
Order-Optimal Global Convergence for Actor-Critic with General Policy and
Neural Critic Parametrization

Swetha Ganesh1,2 Jiayu Chen3 Washim Uddin Mondal4 Vaneet Aggarwal1

1Purdue University
2Indian Institute of Science

3Carnegie Mellon University
4Indian Institute of Technology, Kanpur

Abstract

This paper addresses the challenge of achieving
optimal sample complexity in reinforcement learn-
ing for Markov Decision Processes (MDPs) with
general policy parameterization and multi-layer
neural network critics. Existing approaches either
fail to achieve the optimal rate or require imprac-
tical assumptions, such as access to knowledge of
mixing times or the linearity of the critic. We in-
troduce the Natural Actor-Critic with Data Drop
(NAC-DD) algorithm, which integrates Natural
Policy Gradient methods with a Data Drop tech-
nique to mitigate statistical dependencies inherent
in Markovian sampling. NAC-DD achieves an op-
timal sample complexity of Õ(1/ϵ2), marking a
significant improvement over the previous state-
of-the-art guarantee of Õ(1/ϵ3). The algorithm
employs a multi-layer neural network critic with
differentiable activation functions, aligning with
real-world applications where tabular policies and
linear critics are insufficient. Our work represents
the first to achieve order-optimal sample complex-
ity for actor-critic methods with neural function
approximation, continuous state and action spaces,
and Markovian sampling. Empirical evaluations
on benchmark tasks confirm the theoretical find-
ings, demonstrating the practical efficacy of the
proposed method.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful
framework with broad applications across various domains
such as robotics [Gonzalez et al., 2023], transportation
[Al-Abbasi et al., 2019], communication networks [Agarwal
et al., 2022], and healthcare [Tamboli et al., 2024], where au-
tonomous systems learn optimal decision-making strategies

through interaction with their environment. However, unlike
many machine learning scenarios, the temporal dependence
inherent in RL violates the assumption of independent
and identically distributed (i.i.d.) samples, complicating
theoretical analysis and convergence guarantees. Among RL
approaches, actor-critic methods have garnered attention
for their scalability and adaptability, yet they generally fall
short in achieving optimal convergence rates. This paper
aims to address this gap by analyzing sample complexity
for discounted reward Markov Decision Processes (MDPs)
with general parametrized policies and neural critic. The
current state of the art in this area, [Gaur et al., 2024],
reaches a sample complexity of Õ(1/ϵ3) under Markovian
sampling. This brings forth a central question:

Can we achieve an ϵ-globally optimal solution with a sam-
ple complexity of Õ(1/ϵ2) in the Markovian sampling set-
ting, using general parameterized policies and a multi-
layer neural network parameterized critic?

In this paper, we answer this question in the affirmative
by proposing an algorithm called Natural Actor-Critic with
Data Drop (NAC-DD). We observe that the general policy
and neural critic parametrization we consider are widely
used in practice. In contrast, while tabular policies and lin-
ear critics have been extensively studied, they find limited
practical application. Our work focuses on neural critics
with differentiable activation functions (such as Sigmoid,
ELU, and GeLU), which smoothly approximate ReLU and
are commonly employed in real-world settings.

1.1 RELATED WORKS

Policy Gradient Approaches: Recent studies have estab-
lished an optimal sample complexity of Õ(1/ϵ2) for policy
gradient approaches with general parameterizations, as seen
in [Fatkhullin et al., 2023, Mondal and Aggarwal, 2024],
though these methods rely on independent sampling for
gradient estimation. Thus, their approaches for policy gra-

Table 1: This table summarizes the features of different actor-critic convergence results. Our result is the first to provide
order-optimal sample complexity results of AC for an MDP setting with general/multi-layer neural network parametrization
for the actor-critic, continuous state and action space, and Markovian sampling.

References
Global

Optimality
Continuous State

Action Space
Multi Layer

NN AC
Markovian
Sampling

Sample
Complexity

[Xu et al., 2020b] ✓ ✓ ✗ ✓ Õ(ϵ−4)

[Khodadadian et al., 2021] ✓ ✗ ✗ ✓ Õ(ϵ−3)

[Xu et al., 2020a] ✓ ✓ ✗ ✓ Õ(ϵ−3)

[Xu et al., 2021] ✓ ✓ ✗ ✓ Õ(ϵ−4)

[Wang et al., 2019] ✓ ✗ ✗ ✗ Õ(ϵ−4)

[Cayci et al., 2024] ✓ ✗ ✗ ✗ Õ(ϵ−4)

[Fu et al., 2021] ✓ ✗ ✓ ✗ Õ(ϵ−6)

[Tian et al., 2023] ✗ ✗ ✓ ✓ Õ(ϵ−2)

[Gaur et al., 2024] ✓ ✓ ✓ ✓ Õ(ϵ−3)

This work ✓ ✓ ✓ ✓ Õ(ϵ−2)

dient estimation are not directly extendable to actor-critic
framework with Markovian sampling.

Actor-Critic Approaches: For actor-critic algorithms, how-
ever, no existing work has yet achieved this optimal sample
complexity when using multi-layer neural network param-
eterizations for both actor and critic. Table 1 provides a
summary of key actor-critic approaches, categorizing al-
gorithms by their achievement of global optimality, com-
patibility with continuous state and action spaces, use of
general/multi-layer neural network parameterizations, and
reliance on Markovian sampling. The current state of the art
in this area, [Gaur et al., 2024], reaches a sample complexity
of Õ(1/ϵ3) under Markovian sampling.

Neural Policy Evaluation: A recent paper has established
an optimal-order result for Q-learning with a fixed sample-
generating policy and neural function approximation [Ke
et al., 2024]. This work also provides valuable intermediate
results on Q-value approximation, which we use in our
analysis. However, in order to achieve order-optimal global
convergence, we also require a bound on the bias of the Q-
function estimates, which requires a substantially different
analysis.

1.2 MAIN CONTRIBUTIONS AND CHALLENGES

In this paper, we propose an algorithm that integrates the
Natural Actor-Critic method with a Data Drop (NAC-DD)
technique that involves selecting only one out of every tmix

samples for updates, thereby reducing correlation among
samples. We show that this approach achieves optimal sam-
ple complexity of Õ(ϵ−2) (Theorem 1).

To motivate why we use DD, we first take a look at a generic
recursion:

xt+1 = xt − α(g(xt) +Mt),

where g(xt) is linear in xt and {Mt}t≥0 is an ergodic
Markov chain. Denote the solution of this update as x∗. It is
known that with linear function approximation, Q-learning
(with a fixed policy) is of this form. It is known that the bias
of such an update, ∥E[xt]− x∗∥, can be constant [Nagaraj
et al., 2020]. However, by modifying this update by apply-
ing data drop, it is shown in the same paper that an optimal
sample complexity can be achieved.

However, we note that when the neural approximations are
used instead, the update becomes non-linear and the bias
becomes much more difficult to analyze. In the linear case,
bias can be characterized through a recursive formulation,
facilitating a precise analysis (e.g., (29) in [Mondal and
Aggarwal, 2024]). In contrast, for non-linear critics, such a
direct characterization is not feasible. To address this, we
adopt a linearized update approach, commonly employed in
neural critic analysis. This approximation is justified when
the neural network width is sufficiently large, aligning with
the popular Neural Tangent Kernel (NTK) theory [Jacot
et al., 2018]. Nevertheless, ensuring that the error introduced
by this linearization does not accumulate requires a refined
analytical approach.

A further challenge arises from the use of a projection oper-
ator in the critic update. This projection operator is essential
when employing NTK-based analysis. Although the use of
projections does not typically complicate the proof, we note
that our analysis also requires the bias of the critic to de-
crease sufficiently fast to achieve an improved sample com-
plexity. Standard arguments based on the non-expansiveness
property of projections are insufficient to guarantee an order-
optimal bias. To overcome this limitation, we provide a
careful analysis, which provides sharp bounds for the con-
vergence rate and bias of the critic (Lemmas 4 and 5).

Finally, we provide empirical evaluations to validate our
theoretical findings and demonstrate the practical efficacy
of the proposed NAC-DD algorithm (Section 6).

2 SETUP

This paper addresses an infinite-horizon, discounted reward
reinforcement learning problem formulated as a Markov
Decision Process (MDP), represented by the tuple M =
(S,A, r, P, ρ, γ). In this framework, S indicates a general
state space, A is the action space, and r : S × A → [0, 1]
the reward function. When an agent takes action a in state
s, it transitions to a subsequent state s′ with a probability
P (s′|s, a). The initial state distribution is specified by ρ,
and γ represents the discount factor. A (stationary) policy
π : S → ∆(A) defines the distribution over actions given
the current state. This induces a transition function Pπ :
S → ∆(S), given by Pπ(s, s′) =

∑
a∈A P (s′|s, a)π(a|s)

for all states s, s′ ∈ S. Under any policy π, the resulting
state sequence forms a Markov chain. We also consider a
parameterized family of policies Π, consisting of all policies
πθ with parameters θ ∈ Θ, where Θ ⊂ Rd.

The objective of the agent is to find a parameter θ that max-
imizes the long-term reward function, defined as J(θ) :=
Es0∼ρ [

∑∞
t=0 γ

tr(st, at)|πθ] where the expectation is over
the distribution of πθ-induced trajectories emanating from
the initial distribution, ρ. For notational simplicity, we ig-
nore the dependence on ρ. This work employs an actor-critic
method to optimize J(·). Before delving into the optimiza-
tion process, we first introduce several key concepts.

The action-value (Qπθ) function corresponding to πθ is
defined ∀(s, a) ∈ S ×A as

Qπθ (s, a) = E

[∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a, πθ

]
(1)

We can then further define the state value function as

V πθ (s) = Ea∼πθ(·|s)[Q
πθ (s, a)], ∀s ∈ S. (2)

For any Q : S ×A → R, we define the Bellman operator
T πθ for all (s, a) as

T πθQ(s, a) := r(s, a) + γ Es′∼P (·|s,a),a′∼πθ(·|s′)[Q(s′, a′)].

It is known that T πθ is a γ-contraction under the infinity
norm and Qπθ is the unique fixed point.

We assume the following throughout the paper.

Assumption 1. The Markov chain {st}t≥0, induced by an
arbitrary policy π ∈ Π is ergodic.

It is well-established that if M is ergodic, then ∀θ ∈ Θ,
there exists a unique stationary ρ-independent distribution,
denoted as dπθ ∈ ∆(S), which obeys (Pπθ)⊤dπθ = dπθ .
With this notation in place, we define the mixing time of an
MDP.

The mixing time of an MDP M with respect to a policy
parameter θ is defined as

tθmix := min

{
t ≥ 1

∣∣∣∣∥(Pπθ)t(s, ·)− dπθ∥TV ≤
1

4
,∀s ∈ S

}

where ∥ · ∥TV denotes the total variation distance.

Let d̃πθ
γ,ρ(s) := (1 − γ)

∑∞
t=0 γ

t Pr
(
st = s|s0 ∼ ρ, πθ

)
be the discounted state-visitation frequency under policy
πθ with initial distribution ρ and discount factor γ. Define
the modified transition kernel P̃ (s′|s, a) := γ P (s′|s, a) +
(1− γ) ρ(s′), which corresponds to sampling s′ ∼ P (·|s, a)
with probability γ and s′ ∼ ρ otherwise.

