
Stable Matching with Ties:
Approximation Ratios and Learning

Shiyun Lin∗

Center for Statistical Science
School of Mathematical Sciences, Peking University

shiyunlin@stu.pku.edu.cn

Simon Mauras
INRIA, FairPlay Joint Team
simon.mauras@inria.fr

Nadav Merlis
Technion - Israel Institute of Technology

nmerlis@technion.ac.il

Vianney Perchet
CREST, ENSAE, IP Paris

Criteo AI Lab, FairPlay Joint Team
Vianney.perchet@normalesup.org

Abstract

We study matching markets with ties, where workers on one side of the market
may have tied preferences over jobs, determined by their matching utilities. Unlike
classical two-sided markets with strict preferences, no single stable matching
exists that is utility-maximizing for all workers. To address this challenge, we
introduce the Optimal Stable Share (OSS)-ratio, which measures the ratio of a
worker’s maximum achievable utility in any stable matching to their utility in
a given matching. We prove that distributions over only stable matchings can
incur linear utility losses, i.e., an Ω(N) OSS-ratio, where N is the number of
workers. To overcome this, we design an algorithm that efficiently computes a
distribution over (possibly non-stable) matchings, achieving an asymptotically tight
O(logN) OSS-ratio. When exact utilities are unknown, our second algorithm
guarantees workers a logarithmic approximation of their optimal utility under
bounded instability. Finally, we extend our offline approximation results to a
bandit learning setting where utilities are only observed for matched pairs. In this
setting, we consider worker-optimal stable regret, design an adaptive algorithm
that smoothly interpolates between markets with strict preferences and those with
statistical ties, and establish a lower bound revealing the fundamental trade-off
between strict and tied preference regimes.

1 Introduction

Two-sided matching markets are prevalent in various contexts, such as matching students to schools
[2, 3], doctors to hospitals [50], or workers to jobs [5]. In this paper, we model the market as a
company that assigns jobs to workers. Each participant has a preference ordering over the other
side of the market. For example, jobs rank workers by ability, while workers rank jobs by personal
preference. Stability ensures a fair equilibrium where workers receive sufficiently desirable jobs
while respecting the preferences and priorities of all parties. When preferences are strict, the deferred
acceptance algorithm [23] efficiently computes a worker-optimal stable matching – no worker can
get a better job without violating stability.

In online marketplaces, for example, the online crowd-sourcing platform Amazon Mechanical
Turk, workers are usually uncertain of their preferences over jobs at the beginning, since they
do not have hands-on experience. However, there are numerous similar tasks to be delegated
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on the platform and, fortunately, the uncertain preferences can thus be learnt during the iterative
matchings. Recent research has explored this scenario within the framework of multi-player multi-
armed bandits [42, 43, 8, 37]. Under the strict preferences assumption, these works combine bandit
learning algorithms with the deferred acceptance procedure to guide the market toward the worker-
optimal stable matching.

However, in real-life scenarios, workers could be indifferent between some jobs due to inherent
uncertainty or coarse evaluations. For instance, conference management systems like the Toronto
Paper Matching System (TPMS): while the system generates continuous scores to evaluate the
suitability of each reviewer for a paper, which theoretically avoids ties, the bidding process introduces
unavoidable indifference through discrete categorical ratings (e.g., “Eager”, “Willing”, “In a pinch”,
“Not willing”), creating natural ties in preferences. The challenge becomes even more pronounced
in learning-based matching markets, where statistically indistinguishable utility estimates produce
effective ties between options. This presents a fundamental limitation for bandit learning approaches,
as standard algorithms typically fail to provide meaningful regret guarantees when facing such
indifference structures in the preference landscape. In particular, when utility differences become
small (statistically indistinguishable), existing regret bounds break down completely, and handling
this regime was previously considered impossible [42].

With indifferent preferences, a stable matching can be obtained by arbitrarily breaking ties and apply-
ing the deferred-acceptance algorithm. However, the resulting matching is no longer worker-optimal,
as different tie-breaking rules may lead to different stable matchings preferred by different workers
– potentially creating dramatic utility disparities across outcomes. This challenge is particularly acute
in bandit learning settings, where statistically indistinguishable utilities for one worker may lead to
arbitrarily large regret for others due to the cascading effects of tie-breaking decisions. In fair resource
allocation, fractional matching is a standard technique for balancing competing interests when a single
integral matching is infeasible [33, 27, 9]. The Birkhoff-von Neumann (BvN) theorem [10, 58] estab-
lishes that such a fractional matching is equivalent to a probability distribution over integral matchings.

These observations motivate our core research question: For markets with tied preferences, can we
approximate a stable solution by considering distributions over matchings, while guaranteeing all
workers a fair, minimum level of satisfaction?

To answer this question, we define a worker’s optimal-stable-share (OSS) as her maximum achievable
utility across all stable matchings. We then introduce the OSS-ratio as a fairness metric, which
measures the fraction of the OSS that each worker is guaranteed to receive under any allocation.

We begin by analyzing the offline setting with known preferences, establishing tight OSS-ratio bounds
across different matching classes. These results naturally extend to settings with preference uncer-
tainty. Building on these offline results, we further formulate the problem within a multi-player multi-
armed bandit framework for online learning scenarios, and show how our approximation guarantees
provide the crucial foundation for achieving sublinear regret in matching markets with indifference.

1.1 Main Contributions

Offline Approximation Oracle and Matched Upper and Lower Bounds. We first demonstrate
that restricting to stable matchings yields only a trivial (and tight) lower bound on the OSS-ratio
(Theorem 1), motivating our study for broader matching classes. We then establish a logarithmic
lower bound for general matchings (Theorem 2) and construct an approximation oracle (Algorithm 1)
achieving this bound while maintaining internal stability (Theorem 3).

Robustness to Approximated Preferences. We prove our positive results are robust to utility
uncertainty: when exact utilities are unknown but lie within a given uncertainty set, we maintain the
same guarantees with only an additive error bounded by the maximum uncertainty (Theorem 6). This
holds especially for rectangular uncertainty sets, which model utility matrices estimated from data.

Bandit Learning in Matching Markets with Indifference. Building on our offline approximation
results, we introduce α-approximation stable regret Regαi (T ), using an α-fraction of the optimal-
stable-share as a tractable benchmark for markets with (statistical) ties. Our adaptive algorithm ETCO
(Algorithm 3) seamlessly handles both strict and tied preferences. Theorem 7 establishes its regret
bounds, which match the lower bound [52] in markets with large preference gaps. Theorem 8 further
reveals a fundamental trade-off: no algorithm can simultaneously achieve optimal regret in both
large-gap (standard regret) and small/no-gap (approximation regret) regimes.
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1.2 Techniques Involved and Developed

The upper bound on the approximation ratio is the first key technical contribution of our paper.
We establish this result via three main steps: 1) Introducing a novel component – the duplication
index – into the algorithm design; 2) Constructing a directed forest where edges encode conflicts
between workers competing for the same job copies across different matchings; 3) Leveraging the
tree structure and stability constraints to derive the upper bound inductively.

In the bandit learning setting, the primary technical challenge and key contribution lie in the lower
bound proof. To establish this result, we carefully construct two instances with 4 workers and 4
jobs, where the utility matrices differ in only one critical entry that determines whether meaningful
ties exist. This construction reveals how ties in one worker’s preferences propagate to affect other
workers’ regret. Furthermore, we employ an information-theoretic argument to demonstrate that the
algorithm must sample this critical entry sufficiently often to avoid incurring linear regret. To our
knowledge, we are the first to provably show a tradeoff between standard regret and approximation
regret in bandit settings.

1.3 Related Work

Stable Matching with Ties. A natural extension of Gale and Shapley’s work [23] considers settings
with tied or incomplete preferences. Irving [29] introduced three stability notions - weak, strong, and
super-stability - with weak stability being the most studies [25, 26, 35, 46], as it always guarantees
existence, unlike strong or super-stability. However, weakly stable matchings may vary in size, and
finding a maximum one is NP-hard [30], while verifying weak stability is NP-complete [46]. Unlike
prior work focused on maximizing matching size, we instead study fair job allocations, ensuring
each worker receives a utility within a guaranteed fraction of their optimal stable matching, and we
characterize the approximation ratio of such allocations.

Fairness in Two-sided Matching. Recent work has increasingly addressed fairness in two-sided
markets. In fair division, Freeman et al. [21] introduces double envy-freeness up to one match (DEF1)
and double maximin share guarantee (DMMS) for many-to-many matching, while Igarashi et al. [28]
studies many-to-one matching, enforcing EF1 for one side while preserving stability. In machine
learning, Karni et al. [32] incorporates preference-informed individual fairness (PIIF) [34], requiring
allocations to satisfy individual fairness [18] while respecting preferences. Our work diverges by
focusing on one-to-one markets, where standard notions like EF1 and MMS are inapplicable. We
propose a novel share-based fairness concept (OSS-ratio) to measure workers’ gains relative to their
optimal-stable-share. Our algorithm returns a random matching that is ex-ante stable (no justified
envy) and ex-post internally stable, achieving a best-of-both-worlds guarantee.

Bandit Learning in Matching Markets. Das and Kamenica [16] first formalized bandit problems
in matching markets, with subsequent work [42, 43, 8, 52, 37] exploring this model. In this setting,
players (with unknown utilities) and arms (with known preferences) form a two-sided market. Player-
optimal stable regret [42] measures the utility difference between a player’s outcome and their optimal
stable match. Yet, existing results are limited to markets with strict preferences, as stable regret
becomes linear and ill-defined when ties exist. Kong et al. [38] recently studied indifference cases, but
their player-pessimistic regret benchmark cannot recover optimal stable matches in tie-free settings.
Our work bridges this gap by: (1) establishing a tight logarithmic OSS-ratio for offline matching with
ties, (2) introducing approximation regret as a tractable objective for tied markets, and (3) developing
an adaptive algorithm that achieves optimal regret bounds in both tied and tie-free settings.

2 Preliminaries

We model the matching market as a company that assigns jobs to workers. There are N workers,
W = {w1, w2, · · · , wN} and K jobs, A = {a1, a2, · · · , aK}. The company assigns jobs to workers
such that each job is assigned to at most one worker and each worker performs at most one job. The
assignment is therefore a matching µ. We shall use µ(w) to represent the allocated job to worker w,
and µ(a) to denote the worker with job a. If a worker w or a job a remains unmatched, we will use
the notation µ(w) = ⊥ or µ(a) = ⊥.

For every job, the company has a strict rating over the workers based on their expertise and ability on
this job. Specifically, if w ≻a w′, worker w performs job a strictly better than w′. On the other hand,
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workers also have preferences over the jobs, and it is possible that a worker is indifferent among
several jobs. The preferences of workers on jobs are represented through a utility matrix U , where
U(w, a) ∈ [0, 1] denotes the preference of worker w on job a. If U(w, a) > U(w, a′), worker w
prefers job a over a′, and U(w, a) = U(w, a′) implies that w is indifferent between jobs a and a′.
For simplicity, we will assume that a worker w will refuse to be matched with job a if it has utility
U(w, a) = 0; stated otherwise, either U(w,⊥) is positive but infinitely small or U(w,⊥) = 0 and
ties are broken in favor of ⊥. As a consequence, a problem instance (U , Pa) is defined by a utility
matrix U and a preference profile Pa representing the preferences of jobs over workers.

Stability is a key concept in two-sided matching markets, which ensures there is no justified envy in
the market, i.e., the only jobs a worker prefers over her own job are the ones that she is less suitable
to face than the currently assigned worker. When preferences include ties, multiple stability notions
arise, and we focus on weak stability [29]. A matching µ is weakly stable if no worker-job pair exists
where both strictly prefer each other over their allocated partners:
Definition 1 (Weak Stability). A matching µ is weakly stable if there is no blocking pair (w, a) such
that w ≻a µ (a) and U(w, a) > U(w, µ (w)).
If a matching is weakly stable, there exists a tie-breaking mechanism such that this matching is
stable in the resulting instance with strict preferences. Conversely, any stable matching that is
generated using a tie-breaking mechanism is also weakly stable in the original instance. Without
causing ambiguity, we will refer to weak stable as stable for brevity. Furthermore, internally stable
matching [44] refers to a matching where there are no blocking pairs when only considering the
matched workers and jobs.
Definition 2 (Internal Stability). A matching µ is internally stable if there is no internally blocking pair
(w, a) such that 1) both w and a are matched in µ, and 2) w ≻a µ(a) and U(w, a) > U(w, µ(w)).
Given a problem instance, we define the following classes of matchings:M := {µ : µ is a matching},
S := {µ : µ is a stable matching}, and I := {µ : µ is an internally stable matching}.
In a matching market with ties, stable matchings are not unique, given different tie-breaking mecha-
nisms. A job a is a valid stable match of worker w if there exists a stable matching that matches w
with a. We say a is the optimal stable match of worker w if it is the most preferred valid stable match,
i.e., there exists a matching µ∗ ∈ S such that µ∗(w) = a and U(w, µ∗(w)) = maxµ∈S U(w, µ(w)).
We call U(w, µ∗(w)) the optimal stable share (OSS) for worker w, denoted as U∗(w).

