘check its work’ by generating specs. We call our approach speculyzer, short
for ‘Specification Synthesizer’, because in addition to synthesizing programs, it synthesizes specs.

Our work makes the following contributions:

1. Calibration A method to give a well-calibrated probabilistic estimate of whether a program is
correct which enables analysis of metrics connected to trust and safety

2. Explainability A method for identifying the specifications most likely be useful to humans as an
explanation of program behavior, and a validation of that approach in a human study

3. Accuracy Demonstration that the above contributions do not impair the overall accuracy of pro-
grams synthesizers, and can sometimes let them solve more problems overall

2 RELATED WORK

Program synthesis. Automatically constructing software has been a longstanding goal of computer
science (Manna & Waldinger, 1979; Gulwani et al., 2017). Classic program synthesizers input a
formal specification, and then either search or logically derive a program guaranteed to satisfy that
formal specification (Alur et al., 2013).

Large language models for source code. Our work uses large language models for source
code (Chen et al., 2021; Austin et al., 2021). These neural networks generate source code con-
ditioned or ‘prompted’ by a mix of code and natural language (the natural language is usually repre-
sented as code comments). Such models are typically implemented as large transformers (Vaswani
et al., 2017; Brown et al., 2020).

Following the introduction of large transformer-based language models for source code, there has
been work on how to boost the accuracy of those models. Here, accuracy means the probability of
sampling a correct program conditioned on a natural-language prompt. Accuracy is often measured
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by functional correctness with the pass@k metric, which considers drawing k IID samples from the
language model and testing if any samples pass a set of holdout test cases. Toward boosting pass@k,
researchers have considered clustering sampled programs according to the outputs they produce on
test inputs (Shi et al., 2022; Li et al., 2022). For example, AlphaCode prioritizes large ‘clusters’ of
samples with the exact same input-output behavior (Li et al., 2022), effectively reranking the samples
from the language model according to how likely they are to solve the task. Another strategy is to
train a second neural network to predict program correctness (Inala et al., 2022).

The closest work to ours is CodeT (Chen et al., 2023a), which also generates programs as well as
input-output test cases, with the goal of boosting pass@k. The difference between our systems is
that we designed speculyzer to build trust in a variety of ways by synthesizing specifications,
centered around first forming well-calibrated probability estimates, only boosting pass@k as a side
effect. We also incorporate input-output test cases as a special case of specs in general.

Engineering safe, trustworthy language models has received considerable attention by the AI
safety (Thoppilan et al., 2022) and AI alignment communities (Kadavath et al., 2022). These works
find that one can train classifiers which predict the truthfulness or safety of language outputs by in-
specting the hidden activations of the model or even by simply ‘asking’ the model if its output is cor-
rect or safe. We see this family of efforts as complementary: For programs, it is possible to formally
specify correctness properties, which is not generally true in NLP, so we focus on formal properties
(specifications) here. Nonetheless, one can train statistical predictors of program correctness (In-
ala et al., 2022). Broadly however, we think that program synthesis offers unique opportunities for
building trust through symbolic methods. Although statistically reranking language model outputs
via a second neural network improves raw performance, we believe it is a suboptimal trust-builder:
an inscrutable neural network cannot guarantee the correctness of another inscrutable network. Here
we advocate that properties which are symbolically checkable and human-comprehensible should
play a role, and examine certain specifications as basic examples of such properties.

3 METHODS

Given a natural-language prompt describing a programming problem, our goal is to produce a well-
calibrated estimate probability of each program sample from language model being correct. Our
approach independently samples a set of candidate programs P and a set of candidate specs S.
Specs can be either input-output testcases, or logical relations (Fig. 1). We write T for the set of
test cases and R for the set of logical relations, so S = T ∪ R. Each program p ∈ P is checked
against each spec s ∈ S, and basic statistics of program-spec agreement are computed. These
statistics are aggregated by a learned model into an estimated probability that the program is correct.
Programs whose probability falls below a threshold are discarded. Any remaining programs are
sorted by probability and returned to the user as possible solutions, together with certain specs they
pass. Returning specifications allows the user to check that the code has the intended behavior. This
architecture lets the system learn how to predict when it cannot solve a problem, and also learn to
rank candidate solutions and their corresponding specs.

3.1 SAMPLING PROGRAMS AND SPECS

Given a string prompt describing a programming problem, we sample n = 100 candidate programs
(the set P) and candidate specs (the set S). Both sets are sampled using a pretrained language
model, which can probabilistically generate program source code conditioned on a prompt. We
write P LM(·|prompt) for the conditional distribution over programs, given prompt. If a program
p ∈ P , then p ∼ P LM(·|prompt). To sample specs, we deterministically transform the prompt as
in Fig. 2 and Appendix, then draw iid samples from the language model to construct relations R and
input-output test cases T .

One motivation for generating logical relations is that large language models are famously bad at
predicting the output of a novel program Nye et al. (2021). However, given a generic input, they can
produce a variety of reasonable constraints on that the output should obey, if they are prompted in a
program-of-thought style Chen et al. (2022); Gao et al. (2023). Logical relations also resemble unit
test harnesses, like those used in property based testing, Fink & Bishop (1997) which are likely part
of the model’s training data. We therefore suspected that although input-outputs are the superior
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def sub_list(nums1 : list, nums2 : list) -> list:

    """

    Write a function to subtract two lists element-wise.

    """

    return list(map(lambda x, y: x-y, nums1, nums2))

Generating Program

def sub_list(nums1 : list, nums2 : list) -> list:

    """

    Write a function to subtract two lists element-wise.

    """

    pass # To-do: implement



# Check if sub_list works

assert sub_list([2, 3, 1], [1, 1, 1]) == [1, 2, 0])

Generating Input-Output Specification

[...FEWSHOT EXAMPLES...]

# Problem 3

# Write a function to subtract two lists element-wise.

def sub_list(nums1,nums2):

    pass # To-do: implement

# Test 3   

def test_sub_list(nums1 : list, nums2 : list):

     """

     Given two lists `nums1` and `nums2`, test whether function `sub\_list` is implemented correctly.

     """

     output_list = sub_list(nums1, nums2)

     # check if the length of the output list is the same as the lengths of the input lists

     assert len(output_list) == len(nums1) == len(nums2)

     # check if the output list has the expected elements

     for i in range(len(output\_list)):

         assert output_list[i] == nums1[i] - nums2[i]



# run the testing function `test_sub_list` on a new testcase

test_sub_list([1, 2, 3, 4], [10, 9, 8, 7])

Generating Logical-Relation Specification


Figure 2: Our systems use three types of prompts to generate programs, input-output tests, and
logical relations. Prompts in gray and completion in bold.

form of test for typical programming tasks, logical relations could serve the long tail of novel tasks
that the LLM cannot reliably predict outputs for.