It is known that if the MDP is ergodic, then d̃πθ
γ,ρ is the

stationary distribution of the Markov chain with the πθ-
induced transition kernel P̃πθ (·|s) := γPπθ (·|s) + (1 −
γ)ρ(·) [Konda, 2000]. We define

t̃θmix := min

{
t ≥ 1

∣∣∣∣∥(P̃πθ)t(s, ·)− d̃πθ∥TV ≤
1

4
,∀s ∈ S

}
When the state space is finite, t̃θmix = O

(
(1− γ)−1

)
.To see

this, observe that P̃πθ is a convex combination of Pπθ and
a rank 1 matrix. The bound follows using Corollary 1 of
[Nussbaum, 2003] to bound the spectral gap, which provides
a bound for the mixing time [Levin and Peres, 2017]. For
convenience, we introduce

tmix = sup
θ∈Θ

max
{
tθmix, t̃

θ
mix

}
,

which serves as a uniform upper bound on both quantities.

3 NATURAL ACTOR–CRITIC WITH
DATA DROP (NAC–DD)

Policy Gradient (PG)-type algorithms typically maximize
the long-term reward function J(·) by updating θ along the
gradient of J(·), which can be expressed in the following
form using the well-known policy gradient theorem [Sutton
et al., 1999a].

∇θJ(θ) =
1

1− γ
Es∼d̃

πθ
γ,ρ,a∼πθ(·|s)

[
Qπθ (s, a)∇θ log πθ(a|s)

]
(3)

Natural Policy Gradient (NPG) methods, however, update θ
along the NPG ω∗

θ instead, where

ω∗
θ = F (θ)†∇θJ(θ), (4)

† denotes the Moore-Penrose pseudo-inverse and F (θ) is
the Fisher information matrix as defined as:

F (θ) = Es∼d̃
πθ
γ,ρ

Ea∼πθ(·|s)
[
∇θ log πθ(a|s)(∇θ log πθ(a|s))⊤

]
The precoder F (θ) takes the change of the parameterized
policy with respect to θ into account, thereby preventing
overshooting or slow updates of θ. Note that ω∗

θ can be
written as the minimizer of the function Lπθ

(·, θ) where

Lπθ
(ω, θ) =

1

2
Es∼d̃

πθ
γ,ρ(·),a∼π(·|s)

[(
(1− γ)Qπθ (s, a)− ω⊤∇θ log πθ(a|s)

)2]
(5)

for all ω ∈ Rd. This is essentially a convex optimization that
can be iteratively solved utilizing a gradient-based method.
One can show that

∇ωLπθ
(ω, θ) = F (θ)ω −∇θJ(θ) (6)

Note that ∇ωLπθ
(ω, θ) is not exactly computable since the

transition function P and hence the stationary distribution,
d̃πθ
γ,ρ, and the state-action value function, Qπθ (·, ·) are typi-

cally unknown in most practical cases.

To estimate the policy gradient, we introduce a parameter-
ized critic Q(ϕ(s, a); ζ) in place of the true action-value
function Qπθ (s, a). Here ϕ : S ×A → Rn is a fixed feature
map and ζ ∈ Rm the critic parameters.

In this paper, we consider a neural temporal difference learn-
ing method where the action-value function Qπθk (·, ·) is
parameterized by some multi-layer neural network. Let us
define a feedforward neural network by the following recur-
sion:

x(l) =
1√
m
σ
(
Wlx

(l−1)
)
, l ∈ {1, 2, · · · , L}, (7)

where W1 ∈ Rm×n, Wl ∈ Rm×m for 2 ≤ l ≤ L are
the weight matrices of the network, σ(·) is an activation
function, and x(0) = ϕ(s, a) ∈ Rn. Using x(L) computed
above, the approximate action-value function Q(ϕ(s, a); ζ)
can be computed as

Q(ϕ(s, a); ζ) =
1√
m
b⊤x(L), (8)

where the parameter ζ = (Vec(W1); · · · ;Vec(WL)) de-
notes the collection of all weight matrices, and b is given
by a random initialization. The parameter b will not be op-
timized during training. Note that the RHS of the above
equation depends on ζ via x(L). Vec(·) stands for the vec-
torization operator that reshapes a matrix to a column vector
by stacking its columns one by one and the “;” separator
in ζ stands for the vertical stacking of the elements. That
is, we reshape ζ to a long column vector for the notational
convenience.

Assumption 2. The activation function σ(·) is L1-Lipschitz
and L2-smooth, i.e. , for ∀y1, y2 ∈ R :

|σ(y1)− σ(y2)| ≤ L1|y1 − y2|

and
|σ′(y1)− σ′(y2)| ≤ L2|y1 − y2|.

Assumption 2 indicates that our results below are not based
on the popular ReLU activation function. However, we pri-
marily focus on some twice-differentiable activation func-
tions (such as Sigmoid, ELU, GeLU, etc.), which are smooth

approximations of the ReLU function and are frequently uti-
lized in practical problems [Devlin et al., 2018, Godfrey,
2019]. Such a setup aligns with [Liu et al., 2020a], and pro-
vides aO(m− 1

2)-smooth property for the neural Q-function.

Let ζ0 =
(
Vec(W 0

1); · · · ;Vec(W 0
L)
)

be the initial solution.
For each l, we initialize the weights of W 0

l element-wise
from a normal distribution N (0, 1) and each element of b
is drawn uniformly from {−1,+1}. For regularity purpose,
we would like to restrict the iterations to a bounded set
around ζ0, which is defined as

SR :=
{
ζ =

(
Vec(W1); . . . ;Vec(WL)

)
|∥ζ − ζ0∥2 ≤ R,

1 ≤ l ≤ L
}

(9)

and denote the projection onto SR as ΠR.

We now define the local linearization function class of the
multi-layer Q network (8) at the random initialization ζ0:

FR,m :=
{
Q̂(· ; ζ) = Q(· ; ζ0) + ⟨∇ζQ(· ; ζ0), ζ − ζ0⟩

}
(10)

for any ζ ∈ SR.

For each policy parameter θ, define the mean-squared Bell-
man error under the on-policy state–action distribution by

E(θ, ζ)

:=
1

2

∑
s,a

dπθ (s)πθ(a|s)
[
Qπθ (s, a)− Q̂

(
ϕ(s, a); ζ

)]2
The critic parameter ζθ∗ is then chosen (not necessarily
uniquely) to minimize this error:

ζθ∗ ∈ arg min
ζ∈Rm

E(θ, ζ) .

A direct computation of ζθ∗ is infeasible and instead, we
perform stochastic gradient descent. Noting

∇ζ
1
2

[
Qπθ (s, a)− Q̂(ϕ(s, a); ζ)

]2
=
[
Q̂(ϕ(s, a); ζ)−Qπθ (s, a)

]
∇ζQ̂(ϕ(s, a); ζ), (11)

we obtain the batch gradient

∇ζE(θ, ζ) =
∑
s,a

dπθ (s)πθ(a|s)·[
Qπθ (s, a)− Q̂(ϕ(s, a); ζ)

]
∇ζQ̂(ϕ(s, a); ζ). (12)

In practice, samples obtained from a contiguous trajectory
induced by πθ are used to form unbiased estimates of this
gradient. The details of these estimates are given below.

3.1 ALGORITHMIC DESCRIPTION

We divide each outer epoch into two phases of equal length
N . Within each phase we process data in contiguous blocks

of size M = κtmix⌊log2 T ⌋, where T = KN is the time
horizon and κ ≥ 1 is a user-chosen integer. Each phase thus
comprises H =

⌈
N/M

⌉
blocks.

Notation. Let st and at denote the state and action at time
t. We write

xk
h = ϕ

(
skhM , akhM

)
, x′

h
k = ϕ

(
skhM+1, a

k
hM+1

)
.

The temporal-difference error on block h of epoch k is

∆k
h = Q(xk

h; ζ
k
h)−

[
rkhM + γ Q(x′

h
k; ζkh)

]
, (13)

and its gradient contribution

gkh(x
k
h; ζ

k
h) = ∆k

h∇ζQ(xk
h; ζ

k
h).

gkh serves as an estimate of∇ζE(θk, ζ
k
h).

For the NPG update, let s̄kh = skhM and ākh = akhM . Define

∇̂ωL
k
h = ∇θ log πθk(ā

k
h|s̄kh)

[
∇θ log πθk(ā

k
h|s̄kh)

]⊤
ωk
H+h

− Q
(
ϕ(s̄kh, ā

k
h); ζ

k
N

)
∇θ log πθk(ā

k
h|s̄kh). (14)

It can be seen that ∇̂ωL
k
h is an estimate of∇ωL

k
h.

Block updates. Putting it all together, for each block h in
epoch k we perform the neural TD updates

ζkh+1 = ΠR

(
ζkh − β gkh

)
, (15)

in the first phase followed by the NPG updates

ωk
H+h+1 = ωk

H+h − η ∇̂ωL
k
h, (16)

and then finalize with the policy update θk+1 = θk+αωk
2N .

4 SAMPLE COMPLEXITY OF THE
PROPOSED ALGORITHM

We first state some assumptions that we will be using before
proceeding to the main result.

Assumption 3. The critic approximation error defined as

ϵapp := sup
θ∈Θ

E[(Qπθ (s, a)−ΠFR,m
Qπθ (s, a))2], (17)

where the expectation is over s ∼ dπθ , a ∼ πθ(·|s), is
assumed to be finite.

Assumption 4. There exist λ0 > 0 such that ∀θ

E[∇ζQ(ϕ(s, a); ζ0)∇ζQ(ϕ(s, a); ζ0)
⊤] ≽ λ0I.

where the expectation is over s ∼ dπθ
γ,ρ, a ∼ πθ(·|s). We

will denote E[∇ζQ(ϕ(s, a); ζ0)∇ζQ(ϕ(s, a); ζ0)
⊤] as Σπθ

henceforth.

Algorithm 1 Natural Actor–Critic with Data Drop
(NAC–DD)

1: Input: Initial parameters θ0, {ωk
H}, {ζk0 }; policy step

size α; NPG step size η; critic step size β; initial
state s0 ∼ ρ; time horizon T ; outer loops K; in-
ner loop length H; discount factor γ; drop number
M = κtmix⌊log2 T ⌋.

2: Critic Initialization ζ0: Sample each entry of W 0
l ∼

N (0, 1) for l = 1, . . . , L, and each entry of b ∼
Unif{−1,+1}.

3: for k = 0, . . . ,K − 1 do
4: Set sk0 to the final state of epoch k − 1.
5: for h = 0, . . . ,H − 1 do ▷ Critic phase
6: for m = 0, . . . ,M − 1 do
7: Sample akhM+m ∼ πθk(·|skhM+m)

8: Sample skhM+m+1 ∼
P (·|skhM+m, akhM+m)

9: end for
10: Compute ∆k

h and update ζkh+1 = ΠR

(
ζkh −

β gkh
)

11: end for
12: for h = 0, . . . ,H − 1 do ▷ NPG phase
13: for m = 0, . . . ,M − 1 do
14: Sample akhM+m ∼ πθk(·|skhM+m)

15: Sample skhM+m+1 ∼
P̃ (·|skhM+m, akhM+m)

16: end for
17: Compute ∇̂ωL

k
h

18: Update ωk
H+h+1 ← ωk

H+h − η ∇̂ωL
k
h

19: end for
20: Set ωk ← ωk

2H .
21: Update θk+1 ← θk + αωk. ▷ Policy update
22: end for

Assumption 5. For any θ, the transferred compatible func-
tion approximation error, Lπ∗(ω∗

θ ; θ), satisfies the following
inequality.

Lπ∗(ω∗
θ ; θ) := Es∼dπ∗

γ,ρ,a∼π∗(·|s)

[
(1− γ)Aπθ (s, a) (18)

− (ω∗
θ)

⊤∇θ log πθ(a|s)
]2
≤ ϵbias,

where π∗ is an optimal policy for the discounted MDPM
and ω∗

θ is the exact NPG direction at θ.

Assumption 6. For all θ, θ1, θ2 ∈ Θ and (s, a) ∈ S × A,
the following statements hold:

(a) ∥∇θ log πθ(a|s)∥ ≤ G1

(b) ∥∇θ log πθ(a|s)−∇θ log πθ2(a|s)∥ ≤ G2∥θ1 − θ2∥.