The canonical results in two-sided matching markets are the Gale-Shapley theorem and algorithm
(GS) [23], which guarantee both the existence of stable matchings and an efficientO(n2) computation.
The GS algorithm operates through an iterative proposal process. First, workers sequentially propose
to their most preferred available jobs. Each job tentatively accepts its most preferred proposal and
rejects others. After that, rejected workers continue proposing to their next preferences. The process
terminates when no rejections occur, yielding a stable matching. In markets with strict preferences,
GS produces a matching that is optimal for all proposers. However, when preferences contain ties,
this optimality no longer holds uniformly.
Example 1 (Stable matching with indifference). LetW = {w1, w2, w3} be
workers andA = {a1, a2} be jobs with w1 ≻ w2 ≻ w3 for all jobs. The utility
matrix that encodes the preference of workers over jobs is given by:

U =

1 1
1 0
0 1


There are 2 stable matchings in this instance: µ1 = {(w1, a1), (w3, a2)}, µ2 = {(w1, a2), (w2, a1)}.
There are 4 extra non-empty internally stable matchings, where exactly one worker is assigned
a job of utility 1, and unmatched workers/jobs cannot be involved in blocking pairs.All workers
have an OSS of 1. More precisely, w1 receives utility U∗(w1) = U(w1, a1) = U(w1, a2) = 1 in
both stable matchings, w2 receives utility U∗(w2) = U(w2, a1) = 1 in µ2, and w3 receives utility
U∗(w3) = U(w3, a2) = 1 in µ1.

Example 1 demonstrates that different workers may achieve their optimal outcomes in different stable
matchings. However, it is impossible to simultaneously guarantee all workers their OSS with a single
matching (even non-stable). Based on this impossibility result, a natural question arises as to whether
an allocation exists such that every worker is at least satisfied at a certain level. Formally, given
a problem instance and a class of matchings C, we are interested in the following optimal stable
share-ratio (OSS-ratio):

RC := min
D∈∆(C)

max
w∈W

U∗(w)

UD(w)
, (1)
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where ∆(C) is the set of distributions over C and UD(w) is worker w’s expected utility given a
distribution D, i.e., UD(w) = Eµ∼D [U(w, µ(w))]. When we are constrained to the set of matchings,
stable matchings and internally stable matchings, RM, RS and RI are defined accordingly.

The OSS-ratio adopts a worst-case perspective by taking the maximum over workers, ensuring every
worker receives a fair share of their optimal stable utility. Formally, if maxU RM ≤ α, then every
worker wi is guaranteed at least 1

αU
∗(wi) in expectation, regardless of the market’s preference

structure. The minimum over distributions reflects a central planner’s optimization: the distribution
represents a rotating schedule (e.g., matchings in the support correspond to daily assignments), and
restricted support encodes practical constraints. For instance, limiting support to internally stable
matchings ensures no justified envy arises between co-present workers in any schedule realization.

3 Approximation Ratios for Stable Matching with Ties

In this section, we aim to characterize the scale of the OSS-ratio RC from the worker’s perspective,
which allows for ties, while additional findings related to the job side are provided in Appendix J. As
a first observation, S ⊂ I ⊂M implies RM ≤ RI ≤ RS , and RS ≤ N , since uniformly selecting
a worker and their favored stable matching achieves this bound.

3.1 Lower Bound

We first prove that the trivial upper bound on RS is asymptotically tight.
Theorem 1. There exists an instance, such that for any distribution over stable matchings, one
worker only receives a 2/N fraction of their optimal stable share, i.e., RS ≥ N

2 = Ω(N).

To prove Theorem 1, we construct an instance with N/2 highly-skilled workers and N/2 regular
workers, such that every stable matching can satisfy at most one regular worker at a time, proving
that RS ≥ N/2. The formal proof is deferred to Appendix B.

However, a closer look at our instance reveals that all regular workers can be satisfied in a single
(non-stable) matching (See Remark 4 in Appendix B). Thus, we turn our attention to distribution over
(possibly non-stable) matchings, and the ratio RM. Theorem 2 shows that if we extend the support
of D to include all matchings, i.e., D ∈ ∆(M), the ratio RM is still lower bounded by logN .
Theorem 2. There exists an instance s.t. for any distribution over (possibly non-stable) matchings,
one worker only receives a 1/Ω(logN) fraction of their optimal stable share, i.e., RM = Ω(logN).

To prove Theorem 2, we recursively construct instances with global ranking of jobs over workers,
and each worker could be assigned to a job they like, but such that the number of workers grows
logarithmically faster than the number of valuable jobs, proving that each worker can only receive a
logarithmic fraction of their optimal stable share. The full proof could be found in Appendix B.

3.2 Upper Bound

We show that the logarithmic ratio obtained in Theorem 2 is asymptotically tight, even if we consider
distributions over internally stable matchings.
Theorem 3. For any problem instance, there exists a distribution D over internally stable matchings
s.t. all workers only receive a 1/O(logN) fraction of their optimal stable share, i.e., RI = O(logN).

We prove Theorem 3 by constructing an offline approximation oracle (Algorithm 1), which generates
a uniform distribution over m internally stable matchings µ̃1, . . . , µ̃m. Each worker w is matched
in exactly one matching µ̃i, the key technical insight is that setting m > log2 N + 1 ensures
UD(w) = U (w, µ̃i(w)) /m ≥ U∗(w)/m. To prove this, we construct a directed forest where
nodes represent workers who prefer a stable matching over the algorithm’s output, and edges capture
conflicts where workers compete for the same job copies under different matchings. By exploiting
the tree structure and stability constraint, the proof shows that if any worker were worse off, the
graph would imply an exponential growth in the number of workers. For more details, please refer to
Appendix C.
Remark 1. The distribution computed by Algorithm 1 is not only “ex-post” internally stable, but
also “ex-ante” (externally) stable, in the sense that no worker has justified envy towards any other
worker’s (randomized) allocation.

5



Remark 2. In Algorithm 1, each worker is assigned a job with a probability of 1/m. Under such an
allocation, some matchings in the support only assign a subset of jobs. In practice, if some job a is
not allocated in a matching µ̃j , but is allocated to worker w in µ̃i, we can give a to w in µ̃j without
breaking internal stability of µ̃j . This post-processing is a Pareto improvement of our solution.

Algorithm 1 Internally Stable Matchings for Matching Market with Indifference

Input: N workers, K jobs, Utility matrix U that encodes the preference of workers over jobs, strict
preference list Pa of jobs over workers, a positive number m.

1: For each job a ∈ A, duplicate it m times and denote the i-th copy as a(i).
2: Each replica a(i) shares the same preference Pa as the original job a.
3: For each worker w, define an ordering Pw, by sorting jobs a(i)k by decreasing utility U(w, a),

breaking ties in favour of lower duplication index i, then in favour of lower index k. That is,

a
(i)
k ≻Pw

a
(j)
ℓ ⇔


U(w, ak) > U(w, aℓ) or
U(w, ak) = U(w, aℓ) and i < j or
U(w, ak) = U(w, aℓ) and i = j and k < ℓ

4: Run Gale-Shapley algorithm on Pw and Pa to compute a worker-optimal stable matching µ̃.
5: For each i ∈ [m], build a matching µ̃i, which matches each job a with µ̃i(a) := µ̃(a(i)).

Output: The distribution D which selects each matching µ̃i with probability 1/m.

Finally, we show that Algorithm 1 cannot be manipulated by a worker who mis-reports her preferences
to obtain a distribution that gives them a higher utility, whereas the proof is deferred to Appendix C.3.
Theorem 4. Algorithm 1 is dominant strategy incentive compatible: for every utility matrices U
and U ′ that differ only on the row of worker w, let D and D′ be the distributions computed by
Algorithm 1, then UD(w) ≥ UD′(w).

4 Robustness and ϵ-Stability

In Section 3, we present an asymptotically tight algorithm for approximating the optimal stable share
in markets with ties under stability. However, exact stability often proves too rigid for real-world
applications where preferences may fluctuate slightly. We therefore introduce ϵ-stability, which
tolerates blocking pairs with utility gains below a threshold ϵ. This relaxation yields robust matching
resilient to preference perturbations while maintaining theoretical guarantees.
Definition 3 (ϵ-Stability). Given ϵ ≥ 0, a matching µ is ϵ-stable if there is no ϵ-blocking pair (w, a)
such that w ≻a µ(a) and U(w, a) > U(w, µ(w)) + ϵ.

The notion of ϵ-stability is a relaxation of weak stability, where setting ϵ = 0 makes it equivalent to
weak stability (Definition 1). In general, ϵ-stable matching is not unique, and there is not a single
ϵ-stable matching that simultaneously maximizes the utilities for all workers. Therefore, similar
to matching markets with ties, we define Sϵ := {µ : µ is an ϵ-stable matching}, and we call a a
valid ϵ-stable match of worker w if there exists an ϵ-stable matching matches w with a, and it is the
optimal ϵ-stable match of worker w if it is the most preferred valid ϵ-stable match, i.e., there exists
a matching µ∗

ϵ ∈ Sϵ such that µ∗
ϵ (w) = a and U(w, µ∗

ϵ (w)) = maxµ∈Sϵ U(w, µ(w)). And we say
U(w, µ∗

ϵ (w)) is the optimal ϵ-stable share for worker w, denoted as U∗
ϵ (w).

Algorithm 2 (see Appendix D) generalizes Algorithm 1 with a different workers’ preference profiles
generation. It outputs a randomized matching that achieves an expected utility within a logN factor
of the optimal ϵ-stable share, plus an ϵ-additive error.
Theorem 5. Given any utility matrix U , parameter m = ⌊log2 N + 2⌋, and the instability tolerance
ϵ ≥ 0, Algorithm 2 computes a distribution D ∈ ∆(I), such that UD(w) ≥ U∗

ϵ (w)
m − ϵ, ∀w ∈ W .

The proof of Theorem 5 is deferred to Appendix D.2. Interestingly, the distribution D randomizes
over internally stable matchings, which do not depend on ϵ.

In labor markets, worker preferences are typically estimated with uncertainty via i.i.d. observations,
we construct utility uncertainty sets using concentration inequalities. Theorem 6 shows that for
any utility matrix in such a set U , Algorithm 2 produces a random matching guaranteeing each
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worker a logarithmic approximation to their optimal share within U , where the proof is deferred to
Appendix D.4.
Theorem 6. Given an uncertainty set U , the optimal stable share within U is

U∗(w) := sup
U∈U

max
µ∈SU

U(w, µ(w)), ∀w ∈ W. (2)

We define the center Û of the set U as Û(w, a) =
infU∈U U(w,a)+supU∈U U(w,a)

2 , and the uncertainty
parameter as ϵ = 2 · supU1,U2∈U ||U1 −U2||max. Algorithm 2 with input Û , m = ⌈log2 N⌉, and ϵ
outputs a distribution D ∈ ∆(I) such that UD(w) ≥ U∗(w)

m − ϵ, ∀w ∈ W .

Example 2 illustrates an application of Theorem 6 to batch learning problems.
Example 2 (Batch learning). Suppose that we have a dataset of size T , where each data point U
is a noisy observation of the ground-truth utility matrix Ũ , i.e., each U(i, j) is sampled from a

1-sub-Gaussian distribution with mean Ũ(i, j). Given a parameter δ, set ϵ = 2
√

ln( 1
δ )/T , and define

the uncertainty set for each entry (w, a) as Uw,a =
{
U(w, a) : |U(w, a)− Û(w, a)| ≤ ϵ/2

}
, and

U =
⊗

(w,a)∈W×A Uw,a, where Û is the empirical mean utility matrix computed from the dataset.
The OSS within the uncertainty set U∗(w) could be defined as in Eq.(2). By Lemma 2, we know that
with probability 1−δ, the ground-truth utility matrix Ũ ∈ U , and hence Ũ∗(w) ≤ U∗(w). Therefore,

by running Algorithm 2 with the empirical mean utility matrix as input, and set ϵ = 2
√

ln( 1
δ )/T ,

m = ⌈log2 N⌉, we have w.p. 1 − δ that the corresponding output distribution D over matchings
satisfies UD(w) ≥ Ũ∗(w)

⌈log2 N⌉ − 2
√

ln( 1
δ )/T for all w ∈ W .