3.2 CHECKING SPECS AGAINST PROGRAMS

To judge the correctness of a program p, we would like to know whether each specification s ∈ S
is actually true of p, notated p |= s. If the specification s is an input-output test, this checking is
trivial: the program p can be run on the input and checked to see if it yields the desired output. But
if s is a logical relation, checking if p |= s over the entire input space becomes undecidable. Thus
we require an approximate validation approach for logical relations. As a heuristic approximation
we ask the language model to generate a few candidate inputs on which to run the relational test,
effectively using the language model as a fuzzer. This causes us to overapproximate the set of
relations a program satisfies. Notionally we write p ⊢T s to mean that spec s is inferred to be true
of program p according to testing methodology T . If T = IO, then p |= s iff p ⊢IO s. If s is a
relation, we instead have p |= s implies p ⊢Rel s. To avoid confusion, we always show the concrete
inputs on which a logical relation was tested.

3.3 SCORING AND ANALYZING TEST COVERAGE

Given programs P and specs S, we produce an estimated probability for each p ∈ P that p is
correct. Assuming, on average, specs correctly formalize the informal natural-language intention,
satisfying more specs should increase our confidence in a program. Additionally, if many sampled
programs exhibit identical behavior on the specs, then we should increase our confidence in those
programs, because this indicates high marginal probability of that behavior under P LM(·|prompt).
This ‘clustering’ of candidate solutions according to their execution behavior, and prioritizing large
clusters, has been successfully used by (Li et al., 2022; Lewkowycz et al., 2022; Shi et al., 2022).
It is also related to observational equivalence from classic program synthesis (Udupa et al., 2013),
which treats programs as identical if they have the same outputs on tests.

Therefore, we estimate the probability of correctness for each program p ∈ P using a logistic re-
gressor over features ϕ(p,P,S) and learned parameters θ. The features include i/o pass rate (input-
output specs passed), relation pass rate (logical-relation specs passed, under fuzzing), cluster size
(# of other programs satisfying the same specs), the ordinal rank of the preceding features and the
normalized log probability of the sampled programs:

scoreθ(p|P,S) = Sigmoid (θ · ϕ(p,P,S) + θ0) (1)
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where the components of ϕ(p,P,S) include the following and their ordinal ranks:

IOPass(p,P, T ∪ R) =
1

|T |
∑
s∈T

1 [p ⊢IO s] RelPass(p,P, T ∪ R) =
1

|R|
∑
s∈R

1 [p ⊢Rel s]

ClusterSize(T, p,P,S) =
∑
p′∈P

∏
s∈S

1 [(p ⊢T s) = (p′ ⊢T s)] where T ∈ {IO,Rel}

NormLogProb(p) =
1

len(p)
logP LM(p|prompt)

We fit θ via maximum likelihood on a corpus D containing triples ⟨P,S,G⟩ of programs P and
specifications S, both sampled from the same problem, and ground-truth testcases G, which serve
as a proxy for program correctness. The ground truth test cases G are assumed to be unavailable at
test time, because our goal is synthesis from informal specifications like natural language. We use
gradient ascent to maximize the log likelihood L.

L =
∑

⟨P,S,G⟩∈D,p∈P

(
1 [p ⊢IO G] log scoreθ(p|P,S) + 1 [p ̸ ⊢IO G] log (1− scoreθ(p|P,S))

)

3.4 TEST TIME METRICS

Precision-Recall. We seek high precision without sacrificing recall. High precision means that
when the system suggests a program, it is probably correct. High recall means a correct program
achieves the top rank: In other words, the system can solve a lot of programming problems, though it
might make more mistakes in the process. The tradeoff between precision and recall can be tuned by
a thresholding parameter, τ . A candidate program is discarded if its score falls below the threshold
τ . If all programs are discarded, the system declines to provide an output for the programming
problem, and otherwise the system outputs a ranked list of programs sorted by score. We define
Precision and Recall as follows, which respectively measure (1) if a correct program is top-ranked
whenever any program scores above τ and (2) how often a correct program scoring above τ is the
top ranked.

Precision@k =
TruePositives@k

PredictedPositives
Recall@k =

TruePositives@k

ActualPositives

TruePositives@k =
∑

⟨P,S,G⟩∈D

1

 ∃p ∈ P : p ⊢IO G∧
τ ≤ scoreθ(p|P,S)∧
p ∈ top-kp′∈Pscore(p′|P,S)


PredictedPositives =

∑
⟨P,S,G⟩∈D

1 [∃p ∈ P : τ ≤ scoreθ(p|P,S)]

ActualPositives =
∑

⟨P,S,G⟩∈D

1 [∃p ∈ P : p ⊢IO G]

We sweep possible values for τ to compute a precision-recall curve. Generically, there is no ‘true’
best trade-off between these desiderata.

Pass rate. The pass@k metric (Austin et al., 2021; Chen et al., 2021) measures the probability of k
samples from P LM(·|prompt) passing the ground-truth test cases, G:

pass@k = Ep1...pk∼P LM(·|prompt)1 [∃pi : pi ⊢IO G]
Note that pass@k is proportional to ActualPositives: The (fraction of) problems where there is at
least one correct answer in the sampled programs.

It is also conventional to combine pass@k with a scoring function that reranks the sampled pro-
grams. This generalizes pass@k to pass@k,n, which measures the probability that, after generating
n candidate programs, a correct one is in the top-k under our scoring function:

pass@k,n = E⟨P,T ,G⟩∼D1

[
∃p ∈ top-kp′∈Pscoreθ(p′|P, T )
where p |= G

]
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4 RESULTS

We study our approach on two popular datasets while using Codex models (Chen et al., 2021)1 of
different sizes, seeking to answer the following research questions:

• Is the classifier well-calibrated? If so, how trustworthy can we make the system (precision),
and how much does that require sacrificing coverage (recall)?

• How can we use the synthesized specifications to act as human-interpretable explanations
of the behavior of the programs constructed by the language model?

• How does our learned reranking impact raw rate of success (pass@k,n)?