Assumption 7 (Fisher non-degenerate policy). There exists
a constant µ > 0 such that F (θ)− µId is positive semidefi-
nite where Id denotes an identity matrix.

Comments on Assumptions 3-4: Assumption 3 ensures
that a class of neural networks can approximate the function
obtained by applying the Bellman operator to another neural
network within the same class. Similar assumptions have
been considered in [Fu et al., 2021, Wang et al., 2019, Ke
et al., 2024, Gaur et al., 2024]. In works such as [Cayci
et al., 2024], even stronger assumptions are made, where the
function class used for critic parameterization is assumed to
approximate any smooth function.

Assumption 4 has been employed in prior works [Zou et al.,
2019, Xu and Gu, 2020] and is closely related to the state
regularity assumption, which similarly ensures a strong
convexity-type property in the critic update [Tian et al.,
2023, Gaur et al., 2024]. It can also be viewed as a gener-
alization of the positive definite feature covariance matrix
assumption in the analysis of linear Q-learning [Xu et al.,
2019, Ganesh et al., 2025].

Comments on Assumptions 5-7: We would like to high-
light that all these assumptions are commonly found in PG
literature [Liu et al., 2020b, Agarwal et al., 2021, Papini
et al., 2018, Xu et al., 2019, Fatkhullin et al., 2023]. We
elaborate more on these assumptions below.

The term ϵbias captures the expressivity of the parameter-
ized policy class. If the policy class is complete such as
in the case of softmax parametrization, we have ϵbias = 0
[Agarwal et al., 2021]. However, for restricted parametriza-
tion which may not contain all stochastic policies, we have
ϵbias > 0. It is known that ϵbias is insignificant for rich
neural parametrization [Wang et al., 2019]. Assumption 6
requires that the score function is bounded and Lipschitz
continuous. This assumption is widely used in the analy-
sis of PG based methods [Liu et al., 2020b, Agarwal et al.,
2021, Papini et al., 2018, Xu et al., 2019, Fatkhullin et al.,
2023]. Assumption 7 requires that the eigenvalues of the
Fisher information matrix can be bounded from below and
is commonly used in obtaining global complexity bounds
for PG based methods [Liu et al., 2020b, Zhang et al., 2021,
Bai et al., 2022, Fatkhullin et al., 2023]. Assumptions 6-7
were shown to hold for various examples recently including
Gaussian policies with linearly parameterized means and
certain neural parametrizations [Liu et al., 2020b, Fatkhullin
et al., 2023].

Theorem 1. Consider Algorithm 1 with K = 1
ϵ , H =

1
2tmix⌊log2(1/ϵ)⌋ϵ

and M = 2tmix⌊log2(1/ϵ)⌋ . If Assump-
tions 1-7 hold then there exists a choice of parameters such
that the following holds for sufficiently small ϵ:

J∗ − 1
K

∑K−1
k=0 E[J(θk)|ζ0]

≤ O
(√

ϵbias

1−γ +
√
ϵapp

1−γ +
tmix log3(1

ϵδ)
(1−γ)3 · ϵ+ 1

m1/4(1−γ)1/2

)
.

with probability 1−2δ−2L exp(−Cm), for some constant
C > 0. Here, m and L denote the width and depth of the
critic neural network, respectively.

5 PROOF OUTLINE

We structure our analysis into three parts: policy update,
NPG estimation, and critic analysis.

5.1 POLICY UPDATE ANALYSIS

We begin with a useful lemma from [Mondal and Aggarwal,
2024].

Lemma 1. Consider any policy update rule of the form

θk+1 = θk + αωk. (19)

If Assumptions 5 and 6 hold, then the following inequality
is satisfied:

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
ϵbias

1− γ

+
G1

K

K−1∑
k=0

E
∥∥E[ωk|θk]− ω∗

k

∥∥+ αG2

2K

K−1∑
k=0

E ∥ωk∥2

+
1

αK
Es∼dπ∗

[
KL(π∗(·|s)∥πθ0(·|s))

]
,

(20)
where KL(·∥·) is the Kullback-Leibler divergence, ω∗

k is the
NPG direction F (θk)

−1∇J(θk), π∗ is the optimal policy,
and J∗ is the optimal value of the function J(·).

The last term above is of order O(1/K) since

Es∼dπ∗
[
KL(π∗(·|s)∥πθ0(·|s))

]
is constant. The term E ∥ωk∥2 is further decomposed as:

1

K

K−1∑
k=0

E ∥ωk∥2 ≤
2

K

K−1∑
k=0

E ∥ωk − ω∗
k∥2

+
2

K

K−1∑
k=0

E ∥ω∗
k∥2

(a)

≤ 2

K

K−1∑
k=0

E ∥ωk − ω∗
k∥2

+
2µ−2

K

K−1∑
k=0

E ∥∇θJ(θk)∥2,

(21)

where (a) follows from Assumption 7 and the definition
ω∗
k = F (θk)

−1∇θJ(θk).

Thus, we can obtain a global convergence bound by bound-
ing the terms E ∥ωk − ω∗

k∥2, E ∥E[ωk|θk] − ω∗
k∥, and

E ∥∇θJ(θk)∥2. The first two terms represent the second-
order error and bias of the NPG estimator ωk, and the
third term indicates the local convergence rate. Since
E ∥∇θJ(θk)∥2 can be expressed in terms of E ∥ωk − ω∗

k∥2,
we now briefly describe how to bound these terms.

(a) Hopper-v3 (b) HalfCheetah-v3 (c) Walker2d-v3

Figure 1: Performance of NAC-DD on MuJoCo locomotion tasks with varying drop numbers (M). The results demonstrate
that NAC-DD consistently achieves better performance when the drop number exceeds 1.

5.2 NPG ANALYSIS

In this section, we derive bounds on the second-order error
and bias of the NPG estimator ωk. For any policy πθk , the
critic subroutine’s fixed point need not be unique. Let

Zk =
{
ζ : Q̂(·; ζ) is a fixed point of ΠF,mT πθk

}
,

and let ζk∗ be the projection of the initial critic parame-
ter ζ0 onto Zk. We will show that the algorithm’s iterates
closely track ζk∗ . Finally, denote by Ek[·] the expectation
conditioned on θk.

Lemma 2 (Second-order error of NPG estimator). Consider
the NPG-finding recursion (16) with η = 2 logH

µH . If all
assumptions in Theorem 1 hold, then for sufficiently large
H ,

Ek[∥ωk − ω∗
k∥2|ζ0] ≤ O

(
G2

1(C
′
1)

2 log(H/δ)

Hµ2(1− γ)4
+ µ−2m−1/2

+ µ−2G2
1 Ek[∥ζkH − ζk∗ ∥2|ζ0] +

G2
1ϵapp

µ2(1− γ)2

)

Lemma 3 (Bias of NPG estimator). Consider the NPG-
finding recursion (16) with η = 2 logH

µH . If all assumptions
in Theorem 1 hold, then for sufficiently large H , we have the
following bound with probability 1− 2δ − 2L exp(−Cm),
for some constant C > 0

∥Ek[ωk|ζ0]−ω∗
k∥2 ≤ O

(
G2

1(C
′
1)

2G2
1 log(H/δ)

Tκ

+ ∥Ek[ζ
k
H |ζ0]− ζk∗ ∥2 +

G2
1ϵapp

µ2(1− γ)2

)

The proof of this result can be found in Appendix B. Since
the NPG estimator ωk uses the critic values, the above
bounds depend on the second-order error and bias of the
critic estimator. The bounds for these quantities are provided
in the next section.

5.3 CRITIC ANALYSIS

In this section, we focus on providing bounds for the second-
order error and bias of the critic estimator ζkH . A second-
order error bound of O(1ϵ) for Q-learning with neural ap-
proximation was recently studied in [Ke et al., 2024], with-
out requiring strict positive definiteness as in Assumption 3.
Instead, we present an alternative analysis of this result that
enables us to also derive a bound on the critic’s bias. The
proof of this result can be found in Appendix A.1.

Lemma 4 (Second-order error of the Critic). Consider Al-
gorithm 1 and let β = 2 logH

λH . If all assumptions of Theorem
1 hold, then for sufficiently large H ,

E[∥ζkH − ζk∗ ∥2|ζ0] ≤ O
(
E ∥ζ0 − ζk∗ ∥2

H2
+

log2(H/δ)

λ2
0(1− γ)2H

+
log(H/δ)

λ0(1− γ)m1/2
+

1

(1− γ)4λ4
0T

κ

)
with probability 1−2δ−2L exp(−Cm), for some constant
C > 0.

Analyzing the bias forms a key challenge due to the non-
linearity of the critic update due to the neural network and
due to the presence of the projection operator. The proof
details of the following result can be found in Appendix
A.2.

Lemma 5 (Bias of the Critic estimator). Consider Algo-
rithm 1 and let β = 2 logH

λH . If all assumptions of Theorem 1
hold, then the following is true for sufficiently large H .

∥E[ζkh+1|ζ0]− ζk∗ ∥2 ≤ O

(
∥E[ζ0]− ζk∗ ∥2

λ2
0(1− γ)2H2

+
log4(H/δ)

λ6
0(1− γ)6H2

+

√
log(H/δ)

λ0(1− γ)m1/2
+

1

(1− γ)10λ10
0 T 2κ

)

with probability 1−2δ−2L exp(−Cm), for some constant
C > 0.

Figure 2: Comparison of NAC-DD and standard policy gradient algorithms on various MuJoCo locomotion tasks. Here,
NAC-DD-5 represents NAC-DD with a drop number of 5. Our algorithm achieves the best performance on two out of three
tasks and ranks second on the remaining task.

Table 2: Training time (in hours) for each algorithm on MuJoCo benchmarks, measured on a single NVIDIA GeForce RTX
2080 Ti GPU

Algorithm NAC-DD-1 NAC-DD-3 NAC-DD-5 PG NPG TRPO PPO

Hopper 5.44± 0.39 12.0± 0.37 17.1± 0.51 2.95± 0.02 3.30± 0.15 3.34± 0.03 4.22± 0.09
HalfCheetah 10.5± 0.36 19.1± 0.33 27.7± 0.34 6.68± 0.02 7.00± 0.04 7.49± 0.06 9.82± 0.04
Walker2d 12.4± 0.31 23.7± 0.30 35.1± 0.41 6.94± 0.08 7.04± 0.13 8.57± 0.14 9.74± 0.35

It can be seen that substituting Lemmas 4 and 5 in Lemmas
2 and 3 with the bound on the policy update in Lemma
1 yields Theorem 1. Based on Lemmas 2, 3, 4 and 5, we
observe that it is sufficient to set κ = 2 to obtain the desired
result.

6 EVALUATION

To demonstrate the effectiveness of the proposed algorithm,
NAC-DD, we compare its performance against several stan-
dard policy gradient methods, including Vanilla Policy Gra-
dient (PG) [Sutton et al., 1999b], Natural Policy Gradient
(NPG) [Kakade, 2001], TRPO [Schulman et al., 2015], and
PPO [Schulman et al., 2017]. For the baseline implemen-
tations, we utilized the open-source repository available at
https://github.com/reinforcement-learning-kr/pg_travel. The
evaluation is conducted on three benchmark MuJoCo loco-
motion tasks: HalfCheetah-v3, Hopper-v3, and Walker2d-
v3, all of which are continuous control problems. Notably,
the codes for reproducing all results in this paper is available
at https://github.com/LucasCJYSDL/NAC-DD.