5 Bandit Learning in Matching Markets

Example 2 demonstrates the application of our offline oracle to learning problems. We now transition
to an online learning setting, framing the matching market as a multi-player bandit problem to show
how the offline results naturally connect learning scenarios both with and without statistical ties.

In online marketplaces, companies can evaluate workers through interviews, but typically lack prior
knowledge of worker preferences over jobs. Still, by leveraging repeated matching opportunities, these
preferences can be learned through ex-post evaluations. Recent work models this as a multi-armed
bandit (MAB) problem [42, 43, 8, 37], where workers (“players”) and jobs (“arms”) interact over
T rounds. Each round, the company outputs a matching µt assigning jobs to workers and observes
1-subgaussian rewards Xi(t) for matched pairs (wi, µt(wi)) with mean U(wi, µt(wi)) ∈ [0, 1].
Following bandit matching literature, we assume N ≤ K (more jobs than workers) to ensure
matching feasibility. If N > K, we can extend the problem by adding zero-utility jobs or randomly
assigning unmatched workers.

The company seeks to learn the worker-optimal stable matching µ∗(wi) through interactions. Specifi-
cally, it aims to minimize the worker-optimal stable regret for each wi ∈ W , defined as the cumulative
reward difference between being matched with µ∗

i and that wi receives over T rounds:

Regi(T ) = T ·U∗(wi)− E

[
T∑

t=1

Xi(t)

]
. (3)

The expectation is taken over the randomness of the received reward and the allocation strategy.

Prior work on minimizing worker-optimal stable regret focuses exclusively on tie-free markets [42,
8, 37], rendering their results inapplicable when preferences contain ties. Crucially, existing regret
bounds scale as 1/∆2, where ∆ is the minimum utility gap across all workers w and jobs a, i.e.,
∆ = minw mina,a′ |U(w, a) − U(w, a′)|2. As shown in Example 2 in [42], this dependence is
fundamental – achieving sublinear regret requires ∆ = ω(1/

√
T ).

When the benchmark is unachievable (computationally or statistically), prior work adopts α-
approximation regret to ensure sublinear regret relative to an α-fraction of the benchmark [31, 54, 14].

2While definitions of ∆ vary slightly across works, this strongest version generalizes to other formulations.
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In our setting, since ties prevent all workers from simultaneously achieving their optimal stable share,
we assume access to an offline oracle that, given utility matrix U , outputs a randomized matching
guaranteeing each worker at least an 1/α of U∗(w) in expectation, with additional error ϵ. Formally,
Definition 4 ((α, ϵ)-Approximation Oracle). An (α, ϵ)-approximation oracle takes a rectangu-
lar uncertainty set U with width ϵ as input and returns a (randomized) matching µ̃ satisfying:
E [Uµ̃(w)] ≥ αU (w) · U∗(w) − ϵ for every worker w, where αU ∈ (0, 1]N is a worker-specific
approximation ratio vector (often simplified to α). If αU (w) = α is uniform across workers and
independent of U , we call it an (α, ϵ)-approximation oracle,

For example, Algorithm 2 guarantees that for any input utility matrix U , αU (w) ≥ 1/ log2 N . With
ties, our regret metric should not compare against the OSS each time, but against an α-fraction of the
optimal stable share, since the offline oracle can only guarantee this fraction in expectation:

Regαi (T ) = αT ·U∗(wi)− E

[
T∑

t=1

Xi(t)

]
, (4)

where α ∈ (0, 1] is the approximation ratio given by the offline oracle. When we want to emphasize
that the observations X(t) come from a distribution ν, we write Regi(T ;ν) and Regαi (T ;ν).

For markets without ties, [37] achieves a stable regret ofO(K lnT/∆2), matching the Ω(N lnT/∆2)
lower bound [52] in T and ∆. We seek a best-of-both-worlds guarantee, i.e., an algorithm that attains
Regi(T ) = O(lnT/∆2) when ∆ = ω(1/

√
T ), and Regαi (T ) = o(T ) when ∆ = O(1/

√
T ).

5.1 Algorithm: Explore-then-Choose-Oracle

We present our algorithm, Explore-then-Choose-Oracle (ETCO, Algorithm 3 in Appendix E), and
summarize it here. The algorithm consists of two phases. In each round of the exploration phase, the
company allocates a job to every worker in a round-robin way to estimate their utilities accurately.
In the second phase, the company checks for plausible ties in utilities. If none exists, it computes a
matching using GS algorithm; otherwise, it uses the approximation oracle. In subsequent rounds,
jobs are allocated based on the chosen oracle’s output.

In the exploration phase, the company allocates jobs to workers in a round-robin way, according to the
index of the workers. In this way, every K rounds, each worker is matched to every job exactly once.
The maximal number of exploration rounds is bounded by a parameter T0. After each allocation,

based on the observation, we update the estimated utility Û(i, µt(i)) =
Û(i,µt(i))·Ti,µt(i)

+Xi,µt(i)
(t)

Ti,µt(i)
+1 ,

and the observation count of worker wi and job µt(i) as Ti,µt(i) = Ti,µt(i) + 1. The company also
builds a confidence set for each utility estimate, ensuring the true expected utility is included with
high probability. Particularly, the confidence interval (CI) for worker wi’s preference utility over job
aj is [LCBi,j , UCBi,j ], with the upper and lower confidence bounds defined as

UCBi,j = Û(i, j) +

√
6 lnT

max {Ti,j , 1}
, LCBi,j = Û(i, j)−

√
6 lnT

max {Ti,j , 1}
. (5)

When confidence sets for jobs aj and aj′ are disjoint (LCBi,j > UCBi,j′ or vice versa), we can
determine worker wi’s strict preference between them. If all top-N job CIs for wi become disjoint, we
recover the true preference with high probability. If this occurs for all workers before the exploration
phase T0 ends, we switch to the Gale-Shapley oracle for exploitation, as no top-N ties exist w.h.p.
Otherwise, remaining CI overlaps indicate potential ties, triggering our approximation oracle instead.

5.2 Theoretical Analysis

Before stating the regret guarantee for ETCO algorithm, we first give a formal definition of the
minimum preference gap, which measures the hardness of the learning problem.
Definition 5 (Minimum Preference Gap). For each worker wi and job aj ̸= aj′ , let ∆i,j,j′ =
|U(i, j) − U(i, j′)| be the preference gap for wi between aj and aj′ . Let ri be the preference
ranking of worker wi and ri,k be the k-th preferred job in wi’s ranking for k ∈ [K]. Define
∆min = mini∈[N ];k∈[N ] ∆i,ri,k,ri,k+1

as the minimum preference gap among all workers and their
first (N + 1)-ranked jobs.

8



Next, we present upper bounds for the worker-optimal stable regret for each worker when using ETCO.
Theorem 7 (Upper Bound). Following the ETCO algorithm with exploration phase of length T0 and

an
(
α, 2

√
6K lnT

T0

)
-approximation oracle, for wi ∈ W , we have that

Regi(T ) = O
(
K lnT

∆2
min

)
if ∆min >

√
96K lnT

T0
= Ω

(√
K lnT

T0

)
, (6)

Regαi (T ) ≤ 2αT0 +O

(
T

√
K lnT

T0

)
if ∆min ≤

√
96K lnT

T0
= O

(√
K lnT

T0

)
. (7)

See Appendix G for the proof. Our bound exhibits two regimes: (1) large-∆ regime: when ∆min

is large, the exploration phase learns the top-(N+1) job preferences w.h.p. before T0, enabling exact
worker-optimal stability via Gale-Shapley in exploitation. This reduces to ETGS [37] under centraliza-
tion; (2) small-∆ / tied regime: for small ∆min or exact ties, worker-optimal stability is unattainable;
instead, implementing an approximation oracle guarantees an α-approximation regret sublinear in T .

When ∆min is sufficiently large, our upper bound matches the Ω(N lnT/∆2
min) lower bound [52]

for serial dictatorship markets (where all jobs share identical preferences). This tightness, however,
comes at a fundamental trade-off: Theorem 8 shows that extending sublinear regret guarantees to
wider ranges of ∆min unavoidably worsens approximation regret in small- or no-gap regimes.

Prior to presenting our trade-off lower bound, we formally define two key concepts. The Pareto-
optimal stable matching set SUopt, comprising stable matchings where no worker’s utility can be
strictly improved without harming another worker, and the relevant preference utility gap ∆rel,
representing the maximum utility perturbation that preserves SUopt.
Definition 6 (Pareto-optimal Stable Matching Set). Given a utility matrix U , the worker-optimal
Pareto-optimal stable matching set SUopt is the set of all matchings µ such that: 1) µ is stable; 2) If
there exists a stable matching µ′ and a worker w such that U(w, µ′(w)) > U(w, µ(w)), then for
some w′ ̸= w, it holds that U(w′, µ′(w′)) < U(w′, µ(w′)).

Definition 7 (Relevant Utility Gap). Given a utility matrix U , the relevant preference gap ∆rel is

∆rel := inf
{
ε : ∃ i ∈ [N ], j ∈ [K], Ũ(i, j) ∈ [U(i, j)− ε,U(i, j) + ε] s.t. SUopt ̸= SŨopt

}
. (8)

By definition, ∆rel ≥ 0. When SUopt contains multiple matchings, ∆rel = 0 since any perturbation acts
as a tie-breaker, eliminating at least one matching from SUopt (by the uniqueness of worker-optimal
stable matching in tie-free markets). Furthermore, ∆rel ≥ ∆min because perturbations smaller than
∆min cannot alter any worker’s top-N preferences or the worker-optimal matching3.
Theorem 8 (Trade-off between Regret and Approximation Reget). Let δ ∈ (0, 1

2 ) and fix N = K = 4.
Consider the class of instances with a large relevant utility gap, denoted as Eℓ(T ), i.e., for any
instance ν ∈ Eℓ(T ), we have ∆ν

rel ≥ cT−1/2+δ for some absolute c > 0. Assume that an algorithm
π guarantees sublinear regret for all workers, for all ν ∈ Eℓ(T ). Then there exists an instance such
that this algorithm suffers Ω(T 1−2δ) approximation regret for some worker when ∆rel = 0 w.r.t the
best approximation ratio α∗ for this instance, i.e.,

If ∀ wi ∈ W, lim sup
T→∞

supν∈Eℓ(T ) Regi(T ;ν)

T
= 0,

=⇒∃ wi ∈ W, ν′ s.t. ∆ν′

rel = 0, and Reg
α∗(wi)
i (T ;ν′) = Ω(T 1−2δ), (9)

where α∗(wi) = max
{
α(wi) : α(w) ≥ 1/RU

M,∀ w ∈ W
}

, for any wi ∈ W , and RU
M is the

OSS-ratio on matchings with a given utility matrix U .
The proof appears in Appendix H. We construct two serial dictatorship instances with 4 workers
and 4 jobs each, whose utility matrices differ in only one entry (for the highest-priority worker),
yielding ∆rel = 0. The first instance evaluates α∗-approximation regret, while the second analyzes
standard stable regret. Crucially, this single entry difference completely alters the benchmark utilities
for the other three workers. Thus, one of the two cases happens: (1) under-sampling: without

3Actually, if we assume an oracle that can determine whether there is a unique worker-optimal stable matching
within the uncertainty set, we can prove a similar upper bound as in Theorem 7 with ∆min replaced by ∆rel.
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enough samples of the differing entry, at least one worker incurs linear approximation regret; (2)
over-sampling: After T0 samples of the differing entry, at least one of the remaining workers suffers
Ω(T0) approximation regret.

Theorem 8 establishes an inherent trade-off between large-gap and small / no-gap regimes: as δ → 0,
sublinear regret in the former necessitates linear approximation regret in the latter. Consequently,
the exploration length T0 of ETCO algorithm critically determines regime-specific performance. We
provide two T0 choices and their corresponding regret bounds.

Corollary 1. Following ETCO algorithm with T0 = T 2/3 (K lnT )
1/3, for wi ∈ W , we have

Regi(T ) = O
(
K lnT

∆2
min

)
if ∆min = Ω̃

(
T− 1

3

)
;Regαi (T ) = O

(
(K lnT )

1
3 T

2
3

)
if ∆min = Õ

(
T− 1

3

)
.