We evaluate on programming problems from the Mostly Basic Python Problems (MBPP: Austin
et al. (2021), sanitized version) and HumanEval datasets (Chen et al., 2021). Each of these datasets
contains natural language descriptions of programming problems, and holdout tests to judge pro-
gram correctness. An important difference between them is that HumanEval sometimes includes
example input-outputs as part of the natural language description, while MBPP does not. Having
I/O examples in the problem description makes spec generation easier: some specs are given for
free. On the other hand, humans sometimes spontaneously mix natural language and examples (Ac-
quaviva et al., 2021). Therefore, using both MBPP and HumanEval gives a more robust evaluation,
but we note this qualitative difference between them. We gives further experimental setup details,
such as hyperparameters and example prompts in the Appendix.

4.1 CALIBRATION, PRECISION, AND RECALL

Trustworthy systems should avoid predicting any programs at all when they cannot solve a problem.
Doing so increases precision, the fraction of outputs which are correct, but at the expense of recall,
the fraction of solvable problems where we output a correct solution. Fig. 3 illustrates how one can
adjust this trade-off. For example, we can achieve 100% precision on HumanEval (zero error rate),
in exchange for dropping our recall from 93.4% to 44.4%. Note this zero error rate does not come
from our learned score function memorizing the data: we use cross validation to test each program
using weights trained on other folds. Less extreme tradeoffs are possible, such as 90% precision in
exchange for 90.7% recall.

Striking favorable points on these tradeoffs is, in theory, a result of having a well-calibrated model:
whenever our probabilistic scoring function assigns probability x% to a program being correct, then
approximately x% of the time, that program should actually be correct. We confirm this calibration
property in Fig. 4, also finding that raw log likelihoods from the language model are substantially
less well-calibrated. Calibration allows tuning the threshold τ to achieve a desired precision, because
the free parameter τ acts as a threshold on the probability of correctness needed to output a program.

Fig. 3 also shows that our full method typically performs best on precision/recall statistics in the
most realistic setting, namely using the largest ‘Davinci’ model. Nonetheless, using just input-
output specs, or just logical relations, can be effective on their own, as both outperform the random
baseline which assigns a uniform probability to all programs sampled from the language model.

4.1.1 FURTHER APPLICATION: MIXING LANGUAGE MODELS OF DIFFERENT SIZES

Large language models are expensive and energy-intensive, but often come in smaller, cheaper sizes.
In theory, predicting whether a language model can solve a problem should allow us to efficiently
multiplex between a small cheap model and a large powerful model by only delegating to the large
model those problems which we predict cannot be solved by the smaller model. We use our learned
classifier to perform exactly this multiplexing, with Cushman-size Codex as the cheap model and
Davinci-size as the powerful model as illustrate in Fig. 5

Using our probabilistic model to switch between small and large LLMs, we can approximately halve
the number of queries to the large model while maintaining a similar number of solved programming

1These experiments were conducted during a period when Codex models were widely used in the literature,
allowing proper comparison with concurrent work like CodeT. Additionally, using older models helps avoid
benchmark contamination in HumanEval and MBPP.
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HumanEval MBPP

AUC max R@ AUC max R@
F1 P=.9 F1 P=.9

Davinci (Largest Codex model)
full 0.91 0.91 0.91 0.74 0.80 0.43

IO only 0.86 0.88 0.83 0.69 0.75 0.41
rels only 0.66 0.73 0.27 0.69 0.77 0
random 0.15 0.39 0 0.23 0.48 0

Cushman (Smaller Codex model)
full 0.67 0.72 0.28 0.57 0.65 0.18

IO only 0.66 0.71 0.33 0.55 0.63 0.25
rels only 0.34 0.44 0.14 0.51 0.61 0.14
random 0.08 0.28 0 0.16 0.40 0
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Figure 3: Left: Statistics of these curves, measuring Area Under Curve (AUC), max F1 (harmonic
mean of precision and recall), recall in the high-trust regime: R@P=.9 is recall when precision=90%.
The right figure gives further results.
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Figure 4: Comparing the calibration of our probabilistic scoring function against raw
Codex(Davinci) log likelihood. Normalized probability, Pr[tokens|prompt]

1
tokens length , is the

common metric used for scoring LLM samples (Lin et al., 2022; Si et al., 2022).

problems (Fig. 5). Contemporaneous work Chen et al. (2023b) has also considered similar cascading
of language models, but required bespoke algorithms to learn the multiplexing policy. Here we show
that a decent mixing of language model sizes can be accomplished ‘for free’ when we train a well-
calibrated classifier to predict whether a program is correct.

4.2 SPECS AS EXPLANATIONS FOR PROGRAM BEHAVIOR

No natural language program synthesizer will always produce correct programs: Therefore, the
system needs to explain what a synthesized program p computes, so that the user can confidently
accept or discard it. speculyzer does this by outputting a specification that is true about p,
while being maximally informative as to p’s behavior. Below we formalize what it means to be
‘maximally informative’, and describe a study with human participants that shows that they prefer
the explanations generated by our approach, compared to the raw output of the LLM.

Whenever speculyzer ranks p∗ ∈ P as the best solution to a problem, it selects a spec s∗ ∈ S
to communicate the behavior of p∗. The spec s∗ must be a true fact about p∗, so p∗ ⊢ s∗, but should
also constrain the behavior of p∗. For example, the specification ∀x : p∗(x) = p∗(x) is vacuously
true for any p∗, and so makes a poor explanation, despite holding for the ground-truth program. As
an example of a good explanation, if the program p∗ is incorrect, then the spec s∗ should also be
incorrect, in the sense that it is not true of the ground-truth program, despite holding for p∗.

We formalize this as a rational-communication model of program synthesis (Pu et al., 2020), which
means first defining a joint probability distribution over programs and specifications: P [p, s] ∝
1 [p ⊢ s]1 [p ∈ P]1 [s ∈ S]. Then, we score each specification s by the conditional probability of
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Figure 5: Mixing small cheap models and large powerful models by delegating to the large model
only those problems that our approach thinks that the small model cannot solve. There are some
MBPP problems where small model beats the big one. Our method multiplexes correctly for those.

p∗ given s, i.e. P [p∗|s]. Applying Bayes’ Rule and simplifying, we find that this is equivalent to
ranking specs by how few other programs satisfy them, i.e. their selectivity:

s∗ = argmax
s∈S

P [p∗|s] = argmin
s∈S
p∗⊢s

∑
p∈P

1 [p ⊢ s]

To confirm that this is an effective method of scoring specifications, we recruited 22 human pro-
grammers, and ran an IRB-approved study where we showed them 8 programs synthesized by our
system, together with the top-ranked spec, bottom ranked spec, and a random spec (Fig. 6). Every
spec was a predicate that the program actually satisfied, and was the output of code-davinci-002.
Study participants rated each of the specifications on a 1-7 Likert scale, and were instructed to score
how helpful the specification is in communicating whether the program is correct or incorrect. As
shown in Fig. 7, participants preferred the top-ranking specification over raw specs sampled from
the LLM (p < .05, using a two-tailed t-test), and also dispreferred bottom-ranking specifications
over the raw LLM output (p < .05, using the same statistical test). However, the overall effect size
was modest (Cohen’s d = 0.14), suggesting improving either the spec ranking heuristic or the un-
derlying specs themselves (e.g., by fine-tuning the LLM) could be important in future work. These
results, however, clearly establish that the above probabilistic model is better than the LLM on its
own for generating interpretable explanations about program behavior that allow humans to decide
whether a program is correct or not.