We begin by evaluating the impact of the key hyperparam-
eter—the drop number M in Algorithm 1—on the perfor-
mance of NAC-DD. As illustrated in Figure 1, we set M to
1, 3, and 5, and record the training progress of these variants
on the MuJoCo tasks. Each experiment is repeated three
times with different random seeds, with the means and 95%
confidence intervals shown as solid lines and shaded areas,
respectively. The results indicate that NAC-DD consistently
achieves better performance when the drop number exceeds
one. This improvement is attributed to the fact that dropping

training samples helps mitigate the statistical dependency
between samples from different time steps, aligning with
the theoretical requirements. The performance of the algo-
rithm with drop numbers of three and five is comparable.
However, we anticipate that a larger drop number could be
more beneficial for addressing more challenging control
tasks (than MuJoCo).

In Figure 2, we position our algorithm by comparing it
against standard policy gradient methods on various Mu-
JoCo tasks. The results show that natural-policy-gradient-
based methods consistently outperform the vanilla policy
gradient approach1 Additionally, actor-critic methods (i.e.,
NAC-DD, PPO, and TRPO) generally outperform pure pol-
icy gradient methods (i.e., NPG and PG). Notably, our al-
gorithm achieves the best performance on two out of three
tasks and ranks second on the third task. Thus, while this
is a theory-focused paper with the algorithm built on solid
theoretical foundations, its strong practical performance in
challenging continuous control tasks further demonstrates
its effectiveness and applicability.

Finally, for completeness, Table 2 reports the training
time for each algorithm on the Hopper, HalfCheetah, and
Walker2d benchmarks using a single NVIDIA GeForce RTX
2080 Ti GPU. The table above reports the training time (in
hours) for each algorithm on each benchmark, using a single
NVIDIA GeForce RTX 2080 Ti GPU. NAC-DD-5 requires
more training time because it discards 80% of the collected

1For practical implementation, we estimate the natural pol-
icy gradient, as defined in Equation (4), and update the actor ac-
cordingly using the conjugate gradient method combined with
backtracking line search.

samples, using only the remaining 20% for training. To
ensure the total number of training samples is comparable
to other methods, NAC-DD must collect more transitions.
However, this additional sampling can be parallelized using
a vectorized environment setup. In terms of computation
time for policy and critic updates, NAC-DD is compara-
ble to TRPO and PPO, as demonstrated by the results of
NAC-DD-1 in relation to the other methods.

7 CONCLUSIONS

In this work, we address the challenge of achieving optimal
sample complexity in reinforcement learning for Markov
Decision Processes (MDPs) with general policy parameteri-
zation and multi-layer neural network critics. Existing meth-
ods either fall short of achieving the optimal rate or rely on
linear critic approximations. To overcome these limitations,
we introduce Natural Actor-Critic with Data Drop (NAC-
DD) algorithm, which integrates Natural Policy Gradient
methods with a Data Drop technique to mitigate statistical
dependencies inherent in Markovian sampling. By achiev-
ing an optimal sample complexity of Õ(1/ϵ2), our approach
significantly improves upon the previous state-of-the-art
guarantee of Õ(1/ϵ3), marking a pivotal advancement in
the field.

ACKNOWLEDGEMENT

This work was supported in part by the Anusandhan Na-
tional Research Foundation (ANRF), India, through the
Overseas Visiting Doctoral Fellowship and the U.S. Na-
tional Science Foundation under grant CCF-2149588.

References

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav
Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. The
Journal of Machine Learning Research, 22(1):4431–4506,
2021.

Mridul Agarwal, Qinbo Bai, and Vaneet Aggarwal. Con-
cave utility reinforcement learning with zero-constraint
violations. Transactions on Machine Learning Research,
2022.

Abubakr O Al-Abbasi, Arnob Ghosh, and Vaneet Aggar-
wal. Deeppool: Distributed model-free algorithm for
ride-sharing using deep reinforcement learning. IEEE
Transactions on Intelligent Transportation Systems, 20
(12):4714–4727, 2019.

Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel,
and Vaneet Aggarwal. Achieving zero constraint viola-
tion for constrained reinforcement learning via primal-

dual approach. Proceedings of the AAAI Conference on
Artificial Intelligence, 36:3682–3689, Jun. 2022. doi:
10.1609/aaai.v36i4.20281.

Semih Cayci, Niao He, and R. Srikant. Finite-time analy-
sis of entropy-regularized neural natural actor-critic al-
gorithm. Transactions on Machine Learning Research,
April 2024. URL https://openreview.net/
forum?id=BkEqk7pS1I.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Ilyas Fatkhullin, Anas Barakat, Anastasia Kireeva, and Niao
He. Stochastic policy gradient methods: Improved sam-
ple complexity for fisher-non-degenerate policies. In
International Conference on Machine Learning, pages
9827–9869. PMLR, 2023.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-
timescale actor-critic provably finds globally optimal pol-
icy. In 9th International Conference on Learning Repre-
sentations, ICLR, 2021.

Swetha Ganesh, Washim Uddin Mondal, and Vaneet Aggar-
wal. A sharper global convergence analysis for average re-
ward reinforcement learning via an actor-critic approach.
In International Conference on Machine Learning, 2025.

Mudit Gaur, Vaneet Aggarwal, Amrit Singh Bedi, and
Di Wang. Closing the gap: Achieving global convergence
(last iterate) of actor-critic under markovian sampling
with neural network parametrization. In International
Conference on Machine Learning, 2024.

Luke B Godfrey. An evaluation of parametric activation
functions for deep learning. In 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC),
pages 3006–3011. IEEE, 2019.

Glebys Gonzalez, Mythra Balakuntala, Mridul Agarwal,
Tomas Low, Bruce Knoth, Andrew W. Kirkpatrick, Jes-
sica McKee, Gregory Hager, Vaneet Aggarwal, Yexi-
ang Xue, Richard Voyles, and Juan Wachs. Asap: A
semi-autonomous precise system for telesurgery during
communication delays. IEEE Transactions on Medical
Robotics and Bionics, 5(1):66–78, 2023. doi: 10.1109/
TMRB.2023.3239674.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Sham M Kakade. A natural policy gradient. Advances in
neural information processing systems, 14, 2001.

https://openreview.net/forum?id=BkEqk7pS1I
https://openreview.net/forum?id=BkEqk7pS1I

Zhifa Ke, Zaiwen Wen, and Junyu Zhang. An improved
finite-time analysis of temporal difference learning with
deep neural networks. In Forty-first International Con-
ference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=dqdctVbSfs.

Sajad Khodadadian, Zaiwei Chen, and Siva Theja Magu-
luri. Finite-sample analysis of off-policy natural actor-
critic algorithm. In International Conference on Machine
Learning, pages 5420–5431. PMLR, 2021.

Vijay Konda. Actor-critic algorithms. PhD thesis, Univer-
sity of Alberta, 2000.

David A Levin and Yuval Peres. Markov chains and mixing
times, volume 107. American Mathematical Soc., 2017.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity
of large non-linear models: when and why the tangent
kernel is constant. Advances in Neural Information Pro-
cessing Systems, 33:15954–15964, 2020a.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An
improved analysis of (variance-reduced) policy gradient
and natural policy gradient methods. Advances in Neural
Information Processing Systems, 33:7624–7636, 2020b.

Washim U Mondal and Vaneet Aggarwal. Improved sam-
ple complexity analysis of natural policy gradient algo-
rithm with general parameterization for infinite horizon
discounted reward markov decision processes. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 3097–3105. PMLR, 2024.

Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and
Praneeth Netrapalli. Least squares regression with marko-
vian data: Fundamental limits and algorithms. In Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 16666–16676, 2020.

Roger Nussbaum. Notes on the second eigenvalue of the
google matrix, 2003. URL https://arxiv.org/
abs/math/0307056.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Mat-
teo Pirotta, and Marcello Restelli. Stochastic variance-
reduced policy gradient. In International conference on
machine learning, pages 4026–4035. PMLR, 2018.

John Schulman, Sergey Levine, Philipp Moritz, Michael I.
Jordan, and Pieter Abbeel. Trust region policy opti-
mization. CoRR, abs/1502.05477, 2015. URL http:
//arxiv.org/abs/1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

Richard S Sutton, David McAllester, Satinder Singh, and
Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. Advances in
neural information processing systems, 12, 1999a.

Richard S. Sutton, David A. McAllester, Satinder Singh,
and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. In
Advances in Neural Information Processing Systems 12,
[NIPS Conference, Denver, Colorado, USA, November 29
- December 4, 1999], pages 1057–1063. The MIT Press,
1999b.

Dipesh Tamboli, Jiayu Chen, Kiran Pranesh Jotheeswaran,
Denny Yu, and Vaneet Aggarwal. Reinforced sequen-
tial decision-making for sepsis treatment: The posnegdm
framework with mortality classifier and transformer.
IEEE Journal of Biomedical and Health Informatics,
2024.

Haoxing Tian, Alex Olshevsky, and Ioannis Paschalidis.
Convergence of actor-critic with multi-layer neural net-
works. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang.
Neural policy gradient methods: Global optimality and
rates of convergence. In International Conference on
Learning Representations, 2019.

Pan Xu and Quanquan Gu. A finite-time analysis of q-
learning with neural network function approximation. In
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 10555–10565. PMLR, 13–18
Jul 2020.

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient
policy gradient methods with recursive variance reduction.
In International Conference on Learning Representations,
2019.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving
sample complexity bounds for (natural) actor-critic al-
gorithms. Advances in Neural Information Processing
Systems, 33:4358–4369, 2020a.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic
convergence analysis of two time-scale (natural) actor-
critic algorithms. arXiv preprint arXiv:2005.03557,
2020b.

Tengyu Xu, Zhuoran Yang, Zhaoran Wang, and Yingbin
Liang. Doubly robust off-policy actor-critic: Convergence
and optimality. In International Conference on Machine
Learning, pages 11581–11591. PMLR, 2021.

Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari,
and Mengdi Wang. On the convergence and sample ef-
ficiency of variance-reduced policy gradient method. In

https://openreview.net/forum?id=dqdctVbSfs
https://openreview.net/forum?id=dqdctVbSfs
https://arxiv.org/abs/math/0307056
https://arxiv.org/abs/math/0307056
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477

A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Pro-
cessing Systems, 2021.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-
sample analysis for sarsa with linear function approxima-
tion. Advances in neural information processing systems,
32, 2019.

A NEURAL CRITIC ANALYSIS

Let ĝ(xk
h; ζ) := (Q̂(xk

h; ζ)− (rkh + γQ̂(x′
h
k; ζ)))∇ζQ(xk

h; ζ0) be the linearization of g(xk
h; ζ) at ζ0. For brevity, we denote

ϕ(skh, a
k
h) by xk

h. It can be seen that

ĝ(xk
h; ζ) = A(xk

h)ζ − b(xk
h), (22)

where

A(xk
h) = ∇ζQ(xk

h; ζ0)(∇ζQ(xk
h; ζ0)− γ∇ζQ(x′

h
k; ζ0))

⊤ (23)

and

b(xk
h) = (rkh + γQ(x′

h
k; ζ0)−Q(xk

h; ζ0))∇ζQ(xk
h; ζ0). (24)

Define Ak := Es∼d
πθk ,a∼πθk

(·|s)[A(xk
h)|ζ0] and bk := Es∼d

πθk ,a∼πθk
(·|s)[b(x

k
h)|ζ0]. For notational convenience, we

henceforth drop the conditional expectation E[·|ζ0] and instead write denote E[·] instead.

We now state a useful lemma summarizing various properties of the Q-value estimator below:

Lemma 6. Fix an outer iteration index k. Let ζkh ∈ SR for all h ∈ {0, 1, 2, . . . ,H}, where the radius R satisfies R = O(1).
Then, for all h ∈ {1, 2, . . . ,H}, there exist positive constants C, C ′

1 and {Ci}i=1,2,··· ,5 such that the following statements
hold with a probability of at least 1− δ − 2L exp (−Cm).