Choosing T0 = T 2/3 (K lnT )
1/3 yields the optimal approximation regret upper bound in the small

gap regime when implementing explore-then-commit type algorithms. However, this choice is
not satisfiable when ∆min ∈ [Ω̃

(
T−1/2

)
, Õ
(
T−1/3

)
], since setting T0 as such cannot guarantee

detection of instances when ∆min falls in this intermediate regime. For these cases, we must resort
to the approximation oracle during exploitation. Cruicially, since the oracle’s solution differs by a
constant factor from the Gale-Shapley optimal, each exploitation round incurs constant regret when
measured against Eq.(3), resulting in an overall linear regret.
Corollary 2. Following ETCO algorithm with T0 = T

2 lnT , for wi ∈ W , we have

Regi(T ) = O
(
K lnT

∆2
min

)
if ∆min = Ω̃

(
T− 1

2

)
;Reg

α− 1
lnT

i (T ) = O
(√

KT lnT
)

if ∆min = Õ
(
T− 1

2

)
.

Choosing T0 = T/(2 lnT ) yields the optimal regret that matches the lower bound for any ∆min =

Ω̃
(
T−1/2

)
. However, for ∆min = Õ

(
T−1/2

)
, we can only guarantee sublinear approximation regret

with an approximation ratio of α− 1/ lnT even when using an offline α-approximation oracle.
Remark 3. The approximation regret lower bound in Theorem 8 is both non-trivial and potentially of
independent interest for bandit theory. While combinatorial bandits typically use approximation regret
to circumvent computational limits (with statistical lower bounds focusing on 1-regret [15, 39, 48]),
our result reveals a fundamental distinction: in matching markets, this approximation factor persists
even given unlimited computational resources.

6 Conclusion
In this paper, we study stable matching with one-sided indifference, modeled as a company assigning
workers to jobs. Using a utility matrix to encode workers’ potentially tied preferences over jobs,
we define the optimal stable share (OSS) for each worker as the maximum utility achievable in
any stable matching. To address fairness, we introduce the OSS-ratio, quantifying the fraction
of the OSS a worker obtains under random matchings. We first analyze distributions over stable
matchings, showing that a linear approximation to the OSS is trivial and asymptotically tight. For
general matchings, we prove that no better than logarithmic approximation is possible. To achieve
this bound, we propose a polynomial-time algorithm computing a distribution over internally stable
matchings, which is asymptotically optimal in OSS ratio and dominant strategy incentive-compatible.
Next, we extend our framework to settings where the utility matrix is uncertain but lies within a
given uncertainty set. By incorporating ϵ-stable matchings and relating them to perturbations of
the utility matrix, we derive a logarithmic approximation with an additive ϵ error, matching the
deterministic case. Finally, we explore online learning, where existing stable regret frameworks fail
to handle tied preferences. Leveraging the OSS-ratio, we define α-approximation stable regret and
provide an algorithm whose upper bound matches the lower bound in the no-tied case. We further
derive approximation regret bounds for small or no utility gaps and establish a fundamental trade-off
between regret types, highlighting the need for careful exploration stopping time decisions.

Our work establishes the first instance-independent worker-optimal stable regret bound in bandit
learning for matching markets, achieved through centralized job allocation. However, real-world
marketplaces typically operate in decentralized settings where workers cannot directly coordinate.
While the Gale-Shapley algorithm naturally decentralizes, extending our approximation guarantees
to decentralized bandit learning remains an open challenge, which is an important direction for future
research. Furthermore, exploring the application of our proposed algorithms to real-world datasets
would be a valuable next step, as it would help address the practical challenge of stable matching
when ties exist in preference rankings.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is purely theoretical and studies a fundamental game theory model;
as such, it does not have any direct ethical implications.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Due to the theoretical nature of the paper, there is no societal impact of the
work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models are released with this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Further Related Work

Fractional Matchings Aside from integral matchings, fractional matchings have also attracted
research interests due to their practical implications. For instance, in our running example, consider a
time-sharing scenario [51], where each worker could spend five days a week at work. An integral
matching requires every worker to work full-time on a single job, while fractional matchings allow
them to switch among different jobs, making it natural in such situations. By the well-known
Birkhoff-von-Neumann (BvN) theorem [10, 58], a fractional matching could be written as a convex
combination of several integral matchings.

In the context of stable matching, fractional matching has also been studied. Considering purely
ordinal preferences, several notions of stability have been proposed, such as strong stability [51],
ex-post stability [51], and fractional stability [57]. In these works, the stable matching problem is
formulated as a linear program, Teo and Sethuraman [55] showed that any fractional solution in the
stable matching polytope is a convex combination of integral stable matchings. On the other hand,
concerning purely cardinal preferences, Anshelevich et al. [4] proposes the notions of stability and
ε-stability, while Caragiannis et al. [12] shows that the set of stable fractional matchings that satisfies
the notion can be non-convex.

In this paper, we consider a two-sided market where the worker side has cardinal preferences while
the job side has ordinal preferences. We do not concern the notions of fractional stable matchings,
instead, we focus on finding a distribution over integral matchings such that it is fair in the sense that
every worker could receive a certain fraction of its optimal stable share in expectation.

Fair Division Fair division is the problem of dividing a set of items among several people in a
fair manner. Steinhaus [53] pioneers this line of research and defines a share-based notion, i.e.,
proportionality, where each player gets a 1/N fraction of all items. Foley [20] and Varian [56]
define envy-freeness, where no player prefers the bundle allocated to another player, and this notion
is later generalized by Weller [59]. In two-sided matching markets, a stable matching eliminates
justified envy [1]. Regarding the problem of sharing indivisible goods, share-based guarantees such
as MMS [11] and envy-based guarantees such as EF1 [41, 11] or EFX [13] are proposed. Recent
works have studied best-of-both-world fairness [6, 7, 19], providing random allocation with fairness
guarantees both in expectation and for every realization.

Approximation Regret in Bandit Learning In combinatorial bandit problems, approximation
regret is often considered instead of the standard regret [31, 54, 22, 14, 47, 49]. The reason mainly
lies in the complex reward structure and the computational intractability of the problem, i.e., rewards
are often dependent on the combination of actions, leading to an exponentially large action space,
which makes it computationally prohibitive to find the exact solution.

Besides computational intractability, there is another more fundamental reason for using the approxi-
mation regret framework in this paper. The stable regret is defined for each worker, which means
the company aims to solve a multi-objective optimization problem while it couldn’t satisfy everyone
simultaneously. Consequently, the approximation regret serves as a compromise between fairness
and efficiency.

B Lower bounds on OSS-ratio

B.1 Lower Bound for Distributions over Weakly Stable Matchings

The proof idea of Theorem 1 could be illustrated through Figure 1.

Proof of Theorem 1. Assume that N is even, let W = {w1, w2, · · · , wN} and A =
{a1, a2, · · · , aK} with K = N

2 + 1 and w1 ≻ w2 ≻ · · · ≻ wN for all the jobs. The utility
matrix that encodes the preference of workers over jobs is as follows:

22



highly-skilled workers

regular workers

Figure 1: Lower bound on RS . All jobs have the same ordering over workers, from top to bottom.
Any stable matching can be obtained by letting the first worker pick a job, then the second, etc. Hence,
each stable matching contains at most one blue edge.

U =



1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



 N
2 N
2

.

In any stable matching, every worker wi in
{
w1, w2, · · · , wN/2

}
must be assigned to ai or aN

2 +1,
leading to a utility of 1 for them. Without loss of generality, let µi be the matching such that
µ(wi) = aN

2 +1. Then in µi, only worker wN
2 +i would receive a utility of 1, by matching it to job

ai, while all workers in
{
wN/2+1, · · · , wN/2+i−1, wN/2+i+1, · · · , wN

}
would be unmatched and

receive a utility of 0. Indeed, for any j ̸= i, the unique optimal match of worker wN/2+j is already
taken by worker wj .

For every stable matching, at most one of the workers in
{
wN/2+1, wN/2+2, · · · , wN

}
could be

assigned to their optimal match. Since there are N/2 such workers, then for any distribution D, there
must be at least one of the workers for which the probability to be optimally matched is smaller than
2/N , for this worker, it holds that U∗(w)

UD(w) ≥
N
2 , which implies RS ≥ N/2.

Remark 4. Theorem 1 shows that if we only consider random allocations of stable matchings, then
in the worst case, workers could only expect O(1/N) profit share compared to their benchmark. On
the other hand, define

µ1 = {(wi, ai) : i ∈ {1, 2, · · · , N/2}} ,
µ2 =

{
(wi+N/2, ai) : i ∈ {1, 2, · · · , N/2}

}
.

Here, µ1 is a stable matching while µ2 is non-stable. We construct a distribution D as follows:

P(D = µ1) =
1

2
, P(D = µ2) =

1

2
,

then all workers have U∗(w)
UD(w) = 2. This result implies that if we consider possibly non-stable

matchings for the support of D, there is space for improvement on the OSS-ratio.

B.2 Lower Bound for Distributions over Matchings

The proof idea of Theorem 2 could be illustrated through Figure 2.
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I0 I1 I2

In−1

In−1

In

Figure 2: Lower bound on RM. In each example, left nodes represent workers while right nodes
represent jobs. If there is an edge connecting a left node w and a right node a, we have U(w, a) = 1,
and U(w, a) = 0 otherwise. All the right nodes without edges connecting to them are hidden from
the graph.

Proof of Theorem 2. Consider the following sequence of problem instances, as depicted in Figure 2.
In each bipartite graph, left nodes represent the set of workers while the right nodes represent the
set of jobs. Jobs share a global preference over the workers, with the topmost node being the most
preferred and the preference decreasing from top to bottom. From the worker side, the utility matrix
is binary. Specifically, for a worker-job pair (w, a), U(w, a) = 1 if (w, a) is connected, while
U(w, a) = 0 otherwise. For example, I1 is the graph representation of the problem instance of
Example 1.

Instance In is constructed recursively. Given In−1, we first duplicate this instance, denoted the
replications as upper class and lower class, respectively. Take Kn−1 as the number of right nodes
and Nn−1 as the number of left nodes in In−1, and denote these nodes as

{
au1 , a

u
2 , · · · , auKn−1

}
,{

wu
1 , w

u
2 , · · ·wu

Nn−1

}
and

{
aℓ1, a

ℓ
2, · · · , aℓKn−1

}
,
{
wℓ

1, w
ℓ
2, · · ·wℓ

Nn−1

}
for the upper and lower

classes, respectively. Then, we introduce Kn−1 prioritized workers in In, who are uniformly
more preferred by the jobs than the workers in the upper and lower classes. In particular, denote the
set of prioritized workers as

{
w1, w2, · · · , wKn−1

}
, we have

w1 ≻ w2 ≻ · · · ≻ wKn−1
≻ wu

1 ≻ wu
2 ≻ · · · ≻ wu

Nn−1
≻ wℓ

1 ≻ wℓ
2 ≻ · · · ≻ wℓ

Nn−1
.

And for each wi, we have U(wi, a
u
i ) = U(wi, a

ℓ
i) = 1, and U(wi, a) = 0 otherwise. We first

prove by induction that the optimal-stable-share is U∗(w) = 1 for any worker w. For I0, the unique
matching is stable. Suppose that for any worker w in In−1, there exists at least one stable matching µ
such that U(w, µ(w)) = 1. Then in In, all the prioritized workers could be matched in any stable
matching. Furthermore, as long as they simultaneously choose to be matched to the jobs in the same
class, the other class is free, and hence by induction assumption, every worker in that class gets
a chance to be matched in at least one stable matching. Therefore, by breaking ties for the upper
(lower) class, all workers in the lower (upper) class can be matched.

On the other hand, given that U∗(w) = 1 for any w, the ratio RM is equal to minD maxw
1

UD(w) for
these instances, Then, proving a lower bound on this quantity is equivalent to establishing an upper
bound on maxD minw UD(w). In particular, we have maxD minw UD(w) ≤ maxD

∑
w UD(w)

N ,
where N is the number of left nodes. Now notice that

∑
w UD(w) is the expected size of the

matching under distribution D, since the utility is 1 when a worker is matched and 0 otherwise. We
have

∑
w UD(w) ≤ K from the fact that the size of any matching is bounded by K. Combining the

above derivation, we have

RM ≥
N

K
.

Finally, in instance In, by the recursive construction, we have

Kn = 2 ·Kn−1,

Nn = 2 ·Nn−1 +Kn−1.
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Solving the recursive equation with the initial condition K0 = N0 = 1, we know that there are 2n

right nodes and N = (n+ 2)2n−1 left nodes in In, which implies that RM ≥ n/2 + 1. We rewrite
N = (n+ 2)2n−1 to obtain 2n = 2N/(n+ 2) and we deduce that

N/n ≤ 2n ≤ 2N.