4.3 SPECULYZER FOR RANKING PROGRAMS

So far we have shown how our system forms well-calibrated probability estimates of program cor-
rectness, which allows predicting whether a problem can be solved or not, in addition to inferring
what the best program might be. This is a harder, more general problem than reranking sampled
programs to improve the accuracy of program synthesis. How well then do our probability estimates
serve as a ranking function, and does solving this harder problem sacrifice performance on the easier
challenge of reranking sampled programs? To answer this question, we measure pass@1,100 using
our scoring function to rank sampled programs. This means we sample 100 candidate programs,
use our classifier to assign them probabilities, and then return the 1 program with the highest proba-
bility. We assess our system using repeated 5-fold cross validation and present the results in Figure
8.We can contrast with raw draws from the LLM (random), the state of the art approach to ranking
samples from language models over code (CodeT), and a hypothetical Oracle that always chooses a
correct program, if it exists.

Overall, speculyzer achieves 85.7% pass@1 on HumanEval and 70.5% pass@1 on MBPP.
These are better than comparable published numbers for reranking methods (Chen et al., 2023a;
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def derivative(xs: list):

    """ xs represent coefficients of a polynomial.

    xs[0] + xs[1] * x + xs[2] * x^2 + ....

     Return derivative of this polynomial in the same form.

    >>> derivative([3, 1, 2, 4, 5])

    [1, 4, 12, 20]

    >>> derivative([1, 2, 3])

    [2, 6]

    """

    return [x * i for i, x in enumerate(xs) if i != 0]

PROGRAM

def test_derivative(xs: list):

    """ Given an input `xs`, test whether the function `derivative` 
is implemented correctly.

    """

    ys = derivative(xs)

    assert len(ys) == len(xs) - 1

    for i in range(len(ys)):

        assert ys[i] == xs[i+1] * (i + 1)



# run `test_derivative` on a new testcase        

test_derivative([3, 1, 2, 4, 5])

TOP LOGICAL RELATION

def test_derivative(xs):

    """ Test function derivative().

    """

    # TODO

    pass

    

# run `test_derivative` on a new testcase

test_derivative([2, 3, 4, 10, -12])

RANDOM LOGICAL RELATION

Figure 6: Program and specifications generated by language
model and then reranked by our scoring function.
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Figure 7: User ratings (1-7 Lik-
ert scale) for program speci-
fications: top-ranked, random-
ranked, and bottom-ranked. Par-
ticipants prefer top ranked specs
over random ones, and random
ones over bottom ranked specs.

Inala et al., 2022; Zhang et al., 2022; Ni et al., 2023). This shows that we can achieve calibra-
tion via accurate probability estimates without sacrificing raw accuracy, and can even improve the
state-of-the-art CodeT reranking method.

Method Random Oracle Ours CodeT*

HumanEval
cushman 25.0 81.1 63.3 ±0.59 58.6
davinci 37.5 92.1 85.7 ±0.73 74.8

MBPP
cushman 35.6 78.9 55.6 ±0.35 55.4
davinci 44.6 84.8 70.5 ±0.24 67.7

Figure 8: Pass@1,100: Calibration does not come at the expense of accuracy. CodeT results from
Chen et al. (2023a)

5 CONTRIBUTIONS AND OUTLOOK

We have contributed a program synthesizer that learns to predict when it cannot solve a problem and
selects specs that communicate what each program does. We intend for these to increase the trust
and safety of neural program synthesis and to serve as a modest step toward program synthesizers
that could better collaborate with software engineers. These advances do not come at the expense of
raw accuracy, and also facilitate mixing neural networks of different sizes.

Many directions remain open. The idea of formal specifications as a liaison between programs
and informal natural language opens up the possibility of using richer kinds of specs and verifiers,
tapping years of effort from the programming languages community (D’silva et al., 2008; Baldoni
et al., 2018), at least if we can interface such formalisms with large language models. Replacing
program execution with sophisticated verification would also mitigate the aforementioned security
concerns. Another direction is integration with advanced HCI for program synthesis, such as Peleg
et al. (2020), which develops powerful human interaction paradigms for program synthesis.
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A EXPERIMENTAL SETUP

Sampling from language models. We used Codex models to draw samples using a max-token size
of 300 for our generation of programs and IO tests for both HumanEval and MBPP. For logical
relation tests, we use 768 and 512 for the Davinci and Cushman models respectively. We used
"\ndef", "\n#", "\nclass", "\nif", and "\nprint" as stop tokens for our generation of
programs and input-output test cases, and we used "\n# Problem {number}" as the stop token
for our generation of the logical relations test cases where number is set according to the number of
few-shot examples. We used zero-shot prompting for program and input-output test case generation,
and few-shot prompting for the logical relations specifications generation. We drew samples from
these models using nucleus sampling with temperature = 0.8 and TopP = 0.95.

Logistic regressor. We used the lbfgs solver from scitkit-learn We used repeated 5-fold nested
cross-validation with regularization hyperparameter C = 1.

Reproduciblity statement

• Data: The HumanEval and MBPP dataset are from existing literature and are available
through Azure cloud service. We will also release the samples to facilitate reproducibility.

• Code: We detailed our hyperparameter and also we will make the code public upon publi-
cation.
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B DATASET STATISTICS

Below we show representative dataset statistics for Davinci Codex with temperature 0.8 and
topP=0.95.

Input-Output Logical Relations

HumanEval MBPP HumanEval MBPP

cluster size (# of programs) 12.91 13.62 12.60 14.90
stddev 18.02 20.52 17.82 21.38

average # of test cases per program 348.99 334.67 100 100
stddev 137.18 146.47 0 0

% of programs that
satisfy at least one test 84.02% 82.49% 88.73% 82.43%

C USER STUDY

In the framework of an Institutional Review Board (IRB)-approved study, we recruited 22 users,
primarily consisting of Computer Science students. They were all compensated at rates exceeding
the minimum wage, ensuring fair remuneration.