(a)
∥∥∇ζQ(xk

h; ζ
k
h)
∥∥ ≤ C1, |Q(xk

h; ζ
k
h)| ≤ C ′

1

√
log(H/δ)

(b) ∥g(xk
h; ζ

k
h)− ĝ(xk

h; ζ
k
h)∥ ≤ C2m

− 1
2

√
log(H/δ)

(c)
∣∣〈g (xk

h; ζ
k
h

)
− ĝ

(
xk
h; ζ

k
h

)
, ζkh − ζ∗

〉∣∣ ≤ C3m
− 1

2

√
log(H/δ)

(d) |Q̂(xk
h; ζ

k
h)−Q(xk

h; ζ
k
h)| ≤ C4m

− 1
2

√
log(H/δ)

(e) ∥∇ζQ(xk
h; ζ0)−∇ζQ(xk

h; ζ
k
h)∥ ≤ C5m

− 1
2

√
log(H/δ)

Statements (a)-(e) follow from results in Ke et al. [2024]: Statement (a) from Lemmas D.2 and D.3, Statements (b) and
(c) from Lemma D.5, and Statements (d) and (e) from Lemma D.4. Building on the above result, we obtain the following
bounds.

Lemma 7. There exist positive constants c1, c2 > 0 such that the following bounds for each h, k hold under the assumptions
stated in Theorem 1 with a probability of at least 1− δ − 2L exp (−Cm).

1. ∥A(xk
h)∥ ≤ c1

2. ∥b(xk
h)∥ ≤ c2

√
log(H/δ)

3. ∥E[A(xk
h)]−Ak∥ ≤ c1T

−κ

4. ∥E[b(xk
h)]− bk∥ ≤ c2

√
log(H/δ)T−κ

Proof. Note that from Lemma 6(a)

∥A(xk
h)∥ ≤ ∥∇ζQ(xk

h; ζ0)− γ∇ζQ(x′
h
k; ζ0)∥∥∇ζQ(xk

h; ζ0)∥ ≤ (1 + γ)C2
1 . (25)

Statement 1 follows by setting c1 = (1 + γ)C2
1 . Again, from Lemma 6(a)

∥b(xk
h)∥ ≤ |rkh +Q(xk

h; ζ0)− γQ(x′
h
k; ζ0)|∥∇ζQ(xk

h; ζ0)∥ ≤ (1 + C ′
1 + γC ′

1)C1

√
log(H/δ).

and by setting c2 = (1 + C ′
1 + γC ′

1)C1, Statement 2 follows. For Statement 3, observe that

E[A(xk
h)]−Ak =

∑
xk
h

A(xk
h)((P

πθk)M (sk(h−1)M , skhM)− dπθk (skhM))π(akhM |skhM). (26)

Since M = κtmix⌈log2 T ⌉

∥E[A(xk
h)]−Ak∥ ≤ c1

∑
xk
h

|(Pπθk)M (sk(h−1)M , shM)− dπθk (shM)|π(akhM |shM) ≤ c1
Tκ

. (27)

Statement 4 follows along similar lines.

Lemma 8. Fix k and let assumptions in Theorem 1 hold. Then the following holds ∀ζ ∈ ker(Ak)
⊥

ζ⊤Akζ ≥ (1− γ)λ0∥ζ∥2 (28)

Proof.

ζ⊤Akζ = ζ⊤ E[∇ζQ(xk
h; ζ0)∇ζQ(xk

h; ζ0)
⊤ − γ∇ζQ(x′

h
k; ζ0)∇ζQ(xk

h; ζ0)
⊤]ζ

= E[(∇ζQ(xk
h; ζ0)

⊤ζ)2]− γ E[(∇ζQ(x′
h
k; ζ0)

⊤ζ)(∇ζQ(xk
h; ζ0)

⊤ζ)]

(a)

≥ E[(∇ζQ(xk
h; ζ0)

⊤ζ)2]− γ(E[(∇ζQ(x′
h
k; ζ0)

⊤ζ)2]E[(∇ζQ(xk
h; ζ0)

⊤ζ)2])1/2

(b)
= (1− γ)E[(∇ζQ(xk

h; ζ0)
⊤ζ)2]

(c)

≥ (1− γ)λ0∥ζ∥2

(29)

where (a) follows from Cauchy-Schwartz inequality, (b) follows since xk
h and x′

h
k have the same marginal distribution and

(c) follows from Assumption 3.

A.1 PROOF OF LEMMA 4

We begin by introducing some notation. Let ΛA, Λb, δA, and δb be positive constants such that |E[A(xk
h)] − Ak| ≤ δA,

|E[b(xk
h)]− bk| ≤ δb, |A(xk

h)| ≤ ΛA, and |b(xk
h)| ≤ Λb. The values of these quantities are provided in Lemma 7.

We introduce an auxiliary sequence {ζ̃kh}h≥0 that replaces the neural update g with its linear approximation ĝ. Specifically,
define

ζ̃k0 = ζk0 ≡ ζ0, ζ̃kh+1 = ΠR

(
ζ̃kh − βĝ(xk

h; ζ̃
k
h)
)
,

where ΠR denotes the projection onto the ball of radius R centered at ζ0, and β > 0 is a step-size parameter.

Let Π⊥ denote the orthogonal projection onto ker(Ak)
⊥. We now bound the expected discrepancy between the auxiliary

and original iterates:

E
∥∥∥ζ̃kh+1 − ζkh+1

∥∥∥2 = E
∥∥∥ΠR

(
ζkh − βg(xk

h; ζ
k
h)
)
−ΠR

(
ζ̃kh − βĝ(xk

h; ζ̃
k
h)
)∥∥∥2 (30)

≤ E
∥∥∥ζkh − βg(xk

h; ζ
k
h)−

(
ζ̃kh − βĝ(xk

h; ζ̃
k
h)
)∥∥∥2 (31)

≤ E
∥∥∥ζkh − βĝ(xk

h; ζ
k
h)−

(
ζ̃kh − βĝ(xk

h; ζ̃
k
h)
)∥∥∥2 + βC2m

−1/2
√
log(H/δ) (32)

= E
∥∥∥(ζkh − ζ̃kh

)
− βA(xk

h)
(
ζkh − ζ̃kh

)∥∥∥2 + βC2m
−1/2

√
log(H/δ) (33)

= E
∥∥∥ζkh − ζ̃kh

∥∥∥2 − 2β E
〈
ζkh − ζ̃kh , A(x

k
h)(ζ

k
h − ζ̃kh)

〉
(34)

+ β2 E
∥∥∥A(xk

h)(ζ
k
h − ζ̃kh)

∥∥∥2 + βC2m
−1/2

√
log(H/δ) (35)

≤ E
∥∥∥ζkh − ζ̃kh

∥∥∥2 − 2β E
〈
ζkh − ζ̃kh , Ak(ζ

k
h − ζ̃kh)

〉
(36)

+ 2βδA E
∥∥∥ζkh − ζ̃kh

∥∥∥2 + β2 E
∥∥∥A(xk

h)(ζ
k
h − ζ̃kh)

∥∥∥2 + βC2m
−1/2

√
log(H/δ) (37)

≤ E
∥∥∥ζkh − ζ̃kh

∥∥∥2 − 2β E
〈
Π⊥(ζ

k
h − ζ̃kh), AkΠ⊥(ζ

k
h − ζ̃kh)

〉
(38)

+ 2βR2δA + β2Λ2
A E

∥∥∥Π⊥(ζ
k
h − ζ̃kh)

∥∥∥2 + βC2m
−1/2

√
log(H/δ) (39)

≤ E
∥∥∥ζkh − ζ̃kh

∥∥∥2 + (β2Λ2
A − 2βµA)E

∥∥∥Π⊥(ζ
k
h − ζ̃kh)

∥∥∥2 (40)

+ 2βR2δA + βC2m
−1/2

√
log(H/δ) (41)

≤ E
∥∥∥ζkh − ζ̃kh

∥∥∥2 + 2βR2δA + βC2m
−1/2

√
log(H/δ) (42)

≤ E
∥∥∥ζk0 − ζ̃k0

∥∥∥2 + 2β(h+ 1)R2δA + β(h+ 1)C2m
−1/2

√
log(H/δ) (43)

= 2(h+ 1)βR2δA + β(h+ 1)C2m
−1/2

√
log(H/δ) (44)

≤ 2(h+ 1)βR2c1T
−κ + β(h+ 1)C2m

−1/2
√
log(H/δ), (45)

where we used the non-expansiveness of ΠR and the approximation error bound between g and ĝ. Substituting β = 2 logH
λ0(1−γ)H ,

we obtain the following result for all h ∈ {1, 2, · · · , H}:

E
∥∥∥ζ̃kh − ζkh

∥∥∥2 ≤ O(R2c1 logH

λ0(1− γ)Tκ
+ C2m

−1/2
√
log(H/δ)+

)
.

Lemma 9. Let Zk := {z ∈ Rd : z = A†
kbk + v, v ∈ ker(Ak)} denote the set of minimum-norm least-squares solutions to

Akz ≈ bk, and let ζk∗ be the projection of a fixed point ζ0 ∈ Rd onto Zk. Then, under the update rule

ζ̃kh = ΠR

(
ζ̃kh−1 − βĝ(xk

h; ζ̃
k
h)
)
,

where ĝ(xk
h; ζ̃

k
h) ∈ ker(Ak)

⊥, it holds that

ζ̃kh − ζk∗ ∈ ker(Ak)
⊥, for all h ≥ 0.

Proof. The set Zk = A†
kbk + ker(Ak) is an affine subspace, and ζk∗ is the projection of ζ0 onto Zk. By the projection

theorem for affine spaces, we have:

ζ0 − ζk∗ ∈ ker(Ak)
⊥.

We proceed by induction on h.

Base case (h = 0): By initialization, ζ̃k0 = ζ0, hence

ζ̃k0 − ζk∗ = ζ0 − ζk∗ ∈ ker(Ak)
⊥.

Inductive step: Assume that ζ̃kh−1 − ζk∗ ∈ ker(Ak)
⊥. Define the intermediate iterate:

ζ̂kh := ζ̃kh−1 − βĝ(xk
h; ζ̃

k
h).

Since ĝ(xk
h; ζ̃

k
h) ∈ ker(Ak)

⊥ and ζ̃kh−1 − ζk∗ ∈ ker(Ak)
⊥ by the inductive hypothesis, we conclude:

ζ̂kh − ζk∗ = (ζ̃kh−1 − ζk∗)− βĝ(xk
h; ζ̃

k
h) ∈ ker(Ak)

⊥.

Now consider the projection operator ΠR, defined as:

ΠR(ζ) =

ζ, if ∥ζ − ζ0∥ ≤ R,

ζ0 +R · ζ − ζ0
∥ζ − ζ0∥

, otherwise.

This operation returns a point on the line segment between ζ0 and ζ, and since both ζ0 − ζk∗ and ζ̂kh − ζk∗ lie in ker(Ak)
⊥,

which is a linear subspace (and hence convex), we have:

ΠR(ζ̂
k
h)− ζk∗ ∈ ker(Ak)

⊥.

Therefore, by definition of the update:

ζ̃kh = ΠR(ζ̂
k
h),

we conclude that:

ζ̃kh − ζk∗ ∈ ker(Ak)
⊥.

This completes the proof.

To derive the second-order error bound, we first note the following relations.