Taking a logarithm in the inequalities, we have

log2 N − log2 n ≤ n ≤ 1 + log2 N.

And thus
n ≥ log2 N − log2 n ≥ log2 N − log2(1 + log2 N).

Therefore, n = Ω(logN) and hence RM is Ω(logN).

C Upper Bound on OSS-ratio

C.1 Procedure Illustration of Algorithm 1

We use Example 3 to illustrate the procedure stated in Algorithm 1.

Example 3. LetW = {w1, w2, w3}, A = {a1, a2, a3}. We consider the following preference list Pa

of jobs over workers, and utility matrix U that encodes the preference of workers over jobs:

a1 : w2 ≻ w1 ≻ w3,
a2 : w1 ≻ w3 ≻ w2,
a3 : w1 ≻ w2 ≻ w3.

U =

[
1 1 0
0.5 0.1 0.1
0 0.8 0

]
.

If m = 2, the preference profile Pw generated from the algorithm is

w1 : a
(1)
1 ≻ a

(1)
2 ≻ a

(2)
1 ≻ a

(2)
2 ≻ a

(1)
3 ≻ a

(2)
3 ,

w2 : a
(1)
1 ≻ a

(2)
1 ≻ a

(1)
2 ≻ a

(1)
3 ≻ a

(2)
2 ≻ a

(2)
3 ,

w3 : a
(1)
2 ≻ a

(2)
2 ≻ a

(1)
1 ≻ a

(1)
3 ≻ a

(2)
1 ≻ a

(2)
3 .

Running Gale-Shapley algorithm on Pw and Pa, the worker-optimal stable matching would be
µ̃ = {(w1, a

(1)
2 ), (w2, a

(1)
1 ), (w3, a

(2)
2 )}, and we can recover two internally stable matchings from µ̃,

i.e., µ̃1 = {(w1, a2), (w2, a1)} and µ̃2 = {(w3, a2)}.

C.2 Proof of Theorem 3

In Algorithm 1, each worker w is matched in exactly one matching µ̃i, where we call i the index of
w, denoted index(w). In other words, the index of a worker is the index of the job she receives, that
is, index(w) = i if worker w receives a(i)j for some j.

Definition 8. Given a problem instance (U , Pa), run Algorithm 1 with duplication number m to
generate the output distribution D. Then, for any stable matching µ with respect to (U , Pa), we
define a graph Gµ = (Vµ, Eµ) where

Vµ := {w ∈ W : U(w, µ(w)) ≥ m ·UD(w)},
Eµ := {(w,w′) ∈ V 2

µ : µ(w) = µ̃j(w
′) where j = index(w′) < index(w)}.

Informally, Gµ is the graph of workers who (weakly) prefer µ to their match in distribution D, where
an edge (w,w′) means that w′ received a job that w would have liked. Next, we show properties on
the graph Gµ, which we illustrate in Figure 3.

Proposition 1. For any stable matching µ, the following holds

• Gµ is a directed forest (there is no cycle and each vertex has at most one incoming edge),

• For every worker w ∈ Vµ with i = index(w), and for every 1 ≤ j < i, there is a worker
w′ ∈ Vµ with j = index(w′) such that (w,w′) ∈ Eµ.
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index

1

2

3

workers jobs

a
(1)
1 . . . a

(1)
K

a
(2)
1 . . . a

(2)
K

a
(3)
1 . . . a

(3)
K

µ̃

µ

Eµ

Figure 3: The graph Gµ = (Vµ, Eµ) is a directed forest. The matching µ̃, computed in Algorithm 1
matches each worker to a single (copy of) job in µ̃. In the stable matching µ, each worker w is
connected to all copies of µ(w) which have lower index.

Proof. The graph Gµ is a directed forest by construction. Indeed, it has no cycle because edges
connect workers to lower index workers. And every node has at most one incoming edge because µ̃
matches each worker to at most one job, and µ matches each job to at most one worker.

Fix a worker w ∈ Vµ with i = index(w), let 1 ≤ j < i, and let a = µ(w). By definition of Vµ,
worker w weakly prefers µ to D, that is U(w, a) ≥ m ·UD(w) = U(w, µ̃i(w)). By definition of
w’s preference list Pw in Algorithm 1, the lexicographic ordering gives that

a(j) ≻Pw
µ̃(w).

Because µ̃ is a stable matching, it should not be blocked by the pair (w, a(j)). Thus, there exists a
worker w′ ∈ W such that µ̃(w′) = a(j) and

w′ ≻a w.

Finally, because µ is a stable matching, it should not be blocked by the pair (w′, a), thus

U(w′, µ(w′)) ≥ U(w′, a) = m ·UD(w′),

proving that w′ ∈ Vµ. Hence, there is an edge (w,w′) ∈ Eµ, which concludes the proof.

Proposition 2. In the graph Gµ, each node of index i ≥ 1 can reach 2i−1 nodes (including itself).

Proof. We show that the property holds by induction on i. The property trivially holds for i = 1.
Let i > 1 such that there is a worker w ∈ Vµ with index(w) = i. Using Proposition 1, there is an
edge (w,wj) ∈ Eµ with index(wj) = j for every 1 ≤ j < i. Because the graph is a directed forest,
the set of nodes reachable from each wj are disjoint. Thus, the number of nodes reachable from w

(including itself) is 1 +
∑i−1

j=1 2
j−1 = 2i−1.

Finally, we conclude with the proof that Algorithm 1 computes a distribution over internally stable
matching which guarantees each worker a logarithmic fraction of their optimal stable share.

Proof of Theorem 3. Algorithm 1 first computes a stable matching µ̃ for the instance with duplicated
jobs, then build m matchings µ̃1, . . . , µ̃m. If there were a pair (w, a) with index(w) = i which
blocks matching µ̃i, that is U(w, a) > U(w, µ̃i(w)) and w ≻a µ̃i(a), then (w, a(i)) would block µ̃,
which is a contradiction. Thus, each matching µ̃i is internally stable.

Now, let us assume, that there is a stable matching µ in which a worker w with index(w) = i
receives a = µ(w) having utility U(w, a) > U(w, µ̃i(w)). In the matching µ̃, job a(m) must be
matched to some worker w′ such that w′ ≻a w, otherwise (w, a) would block µ̃. Moreover, we must
have U(w′, µ(w′)) ≥ m · UD(w′) otherwise (w′, a) would be blocking µ. Thus, there is a node
w′ ∈ Vµ of index m, which proves that there exists at least 2m−1 nodes, and thus that N ≥ 2m−1.
By contrapositive, if we set m > 1 + log2 N , then we have m ·UD(w) ≥ U∗(w) for every worker
w, which concludes the proof.4

4Interestingly, we can show that m > log2 N suffices because each µ(w)(i) is matched in µ̃ to a different
worker wi ∈ Vµ, who can reach 2i−1 distinct workers in Gµ, none of them being w (as this would contradict µ̃
being worker-optimal), which gives at least 2m workers in total. However, for the sake of simplicity, we do not
present this improved bound.
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C.3 Dominant Strategy Incentive Compatibility of Algorithm 1

Proof of Theorem 4. We will use the fact that when workers have strict preferences, Gale and Shap-
ley’s worker-proposing deferred acceptance procedure is dominant strategy incentive compatible, i.e.,
it is always optimal for workers to report their true preferences [17].

First, notice that for each worker w, the ranking Pw used in Algorithm 1 aligns with her utility,
ensuring that all copies of a higher-utility job are ranked above copies of lower-utility ones.

To see that it is optimal for a worker w to report her true vector of utility, we will give her more
strategic power, and we will let her choose her ranking P ′

w over all the duplicated jobs. By the
incentive compatibility property of the deferred acceptance procedure with strict preferences, she
cannot obtain any job ranked above µ̃(w) in Pw. And because Pw is consistent with w’s utility, it is
optimal to report P ′

w = Pw.

D ϵ-Oracle for Approximated Worker Optimal Stable Matching

D.1 ϵ-Oracle

Algorithm 2 ϵ-Oracle for Approximated Worker Optimal Stable Matching

Input: N workers, K jobs, Utility matrix U that encodes the preference of workers over jobs, strict
preference profile Pa of jobs, an integer m ≥ 1, and the instability tolerance ϵ ≥ 0.

1: For each job a ∈ A, duplicate it m times and denote the i-th copy as a(i).
2: Each replica a(i) shares the same preference Pa as the original job a.
3: For every worker w and job a(i), define the utility

U(w, a(i)) := U(w, a)− (i− 1)ϵ

and use it to generate the workers’ preference profile Pw (breaking ties in favor of lower indices).
4: Run Gale-Shapley algorithm on Pw and Pa to compute a worker-optimal stable matching µ̃.
5: For each i ∈ [m], build a matching µ̃i, which matches each job a with µ̃i(a) := µ̃(a(i)).

Output: The distribution D which selects each matching µ̃i with probability 1/m.

D.2 Proof of Theorem 5

Similarly to the proof of Theorem 3, we run Algorithm 2 and define the index of a worker as the
index of the job she receives in µ̃, that is, index(w) = i if worker w receives a(i)j for some j.

Definition 9. Given a problem instance (U , Pa), run Algorithm 2 with duplication number m and
instability tolerance ϵ to generate the output distribution D. Then, for any ϵ-stable matching µ with
respect to (U , Pa), we define a graph Gµ = (Vµ, Eµ) where

Vµ := {w ∈ W | U(w, µ(w)) ≥ m ·UD(w)− ϵ},
Eµ := {(w,w′) ∈ V 2

µ | µ(w) = µ̃j(w
′) where j = index(w′) < index(w)}.

Once again, Gµ is the graph of workers who prefer µ to their match in distribution D, where an edge
(w,w′) means that w′ received a job that w would have liked. Next, we show properties on the graph
Gµ.

Proposition 3. For any stable matching µ, we have that

• Gµ is a directed forest (there is no cycle and each vertex has at most one incoming edge),

• For every worker w ∈ Vµ with i = index(w), and for every 1 ≤ j < i, there a worker
w′ ∈ Vµ with j = index(w′) such that (w,w′) ∈ Eµ.

Proof. The proof is almost identical to that of Proposition 1. Fix a worker w ∈ Vµ with i = index(w),
let 1 ≤ j < i, and let a = µ(w). By definition of Vµ, worker w prefers µ to D, that is U(w, a) ≥
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m · UD(w) − ϵ = U(w, µ̃i(w)) − ϵ. By definition of w’s preference list Pw in Algorithm 2, the
lexicographic ordering gives that

a(j) ≻Pw µ̃(w).

Because µ̃ is a ϵ-stable matching, it should not be blocked by the pair (w, a(j)). Thus, there exists a
worker w′ ∈ W such that µ̃(w′) = a(j) and

w′ ≻a w.

Finally, because µ is a stable matching, it should not be blocked by the pair (w′, a), thus

U(w′, µ(w)) ≥ U(w′, a)− ϵ = m ·UD(w′)− ϵ,

proving that w′ ∈ Vµ. Hence, there is an edge (w,w′) ∈ Eµ, which concludes the proof.

We will once again use Proposition 2 to give a lower on the number of nodes in the graph Gµ. Finally,
we conclude with the proof that Algorithm 2 computes a distribution over internally ϵ-stable matching
which guarantees each worker a logarithmic fraction of their optimal stable share.

Proof of Theorem 5. Algorithm 2 first computes a stable matching µ̃ for the instance with duplicated
jobs, then build m matchings µ̃1, . . . , µ̃m. If there were a pair (w, a) with index(w) = i which
ϵ-blocks matching µ̃i, that is U(w, a) > U(w, µ̃i(w)) + ϵ and w ≻a µ̃i(a), then (w, a(i)) would
block µ̃, which is a contradiction. Thus, each matching µ̃i is internally stable.

Now, let us assume, that there is a stable matching µ in which a worker w with index(w) = i receives
a = µ(w) having utility U(w, a) > U(w, µ̃i(w)) + mϵ. In the matching µ̃, job a(m) must be
matched to some worker w′ such that w′ ≻a w, otherwise (w, a) would block µ̃. Moreover, we must
have U(w′, µ(w′)) ≥ m ·UD(w′)− ϵ otherwise (w′, a) would be blocking µ. Using Proposition 2,
there is a node w′ ∈ Vµ of index m, which proves that there exists at least 2m−1 nodes, and thus that
N ≥ 2m−1. By contrapositive, if we set m > 1 + log2 N , then we have UD(w) ≥ U∗(w)/m− ϵ
for every worker w, which concludes the proof.