For the study, each participant was presented with a set of eight programs. These programs were
samples from code-davinci-002 and consider top-rank programs by our system. Alongside each
program, we offered three specifications: the top-ranked spec, the bottom-ranked spec, and a spec
chosen at random. When the random-rank spec has the same score as the top-ranked or bottom-
ranked spec, we re-sampled again.

Participants were requested to rate the utility of each specification using a 1-7 Likert scale. The scor-
ing was based on their judgment of how effectively each spec assisted in determining the correctness
or incorrectness of the corresponding program.

The results, illustrated in Fig. 7, establish that our heuristic is better than just the LLM on its own for
generating interpretable explanations about program behavior that allow humans to decide whether
a program is correct or not. The median values, around 5 for our approach, indicate a preference for
the top-ranked specification over both the random and bottom ones. Besides, in the first quantile, our
approach outperforms the random specification. In the third quantile, our heuristic achieves ratings
of 6, surpassing the bottom-ranked specification.

In Figure 9, we provide a screenshot of the survey used for this study.

D PRECISION-RECALL CURVES

Figure 10 presents four distinct precision-recall curves. Each of these curves corresponds to one of
the four different settings delineated in the table, as shown in Figure 3.

The illustrated curves provide a clear understanding of the relationship between precision and re-
call under various conditions. Interestingly, they demonstrate that high levels of precision can be
achieved without substantially compromising the recall. This insight underscores the potential effec-
tiveness of our approach in maintaining a balance between accurately identifying correct programs
(precision) and still successfully retrieving correct programs in most cases(recall).

E GENERALIZATION ACROSS DATASETS

Unlike recent heuristics for reranking solutions proposed by a large language model, our scheme
involves learning real-valued parameters (θ in Eq. (1). To understand how learned parameters gen-
eralize across datasets, we compute the pass@1 rate and precision-recall stats for models trained on
MBPP, but tested on HumanEval (and vice versa). These statistics are similar by training on differ-
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Figure 9: Screenshot of survey
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Figure 10: Precision-Recall curves for each model and dataset
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ent datasets (Fig. 11), indicating generalization across similar, but not identical, data distributions.

test HumanEval MBPP

train HumanEval MBPP HumanEval MBPP

pass@1 0.86 0.76 0.68 0.70
AUC 0.91 0.77 0.71 0.74

max F1 0.91 0.81 0.76 0.80

Figure 11: Generalization when test/train data are drawn from the same corpus of problems, vs.
drawn from different corpora.

F EXAMPLE ZERO-SHOT PROMPTS FOR PROGRAM GENERATION

For MBPP, to generate programs, we converted the natural language prompt to a function by adding
in the prompt as a docstring for a function with the name of the function called in the ground-truth
test cases. We used the HumanEval prompts as is.

Two examples of zero-shot prompts used for program generation are as follows:

F.1 HUMANEVAL

First example:

def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3

consecutive letters are distinct↪→

For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""

Second example:

def fix_spaces(text):
"""
Given a string text, replace all spaces in it with

underscores,↪→

and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -

fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
"""

F.2 MBPP

First example:

16



Published as a conference paper at ICLR 2025

def sum_range_list(list1 : list, m : int, n : int) -> int:
"""
Write a function to find the sum of numbers in a list within

a range specified by two indices.↪→

"""

Second example:

def diff_even_odd(list1 : list) -> int:
"""
Write a function to find the difference of the first even and

first odd number of a given list.↪→

"""

G EXAMPLE ZERO-SHOT PROMPTS FOR INPUT-OUTPUT GENERATION

We extracted input-output test cases by generating n = 100 times per HumanEval/MBPP prompt,
then extracting each distinct single-line test case from each generation. We do this because each
generation may produce multiple test cases, and we aimed to test each program on a single test
case. For our test case prompts, we used the prompts to generate programs from MBPP and Hu-
manEval, and we added in a pass # To-do: implement statement, a line with a comment
asking Codex to # Check if func name works and another line to asking Codex to assert
func name(.

G.1 HUMANEVAL

First example:

def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3

consecutive letters are distinct↪→

For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""

pass # To-do: implement

# Check if is_happy works
assert is_happy(

Second example:

def fix_spaces(text):
"""
Given a string text, replace all spaces in it with

underscores,↪→

and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -

fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
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fix_spaces(" Example 3") == "_Example-3"
"""

pass # To-do: implement

# Check if fix_spaces works
assert fix_spaces(

G.2 MBPP

First example:

def sum_range_list(list1 : list, m : int, n : int) -> int:
"""
Write a function to find the sum of numbers in a list within

a range specified by two indices.↪→

"""
pass # To-do: implement

# Check if sum_range_list works
assert sum_range_list(

Second example:

def diff_even_odd(list1 : list) -> int:
"""
Write a function to find the difference of the first even and

first odd number of a given list.↪→

"""
pass # To-do: implement

# Check if diff_even_odd works
assert diff_even_odd(

H FEW-SHOT PROMPT FOR LOGICAL RELATIONS SPEC GENERATION

We use two-shot and five-shot examples prompting to guide the model to tests various kinds of
properties for 2k-context-size Cushman model and 8k-context-size Davinci model respectively.

H.1 HUMANEVAL (CUSHMAN)

# Problem 1

from typing import List

def filtered_even_integers(input_list: List[int]) -> List[int]:
""" Given a list of integers, return a list that filters out

the even integers.↪→

>>> filtered_even_integers([1, 2, 3, 4])
[1, 3]
>>> filtered_even_integers([5, 4, 3, 2, 1])
[5, 3, 1]
>>> filtered_even_integers([10, 18, 20])
[]
"""
# TODO
pass
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# Test 1

def test_filtered_even_integers(input_list: List()):
""" Given an input `input_list`, test whether the function

`filtered_even_integers` is implemented correctly.↪→

"""
# execute the function
output_list = filtered_even_integers(input_list)

# check if the output list only contains odd integers
for integer in output_list:

assert integer % 2 == 1
# check if all the integers in the output list can be found

in the input list↪→

for integer in output_list:
assert integer in input_list

# run the testing function `test_filtered_even_integers` on 3
different input cases that satisfy the description↪→

test_filtered_even_integers([31, 24, 18, 99, 1000, 523, 901])
test_filtered_even_integers([2, 4, 6, 8])
test_filtered_even_integers([500, 0, 302, 19, 7, 5])