∥ζ̃kh+1 − ζ̃k∗ ∥2

= ∥ΠR(ζ̃
k
h − βg(xk

h; ζ̃
k
h))−ΠR(ζ̃

k
∗)∥2

≤ ∥ζ̃kh − βg(xk
h; ζ̃

k
h)− ζ̃k∗ ∥2

= ∥ζ̃kh − ζ̃k∗ ∥2 − 2β⟨ζ̃kh − ζ̃k∗ , g(x
k
h; ζ̃

k
h)⟩+ β2∥g(xk

h; ζ̃
k
h)∥2

= ∥ζ̃kh − ζ̃k∗ ∥2 − 2β⟨ζ̃kh − ζ̃k∗ , ĝ(x
k
h; ζ̃

k
h)⟩ − 2β⟨ζ̃kh − ζ̃k∗ , g(x

k
h; ζ̃

k
h)− ĝ(xk

h; ζ̃
k
h)⟩+ β2∥g(xk

h; ζ̃
k
h)∥2

≤ ∥ζ̃kh − ζ̃k∗ ∥2 − 2β⟨ζ̃kh − ζ̃k∗ , ĝ(x
k
h; ζ̃

k
h)⟩ − 2β⟨ζ̃kh − ζ̃k∗ , g(x

k
h; ζ̃

k
h)− ĝ(xk

h; ζ̃
k
h)⟩+ β2C2

1 log(H/δ)

(a)

≤ ∥ζ̃kh − ζ̃k∗ ∥2 − 2β⟨ζ̃kh − ζ̃k∗ , Ak(ζ̃
k
h − ζ̃k∗)⟩ − 2β⟨ζ̃kh − ζ̃k∗ , ĝ(x

k
h; ζ̃

k
h)−Ak(ζ̃

k
h − ζ̃k∗)⟩

+ C3m
−1/2 log(H/δ) + β2C2

1 log(H/δ)

(b)

≤ ∥ζ̃kh − ζ̃k∗ ∥2 − 2βλ0(1− γ)∥ζ̃kh − ζ̃k∗ ∥2 − 2β⟨ζ̃kh − ζ̃k∗ , ĝ(x
k
h; ζ̃

k
h)−Ak(ζ̃

k
h − ζ̃k∗)⟩

+ 2βC3m
−1/2 log(H/δ) + β2C2

1 log(H/δ)

where (a) follows from Lemma 6(a), (b) follows from the fact that Ak ≽ λ0(1− γ)I and Lemma 6 (a). Taking conditional
expectation Eh on both sides, we obtain

Eh

[∥∥∥ζ̃kh+1 − ζ̃k∗

∥∥∥2] ≤ (1− 2βλ0(1− γ))∥ζ̃kh − ζ̃k∗ ∥2 − 2β⟨ζ̃kh − ζ̃k∗ ,Eh

[
ĝ(xk

h; ζ̃
k
h)−Ak(ζ̃

k
h − ζ̃k∗)

]
⟩

+ 2βC3m
−1/2 log(H/δ) + β2C2

1 log(H/δ) (46)

The second term in (46) can be bounded as

−⟨ζ̃kh − ζ̃k∗ ,Eh

[
ĝ(xk

h; ζ̃
k
h)−Ak(ζ̃

k
h − ζ̃k∗)

]
⟩

≤ λ0(1− γ)

4
∥ζ̃kh − ζ̃k∗ ∥2 +

1

λ0(1− γ)

∥∥∥Eh[ĝ(x
k
h; ζ̃

k
h)−Ak(ζ̃

k
h − ζ̃k∗)]

∥∥∥2
≤ λ0(1− γ)

4
∥ζ̃kh − ζ̃k∗ ∥2 +

1

λ0(1− γ)

∥∥∥∥{Eh[A(xk
h)]−Ak

}
ζ̃kh +

{
bk − Eh

[
b(zkh)

]}∥∥∥∥2

≤ λ0(1− γ)

4
∥ζ̃kh − ζ̃k∗ ∥2 +

2δ2A∥ζ̃kh∥2 + 2δ2b
λ0(1− γ)

≤ λ0(1− γ)

4
∥ζ̃kh − ζ̃k∗ ∥2 +

4δ2A∥ζ̃h − ζ̃k∗ ∥2 + 4δ2Aλ
−2
0 (1− γ)−2Λ2

b + 2δ2b
λ0(1− γ)

(47)

where the last inequality follows from
∥∥∥ζ̃k∗∥∥∥2 =

∥∥A−1b
∥∥2 ≤ λ−2

0 (1− γ)−2Λ2
b . Substituting the above bounds in (46),

Eh

[
∥ζ̃kh+1 − ζ̃k∗ ∥2

]
≤
(
1− 3βλ0(1− γ)

2
+

8βδ2A
λ0(1− γ)

)
∥ζ̃kh − ζ̃k∗ ∥2 +

4β

λ0(1− γ)

[
2δ2Aλ

−2
0 (1− γ)−2Λ2

b + δ2b
]

+ 2βC3m
−1/2 log(H/δ) + β2C2

1 log(H/δ)

For δA ≤ λ0(1− γ)/4, we can modify the above inequality to the following.

Eh[∥ζ̃kh+1 − ζ̃k∗ ∥2]

≤ (1− βλ0(1− γ)) ∥ζ̃kh − ζ̃k∗ ∥2 +
4β

λ0(1− γ)

[
2δ2Aλ

−2
0 (1− γ)−2Λ2

b + δ2b
]
+ 2βC3m

−1/2 log(H/δ)

+ β2C2
1 log(H/δ)

Taking expectation on both sides and unrolling the recursion yields

E[∥ζ̃kH − ζ̃k∗ ∥2]

≤ (1− βλ0(1− γ))
H E ∥ζ̃0 − ζ̃k∗ ∥2

+

H−1∑
h=0

(1− βλ0(1− γ))
h

{
4β

λ0(1− γ)

[
2δ2Aλ

−2
0 (1− γ)−2Λ2

b + δ2b
]
+ 2βC3m

−1/2 log(H/δ)

+ β2C2
1 log(H/δ)

}
≤ exp (−Hβλ0(1− γ))E ∥ζ̃0 − ζ̃k∗ ∥2

+
1

βλ0(1− γ)

{
4β

λ0(1− γ)

[
2δ2Aλ

−2
0 (1− γ)−2Λ2

b + δ2b
]
+ 2βC3m

−1/2 log(H/δ) + β2C2
1 log(H/δ)

}
= exp (−Hβλ0(1− γ))E ∥ζ̃0 − ζ̃k∗ ∥2

+

{
4λ−2

0 (1− γ)−2
[
2δ2Aλ

−2
0 (1− γ)−2Λ2

b + δ2b
]
+ 2λ0(1− γ)−1C3m

−1/2 log(H/δ)

+βλ0(1− γ)−1C2
1 log(H/δ)

}
Substituting β = 2 logH

λ0(1−γ)H and using Lemma 7 yields

E[∥ζkH − ζk∗ ∥2] ≤ O
(
E ∥ζ̃0 − ζ̃k∗ ∥2

H2
+

log2(H/δ)

λ2
0(1− γ)2H

+
log(H/δ)

λ0(1− γ)m1/2
+

1

(1− γ)4λ4
0T

κ

)

A.2 PROOF OF LEMMA 5

Consider the critic update

ζkh+1 = ΠR(ζ
k
h − βg(xk

h; ζ
k
h)) (48)

This can be rewritten as

ζkh+1 = ζkh − βg(xk
h; ζ

k
h) + ϵkh (49)

where ϵkh = ΠR(ζ
k
h−βg(ζkh))−(ζkh−βg(zkh; ζkh)). Note that if ζkh−βg(xk

h; ζ
k
h) ∈ SR then ϵkh = 0 and if ζkh−βg(xk

h; ζ
k
h) /∈

SR, we have the following

∥ϵkh∥ = ∥ΠR(ζ
k
h − βg(xk

h; ζ
k
h))− (ζkh − βg(xk

h; ζ
k
h))∥

(a)

≤ ∥ζkh − (ζkh − βg(xk
h; ζ

k
h))∥ ≤ β∥g(xk

h; ζ
k
h)∥, (50)

where (a) follows since ΠR(ζ
k
h − βg(xk

h; ζ
k
h)) is the closest point to ζkh − βg(xk

h; ζ
k
h) in the set SR and ζkh ∈ SR. This

yields,

∥ϵkh∥ ≤ β∥g(xk
h; ζ

k
h)∥1{ζk

h−βg(xk
h;ζ

k
h)/∈SR}, (51)

where 1A denotes the indicator function for event A. Taking expectation on both sides gives us

E ∥ϵkh∥ ≤ βC1

√
log(H/δ) Pr(ζkh − βg(xk

h; ζ
k
h) /∈ SR)

(a)

≤ βC1

√
log(H/δ) Pr

(
ζkh /∈ S

R−βC1

√
log(H/δ)

)
, (52)

where (a) follows from the fact that the event {ζkh − βg(xk
h; ζ

k
h) /∈ SR} is contained in the event {ζkh /∈ S

R−βC1

√
log(H/δ)

}.
To see this, observe that if ζkh − βg(xk

h; ζ
k
h) /∈ SR, then

∥ζkh − ζ0∥ ≥ ∥ζkh − ζ0 − βg(xk
h; ζ

k
h)∥ − ∥βg(xk

h; ζ
k
h)∥ ≥ R− βC1

√
log(H/δ) (53)

We now bound Pr
(
ζkh ∈ S

R−βC1

√
log(H/δ)

)
using Markov’s inequality combined with the bound on E ∥ζkh−ζk∗ ∥2 obtained

earlier.

Pr
(
∥ζkh − ζ0∥ ≥ R− βC1

√
log(H/δ)

)
≤ Pr

(
∥ζkh − ζk∗ ∥+ ∥ζ0 − ζk∗ ∥ ≥ R− βC1

√
log(H/δ)

)
≤ Pr(∥ζkh − ζk∗ ∥ ≥ R̄) (54)

where R̄ := (R/2)−βC1

√
log(H/δ) and R is chosen such that ζk∗ ∈ SR/2. Since Pr(∥ζkh−ζk∗ ∥ ≥ R̄) ≤ 1

R̄2 ·E ∥ζkh−ζk∗ ∥2,
it follows that

∥E[ϵkh]∥ ≤ E ∥ϵkh∥ ≤ O
(
β E ∥ζ0 − ζk∗ ∥2

H2
+

β log2(H/δ)

λ2
0(1− γ)2H

+
β log(H/δ)

λ0(1− γ)m1/2
+

β

(1− γ)4λ4
0T

κ

)
(55)

The term ϵkh arising from the projection operator can now be viewed as a small error term. Taking the expectation given the
policy parameter θ and the square norm in (49), we obtain

∥E[ζkh+1]− ζk∗ ∥2

= ∥E[ζkh]− ζk∗ − β E[g(xk
h; ζ

k
h)]∥2 + ∥E[ϵkh]∥2 + 2⟨E[ζkh]− ζk∗ − β E[g(xk

h; ζ
k
h)],E[ϵkh]⟩ (56)

Note that

2⟨E[ζkh]−ζk∗ − β E[g(ζkh)],E[ϵkh]⟩

≤ βλ0(1− γ)

2
∥E[ζkh]− ζk∗ − β E[g(xk

h; ζ
k
h)]∥2 +

2

βλ0(1− γ)
∥E[ϵkh]∥2 (57)

Thus, combining the above inequalities

∥E[ζkh+1]− ζk∗ ∥2

≤
(
1 +

βλ0(1− γ)

2

)
∥E[ζkh]− ζk∗ − β E[g(xk

h; ζ
k
h)]∥2 +

(
1 +

2

βλ0(1− γ)

)
∥E[ϵkh]∥2 (58)