D.3 Robustness of ϵ-stable matching

Lemma 1. Fix the preferences of jobs over workers. Given two utility matrices U1 and U2 such
that5 ∥U1 −U2∥max < ϵ

2 , then any stable matching µ for U1, is also ϵ-stable with respect to U2.

Proof. If a matching µ is stable with respect to U1, then for any (w, a) pair such that w ≻a µ(a), we
must have

U1(w, a) ≤ U1(w, µ(w)), (10)

from the definition of stable matching (Definition 1).

Since ∥U1 −U2∥max ≤ ϵ
2 , we have that for any (w, a) pair, |U1(w, a)−U2(w, a)| ≤ ϵ

2 . Therefore,

U2(w, a) ≤ U1(w, a) +
ϵ

2
≤ U1(w, µ(w)) +

ϵ

2
≤ U2(w, µ(w)) + ϵ, (11)

where the first and the last inequality come from ∥U1 −U2∥max ≤ ϵ
2 , while the second inequality

holds according to Eq.(10). Therefore, combining w ≻a µ(a) and Eq.(11), we can conclude that
matching µ is ϵ-stable with respect to U2.

D.4 Proof of Theorem 6

For convenience, we denote SU (resp. SUϵ ) the stable matchings (ϵ-stable matchings) with respect to
U .

Proof. By running Algorithm 2 with U = Û , ϵ = ϵ,m = ⌈log2 N⌉, from Theorem 5, we get

UD(w) ≥ Û∗
ϵ (w)

m
− ϵ, ∀w ∈ W. (12)

5We recall that the max norm of a matrix A = (Ai,j), is defined by ∥A∥max = maxi,j |Ai,j |.
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By construction, any utility matrix U ∈ U satisfies ∥U − Û∥max ≤ ϵ
2 . From Lemma 1, we know

that for any matching µ ∈ SU , ∀U ∈ U , we have µ ∈ SÛϵ , that is
⋃

U∈U SU ⊆ SÛϵ . Therefore, for
the optimal stable share, we have

U∗(w) ≤ Û∗
ϵ (w), ∀w ∈ W. (13)

Combining Eq.(12) and (13), the conclusion holds.

E Explore-then-Choose-Oracle Algorithm

Algorithm 3 is the full version of the Explore-then-Choose-Oracle algorithm.

Algorithm 3 Explore-then-Choose-Oracle (Full version)

Input: N workers, K jobs, horizon T , exploration length T0 < T , preference profile Pa for all jobs
a ∈ K, approximation stable-matching oracle O.

1: Initialize: Û(i, j) = 0, Ti,j = 0,∀i ∈ [N ], j ∈ [K].
2: Initialize: Fi ← False. ▷ Whether the CIs of the first (N + 1)-ranked jobs are disjoint.
3: Set t = 1, T0 ← K⌊T0/K⌋, tm = 0 ▷ To have full rounds of round-robin.
4: while t ≤ T0 and ∃ i ∈ [N ] s.t. Fi == False do ▷ Phase 1, round-robin exploration.
5: Match µt(i)← a((t+i−1) mod K)+1,∀ i ∈ [N ].
6: Observe Xi,µt(i)(t) and update Û(i, µt(i)), Ti,µt(i) as follows:

Û(i, µt(i)) =
Û(i, µt(i)) · Ti,µt(i) +Xi,µt(i)(t)

Ti,µt(i) + 1
, Ti,µt(i) = Ti,µt(i) + 1.

7: t← t+ 1
8: if t mod K == 0 then ▷ Completed a full round of round-robin
9: tm ← tm + 1.

10: Compute UCBi,j and LCBi,j for all i ∈ [N ], j ∈ [K]. ▷ See Equation (5)
11: for i = 1, 2, · · · , N do
12: Ûsort(i, ·)← Sort(Û(i, ·), decreasing)
13: ∆i,min ← min

{
Ûsort(i, j)− Ûsort(i, j + 1), j ∈ [N ]

}
14: if ∆i,min > 2

√
6 lnT
tm

then
15: Fi ← True.
16: end if
17: end for
18: if Fi == True, ∀i ∈ [N ], then ▷ No ties – standard oracle
19: Compute preference list Pw for all w ∈ W according to Û
20: µ̂∗ ← worker-optimal stable matching w.r.t Pw and Pa (using GS algorithm)
21: else if t = T0 then ▷ Potential ties – approximation oracle
22: µ̂∗ ← O(Ū) for Ū s.t. Ū(i, j) = UCBi,j for all i ∈ [N ], j ∈ [K]
23: end if
24: end if
25: end while
26: while t ≤ T do ▷ Phase 2, exploitation with the chosen oracle.
27: Match µt(i)← µ̂∗(i),∀i.
28: t← t+ 1
29: end while

F Technical Lemmas

Lemma 2 (Corollary 5.5 in Lattimore and Szepesvári [40]). Assume that X1, X2, · · · , Xn are
independent, σ-subgaussian random variables centered around µ. Then for any ε > 0,

P

(
1

n

n∑
i=1

Xi ≥ µ+ ε

)
≤ exp

(
−nε2

2σ2

)
, P

(
1

n

n∑
i=1

Xi ≤ µ− ε

)
≤ exp

(
−nε2

2σ2

)
.
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Lemma 3 (Divergence Decomposition, Lemma 15.1 in Lattimore and Szepesvári [40]). For two
bandit instances ν = {νij : i ∈ [N ], j ∈ [K]}, and ν′ =

{
ν′ij : i ∈ [N ], j ∈ [K]

}
, fix some policy π

and let Pν,π and Pν′,π be the probability measures induced by the T -round interconnection of π and
ν (respectively, π and ν′), the following divergence decomposition holds,

D (Pν,π,Pν′,π) =

N∑
i=1

K∑
j=1

Eν,πNij(T ) ·D
(
νij , ν

′
ij

)
. (14)

Lemma 4 (Data-processing Inequality, Lemma 1 in Garivier et al. [24]). Consider a measurable
space (Ω,F) equipped with two distributions P1 and P2, and any F-measurable random variable
Z : Ω→ [0, 1]. We denote respectively by E1 and E2 the expectations under P1 and P2. Then,

KL (P1,P2) ≥ kl(E1[Z],E2[Z]),

where kl denotes the KL divergence for Bernoulli distributions, i.e., ∀p, q ∈ [0, 1]2, kl(p, q) =
p ln p

q + (1− p) ln 1−p
1−q .

G Proof of Therorem 7

For convenience, let Û (t)(i, j), T
(t)
i,j , UCB

(t)
i,j , LCB

(t)
i,j be the value of

Û(i, j), Ti,j , UCBi,j , LCBi,j at the end of round t. Define F ={
∃t ∈ [T ], i ∈ [N ], j ∈ [K] : |Û (t)(i, j)−U(i, j)| >

√
6 lnT

T
(t)
i,j

}
as the bad event that some

preference is not estimated well during the horizon.
Lemma 5.

P(F) ≤ 2NK/T.

Proof.

P(F) = P

(
∃1 ≤ t ≤ T, i ∈ [N ], j ∈ [K] : |Û (t)(i, j)−U(i, j)| >

√
6 lnT

T
(t)
i,j

)

≤
T∑

t=1

∑
i∈[N ]

∑
j∈[K]

P

(
|Û (t)(i, j)−U(i, j)| >

√
6 lnT

T
(t)
i,j

)

≤
T∑

t=1

∑
i∈[N ]

∑
j∈[K]

t∑
s=1

P

(
T

(t)
i,j = s, |Û (t)(i, j)−U(i, j)| >

√
6 lnT

s

)

≤
T∑

t=1

∑
i∈[N ]

∑
j∈[K]

t · 2 exp(−3 lnT )

≤ 2NK/T,

where the second last inequality results from Lemma 2.

Lemma 6. Conditional on ⌝F , UCB
(t)
i,j < LCB

(t)
i,j′ implies U(i, j) < U(i, j′).

Proof. According to the definition of LCB and UCB, we have that conditional on ⌝F ,

LCB
(t)
i,j = Û

(t)
i,j −

√
6 lnT

T
(t)
i,j

≤ U(i, j) ≤ Û (t)(i, j) +

√
6 lnT

T
(t)
i,j

= UCB
(t)
i,j .

Therefore, if UCB
(t)
i,j < LCB

(t)
i,j′ , we have that

U(i, j) ≤ UCB
(t)
i,j ≤ LCB

(t)
i,j′ ≤ U(i, j′).
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Lemma 7. In round t, let T (t)
i = minj∈[K] T

(t)
i,j . Conditional on ⌝F , if T (t)

i > 96 lnT/∆2
min, we

have LCB
(t)
i,ρi,k

> UCB
(t)
i,ρi,k+1

for any k ∈ [N ], and LCB
(t)
i,ρi,N

> UCB
(t)
i,ρi,k for any N + 1 ≤

k ≤ K.

Proof. We prove it by contradiction, suppose that there exists k ∈ [N ] such that LCB
(t)
i,ρi,k

≤
UCB

(t)
i,ρi,k+1

or there exists N + 1 ≤ k ≤ K such that LCB
(t)
i,ρi,N

≤ UCB
(t)
i,ρi,k. Without loss of

generality, denote j as the arm on the LHS and j′ as the arm on the RHS.

Conditional on ⌝F and by the definition of LCB and UCB, we have that

U(i, j)− 2

√
6 lnT

T
(t)
i

≤ LCB
(t)
i,j ≤ UCB

(t)
i,j′ ≤ U(i, j′) + 2

√
6 lnT

T
(t)
i

.

Therefore, ∆i,j,j′ = U(i, j)−Ui,j′ ≤ 4
√

6 lnT

T
(t)
i

, which implies that T (t)
i ≤ 96 lnT

∆2
i,j,j′

≤ 96 lnT
∆2

min
, which

is a contradiction.

Lemma 8. Conditional on ⌝F , if ∆min >
√

96K lnT
T0

, Algorithm 3 would enter the exploitation
phase and choose the Gale-Shapley oracle at some t ≤ T0.

Proof. If ∆min >
√

96K lnT
T0

, we have T0 > 96K lnT
∆2

min
. Since for every worker, Algorithm 3 allocates

jobs in a round-robin fashion, we have that T (t)
i > 96 lnT

∆2
min

.

By Lemma 7, we know that for any worker wi, LCB
(t)
i,ρi,k

> UCB
(t)
i,ρi,k+1

for any k ∈ [N ], and

LCB
(t)
i,ρi,N

> UCB
(t)
i,ρi,k for any N + 1 ≤ k ≤ K, i.e., the preference utility for the first N -ranked

jobs for every worker has been estimated well enough with the confidence intervals disjoint. The
flag Fi would be set as True as in Line 15 in Algorithm 3 and we would enter Phase 2 at some time
t ≤ T0.

Lemma 9. Given a utility matrix UN×K without ties, the worker-optimal stable matching job of
each worker must be its first N -ranked.

Proof. We implement the Gale-Shapley algorithm with the workers as the proposing side. Once a job
is proposed, it has a temporary worker. By contradiction, once N jobs have been proposed, we have
N workers occupied. Therefore, each worker would be allocated with a job and the Gale-Shapley
algorithm would stop. Since in the deferred-acceptance procedure, workers propose to jobs one by
one according to their preference list, then the worker-optimal stable matching job of each worker
must be its first N -ranked.

Proof of Theorem 7. We consider the two cases separately.

Case 1. ∆min >
√

96K lnT
T0

.

Let ∆i,max = maxj∈[K] [U
∗(wi)−U(i, j)] be the maximum worker-optimal stable regret that may

be suffered by wi in all rounds, we have ∆i,max ≤ 1. The worker-optimal stable regret for each
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worker wi by following Algorithm 3 satisfies

Regi(T ) = E

[
T∑

t=1

(U∗(wi)−Xi(t))

]

≤ E

[
T∑

t=1

1{µt(i) ̸= µ∗(i)} ·∆i,max

]
(15)

≤ E

[
T∑

t=1

1{µt(i) ̸= µ∗(i)} |⌝F

]
·∆i,max + P(F) · T ·∆i,max

≤ E

[
T∑

t=1

1{µt(i) ̸= µ∗(i)} |⌝F

]
·∆i,max + 2NK∆i,max (16)

≤
⌈
96K lnT

∆2
min

⌉
·∆i,max + 2NK∆i,max (17)

= O

(
K lnT

∆2
min

)
,

where Eq.(15) comes from the fact that in a matching market without ties, there is a unique worker-
optimal stable matching and hence a unique optimal stable match µ∗(i) for worker i, Eq.(16) holds
based on Lemma 5, Eq.(17) holds according to Lemma 8 and 9 and the fact that Gale-Shapley
algorithm could always output the worker-optimal stable matching with respect to the given utility
matrix by treating worker as the proposing side.