# Problem 2

def repeat_vowel(input_str: str) -> str:
""" Return a string where the vowels (`a`, `e`, `i`, `o`, `u`,

and their capital letters) are repeated twice in place.↪→

>>> repeat_vowel('abcdefg')
'aabcdeefg'
>>> repeat_vowel('Amy Emily Uber')
'AAmy EEmiily UUbeer'
"""
# TODO
pass

# Test 2

def test_repeat_vowel(input_str: str) :
""" Given an input `input_str`, test whether the function

`repeat_vowel` is implemented correctly.↪→

"""
# execute the function
output_str = repeat_vowel(input_str)

vowels = ['a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U']
# check if the number of vowels in the output string is

doubled↪→

# First get the number of vowels in the input
number_of_vowels_input = sum([input_str.count(vowel) for

vowel in vowels])↪→

# Then get the number of vowels in the output
number_of_vowels_output = sum([output_str.count(vowel) for

vowel in vowels])↪→

assert number_of_vowels_input * 2 == number_of_vowels_output

# run the testing function `test_repeat_vowel` on 3 different
input cases that satisfy the description↪→

test_repeat_vowel('ABCDEabcdeABCDE YOUUOY')
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test_repeat_vowel('I am a student')
test_repeat_vowel('sounds good to me')

H.2 HUMANEVAL (DAVINCI)

# Problem 1

from typing import List

def filtered_even_integers(input_list: List[int]) -> List[int]:
""" Given a list of integers, return a list that filters out

the even integers.↪→

>>> filtered_even_integers([1, 2, 3, 4])
[1, 3]
>>> filtered_even_integers([5, 4, 3, 2, 1])
[5, 3, 1]
>>> filtered_even_integers([10, 18, 20])
[]
"""
# TODO
pass

# Test 1

def test_filtered_even_integers(input_list: List()):
""" Given an input `input_list`, test whether the function

`filtered_even_integers` is implemented correctly.↪→

"""
# execute the function
output_list = filtered_even_integers(input_list)

# check if the output list only contains odd integers
for integer in output_list:

assert integer % 2 == 1
# check if all the integers in the output list can be found

in the input list↪→

for integer in output_list:
assert integer in input_list

# run the testing function `test_filtered_even_integers` on 3
different input cases that satisfy the description↪→

test_filtered_even_integers([31, 24, 18, 99, 1000, 523, 901])
test_filtered_even_integers([2, 4, 6, 8])
test_filtered_even_integers([500, 0, 302, 19, 7, 5])

# Problem 2

def repeat_vowel(input_str: str) -> str:
""" Return a string where the vowels (`a`, `e`, `i`, `o`, `u`,

and their capital letters) are repeated twice in place.↪→

>>> repeat_vowel('abcdefg')
'aabcdeefg'
>>> repeat_vowel('Amy Emily Uber')
'AAmy EEmiily UUbeer'
"""
# TODO
pass

# Test 2
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def test_repeat_vowel(input_str: str) :
""" Given an input `input_str`, test whether the function

`repeat_vowel` is implemented correctly.↪→

"""
# execute the function
output_str = repeat_vowel(input_str)

vowels = ['a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U']
# check if the number of vowels in the output string is

doubled↪→

# First get the number of vowels in the input
number_of_vowels_input = sum([input_str.count(vowel) for

vowel in vowels])↪→

# Then get the number of vowels in the output
number_of_vowels_output = sum([output_str.count(vowel) for

vowel in vowels])↪→

assert number_of_vowels_input * 2 == number_of_vowels_output

# run the testing function `test_repeat_vowel` on 3 different
input cases that satisfy the description↪→

test_repeat_vowel('ABCDEabcdeABCDE YOUUOY')
test_repeat_vowel('I am a student')
test_repeat_vowel('sounds good to me')

# Problem 3

def find_missing_number(nums: List[int]) -> int:
"""
Given a list of n-1 integers in the range of 1 to n, find the

one missing number.↪→

>>> find_missing_number([1, 2, 4, 6, 3, 7, 8])
5
>>> find_missing_number([5, 1, 4, 2])
3
"""
# TODO
pass

# Test 3

def test_find_missing_number(nums: List[int]):
""" Given an input `nums`, test whether the function

`find_missing_number` is implemented correctly.↪→

"""

# execute the function
output = find_missing_number(nums)

n = len(nums) + 1
# check if the output is an integer
assert isinstance(output, int)
# check if the output is in the range of 1 to n
assert 1 <= output <= n
# check if the output is the missing number
assert output not in nums

# run the testing function `test_find_missing_number` on 3
different input cases that satisfy the description↪→
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test_find_missing_number([1, 3, 4, 6, 5, 7, 8])
test_find_missing_number([10, 9, 8, 7, 6, 5, 4, 3, 2])
test_find_missing_number([3, 2, 1, 6, 5, 4, 10, 9, 8])

# Problem 4

def find_kth_largest(nums: List[int], k: int) -> int:
"""
Given an unsorted array of integers, find the kth largest

element.↪→

>>> find_kth_largest([3, 2, 1, 5, 6, 4], 2)
5
"""
# TODO
pass

# Test 4

def test_find_kth_largest(nums: List[int], k: int):
""" Given an input `nums` and `k`, test whether the function

`find_kth_largest` is implemented correctly.↪→

"""
# execute the function
output = find_kth_largest(nums, k)

# check if the output is an integer
assert isinstance(output, int)
# check if the output is in the input list
assert output in nums
# check if the output is the kth largest element
assert output == sorted(nums)[-k]

# run the testing function `test_find_kth_largest` on 3 different
input cases that satisfy the description↪→

test_find_kth_largest([1, 10, 9, 2, 7, 6, -3, 4, 5, 8], 3)
test_find_kth_largest([100, 200, 900, 1000, 80, 101010], 5)
test_find_kth_largest([88, 131, 89, 125, 3, 7], 2)

# Problem 5

def reverse_substrings(s: str, indices: List[int]) -> str:
"""
Given a string s and a list of integers representing starting

and ending indices of substrings↪→

within s (inclusive), reverse each substring and return the
modified string.↪→

>>> reverse_substrings('abcdefg', [1, 2, 4, 6])
'acbdgfe'
"""
# TODO
pass

# Test 5

def test_reverse_substrings(s: str, indices: List[int]):
""" Given an input `s` and `indices`, test whether the

function `reverse_substrings` is implemented correctly.↪→

"""
# execute the function
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output = reverse_substrings(s, indices)