We now focus on bounding ∥E[ζkh]− ζk∗ − β E[g(xk
h; ζ

k
h)]∥2. Observe the following

∥E[ζkh]− ζk∗ − β E[g(xk
h; ζ

k
h)]∥2

= ∥E[ζkh]− ζk∗ ∥2 − 2β⟨E[ζkh]− ζk∗ ,E[g(xk
h; ζ

k
h)]⟩+ β2∥E[g(xk

h; ζ
k
h)]∥2

≤ ∥E[ζkh]− ζk∗ ∥2 − 2β⟨E[ζkh]− ζk∗ ,E[A(xk
h)]⟩ − 2β⟨E[ζkh]− ζk∗ ,E[g(xk

h; ζ
k
h)]− E[ĝ(xk

h; ζ
k
h)]⟩

+ β2∥E[g(xk
h; ζ

k
h)]− E[ĝ(xk

h; ζ
k
h)]∥2 + β2∥E[ĝ(xk

h; ζ
k
h)]∥2

≤ ∥E[ζkh]− ζk∗ ∥2 − 2β⟨E[ζkh]− ζk∗ ,E[ĝ(xk
h; ζ

k
h)]⟩ − 2β⟨E[ζkh]− ζk∗ ,E[g(xk

h; ζ
k
h)]− E[ĝ(xk

h; ζ
k
h)]⟩

+ 2β2∥E[g(xk
h; ζ

k
h)]− E[ĝ(xk

h; ζ
k
h)]∥2 + 2β2∥E[ĝ(xk

h; ζ
k
h)]∥2

(a)

≤ ∥E[ζkh]− ζk∗ ∥2 − 2β⟨E[ζkh]− ζk∗ ,E[ĝ(xk
h; ζ

k
h)]⟩+ 2βC3

√
log(H/δ)m−1/2

+ 2β2C2
2 log(H/δ)m−1 + 2β2∥E[ĝ(xk

h; ζ
k
h)]∥2

≤ ∥E[ζkh]− ζk∗ ∥2 − 2β⟨E[ζkh]− ζk∗ , Ak(E[ζkh]− ζk∗)⟩ − 2β⟨E[ζkh]− ζk∗ ,E[ĝ(xk
h; ζ

k
h)]−Ak(E[ζkh]− ζk∗)⟩

+ 2βC3

√
log(H/δ)m−1/2 + 2β2C2

2 log(H/δ)m−1 + 2β2∥Ak(E[ζkh]− ζk∗)∥2

+ 2β2∥E[ĝ(xk
h; ζ

k
h)]−Ak(E[ζkh]− ζk∗)∥2

(b)

≤ (1− 2βλ0(1− γ) + 2Λ2
Aβ

2)∥E[ζkh]− ζk∗ ∥2 − 2β⟨E[ζkh]− ζk∗ ,E[ĝ(xk
h; ζ

k
h)]−Ak(E[ζkh]− ζk∗)⟩

+ 2βC3

√
log(H/δ)m−1/2 + 2β2C2

2 log(H/δ)m−1 + 2β2∥E[ĝ(xk
h; ζ

k
h)]−Ak(E[ζkh]− ζk∗)∥2

(59)

where (a) follows from Lemma 6, while (b) follows from the fact that ∥Ak∥ ≤ ΛA and Ak ≽ λ0(1− γ)I . The last term in
the last line of (59) can be bounded as follows.

∥E[ĝ(xk
h; ζ

k
h)]− (Ak E[ζkh]− bk)∥2

=
∥∥E [(E[A(xk

h)]−Ak)(ζ
k
h − ζk∗)

]
+ (E[A(xk

h)]−Ak)ζ
k
∗ + (bk − E[b(xk

h)])
∥∥2

≤ 3E
[
∥E[A(xk

h)]−Ak∥2∥ζkh − ζk∗ ∥2
]
+ 3E

[
∥E[A(xk

h)]−Ak)∥2
]
∥ζk∗ ∥2 + 3

∥∥bk − E[b(xk
h)]
∥∥2

≤ 3δ2A E
[
∥ζkh − ζk∗ ∥2

]
+ 3λ−2

0 (1− γ)−2Λ2
bδ

2
A + 3δ̄2b

The second term in the last line of (59) can be bounded as follows.

−⟨E[ζkh]− ζk∗ ,Eh

[
E[ĝ(xk

h; ζ
k
h)]−Ak(E[ζkh]− ζk∗)

]
⟩

≤ λ0(1− γ)

4
∥E[ζkh]− ζk∗ ∥2 +

1

λ0(1− γ)

∥∥E[ĝ(xk
h; ζ

k
h)]−Ak(E[ζkh]− ζk∗)

∥∥2
≤ λ0(1− γ)

4
∥E[ζkh]− ζk∗ ∥2 +

3

λ0(1− γ)

[
δ2A E ∥ζkh − ζk∗ ∥2 + λ−2

0 (1− γ)−2Λ2
bδ

2
A + δ̄2b

]
Substituting the above bounds in (59), we obtain the following bound

∥E[ζkh]− ζk∗ − β E[g(xk
h; ζ

k
h)]∥2

≤
(
1− 3βλ0(1− γ)

2
+ 2Λ2

Aβ
2

)
∥E[ζkh]− ζk∗ ∥2 + 2βC3

√
log(H/δ)m−1/2

+ 2β2C2
2 log(H/δ)m−1 + 6β

(
β +

1

λ0(1− γ)

)[
δ2A E ∥ζkh − ζk∗ ∥2 + λ−2

0 (1− γ)−2Λ2
bδ

2
A + δ̄2b

]
Combining (58) with the above bound yields the following result.

∥E[ζkh+1]− ζk∗ ∥2

≤
(
1− 3βλ0(1− γ)

2
+ 2Λ2

Aβ
2

)(
1 +

βλ0(1− γ)

2

)
∥E[ζkh]− ζk∗ ∥2

+
(
2β + β2λ0(1− γ)

)
C3

√
log(H/δ)m−1/2

+ 6

(
1 +

βλ0(1− γ)

2

)(
β2 +

β

λ0(1− γ)

)[
δ2A E ∥ζkh − ζk∗ ∥2

+ λ−2
0 (1− γ)−2

(
1 +

βλ0(1− γ)

2

)
Λ2
bδ

2
A + δ̄2b

]
+

(
1 +

2

βλ0(1− γ)

)
∥E[ϵkh]∥2 + 2

(
1 +

βλ0(1− γ)

2

)
β2C2

2 log(H/δ)m−1

≤
(
1− βλ0(1− γ) + Λ2

Aλ0(1− γ)β3
)
∥E[ζkh]− ζk∗ ∥2 + 2

(
1 +

βλ0(1− γ)

2

)
βC3

√
log(H/δ)m−1/2

+ 6

(
1 +

βλ0(1− γ)

2

)
β

(
β +

1

λ0(1− γ)

)[
δ2AR

2 + λ−2
0 (1− γ)−2

(
1 +

βλ0(1− γ)

2

)
Λ2
bδ

2
A + δ̄2b

]
+

(
1 +

2

βλ0(1− γ)

)
∥E[ϵkh]∥2 + 2

(
1 +

βλ0(1− γ)

2

)
β2C2

2 log(H/δ)m−1

:=
(
1− βλ0(1− γ) + Λ2

Aλ0(1− γ)β3
)
∥E[ζkh]− ζk∗ ∥2 +∆k

h

If β < 1/(2ΛA), the above bound implies the following.

∥E[ζkh+1]− ζk∗ ∥2 ≤
(
1− βλ0(1− γ)

2

)
∥E[ζkh]− ζk∗ ∥2 +∆k

h

Unrolling the recursion, we obtain the following result.

∥E[ζkh+1]− ζk∗ ∥2

≤
(
1− βλ0(1− γ)

2

)H

∥E[ζ0]− ζk∗ ∥2 +
H∑
i=0

(
1− βλ0(1− γ)

2

)H−h

∆k
h

≤
(
1− βλ0(1− γ)

2

)H

∥E[ζ0]− ζk∗ ∥2 +
2

βλ0(1− γ)
∆k

h

≤ exp

(
βλ0(1− γ)H

2

)
∥E[ζ0]− ζk∗ ∥2 +

2

βλ0(1− γ)
∆k

h

≤ exp

(
βλ0(1− γ)H

2

)
∥E[ζ0]− ζk∗ ∥2 +O

(
2

βλ0(1− γ)
∆k

h

)
Substituting β = 2 logH

λ0(1−γ)H , it follows that

∥E[ζkh+1]− ζk∗ ∥2 ≤ O

(
∥E[ζ0]− ζk∗ ∥2

λ2
0(1− γ)2H2

+
log4(H/δ)

λ6
0(1− γ)6H2

+

√
log(H/δ)

λ0(1− γ)m1/2
+

1

(1− γ)10λ10
0 T 2κ

)
(60)

B PROOF OF LEMMAS 2 AND 3

Recall that the block-indexed NAC-DD algorithm (Algorithm 1) uses the NPG estimator evaluated once every M transitions.
The NPG updates can be written as follows

ωk
H+h+1 = ωk

H+h − η
(
X(xk

h)ω
k
H+h − y(xk

h)
)
, (61)

where

X(xk
h) := ∇θ log πθk(ā

k
h|s̄kh)∇θ log πθk(ā

k
h|s̄kh)

)⊤
, y(xk

h) := Q
(
ϕ(ākh|s̄kh); ζkH

)
∇θ log πθk(ā

k
h|s̄kh), (62)

with xk
h = ϕ(s̄kh, ā

k
h). Throughout, the conditional expectation Ek,h[·] is over all the randomness from the hth block in epoch

k given the entire history prior to this block. Whereas, Ek[·] denotes the expectation given θk. For notational convenience,
we henceforth denote E[·], Ek,h[·] and Ek[·] in place of E[·|ζ0], Ek,h[·|ζ0] and Ek[·|ζ0], respectively. Recall that X(xk

h)
serves as an estimate of F (θk) and X(xk

h) serves as an estimate of∇θJ(θk).

The Fisher information matrix satisfies µI ≼ F (θk) and ∥F (θk)∥ ≤ G2
1 from Assumptions 7 and 6, respectively. Further-

more, the norm of the policy gradient norm is bounded by ∥∇θJ(θk)∥ ≤ G1(1− γ)2 [Liu et al., 2020b].

In this Section, we establish that, for each block h, there exists positive constants σ2
X , δ2X , σ2

y , δ2y , δ̄2y , ΛX , Λy such that the
following bounds hold:

Ek,h

∥∥X(xk
h)− F (θk)

∥∥2 ≤ σ2
X ,

∥∥Ek,h[X(xk
h)]− F (θk)

∥∥2 ≤ δ2X , ∥X(xk
h)∥ ≤ ΛX , ∥y(xk

h)∥ ≤ Λy

Ek,h

∥∥y(xk
h)−∇θJ(θk)

∥∥2 ≤ σ2
y,

∥∥Ek,h[y(x
k
h)]−∇θJ(θk)

∥∥2 ≤ δ2y,
∥∥Ek[y(x

k
h)]−∇θJ(θk)

∥∥2 ≤ δ̄2y.

Using these bounds, Theorem 2 of Ganesh et al. [2025] can then be applied with

P = F (θk), q = ∇θJ(θk), P̂h = X(xk
h), q̂h = y(xk

h),

and step size η = 2 logH
µH , yielding the desired mean-square and bias guarantees for the iterates ωk

H .

From Assumption 7, eigenvalues of F (θk) are bounded below by µ. Whereas

Lemma 10. Under the assumptions of Theorem 1, for every epoch k and block h:

1. ∥X(xk
h)∥ ≤ G2

1.

2. ∥Ek,h[X(xk
h)]− F (θk)∥2 ≤ G4

1 T
−2κ.

Proof. Part (1) follows directly from Assumption 6. Part (2) follows by bounding the bias bound as in Lemma 7.

Since ∥X(xk
h)∥, ∥F (θk)∥ ≤ G2

1, it follows that Ek,h ∥X(xk
h) − F (θk)∥2 ≤ 2G4

1. Separately, using Lemma 6, we obtain
∥y(xk

h)∥ ≤ C ′
1G1

√
log(H/δ). Next, we bound the bias and second-order error of y(xk

h), which also carries the critic
approximation error.