Case 2. ∆min ≤
√

96K lnT
T0

.

The objective function is the approximation regret Regαi (T ). Denote F (t)
d as the event that

LCB
(t)
i,ρi,k

> UCB
(t)
i,ρi,k+1

for all k ∈ [N ], and LCB
(t)
i,ρi,N

> UCB
(t)
i,ρi,k for all N + 1 ≤ k ≤ K.

We have

Regαi (T ) = E

[
αT ·U∗(wi)−

T∑
t=1

Xi(t) | F

]
· P(F)

+ E

[
αT ·U∗(wi)−

T∑
t=1

Xi(t) |⌝F

]
· P(⌝F)

≤ αT · P(F) + E

[
αT ·U∗(wi)−

T∑
t=1

Xi(t) |⌝F

]
(18)

≤ 2αNK + E

[
αT ·U∗(wi)−

T∑
t=1

Xi(t) |⌝F

]
(19)

≤ 2αNK + E

[(
αT ·U∗(wi)−

T∑
t=1

Xi(t)

)
1
{
F (T0)

d

}
|⌝F

]

+ E

[(
αT ·U∗(wi)−

T∑
t=1

Xi(t)

)
1
{
⌝F (T0)

d

}
|⌝F

]

≤ 2αNK + αT0 + E

[(
αT ·U∗(wi)−

T∑
t=1

Xi(t)

)
1
{
⌝F (T0)

d

}
|⌝F

]
, (20)

where Eq.(18) comes from the fact that U∗(wi) ≤ 1 and Xi(t) ≥ 0. Eq.(19) holds according
to Lemma 5. Eq.(20) comes from the fact that when the good event ⌝F that all utilities are well
estimated and the top (N + 1)-ranked CIs are disjoint before T0, the Gale-Shapley algorithm would
give us the OSS in the exploitation phase, and since α ∈ (0, 1], the approximation regret would be no
larger than αT0 + (α− 1) · (T − T0) ≤ αT0.
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Moreover, conditional on ⌝F , we have the ground-truth utility matrix U lies in the uncertainty set
constructed by the empirical mean utility matrix Û (T0) and the UCB(T0) and LCB(T0), i.e., for any

(i, j) ∈ [N ] × [K], |Û (T0)(i, j) − U(i, j)| ≤
√

6K lnT
T0

. If we implement an (α, ϵ)-oracle, with ϵ

being 2
√

6K lnT
T0

, follow a similar proof as that for Theorem 6, in each round t in the exploitation
phase, we have that

αU∗(wi)− EXi(t) ≤ 2

√
6K lnT

T0
. (21)

Since there are in total T − T0 rounds of exploitation, we have that

E

[(
αT ·U∗(wi)−

T∑
t=1

Xi(t)

)
1
{
⌝F (T0)

d

}
|⌝F

]
≤ αT0 + 2

√
6K lnT

T0
(T − T0). (22)

Therefore, combining Eq.(20) and (22), we have

Regαi (T ) ≤ 2αNK + 2αT0 + 2

√
6K lnT

T0
(T − T0).

H Proof of Theorem 8

Proof. LetW = {w1, w2, w3, w4} and A = {a1, a2, a3, a4} and w1 ≻ w2 ≻ w3 ≻ w4 for all the
jobs. Throughout the proof, we assume that all observations are Gaussian of unit variance, that is,
when matching wi to aj at round t, we observe Xi(t) ∼ N (U(i, j), 1). Consider two instances ν
and ν′ with the following mean utility matrices U and U ′, respectively.

U =


1
2

1
2 0 0

1
2 0 1

2 0
1
2 0 0 1

4
0 0 1

2 0

 , U ′ =


1
2 + γ 1

2 0 0
1
2 0 1

2 0
1
2 0 0 1

4
0 0 1

2 0

 ,

where γ < 1
4 .

Lemma 10 (Properties of Instances ν and ν′). Based on the utility matrices U and U ′, we have the
following properties of ν and ν′:

1. Under ν, the optimal stable shares are U∗(w) = 1
2 ,∀w ∈ W; Under ν′, the optimal stable

shares are (U ′)∗(w1) =
1
2 + γ, (U ′)∗(w2) =

1
2 , (U ′)∗(w3) =

1
4 , and (U ′)∗(w4) = 0.

2. The relevant utility gaps for the two instances are ∆ν
rel = 0, and ∆ν′

rel = γ.

3. Given an offline oracle that could compute the best approximation ratio, the benchmark
utilities for the four workers (after multiplying the approximation ratio) are ( 12 ,

3
8 ,

3
8 ,

3
8 )

under ν and ( 12 + γ, 1
2 ,

1
4 , 0) under ν′.

We provide the proof of Lemma 10 in Appendix I.

For a worker wi, i ∈ [N ], job aj , j ∈ [K] and time slot t ∈ [T ], denote Nij(t) ∈ N∪{0} as the num-
ber of times worker wi is matched to job aj , up to and including time t, and denote the past information
as It := (µ1,X(1), µ2,X(2), · · · , µt−1,X(t− 1)), where X(t) = (X1(t), X2(t), · · · , XN (t)) is
the realized reward vector for all N workers in round t. Finally, let Pν,π be the joint probability
measure over the history and Eν,π be the expectation induced by instance ν and policy π, and Pν′,π ,
Eν′,π be defined similarly. By divergence decomposition theorem [40, restated in Lemma 3], we
have that

DKL (Pν,π,Pν′,π) =

N∑
i=1

K∑
j=1

Eν,πNij(T ) ·DKL

(
νij ,ν

′
ij

)
,
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where νij is the distribution of utilities obtained when worker wi is matched to job aj in the
environment ν.

Since the only change in utility distribution happens in (w1, a1) pair, we have that

DKL (Pν,π,Pν′,π) = DKL(ν11,ν
′
11)Eν,π [N11(T )] = Eν,π [N11(T )] ·

γ2

2
, (23)

where the second equality comes from the fact that for two Gaussian distributions with means 1
2 and

1
2 + γ and variance 1, the KL divergence is γ2

2 .

By data-processing inequality [40, restated in Lemma 4], we know that for all σ(IT )-measurable
random variable Z ∈ [0, 1], we have that

DKL (Pν,π,Pν′,π) ≥ kl (Eν,π(Z),Eν′,π(Z)) . (24)

where kl denotes the KL divergence between two Bernoulli distributions, i.e., ∀p, q ∈
[0, 1]2, kl(p, q) = p ln p

q + (1− p) ln 1−p
1−q .

Let Z = N21(T )+N23(T )
T , then Z ∈ [0, 1], by Pinsker’s inequality, we have that

kl (Eν,π(Z),Eν′,π(Z)) ≥ 2 · [Eν,π(Z)− Eν′,π(Z)]
2
. (25)

Combining Eq.(23), (24), (25), we have that

Eν,π [N11(T )] ·
γ2

2
≥ 2 · [Eν,π(Z)− Eν′,π(Z)]

2
. (26)

We now divide into two cases, depending on the asymptotic number of matches Eν,π[N11(T )].

Case I: lim infT→∞
Eν,π [N11(T )]

T 1−2δ = 0. We assume that both Regi(T ;ν
′) and Reg

α∗(wi)
i (T ;ν)

are sublinear for all workers and show that we have a contradiction.

Since γ = cT− 1
2+δ , by Eq. (26), we have

lim inf
T→∞

|Eν,π[N21(T ) +N23(T )]− Eν′,π[N21(T ) +N23(T )]|
T

= 0. (27)

In ν′, if the ground-truth utility matrix U ′ is known and we would like to achieve the benchmark
utility for w2, we need N21(T ) + N23(T ) = T , since worker w2 could only get positive utilities
from jobs a1 and a3 and her benchmark utility is 1

2 . In particular, the regret for this worker is

Regi(T ;ν
′) =

1

2
(T − Eν′,π[N21(T ) +N23(T )]),

and to guarantee sublinear regret for w2 for any large enough T , we must have

lim inf
T→∞

Eν′,π [N21(T ) +N23(T )]

T
= 1.

Therefore, to satisfy Eq.(27), we must also have

lim inf
T→∞

Eν,π [N21(T ) +N23(T )]

T
= 1. (28)

On the other hand, since w4 only gets positive utilities in U(4, 3), to achieve the benchmark utility in
ν, we need N43(T ) =

3
4T . Therefore, to guarantee sublinear approximation regret for w4, we must

have

lim inf
T→∞

Eν,π [N43(T )]

T
≥ 3

4
,

which implies lim supT→∞
Eν,π [N23(T )]

T ≤ 1
4 , since the total number of times that jobs a3 being

allocated cannot be more than the horizon T . Therefore, lim infT→∞
Eν,π [N21(T )]

T ≥ 3
4 according to

Eq.(28). Using again the fact that a job can be allocated no more than T times, we get

lim sup
T→∞

Eν,π [N31(T )]

T
≤ 1

4
. (29)
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Finally, we write the regret of w3 as

Regα3 (T ) =
3T

8
− 1

2
Eν,π[N31(T )]−

1

4
Eν,π[N34(T )]

=
3T

8
− 1

4
Eν,π[N31(T )]−

1

4
(Eν,π[N34(T )] + Eν,π[N31(T )])

≥ T

8
− 1

4
Eν,π[N31(T )],

where the inequality is since w3 is matched at most T times, namely, Eν,π[N34(T )]+Eν,π[N31(T )] ≤
T . Combining with Eq. (29), we have lim infT→∞

Regα
3 (T ;ν,π)
T ≥ 1

8 −
1
4 ·

1
4 = 1

16 , which implies
worker w3 suffers linear approximation regret in ν.

Thus, to summarize, assuming that all workers in both problem exhibit sublinear regret for this case
leads to a contradiction.

Case II: lim infT→∞
Eν,π [N11(T )]

T 1−2δ > 0. Our goal is to prove a lower bound on the regret in ν for
some worker.

For a fixed T , denote for brevity N = Eν,π[N11(T )], and assume with contradiction that all
workers w2, w3, w4 suffer a regret smaller than N/32. Denote the cumulative allocation given by the
algorithm by D ∈ [0, T ]4×4, namely D(i, j) =

∑T
t=1 1{(wi, aj) ∈ µt}. In particular, we know that

D(1, 1) = N and that for all i ∈ {2, 3, 4}, it holds that

∀i ∈ {2, 3, 4},
4∑

j=1

U(i, j)D(i, j) ≥ 3T

8
− N

32
(30)

We now state a set of assumptions on the matching that the policy outputs at each round. Each of these
assumptions never decreases the worker utility. Thus, and since we want to prove a contradiction in
the utility lower bound of Eq. (30), they could be assumed without loss of generality.

1. When w1 is not matched to a1, it is always matched to a2 (D(1, 1) +D(1, 2) = T ) – so
that it suffers zero regret.

2. a3 is always matched to either w2 or w4 (D(2, 3) +D(4, 3) = T ).

3. a1 is always assigned to one of the first three workers (D(1, 1) +D(2, 1) +D(3, 1) = T ).

4. If a1 is not assigned to w3, then a4 is assigned to w3 (D(3, 1) +D(3, 4) = T ).

Notice that changing each individual allocation to follow this condition can only require unmatching
a worker from a job that yields her no utility and matching all conditions is feasible (e.g., by
µ = {(w1, a1), (w3, a4), (w4, a3)}).
We now modify the matching allocation D to allocation D̄ while maintaining the above properties as
follows:

• We initialize D̄ = D.

• If D(4, 3) ≤ 3T
4 + N

16 , we set D̄(4, 3) = 3T
4 + N

16 and D̄(2, 3) = T
4 −

N
16 ; otherwise, we

leave D̄(4, 3) = D(4, 3). By Eq. (30), we know that D(4, 3) ≥ 3T
4 −

N
16 , and combined

with Assumption 2, this change can only decrease the allocation to worker w2 by

D(2, 3)− D̄(2, 3) = D̄(4, 3)−D(4, 3) ≤ N

8

This decreases the utility of worker w2 by 1
2

(
D(2, 3)− D̄(2, 3)

)
≤ N

16 , and after this
modification, the cumulative utility of worker w4 is 3T

8 + N
32 .