# check if the function is implemented correctly
# check if the output is a string
assert isinstance(output, str)
# check if the output is the same length as the input
assert len(output) == len(s)
# check if the output contains the same characters as the

input↪→

assert set(output) == set(s)
# check if all the substrings are reversed
for i in range(0, len(indices), 2):

assert output[indices[i]:indices[i+1]+1] ==
s[indices[i]:indices[i+1]+1][::-1]↪→

# check if all the other characters are the same
for i in range(len(s)):

# check if i in the indices
if any(indices[i] <= i <= indices[i+1] for i in range(0,

len(indices), 2)):↪→

continue
assert output[i] == s[i]

# run the testing function `test_reverse_substrings` on 3
different input cases that satisfy the description↪→

test_reverse_substrings('apple', [1, 2, 4, 5])
test_reverse_substrings('summerSpringWinterfall', [0, 5, 8, 9,

10, 15, 16, 20])↪→

test_reverse_substrings('lkjhgfdqwert', [0, 3, 4, 7, 9, 11])

H.3 MBPP (CUSHMAN)

# Problem 1

from typing import List

def filtered_even_integers(input_list: List[int]) -> List[int]:
"""
Given a list of integers, return a list that filters out the

even integers.↪→

"""
# TODO
pass

# Test 1

def test_filtered_even_integers(input_list: List()):
"""
Given an input `input_list`, test whether the function

`filtered_even_integers` is implemented correctly.↪→

"""
# execute the function
output_list = filtered_even_integers(input_list)

# check if the output list only contains odd integers
for integer in output_list:

assert integer % 2 == 1
# check if all the integers in the output list can be found

in the input list↪→

for integer in output_list:
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assert integer in input_list

# run the testing function `test_filtered_even_integers` on 3
different input cases that satisfy the description↪→

test_filtered_even_integers([31, 24, 18, 99, 1000, 523, 901])
test_filtered_even_integers([2, 4, 6, 8])
test_filtered_even_integers([500, 0, 302, 19, 7, 5])

# Problem 2

def repeat_vowel(input_str: str) -> str:
"""
Return a string where the vowels (`a`, `e`, `i`, `o`, `u`, and

their capital letters) are repeated twice in place.↪→

"""
# TODO
pass

# Test 2

def test_repeat_vowel(input_str: str) :
"""
Given an input `input_str`, test whether the function

`repeat_vowel` is implemented correctly.↪→

"""
# execute the function
output_str = repeat_vowel(input_str)

vowels = ['a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U']
# check if the number of vowels in the output string is

doubled↪→

# First get the number of vowels in the input
number_of_vowels_input = sum([input_str.count(vowel) for

vowel in vowels])↪→

# Then get the number of vowels in the output
number_of_vowels_output = sum([output_str.count(vowel) for

vowel in vowels])↪→

assert number_of_vowels_input * 2 == number_of_vowels_output

# run the testing function `test_repeat_vowel` on 3 different
input cases that satisfy the description↪→

test_repeat_vowel('ABCDEabcdeABCDE YOUUOY')
test_repeat_vowel('I am a student')
test_repeat_vowel('sounds good to me')

H.4 MBPP (DAVINCI)

# Problem 1

from typing import List

def filtered_even_integers(input_list: List[int]) -> List[int]:
"""
Given a list of integers, return a list that filters out the

even integers.↪→

"""
# TODO
pass
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# Test 1

def test_filtered_even_integers(input_list: List()):
"""
Given an input `input_list`, test whether the function

`filtered_even_integers` is implemented correctly.↪→

"""
# execute the function
output_list = filtered_even_integers(input_list)

# check if the output list only contains odd integers
for integer in output_list:

assert integer % 2 == 1
# check if all the integers in the output list can be found

in the input list↪→

for integer in output_list:
assert integer in input_list

# run the testing function `test_filtered_even_integers` on 3
different input cases that satisfy the description↪→

test_filtered_even_integers([31, 24, 18, 99, 1000, 523, 901])
test_filtered_even_integers([2, 4, 6, 8])
test_filtered_even_integers([500, 0, 302, 19, 7, 5])

# Problem 2

def repeat_vowel(input_str: str) -> str:
"""
Return a string where the vowels (`a`, `e`, `i`, `o`, `u`, and

their capital letters) are repeated twice in place.↪→

"""
# TODO
pass

# Test 2

def test_repeat_vowel(input_str: str) :
"""
Given an input `input_str`, test whether the function

`repeat_vowel` is implemented correctly.↪→

"""
# execute the function
output_str = repeat_vowel(input_str)

vowels = ['a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U']
# check if the number of vowels in the output string is

doubled↪→

# First get the number of vowels in the input
number_of_vowels_input = sum([input_str.count(vowel) for

vowel in vowels])↪→

# Then get the number of vowels in the output
number_of_vowels_output = sum([output_str.count(vowel) for

vowel in vowels])↪→

assert number_of_vowels_input * 2 == number_of_vowels_output

# run the testing function `test_repeat_vowel` on 3 different
input cases that satisfy the description↪→

test_repeat_vowel('ABCDEabcdeABCDE YOUUOY')
test_repeat_vowel('I am a student')
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test_repeat_vowel('sounds good to me')

# Problem 3

def find_missing_number(nums: List[int]) -> int:
"""
Given a list of n-1 integers in the range of 1 to n, find the

one missing number.↪→

"""
# TODO
pass

# Test 3

def test_find_missing_number(nums: List[int]):
"""
Given an input `nums`, test whether the function

`find_missing_number` is implemented correctly.↪→

"""

# execute the function
output = find_missing_number(nums)

n = len(nums) + 1
# check if the output is an integer
assert isinstance(output, int)
# check if the output is in the range of 1 to n
assert 1 <= output <= n
# check if the output is the missing number
assert output not in nums

# run the testing function `test_find_missing_number` on 3
different input cases that satisfy the description↪→

test_find_missing_number([1, 3, 4, 6, 5, 7, 8])
test_find_missing_number([10, 9, 8, 7, 6, 5, 4, 3, 2])
test_find_missing_number([3, 2, 1, 6, 5, 4, 10, 9, 8])

# Problem 4

def find_kth_largest(nums: List[int], k: int) -> int:
"""
Given an unsorted array of integers, find the kth largest

element.↪→

"""
# TODO
pass

# Test 4

def test_find_kth_largest(nums: List[int], k: int):
"""
Given an input `nums` and `k`, test whether the function