Lemma 11. Fix epoch k. Under the assumptions of Theorem 1, for each block h:

(a)
∥∥Ek,h[y(x

k
h)]−∇θJ(θk)

∥∥2 ≤ Õ(σ2
y

Tκ + δ2y

)
,

(b) Ek,h

[
∥y(xk

h)−∇θJ(θk)∥2
]
≤ Õ

(
σ2
y +G2

1(C
′
1)

2
√
log(H/δ)

)
,

where
σ2
y = Õ

(
G2

1

(1−γ)4

)
, δ2y = Õ

(
G2

1∥ζkH − ζk∗ ∥2 +m−1/2 +
G2

1ϵapp
(1−γ)2

)
.

Moreover,

(c)
∥∥Ek[y(x

k
h)]−∇θJ(θk)

∥∥2 ≤ Õ(σ2
y

Tκ + δ̄2y

)
,

with δ̄2y = Õ
(
G2

1∥Ek[ζ
k
H]− ζk∗ ∥2 +m−1/2 +G2

1ϵapp/(1− γ)2
)

.

Proof. We expand

Ek,h[y(x
k
h)]−∇θJ(θk)

= Ek,h[Q(xk
h; ζ

k
H)∇θ log πθk(ā

k
h|s̄kh)]−∇θJ(θk)

= Ek,h[(Q(xk
h; ζ

k
H)−Q(s̄kh, ā

k
h))∇θ log πθk(ā

k
h|s̄kh)] + Ek,h[Q(s̄kh, ā

k
h)∇θ log πθk(ā

k
h|s̄kh)]−∇θJ(θk),

and decompose
Q(xk

h; ζ
k
H)−Q(s̄kh, ā

k
h) = T0 + T1 + T2 + T3,

where
T0 = Q(xk

h; ζ
k
∗)−Q(s̄kh, ā

k
h) T1 = Q(xk

h; ζ
k
H)− Q̂(xk

h; ζ
k
H),

T2 = Q̂(xk
h; ζ

k
∗)−Q(xk

h; ζ
k
∗), T3 = Q̂(xk

h; ζ
k
H)− Q̂(xk

h; ζ
k
∗).

We have ∥T1∥, ∥T2∥ = O(m−1/2), which follows from the bounds on the linearization error, while ∥T3∥ = O(C1∥ζkH −
ζk∗ ∥).

To bound ∥T0∥, first note that

(Q(xk
h; ζ

k
∗)−Q(s̄kh, ā

k
h))

2 ≤ 2(Q(xk
h; ζ

k
∗)− Q̂(xk

h; ζ
k
∗))

2 + 2(Q̂(xk
h; ζ

k
∗)−Q(s̄kh, ā

k
h))

2 (63)

We have (Q(xk
h; ζ

k
∗)− Q̂(xk

h; ζ
k
∗))

2 ≤ O(m−1). Furthermore, from Appendix A.3 in Ke et al. [2024], we have

E ∥Q̂(xk
h; ζ

k
∗)−Q(s̄kh, ā

k
h)∥2 ≤

1

(1− γ)2
E ∥ΠFR,m

Q(s̄kh, ā
k
h)−Q(s̄kh, ā

k
h)∥2 ≤

ϵapp
(1− γ)2

(64)

Using arguments as in Lemma 7, we obtain ∥Ek,h[Q(s̄kh, ā
k
h)∇ log πθk(ā

k
h|s̄kh)]−∇θJ(θk)∥ ≤ G1((1− γ)Tκ)−1, which

yields part (a). Part (b) follows easily using the bounds on ∥∇θJ(θk)∥ and ∥y(xk
h)∥. For part (c), note that

Ek[y(x
k
h)]−∇θJ(θk)

= Ek[(T0 + T1 + T2 + T3)∇θ log πθk(ā
k
h|s̄kh)] + Ek[Q(s̄kh, ā

k
h)∇θ log πθk(ā

k
h|s̄kh)]−∇θJ(θk)

and ∥Ek[T3∇θ log πθk(ā
k
h|s̄kh)]∥ = ∥Ek,h[Ek[Q̂(xk

h; ζ
k
H)− Q̂(xk

h; ζ
k
∗)]∇θ log πθk(ā

k
h|s̄kh)]∥ ≤ C1G1∥Ek[ζ

k
H]− ζk∗ ∥. The

bounds for the remaining terms follow from the bounds in part (a).

We now can invoke Theorem 2 in Ganesh et al. [2025] to obtain

Ek ∥ωk − ω∗
k∥2 ≤ O

(
G4

1

Hµ4(1− γ)4
+

G2
1(C

′
1)

2 log(H/δ)

Hµ2(1− γ)4
+ µ−2G2

1 E ∥ζkH − ζk∗ ∥2 + µ−2m−1/2 +
G2

1ϵapp
µ2(1− γ)2

)
(65)

and

∥Ek[ωk]− ω∗
k∥2 ≤ O

(
G2

1(C
′
1)

2G2
1 log(H/δ)

Tκ
+ ∥E[ζkH]− ζk∗ ∥2 +

G2
1ϵapp

µ2(1− γ)2

)
(66)

C PROOF OF THEOREM 1

Recall that the global convergence of any update of form θk+1 = θk + αωk can be bounded as

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
ϵbias

1− γ
+

G1

K

K−1∑
k=0

E ∥(E [ωk|θk]− ω∗
k)∥+

αG2

K

K−1∑
k=0

E ∥ωk − ω∗
k∥2

+
αµ−2

K

K−1∑
k=0

E ∥∇θJ(θk)∥2 +
1

αK
Es∼dπ∗ [KL(π∗(·|s)∥πθ0(·|s))].

(67)

We note that our algorithm updates θ at each iteration k using ωH and ζH obtained after H iterations of the NPG and
critic estimation inner loops. Therefore, we use ωH and ζH instead of ωk and ζkH . We begin by deriving a bound for
1
K

∑K−1
k=0 ∥∇θJ(θk)∥2. It is known that J is LJ -smooth with LJ := G2

(1−γ)2 +
2G2

1

(1−γ)3 [Lemma B.1, Liu et al. [2020b]].

With this, we obtain:

J(θk+1)

≥ J(θk) + ⟨∇θJ(θk), θk+1 − θk⟩ −
LJ

2
∥θk+1 − θk∥2

= J(θk) + α ⟨∇θJ(θk), ωk⟩ −
α2LJ

2
∥ωk∥2

= J(θk) + α ⟨∇θJ(θk), ω
∗
k⟩+ α ⟨∇θJ(θk), ωk − ω∗

k⟩ −
α2LJ

2
∥ωk − ω∗

k + ω∗
k∥2

(a)

≥ J(θk) + α
〈
∇θJ(θk), F (θk)

−1∇θJ(θk)
〉
+ α ⟨∇θJ(θk), ωk − ω∗

k⟩
− α2LJ∥ωk − ω∗

k∥2 − α2LJ∥ω∗
k∥2

(b)

≥ J(θk) +
α

G2
1

∥∇θJ(θk)∥2 + α ⟨∇θJ(θk), ωk − ω∗
k⟩ − α2LJ∥ωk − ω∗

k∥2 − α2LJ∥ω∗
k∥2

= J(θk) +
α

2G2
1

∥∇θJ(θk)∥2 +
α

2G2
1

[
∥∇θJ(θk)∥2 + 2G2

1 ⟨∇θJ(θk), ωk − ω∗
k⟩+G4

1∥ωk − ω∗
k∥2
]

−
(
αG2

1

2
+ α2LJ

)
∥ωk − ω∗

k∥2 − α2LJ∥ω∗
k∥2

= J(θk) +
α

2G2
1

∥∇θJ(θk)∥2 +
α

2G2
1

∥∇θJ(θk) +G2
1(ωk − ω∗

k)∥2 −
(
αG2

1

2
+ α2LJ

)
∥ωk − ω∗

k∥2

− α2LJ∥ω∗
k∥2

≥ J(θk) +
α

2G2
1

∥∇θJ(θk)∥2 −
(
αG2

1

2
+ α2LJ

)
∥ωk − ω∗

k∥2 − α2LJ∥F (θk)
−1∇θJ(θk)∥2

(c)

≥ J(θk) +

(
α

2G2
1

− α2LJ

µ2

)
∥∇θJ(θk)∥2 −

(
αG2

1

2
+ α2LJ

)
∥ωk − ω∗

k∥2

(68)

where (a) utilizes the Cauchy-Schwarz inequality and the definition that ω∗
k = F (θk)

−1∇θJ(θk). Inequalities (b), and (c)
follow from Assumption 6(a) and 7 respectively. We take the above inequality, sum over k = 0, · · · ,K − 1, rearrange the
terms and substitute α = µ2

4G2
1LJ

, to obtain:

µ2

16G4
1LJ

(
1

K

K−1∑
k=0

∥∇θJ(θk)∥2
)
≤ J(θK)− J(θ0)

K
+

(
µ2

8LJ
+

µ4

16G4
1LJ

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
)

(a)

≤ 2

(1− γ)K
+

(
µ2

8LJ
+

µ4

16G4
1LJ

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
) (69)

where (a) uses the fact that J(·) is absolutely bounded above by (1− γ)−1. Using (69), we obtain

µ−2

K

(
K−1∑
k=0

∥∇θJ(θk)∥2
)
≤ 32LJG

4
1

µ4K
+

(
2G4

1

µ2
+ 1

)(
1

K

K−1∑
k=0

∥ωk − ω∗
k∥2
)

(70)

Substituting Lemma 4 in Lemma 2, we obtain

Ek

∥∥ωk − ω∗
k

∥∥2 ≤ O(G4
1

H µ4(1− γ)4
+

G2
1(C

′
1)

2 log(H/δ)

H µ2(1− γ)4
+

1

µ2 m1/2
+

G2
1 ϵapp

µ2 (1− γ)2

+
G2

1

µ2

E ∥ζ̃0 − ζ̃k∗ ∥2

H2
+

G2
1

µ2

log2(H/δ)

λ2
0(1− γ)2 H

+
G2

1

µ2

log(H/δ)

λ0(1− γ)m1/2

+
G2

1

µ2

1

λ4
0(1− γ)4 Tκ

)
,

(71)

∥∥Ek[ωk]− ω∗
k

∥∥2 ≤ O(G4
1 (C

′
1)

2 log(H/δ)

Tκ
+
∥E[ζ0]− ζk∗ ∥2

λ2
0(1− γ)2 H2

+
log4(H/δ)

λ6
0(1− γ)6 H2

+

√
log(H/δ)

λ0(1− γ)m1/2
+

1

λ10
0 (1− γ)10 T 2κ

+
G2

1 ϵapp
µ2 (1− γ)2

)
.

(72)

Now combining (70), (71) and (72) with (67), and substituting K =
√
T , M = 2tmix⌊log T ⌋ and H = (

√
T)/M , we

obtain the following bound

J∗ − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
ϵbias

1− γ
+

G2
1
√
ϵapp

µ(1− γ)
+O

(
tmix log3(T/δ)

(1− γ)3
√
T

+
1

m1/4(1− γ)1/2
+

Es∼dπ∗
[
KL(π∗∥πθ0)

]
√
T

)
.

	Introduction
	Related works
	Main Contributions and Challenges

	Setup
	Natural Actor–Critic with Data Drop (NAC–DD)
	Algorithmic description

	Sample Complexity of the proposed algorithm
	Proof Outline
	Policy update analysis
	NPG analysis
	Critic analysis

	Evaluation
	Conclusions
	Neural Critic Analysis
	Proof of Lemma 4
	Proof of Lemma 5

	Proof of Lemmas 2 and 3
	Proof of Theorem 1