• By Assumption 1, we know that D(1, 1) = N and D(1, 2) = T − N . We also know by
assumption 4 that in all rounds where a1 was assigned to w1, a4 was assigned to w3, and
therefore, D(3, 4) ≥ N . In D̄, we move all the N assignments of (w1, a1) to (w1, a2),
so that D̄(1, 1) = 0 and D̄(1, 2) = T ; in particular, w1 still gets its OSS. We split the
allocation of a1 evenly between w2 and w3 by letting:
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1. D̄(2, 1) = min
{
T − D̄(2, 3), D(2, 1) +N/2

}
, thus making sure that the utility of w2

is at least either T/2 ≥ 3T/8 +N/16 or

1

2

(
D̄(2, 1) + D̄(2, 3)

)
≥ 1

2

(
D(2, 1) +

N

2
+D(2, 3)− N

8

)
≥ 3T

8
−N

32
+
3N

16
=

3T

8
+
5N

32
,

where in the last inequality we again used the assumption on the regret of w2 in Eq.(30).
2. We move the matches from (w1, a1) that were not allocated to D(2, 1) as follows:

D̄(3, 1) = D(3, 1) +N −
(
D̄(2, 1)−D(2, 1)

)
≥ D(3, 1) +N/2, and,

D̄(3, 4) = D(3, 4)−
(
N −

(
D̄(2, 1)−D(2, 1)

))
≥ D(3, 4)−N/2.

Both allocations are valid since D(3, 4) ≥ N due to Assumption 4. In particular, this
shift from a4 to a1 increases the utility of w3 by at least

(
1
2 −

1
4

)
N
2 = N

8 , ensuring it a
total utility of at least 3T/8 + 3N/32.

Notice that all changes either kept D̄ a doubly-stochastic matrix or decreased the sum of a row - we
can w.l.o.g increase another element of D̄ or use partial matchings.

Importantly, at the end of this process, the utility of w1 under the matching distribution D̄ re-
mained T/2, while the utility of all other workers increased by at least N/16 - contradicting the
fact that no matching distribution can collect more than 3T/8 to all workers w2, w3, w4. Thus,
Eq. (30) cannot hold and at least one worker must suffer a regret of at least N/32. Finally, since
lim infT→∞

Eν,π [N11(T )]
T 1−2δ > 0, we get the same for the regret of one of the workers, concluding the

proof.

I Proof of Lemma 10

Proof. We proof the three properties as follows.

1. Optimal Stable Share

Under ν, consider the following stable matchings: µ1 = {(w1, a2), (w2, a1), (w3, a4), (w4, a3)} and
µ2 = {(w1, a2), (w2, a3), (w3, a1), (w4, a4)}. The optimal stable share is U∗(w) = 1

2 ,∀w ∈
W with w1 and w2 receives it in both matchings, w3 receives it in matching µ2 and w4 re-
ceives it in matching µ1. Under ν′, the optimal stable shares are (u′)∗(w1) = 1

2 + γ,
(u′)∗(w2) = 1

2 , (u′)∗(w3) = 1
4 , and (u′)∗(w4) = 0, achieved through the stable matching

µ′ = {(w1, a1), (w2, a3), (w3, a4), (w4, a2)}.
2. Relevant Utility Gap

Besides, the relevant utility gap for ν is ∆ν
rel = 0 since both µ1 and µ2 belongs to the Pareto-optimal

stable matching set SUopt. On the other hand, since the jobs have global preference rankings over the
workers, i.e., serial dictatorship, µ′ is the unique stable matching with respect to ν′, i.e., SU ′

opt = {µ′}.
A perturbation of −γ in U(1, 1) or γ in U(1, 2) brings ties for worker w1, and hence would change
SU ′

opt tp SUopt. On the other hand, a perturbation of 1
4 in U(3, 2) or − 1

4 in U(3, 4) would make
SU ′

opt include both µ′ and µ′
2 = {(w1, a1), (w2, a3), (w3, a2), (w4, a4)}. All other entries need a

perturbation of scale larger than 1
4 to change the Pareto-optimal stable matching set. Since γ < 1

4 , we
have that ∆ν′

rel = γ.

3. Benchmark Utility

Let γ = cT−1/2+δ for some δ ∈ (0, 1
2 ). Then, under ν, we aim to minimize the approxima-

tion regret Regαi (T ) for every worker wi, while under ν′, the objective is to minimize regret
Regi(T ) for each worker wi. Given an offline oracle that could compute the best possible approx-
imation ratio, the benchmark utilities for the four workers (after multiplying the approximation
ratio) are

(
1
2 ,

3
8 ,

3
8 ,

3
8

)
under ν and

(
1
2 + γ, 1

2 ,
1
4 , 0
)

under ν′. For ν′, by serial dictatorship, the
allocation scheme is equivalent to letting the workers choose their favorite jobs one by one. Do-
ing so leads to the matching µ = {(w1, a2), (w2, a3), (w3, a1), (w4, a4)}, which is unique since
for all workers, when they choose their jobs, only a single unallocated job maximizes their util-
ity. Hence, the benchmark utilities are immediately determined by the utility under this matching.
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For ν, since all workers but w1 have no utility from job a2, and U∗(w1) = U(1, 2), it is always
optimal to assign a2 to w1 deterministically and the benchmark utility for w1 is 1/2. For the
other players, if we match w2 to a1, then for w3 and w4, there are two possible matchings, i.e.,
{(w3, a4), (w4, a3)} and {(w3, a3), (w4, a4)}, but the first one is always better since it gives both
players higher utilities. Similarly, if we match w2 to a3, it is always better to select the matching
{(w3, a1), (w4, a4)}rather than {(w3, a4), (w4, a3)}, and if w2 is matched to a4, then we choosing
{(w3, a1), (w4, a3)} yields higher utilities than choosing {(w3, a3), (w4, a1)}. Since all three three
players have an OSS of 1/2, to maximize the OSS ratio, we need to compute a distribution D
over the three matchings µa = {(w2, a1), (w3, a4), (w4, a3)}, µb = {(w2, a3), (w3, a1), (w4, a4)}
and µc = {(w2, a4), (w3, a1), (w4, a3)}, such that min {uD(w2), uD(w3), uD(w4)} is maximized.
Noticing that each of the three matchings yields the OSS to two players and a lower utility for the
third one, we can conclude that the optimal balance would be uD(w2) = uD(w3) = uD(w4) –
otherwise, we could increase the OSS-ratio by moving utility from the highest rewarded player to the
lowest rewarded one. This condition is satisfied iff

P(µa) =
1

2
, P(µb) =

1

4
, P(µc) =

1

4
,

and the benchmark utility for any of these three players is 3
8 .

J Discussion Regarding Stable Matching with One-sided Ties and Job
Utilities

In this paper, we consider a matching market where one side has possibly tied cardinal preferences
and the other side has strict ordinal preferences. It directly generalizes to the setting that both sides
have cardinal preferences but only one side admits ties, by recovering an ordinal preference list from
the utility, and we can define the OSS-ratio for the jobs in a similar fashion, denoted as Ra

M; in the
following, we rename the OSS-ratio for the workers as Rw

M for distinguishment. We claim that the
setting with one-sided ties is not only practical in reality, but also important for our theoretical results,
if we want to consider the OSS-ratio for both sides of the market.

Stable Matching Without Ties The distributive lattice structure is a striking feature for a matching
market without ties [36], which reveals that all workers could be optimally matched simultaneously, by
simply running the deferred-acceptance algorithm with worker proposing, denoted as µw. Conversely,
job-proposing deferred-acceptance algorithm, denoted as µa, gives every job its corresponding
optimal stable match. Therefore, construct the distribution D as follows:

P(D = µw) =
1

2
, P(D = µa) =

1

2
.

Since µw and µa are both stable matchings, with distribution D, we know that Rw
M ≤ Rw

S ≤ 1
2 , and

the same result holds for Ra
M. This implies that both Rw

M and Ra
M are Θ(1), and Ω(1) is a trivial

lower bound for the two ratios.

Stable Matching With One-sided Ties The lattice structure is absent when ties exist in the
preference profiles [45]. When only one side of the market admits ties, we have proved that
Rw

M = Θ(logN). On the other hand, for Ra
M, we have the following result.

Theorem 9. For a matching market where the workers have ties while the jobs have strict preferences,
there exists an instance such that Ra

M = Ω(N).

Proof. Consider the following utility matrix for a market with N workers and N jobs. The matrix
encodes the preferences of the workers and the jobs simultaneously.

U =


1 1 · · · 1
ε1 ε1 · · · ε1
ε2 ε2 · · · ε2
...

...
. . .

...
0 0 · · · 0

 ,
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where ε1 > ε2 > · · · > 0. ui,j ≥ ui,j′ implies aj ≿wi aj′ and ui,j ≥ ui′,j implies wi ≿aj wi′ .
In this example, every worker is indifferent among all the jobs, while every job has the preference
profile that w1 ≻ w2 ≻ · · · ≻ wN . The optimal stable share for each job is 1, and it is achieved by
an appropriate tie-breaking of w1. However, in any matching, exactly one job would receive a utility
of 1. When ε1, ε2, · · · approach 0, we have that maxa

U∗(a)
UD(a) ≥ N , with the equality achieved when

we consider the distribution D that assigns probability 1/N on matching µj , where µj refers to a
matching in which job aj gets a utility of 1. Therefore, limε→0 R

a
M = Ω(N).

Stable Matching with Two-sided Ties When both sides of the market have ties, by symmetry, the
OSS-ratio for the worker side and the job side would be of the same order.
Theorem 10. For a matching market where both sides admit ties, there exists an instance, such that
Rw

M = Ra
M = Ω(N).

Proof. Consider the following N ×N utility matrix which simultaneously encodes the preferences
of the workers and the jobs.

U =


1 1 · · · 1
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 ,

where the entries of this utility matrix share the same correspondence to the preference profile as those
in the example in Theorem 9. In this example, worker w1 is indifferent among all the jobs, while
all the other workers share the same preference over the jobs, that is, a1 ≻ a2 ∼ a3 ∼ · · · ∼ aN .
The preference of jobs over workers is symmetrically derived. Every matching that involves all the
workers and jobs is a stable matching, which gives a utility of 1 to worker w1 and job a1, while for the
remaining workers and jobs, at most one worker and one job would receive a utility of 1, and all the
other workers get 0. For every worker and every job, there exists a tie-breaking mechanism such that
it gets a utility of 1. Therefore, the optimal stable share is U∗(w) = U∗(a) = 1 for any w and a. And
any distribution D over matchings gives U∗(w1)

UD(w1)
= U∗(a1)

UD(a1)
= 1, maxw∈{w2,w3,··· ,wN}

U∗(w)
UD(w) ≥

N − 1, and maxa∈{a2,a3,··· ,aN}
U∗(a)
UD(a) ≥ N − 1, with the equality achieved when we adopt the

random allocation that assigns probability 1/(N − 1) on matching µi, in which workers w1 and wi,
jobs a1 and ai receive a utility of 1, while all the other workers and jobs get 0.

K Discusssion Regarding Two-sided Bandit Learning in Matching Markets

In this paper, we consider bandit learning for one side of the market, where the preferences of jobs
over workers are assumed to be known. A possible future direction would be to consider two-sided
bandit learning for matching markets.

For a matching market without ties, a fundamental result indicates that the worker-optimal stable
matching is necessarily job-pessimal, and no stable matching simultaneously maximizes utility for
both sides. Therefore, a reasonable benchmark would be to consider the optimal stable matching for
workers and the pessimal stable matching for jobs, leading to the following regret definition:

Regi(T ) = T · Ū(wi)− E

[
T∑

t=1

Xi(t)

]
, ∀wi ∈ W,

Regj(T ) = T ·U(aj)− E

[
T∑

t=1

Xj(t)

]
, ∀aj ∈ A,

where Ū(wi) represents the utility from the worker-optimal stable matching and U(aj) denotes the
utility from the job-pessimal stable matching.

Previous work [60] studied regret minimization for both sides of the market in a setting without
ties, adopting the regret definitions above. Zhang and Fang [60] establishes an O

(
K log T/∆2

)
regret bound for every agent, measured against their respective benchmark (worker-optimal and
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job-pessimal). Our algorithm directly generalizes to the same setting and matches the theoretical
guarantees of Zhang and Fang [60] when there are no ties. This is because the initial exploration phase
will find the strict preference list for both sides simultaneously w.h.p. and thus, after committing, the
resulting Gale-Shapley output will be the worker-optimal / job-pessimal stable matching.

In contrast, introducing ties to the market significantly complicates the analysis. The set of stable
matchings expands substantially, and no single matching simultaneously satisfies the benchmarks
defined for both sides. To extend our results to markets with ties, we propose using the Optimal Stable
Share (OSS) as the benchmark for workers as defined in our paper. It is thus natural to introduce
the equivalent Pessimal Stable Share (PSS) – the minimum utility a job can receive across all stable
matchings. However, whether efficient algorithms can achieve sublinear regret for all agents in
markets with ties remains open and would be interesting to explore.
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