`find_kth_largest` is implemented correctly.↪→

"""
# execute the function
output = find_kth_largest(nums, k)

# check if the output is an integer
assert isinstance(output, int)
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# check if the output is in the input list
assert output in nums
# check if the output is the kth largest element
assert output == sorted(nums)[-k]

# run the testing function `test_find_kth_largest` on 3 different
input cases that satisfy the description↪→

test_find_kth_largest([1, 10, 9, 2, 7, 6, -3, 4, 5, 8], 3)
test_find_kth_largest([100, 200, 900, 1000, 80, 101010], 5)
test_find_kth_largest([88, 131, 89, 125, 3, 7], 2)

# Problem 5

def reverse_substrings(s: str, indices: List[int]) -> str:
"""
Given a string s and a list of integers representing starting

and ending indices of substrings↪→

within s (inclusive), reverse each substring and return the
modified string.↪→

"""
# TODO
pass

# Test 5

def test_reverse_substrings(s: str, indices: List[int]):
"""
Given an input `s` and `indices`, test whether the function

`reverse_substrings` is implemented correctly.↪→

"""
# execute the function
output = reverse_substrings(s, indices)

# check if the function is implemented correctly
# check if the output is a string
assert isinstance(output, str)
# check if the output is the same length as the input
assert len(output) == len(s)
# check if the output contains the same characters as the

input↪→

assert set(output) == set(s)
# check if all the substrings are reversed
for i in range(0, len(indices), 2):

assert output[indices[i]:indices[i+1]+1] ==
s[indices[i]:indices[i+1]+1][::-1]↪→

# check if all the other characters are the same
for i in range(len(s)):

# check if i in the indices
if any(indices[i] <= i <= indices[i+1] for i in range(0,

len(indices), 2)):↪→

continue
assert output[i] == s[i]

# run the testing function `test_reverse_substrings` on 3
different input cases that satisfy the description↪→

test_reverse_substrings('apple', [1, 2, 4, 5])
test_reverse_substrings('summerSpringWinterfall', [0, 5, 8, 9,

10, 15, 16, 20])↪→

test_reverse_substrings('lkjhgfdqwert', [0, 3, 4, 7, 9, 11])
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I TRANSFORMATION OF INPUT PROBLEMS TO LOGICAL RELATIONS
PROMPTS

Here we show how to transform the input problem to the prompt used for generating logical relations.

MBPP transformation First we parse the input problems from MBPP dataset and get the
string representation of library imports, function name, function parameters, return type, and En-
glish problem description. We denote them as imports, func name, parameter format,
return type, and description respectively and problem number is number of few-shot
examples plus 1.

Then we use the template shown in Figure 13 and Figure 12 for input-output and logical relations
respectively. The parsed string from the input problem would then be inserted to the placeholder
accordingly.

# Problem 3

def {func_name}({", ".join(parameter_format)}) -> {return_type}:
"""
{description}
"""
pass # To-do: implement

# Test 3

def test_{func_name}(

Figure 12: Template for MBPP logical relation prompt

# Problem {problem_number}

{function_definition_with_description}
# TODO
pass

# Test {problem_number}

Figure 13: Template for MBPP input-output prompt

Then, for the logical relations, we prepend the resulting string with the few shot example string
shown in H.3. For the input-output, we strip out the blank lines prefix if import is empty.

HumanEval Transformation Similar to the above MBPP transformation, we parse the
input problems from HumanEval dataset and get the string representation of func-
tion definition plus English description and function name. We denote them as
function definition with description and func name. Then we insert these into
the template shown in Figure 14 and Figure 15 for input-output and logical relations respectively.
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{function_definition_with_description}
pass

# Check if {func_name} works
assert {func_name}(

Figure 14: Template for HumanEval input-output prompt

# Problem {problem_number}

{function_definition_with_description}
# TODO
pass

# Test {problem_number}

Figure 15: Template for HumanEval logical relation prompt

Finally, we prepend the resulting string with the few shot example string shown in H.1.

J EXAMPLES OF TOP SPEC VERSUS RANDOM SPEC

In the following pages, we introduce 8 example HumanEval problems along with program samples
generated by the code-davinci-002 model. For each of these programs, we display our top-ranked
specification, a randomly chosen specification, and a bottom-ranked specification. Among them,
four illustrate relation specifications, while the remaining present input/output (IO) specifications.
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(a) Program 1
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(b) Top-ranked Relation Spec for Program 1

(c) Random Relation Spec for Program 1

(d) Bottom-Ranked Relation Spec for Program 1

Figure 16: Examples of top-ranked, random, bottom-ranked specifications

31



Published as a conference paper at ICLR 2025

(a) Program 2

(b) Top-ranked IO Spec for Program 2

(c) Random IO Spec for Program 2

(d) Bottom-Ranked IO Spec for Program 2

Figure 17: Examples of top-ranked, random, bottom-ranked specifications for Program 2
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(a) Program 3
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(b) Top-ranked Relation Spec for Program 3

(c) Random Relation Spec for Program 3
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(d) Bottom-Ranked Relation Spec for Program 3

Figure 18: Examples of top-ranked, random, bottom-ranked specifications for Program 3

(a) Program 4

(b) Top-Ranked IO Spec for Program 4

(c) Random IO Spec for Program 4

(d) Bottom-Ranked IO Spec for Program 4

Figure 19: Examples of top-ranked, random, bottom-ranked specifications for Program 4
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(a) Program 5
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(b) Top-ranked Relation Spec for Program 5
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(c) Random Relation Spec for Program 5

(d) Bottom-Ranked Relation Spec for Program 5

Figure 20: Examples of top-ranked, random, bottom-ranked specifications for Program 5
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(a) Program 6
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(b) Top-ranked IO Spec for Program 6

(c) Random Spec IO for Program 6

(d) Bottom-Ranked IO Spec for Program 6

Figure 21: Examples of top-ranked, random, bottom-ranked specifications for Program 6

(a) Program 7
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(b) Top-ranked Relation Spec for Program 7

(c) Random Relation Spec for Program 7

(d) Bottom-Ranked Relation Spec for Program 7

Figure 22: Examples of top-ranked, random, bottom-ranked specifications for Program 7
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(a) Program 8

(b) Top-ranked IO Spec for Program 8

(c) Random IO Spec for Program 8

(d) Bottom-Ranked IO Spec for Program 8

Figure 23: Examples of top-ranked, random, bottom-ranked specifications for Program 8
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